Cad.de Newsletter
 
Gutekunst Federn

Made in Germany: Metallfedern für den Extremfall


Ob in korrosiven Flüssigkeiten, bei Hochtemperatur-anwendungen oder bei tiefsten Temperaturen, mit dynamischer oder statischer Belastung, auf Druck-, Zug- oder Biegebeanspruchung: Bei der Auslegung der Metallfeder für den Extremfall ist mehr zu tun als die Bestimmung des passenden Federnwerkstoffs.

Beginnen wir einen kurzen Einblick in die Auswahl- und Kombinationsmöglichkeiten von Metallfedern mit grundsätzlichen Bemerkungen zu den Federntypen. Die mit 70 Prozent am häufigsten eingesetzte Federnart ist die Druckfeder; sie besitzt die größte Widerstandskraft. Bei der Zugfeder muss bei extremen Anwendungen die Ösenanbindung überprüft werden. Bei einer einfachen 1/1 deutschen Öse ist der Ösenübergang vom Federkörper zur Öse besonders empfindlich. Zugfedern können daher bei hoher Belastung, mit häufigen Lastwechseln, an beiden Federenden mit Einschraubstücken ausgestattet werden. Die Belastungsgrenze von Schenkelfedern hängt von der Belastungsrichtung und der Schenkelform ab. Darum gilt bei Schenkelfedern: Belastung grundsätzlich nur in Windungsrichtung; und je kürzer der Schenkel, desto höher die Belastungsgrenze.

Verschiedene Bauformen

Neben der Unterscheidung nach Druck-, Zug- und Schenkelfedern können Metallfedern in verschiedenen Bauformen hergestellt werden. Die häufigste Federnbauform ist die zylindrische Bauform, die mit einer linearen Federkennlinie die Kraft gleichmäßig abliefert. Daneben gibt es aber noch unzählige andere Bauformen wie beispielsweise die Bienenkorbfeder und die konische oder tonnenförmige Federnform, welche mit variablen Federkennlinien für die unterschiedlichsten Spezialaufgaben eingesetzt werden. So werden Bienenkorbfedern mit einer nach oben verjüngten Windung gerne für anspruchsvolle dynamische Anwendungen verwendet.


Hochbelastbare Federn, wie hier für den Einsatzfall unter Hitzeeinwirkung, müssen darauf hin besonders ausgelegt sein.

Auch die Auswahl des passenden Werkstoffs ist im Extremeinsatz existenziell. Neben der Werkstoffauswahl nach korrosiven, elektrisch leitenden oder unmagnetischen sowie Hoch- und Niedrigtemperatureigenschaften sind es vor allem Werkstoffeigenschaften im Elastizitätsmodul (E) bzw. im Gleitmodul (G), nach der die Feder die gewünschte Kraft bereitstellt und nach Wegnahme der Belastung wieder ihre ursprüngliche Gestalt erreicht. Hierfür sind hohe Elastizitätsgrenzen für einen großen elastischen Bereich, geringe Relaxationseigenschaften auch bei erhöhten Temperaturen, eine hohe Dauerschwingfestigkeit, ein ausreichendes Verformungsvermögen und eine gleitfähige Oberfläche zwingend notwendig.

Ergänzende Oberfächenbehandlung möglich

Sollten die gewünschten Werkstoffeigenschaften jedoch nicht mit den benötigten Belastungsdaten vereinbar sein, oder sollte die Feder zusätzliche Eigenschaften benötigen, sind dafür diverse ergänzende Oberflächenbehandlungen verfügbar: erhöhter Korrosionsschutz, Festigkeitserhöhung, leitend, unmagnetisch und viele mehr. Welche Oberflächenbehandlung zu welchen Federeigenschaften passt, wird, wie viele andere Zusatzinformationen, auf der Homepage des Herstellers dargelegt.


Auch für hochbelastbare Federn hält Gutekunst Federn eine große
Auswahl an Federformen und –werkstoffen bereit, wie hier die Tonnenfeder.


Letztendlich wird die Metallfeder für die vorhandene Aufgabe optimal für den zur Verfügung stehenden Bauraum ausgelegt. Nachdem die Belastungsart statisch oder dynamisch, die Gesamt-Lebensdauer, die Einsatztemperatur, das Umgebungsmedium, die benötigten Kräfte und Federwege, der vorhandene Einbauraum, die Toleranzen, der Werkstoff und die Einsatztemperatur bestimmt worden sind, besteht die Federnauslegung aus zwei Stufen:

1.    Dem Funktionsnachweis, mit der Überprüfung der Dimensionen, Federrate, Kräfte, Federwege und des Schwingungsverhaltens.                                                  
2.    Dem Festigkeitsnachweis, mit der Überprüfung der zulässigen Spannung bzw. der Dauerfestigkeit.

Dazu ist eine iterative Vorgehensweise erforderlich, bei der am Ende die Beanspruchungsgrenze für die Federdimensionierung mit einem Sicherheitsfaktor festgelegt wird. Je nach Anwendungsfall und abhängig davon, wie extrem die Anforderungen sind, wird die Beanspruchungsgrenze angepasst. So ist die Metallfeder für jeden Einsatz bestens gerüstet.


Einsatzbeispiel Nässe.

Am Ende ist es…

… eine anwendungsspezifische Kombination aus Federnart, Federnbauform, Federnwerkstoff, Windungsausführung, Oberflächenbehandlung und der Federnauslegung nach Funktions- und Festigkeitsnachweis welche die optimale Lösung bringt.


Auch bei großer Kälte müssen Federn zuverlässig funktionieren.

Über Gutekunst Federn
Gutekunst Federn ist auf die Entwicklung und Fertigung von Metallfedern sowie Drahtbiegeteilen aus jedem gewünschten Federstahldraht spezialisiert. Neben dem umfangreichen Lagerprogramm mit 12.603 Federbaugrößen, fertigt Gutekunst Federn jede gewünschte individuelle Metallfeder bis 12 mm Drahtstärke in Kleinmengen und Großserien. Mit 320 Mitarbeitern beliefert das 1964 gegründete Familienunternehmen weltweit rund 100.000 Kunden aus den unterschiedlichsten Branchen. So zählt Gutekunst Federn heute mit fünf Niederlassungen in Deutschland und Frankreich zu den größeren Federnherstellern in Europa.

www.gutekunst-federn.de

Anzeige: