N Autodesk 2003

December 2-5, 2003 ¢ MGM Grand Hotel Las Vegas

Going Beyond DCL

Joel Roderick

CP21-3 I know what you're thinking: "Why learn ObjectDCL when there's VBA?" Are you tired of hand coding DCL? Are you
wondering if you should just learn VBA and forget all this DCL stuff? This class will introduce you to the basics of
ObjectDCL and it's abilities. We will discuss how ObjectDCL compares with DCL, VBA, and ARX, and why ObjectDCL
might be perfect for you. Come learn about a great tool that many can benefit from.

About the Speaker:

Joel is currently Project Designer and CAD Technologies Manager at Water Technology, Inc., an aquatic planning,
design, and engineering firm in Beaver Dam, Wisconsin. At Water Technology, Joel is responsible for the conceptual
design of aquatic recreation / competition facilities & waterparks, as well as all AutoCAD management and
customization. For the past 5 years, Joel has been developing Water Technology's proprietary AutoCAD plug-in,
Aquatic Desktop using Visual Lisp, VBA, and ObjectDCL.

jroderick@watertechnologyinc.com

Going Beyond DCL

The basics of event driven programming...

Definitions:

T
)
2

ObjectDCL (ODCL) — an arx application that enables the use of ObjectARX style forms with lisp applications
Form — Synonym for dialog box

Control — An item on a form (button, list box, combo boxes)

Event — Happens when the user interacts with a control (action_tile)

Method — A function to manipulate forms & controls

Modal form — A form that has focus until dosed (most AutoCAD dialogs)

Modeless form — A form that allows action to be taken outside it's boundaries (Aerial View)

Dockable form — Similar to modeless with the added ability to be docked (Properties)

Config Tab — Adds a custom tab to the options command

ObjectDCL.arx and ObjectDCL2004.arx — Required to be loaded in AutoCAD. This file is freely distributable and royalty
free. This files is necessary to display and handle the forms designed with ObjectDCL

ObjectDCL.exe — The form editor

.odc — ObjectDCL project files. These files contain your form designs.

.0ds — Secure ObjectDCL project file. This file is optional and is used as a secure format and cannot be opened in the
ODCL editor. Be sure you always keep your .odc files!

JIsp — AutolLisp / VisualLisp file

File Organization:
The ObjectDCL.arx, .Isp & .odc/.ods files should be located in a folder that is within AutoCAD's search path.

ObjectDCL Projects:

A single ObjectDCL project can contain many forms of many types. So if your application needs more than one form, you can
have one project file that contains all of your forms. Project files contain forms only, there is no lisp code saved within these

files.

:L’!_‘"'Autodesk University 2003 2

Going Beyond DCL

The ObjectDCL Editor...
The basic components of the ODCL editor:

Form Editor — The main window where you design forms

Project Window — Where you organize your forms, lisp, and distribution files

Control Toolbox — Where you get the controls for your form

Properties Window — Controls the properties of an object

Z/Tab Order — Controls what happens when user hits TAB & also controls the display order of controls
Intelligent Help — Explore the different methods and properties of an object

Picture Folder — Stores images for use within a project

Property Wizard — Provides a convenient way of changing the properties of a control.

Font Toolbar — Provides a convenient way of changing the fonts of a control(s).

There is also a toolbar for frequently used commands, but for the purpose of this dass, we will be using the menus.

[Ei ObjectDCL - CP21-3.0dc

File Edit Projects Tools ‘Wiew Help

=101

=R

=

X T # TR P
& EHEB sv + O
BErel = 4wl
2 s o me ° B CE

Ea Madal Farms

- IE FrmcPzL-3

= 423] WisualjsuroLisp Fle Mame

H:iAukaDesk University 2003CP21-3.lsp
Ea Distribution File Marme

g7 Hi\AukaDesk University 20031CP21-3.0ds

Project Window

Froperties | Eventsl

Control frmCF21-3

Toolbox [Mame) fimCP21-3
[Object Brawser)

* % artlame) CP21-3_frmCP21-3
!i ﬁ 87 ti AllowR esizing True

d axDialoghw/idth 1000
MinDialogH eight a0
tinDialaghfidth 50
TitleBarlcon <Monex
TitleBarT ext DclFamnd
Width 342
M axDialogHeight

ZiTab Order

Window Properties Window

(1) Autodesk University 2003 3

Going Beyond DCL

ObjectDCL Boot Camp...

Rather than try to explain many things at one time, I am going to go step by step through the process of creating an ObjectDCL
project and explain things along the way. There are too many controls, properties and methods to cover here. This dass is
intended to help you understand the basic concepts behind ODCL. Here is an outline of the process:

Create a project

Add a form

Associate a lisp file

Add controls

Add the code behind the controls

First things first, lets create a project...
There are three basic components of an ODCL project.

o .odcfile

e .odsfile

e sp/ .fas/ .vixfile
It is recommended that you keep all of these files in the same folder. Also, make sure that the folder you place these files in is
part of AutoCAD's search path.

Save the file:
Start ObjectDCL and dlick File->Save and name the file.

Associate a .Isp and distribution file:

The next step in the process is to associate a lisp file and a distribution file to your ODCL project. To do this, we are going to
use the Project window. First you will need to create a lisp file to assodiate to the project. You can do this with your favorite lisp
editor or just plain notepad.

Proiecce R | Associate a Isp file:
= 3 VisualiAdtoLisp Fils Name Double dick on <None> under Visual/AutoLisp File Name and browse
LR <Mones to your program.
=423 Distribution File Name
0 <Mone> Associate a distribution file:
Distribution files are a form of security. A distribution file has an .ods
% extension and cannot be opened in the ODCL editor. This prevents
other from opening your ODCL project in the ODCL editor and
modifying the forms. Double dlick on <None> under Distribution File
Name, browse to your folder, and name the file.

Let the Fun Beqgin — Designing Forms...

There are 5 types of forms supported by ObjectDCL. All 5 types work basically the same with some caveats. Modeless,
dockable forms and config tabs are handled slightly different than modal forms. For example, modeless and dockable forms
stay open, so you will need to account for when a user opens a drawing, or switches drawings.

Modal form — A form that has focus until closed (most AutoCAD dialogs)

Modeless form — A form that allows action to be taken outside it's boundaries (Aerial View)
Dockable form — Similar to modeless with the added ability to be docked (Properties)
Config Tab — Adds a custom tab to the options command

File Dialog — A customizable file browser

:L’!_‘"-Autodesk University 2003 4

Going Beyond DCL

Adding a form:
For the purpose of this class, we will use a modeless form since these are the most common. First lets start by adding a form.
Click Projects ->Add Modal Form.

: 5 Properties
el Now that you have added the form, we need to adjust the properties
Propsrties | Events | of the form. To do this we will use the Properties Window. The
fimCP21 3 Properties Window works very similar to the one in VB(A). If you dlick
[Mame] frmCP21-3 .. . L
(Obiect Browser] on a property, a description of what the property does is displayed at
[Warl ame) CF21-3_frmCP21-3 the bottom of the Properties window. Most of the properties, for the
AlowR esizing True most part, are self-explanatory.
Height 255
MaxDialogHeight 1000
MarDisloghwicth 1000 The VarName property _
MirDialogH eight 50 One property that is special to ODCL is the VarName property.
MirDialagh/idth el VarName is a global variable that is created when the form is shown in
l::::g:['ﬁ:: S’i;::n : AutoCAD. This variable gives you direct access to whatever object it
width 24z points to. In this instance VarName points to the form itself. The

VarName variable will allow you to make changes to the form from
lisp, so you can change the size of the form, disable the form, change
the color, etc. all from lisp. The global variables that are created when
MaxDialogHeight showing a form are released when the form is closed, so there are no
memory issues.

Updating the VarName property

= ODCL will name the VarName property based on the ODCL project
Do you wish to update the [Warame] global variables? name and the form name. For example, if your project name is
[# Update the Form's [Varame] “MyODCL" and the form name is “frmMyODCL" then ODCL will set

VarName as “MyODCL_frmMyODCL". ODCL has made it easy to
i . . . keep your VarNames organized by automating the task of updating
the [YarMame] iz already in used by your AutoLisp code, .
vou will have to update yau AutoLisp code. the VarName property. Any time you change the name of your form,
T Ve Mo you will be given the choice of letting ODCL update the VarName
property. We will cover more on VarNames later.

[~ Update the all the child controls' (Var ame)

'\IL&_‘Z"Autodesk University 2003

Getting from ODCL to AutoCAD...

Going Beyond DCL

In this section, we will cover the code required to ensure that ObjectDCL.arx is loaded, load the project and then show the
form. Open the lisp file that you associated to your ODCL project in your favorite lisp editor. For the purposes of this dass, we

will use the Visual Lisp IDE that comes with AutoCAD.

Loading ObjectDCL2004.arx

The code to load ObjectDCL2004.arx is simple. Make sure that this code is added to the lisp file and make sure it is run before

you try to show the form. Here is an example:

s;function to load objectdcl?884.arx
{defun LoaddDCL ()}
{(if (not {(member “0bjectDCL2B84.arx™ (arx)))

{arxload "ObjectDCLZ2004 . arx" "0bjectDCL2084.arx not found.™)

|

Y P L N Y e

Loading the ODCL Project

{
P

To get the code required to actually show the form, we need to go back to the ODCL editor. We are going to use the

Intelligent Help and let ODCL do most of the work.

X
ethodz Cefinition
E1-#1 Modal Form Tlethod LoadProject 0ok I

----- & allowResizing

----- =2 CancelClose This method loads the requested project itto metmory for

----- =% GetRectangle
----- =3 GetTileBarTest

..... =G |sfclive
----- = |sEnabled
----- = |sFloating

----- E& MarDialoghwidth

----- EH MinDialogHeight

----- B MinDialogwidth

----- =3 FHesize

----- =3 SetDialogMintd axSizes
----- = SetTiteB arT ext

----- = Show

----- E& TitleB arlcaon

----- E&' TitleB arT ext

..... =% UpdatefarMames
----- E& Wwidth

Copy To Clipboard

..... =& Center later use. If you specifir a T after the file name the ode file
..... 2P Cloze wrill be reloaded. If wou are loading the ods distribution file,
..... - Close the file will not be reloaded.

----- =@ Closeall .

----- =& Enable AutoLisp Symtax:

..... & GetControlires (Odecl LoadProject Filelame fas bfeger] [Oofional |

----- ; 6 GetHwnd Feload [as)

Intelligent Help

To access the Intelligent
Help, right click on the form
and dlick Intelligent Help.
The Intelligent Help will list all
the methods, properties and
events that the form
supports. As you highlight
the different methods and
properties, the appropriate
code is generated with
additional information about
that property or method.
There are too many
properties and methods to
cover them all here. The
Intelligent Help does a fairly
good job of explaining what
each method and property
does. It's really not
important that you know all
the methods and properties
rather, it's important that you
understand the concept
behind the Intelligent Help.

(Odel_LoadProject FileMame [as bifeger] [Opfional |

=% [GetControlbrea Reload fas T))

- GetHwnd

% GetRectangle
% GetTitleB arT ext
-EE Height

2 Initialize

e |shchive

Pasting the code

=23 Modal Fom Iethod LoadProject
EE AllowR esizing
20 CancelClose This method loads the requested project into memory for
o Cpter later use. If vou specifiy a T after the file name the ode file
-2F Close will be reloaded. If you ate loading the ods distribution file,
i Cloze the file will not be reloaded.
=% Closedll A
=% Enable AutoLisp Symtax:

NN A e, A

Going Beyond DCL

LoadProject Method

This method is used to load the ODCL
project into memory. You will need to
run this method before any others.
Rather than having to type all the
code, ObjectDCL has provided a
convenient button at the bottom of
the Intelligent Help to copy the code
to the dipboard so you can paste it
into the Visual Lisp IDE. Highlight the
LoadProject method and click “Copy to
Clipboard”

Now that you have the code saved in your dlipboard, go back to the Visual Lisp IDE and paste the code. You will notice that
there are some optional arguments. Since they are optional, we can delete that portion, or we can supply the arguments. The
arguments are explained in the Intelligent Help (see above). If ObjectDCL2004.arx is loaded, the ODCL functions are

recoghized by Visual Lisp and are blue.

;;1load the project

(0dcl_LoadProject FileMame [as Integer] [Optional] Reload [as T])

3

adema, s P . e
____ﬂ.-"___"\.\.:-'- s rF 4 e it -\, . Py S -, /

Reload flag

Since we are in the process of designing the form, we want to use the “"Reload"” flag so the project is reloaded each time the
command is run. Otherwise, the one that is stored in memory will be used. Once you have finished your application, the
“Reload” flag can be removed, so that ODCL will use the project stored in memory instead of reloading the project each time

the command is run.

;:load the project
(0dcl_LoadProject "CP21-3_odc™ T} }

e et s eeas f
N e U e himbin ey

'\IL&_‘Z"Autodesk University 2003

Going Beyond DCL

Showing the Form
Now that the code to load the project is complete, we will use the “Show” method to get the form to show up in AutoCAD. Go
back to the Object Brower and highlight the “Show” method, then dlick “Copy to Clipboard”.

Paste the code
Switch over to the Visual Lisp IDE and paste the code.

::Show the form /
(0dcl_Form_Show CP21-3_frmCP21-3 [Optional] UpperLeftXCoordinate [as Integer] [Optional] UpperLeftYCoordinate [as Integer])

Unless you want to show your form at a specific location on the screen, you can delete the optional arguments:

_ VarName
3 ODCL automatically used the variable stored in the VarName

s:5how the form "
{0dcl_Form_Show CP21-3_frmCP21-3) / property of the form as the argument.

e ‘\\\ [OEect Browzer] :
llowR esizing Tiue 1
LTSI NP s

et

Making a command:
We now have all the code to show the form. Now we need put it all together into a command.

{defun c:CP21-3 () ~ “De-fun” part

Putting it all together into a command is really no different
than any other lisp program. In this case, the command name
is “CP21-3". Now all that needs to be done is load the lisp file

;:load ObjectDCL /
;iload the project # and type the command.

4

/r’

(LoadODCL)

(0dcl_LoadProject "CP21-3.odc™ T}

;:5how the fForm
(0dcl_Form_Show CP21-3_frmCP21-3)

The Form in AutoCAD

You can now run the “CP21-3” command in AutoCAD to
test the form. Now that we have them form ready, we
can start adding controls. To dose the form, dlick on the
X in the upper right corner of the form.

Going Beyond DCL

Getting Things Under Control...

To add controls to the form, we are going to use the Control Toolbox. ODCL comes with many standard controls, but also has
the ability to use most ActiveX controls. There are too many controls to cover here, however we will be using the Intelligent
Help, and they are all explained there.

TextButton Contral

_]/ - - Buttons
’T T af & [o P Let's start off with the two things most forms need, OK and Cancel buttons. For
« EBEaw £ O 4 these buttons we will use the TextButton control. Adding controls is as easy as

B [w2 oum clicking on the control and specifying the location on the form.

5] S @ owe BB A
il 2%

M Name Property
: Add two TextButton Controls to the form. After adding the
buttons we will need to edit the properties of each button.
Highlight the left button and change the “Name” property to
txtOK. Repeat the same for the right button, naming it txtCancel

| Control VarName Property
_ L Since all controls have a VarName property, ODCL will
Do wou wish ko update the (Marhame) global wariable? give you the choice to update the VarName property

If the (Varhame) is already in used in Autalisp vou will have to update vou lsp File,

after changing the Name property. The VarName
s Mo | property of a control gives you direct access to the
individual controls on a form.

t=tOk,
[Object Browser]
arM ame] CP21-3_frmCP21-3_txtaK
.............................. . [wfizard) .
oy Sy BattariFramB attam 24 K
Uik)| G F T NN ;1Y SRR
JRSEERREERRE SREREONERIRIARRY |
Ixkact - Caption Property
el o el 10?(= Next, we will change the Caption property of the TextButton
DragrDropdloBegin False 5 Control. The Caption property contains the actual text that is on
DragnDiopélowDiop True the control. Change the Caption property to "OK”. Repeat the
Enabled Tre 1 r same for the right button naming it “Cancel”
= LT "_.“.’-_...mﬂ!_kh _\f"'-l J?'\BE'.LFDE}A - “\,._._,' b

.ilt*l'_\f'Autodesk University 2003 9

Making the controls alive...
Now that we have our buttons ready, we can add the code to actually make them do something. To accomplish this, we are

going to use events. The DCL equivalent of an event would be the (action_tile) function. ODCL has many more events to
choose from, and each control and form has it's own set of events.

Properties Events |

OnClicked

[|0nDragnDropBegin
[C10nDragnDmopFromContral
[C10nDragnDopFromOther
[C10nDragnDmopT odwutaCAD
C10nbMousetdove

|.:; frriCP21-3_tet0K,_OnClicked

[defun c:iimCP21-3_tat0k_OnClicked [)

-

[Odcl_MessageBox '"To Do: code must be added ta ktOE" "Tao da™) LI

Copy To Clipboard

Indicates that the user has clicked the laft mouse button on the contral ;l

]

Going Beyond DCL

Adding Events

To add events, we will use the Properties Window in the lower
right comer of the editor. Highlight the OK button, and then
dick the Events tab in the Properties Window. As you can see,
there are many events for a TextButton control. The
description and code for each event is shown at the bottom of
the Intelligent Help. Again, ODCL has provided a convenient
“Copy to Clipboard” button at the bottom to save the code to
the dipboard.

Where to paste the code

Since each control will have it's own function, it's easy to have
many functions within you program. Since these functions are
only used when the command in running, we can put the
control functions within the main defun and localize the control
functions. For modeless and Dockable forms, the event
functions need to be available at all times, so these functions
should go outside the main defun.

B “""""‘-.__ - . _‘ﬁ-"'\-..-‘-\.’\’- Rt

;;onclick event for the 0K button

(defun c:frmCP21-3 txt0OK_OnClicked ()} "
(0dcl_MessageBox "To Do: code must be added to txtOK™ "To do") 'f
1

)

T

VP SN N S S

Adding the OnClicked Event

The event we are going to use is
OnClicked. This event is fired when
the user dicks the control with the left
/ mouse button. Check the box next to
OnClicked and then click “Copy to

Clipboard”. Switch over to the Visual Lisp IDE and paste the code. ODCL puts in “"dummy code” for each event that consists of
an alert box telling you to add code. We will leave the code as-is for now and come back to it later.

}

(defun c:CPF21-3 ()

;:1load ObjectDCL
{LoadODCL)

;;onclick event for the OK button

{defun c:frmCP21-3_txtOK_OnClicked ()
(0dcl_HMessageBox “To Do: code must be added to txtOK™ "'To do™)

)

;;onclick event for the Cancel button
{defun c:frmCP21-3_txtCancel_0OnClicked ()
(0dcl_HMessageBox “To Do: code must be added to txtCancel™ "To do™)

)

;;load the project
{0dcl_LoadProject "CP21-3_odc" T)

s:Show the form
{0dcl_Form_Show CP21-3_frmCP21-3)

e —ry

N e S Y Py S

Next, repeat the process for the
cancel button, and paste the
code into the Visual Lisp IDE.
Your code should look like
example to the left. You can
now load the lisp program, and
run the command. Be sure to
save the ODCL project
before running the
command, otherwise, the
changes will have no effect.
Now that you have added code
to the controls, clicking them wiill
trigger the event functions.

A AL N A B

9

D

10

Going Beyond DCL

Resizing forms...
ODCL forms can be resized making them much more functional than DCL dialogs. Making your form resizable is easy, however

there are some caveats when it comes to making your controls stay in the right place when you resize the form.

AllowResizing Property

T Highlight the form and change the AllowResizing property to True. If
299 f you save the ODCL project and run the command, you will be able to
1000 e g resize your form, but the controls don't really work the way we want.

CP21-3_frmCP21-3 :

Property Wizard

To control the way controls react when resizing the form, we
are going to use the Property Wizard. To access the Property
Wizard, double click on the desired control. We want the OK
and Cancel buttons to stay in the lower right hand corner of the
form when resizing. Change all 4 options on the Geometry tab
to ensure that the buttons stays anchored to the lower right
corner.

Left Side Alignment:
|Qffset From Fight Edge = |

Top Side Alignment:
|foset From Bottom Edge j

Right Side Alignment:
| Oiffset From Right Edge = |

Battorn Side Alignment:
Offzet From B

Kicking it up a notch with images...
A common question that gets asked is “"How can I show my company logo on the form”. While this is possible with DCL using a

slide and image_show, it is pretty limiting. ODCL provides a way to add images to forms and controls easily. In this section, we
will discuss the Picture Folder in ODCL.

add Modal Form The Picture Folder

Add Modeless Form ODCL uses the Picture Folder to store images that will be used within the ODCL project. The
Add Dockable Form nice thing about the picture folder is that you don't have to keep the actual image with the
Add Carfig Tab project. Once you add your image to the Picture Folder, the image is saved within the ODCL
AR Ao D project. To access the Picture Folder, dick Projects -> View/Edit Picture Folder.

Vigw/Edit Picture Falder

Set AULOLISP Fil Name. 1] Please note: 3" Day Software recommends that large jpeg files should not be loaded directly

5o DU [2 e into the picture folder. The jpegs will take up a large amount of memory when the project file is

Remove Farm loaded into AutoCAD. Instead use the PictureBox's function called LoadPictureFile instead at run
time and this will minimize the amount of memory being used since the loaded picture is
released from memory as soon as the dialog box is closed.

(18) Autodesk University 2003 11

Going Beyond DCL

Picture Folder

|x

Adding Images to the Picture Folder

i Adding an image is quite easy. Now that you

have the Picture Folder open, dick Add and
Lineinge select an image file. You can add as many
Delete images you want. ODCL will assign each

o image a number. You can now reference the
images according to this number.

i

Cancel

Adding the image to a control

ue T [§
L =

reco Control, and then specify the location of
property to “picLogo” and answer yes to

&l
et
g O

i

(18) Autodesk University 2003

M f To add the image to the form, we are going to use the PictureBox Control. This control allows you to add
4 4 most image types to any form. It also has many events and methods you can use to add some nice
1 features to your program, like adding a hyperlink to an image. On the Control Toolbox, click the PictureBox

the control on the form. After adding the control, change the Name
update the VarName property. Then, you can specify which image

you want shown on the control. To do this, we will use the Picture property.

Picture Property

Make sure the PictureBox control is highlighted and change the
Picture property to the number associated with the image you
want. In this case the image number is 100.

LeftFromRight x|

12

x

Left Side Alignment:

Going Beyond DCL

AutoSize Property

To make the control shrink to fit tightly around the image, you
can use the AutoSize property. Make sure the PictureBox control
is highlighted and change the AutoSize property to true.

Top Side Alignment;

Uffzet Fro

Right Side Alignment;

|foset From Left Edge ﬂ

Bottom Side Alignment:

|foset From Left Edge ﬂ

|foset From Top Edge j

Making something useful....

CP21-3_fmCP21-3
True !
228

M axDialogHeight 1000
Mg s v ey ,f =N s
B h e K

O

Reminder!

Don't forget to use the Property Wizard to control what
happens to the PictureBox control when the form is resized.
Also, be sure you save the ODCL project before you run the
command in AutoCAD.

To finish this example off and make something useful out of what we have done so far, let's add a ComboBox control that will

list all the blocks within the drawing.

[EllautoDesk University - CP21-3

(18) Autodesk University 2003

ComboBox Control

A combo box control is used for listing items. On the
ControlToolbox, click the ComboBox control and specify the
location on the form. Change the Name property of the
ComboBox control to “cmbBlocks”, and answer yes to update the
VarName property.

kT | B

g o

13

Going Beyond DCL

Property Wizard - cmbBlocks 5' ComboBox Styles

ODCL has many different styles of ComboBoxes. You

G try ComboBox Styles | Font A
ecomehw . | Fon Ic o e can change the style of the ComboBox by using the
— Combo Box Styles; ————— — Combo Box Descrption; ———— - -
0. Combo — This soling indicates thal e Property Wizard. Double dlick on the control to see the
1 Sinple I comba box wil be displaped as different options and a description of what they do. For
i a drop down box that is read i i A\ "
%2 - Drop Down only and not editable by the this example, we will use the “Drop Down” style.
3. Amow Head e .
£ 4-Color Reminder!
£ 5 LineWeight Fread Oy = Don't forget to use the Property Wizard to control what
B -PlotSyle Names happens to the ComboBox control when the form is
™ 7 - Plot Style T ables resized.
™ 8- Fort Drop List
P P =

(0] 4 I Cancel | Apply Help

Filling the ComboBox
We want the ComboBox to contain a list of all the blocks within a drawing. To do this, we are going to use the OnlInitialize
event of the form to populate the ComboBox as the form is shown.

Onlnitialize Event
Hightlight the form and switch over to the Events tab on the
Properties Window. Check the Onlnitialize event and dlick

EE:E;ZZ?'“”SE “Copy to Clipboard”, then paste the code into the Visual Lisp

M ininitialize IDE.
[C10nSize

Properties Events |

|c:fmCP21-3_Orilritialize

[defun c:iimCP21-3_Onlnitiahize [) ;l
[Odel_MeszageBox "To Do: code must be added to fimCP21-3" "To LI

Indicates the farm is being initialized and about to be shown, -]

[

Copy Tao Clipboard |

;s;oninitialize event fFunction
{defun c:frmCP21-3 Onlnitialize ()
(0dcl_HMessageBox “'To Do: code must be added to FrmCP21-3"" "To do™)

}

v

A,

T I T R T U

b

RN

(&) Autodesk University 2003 14

Going Beyond DCL

x| AddList Method
e __— To fill the ComboBox, we will
need to use the AddList
¥} Combok - i
- @ o 2] [Methos AddList \il method of the ComboBox.
This method will add alist of strings to the specified This method takes a list and
e populates the ComboBox.

AutoLisp Symiax:
(Cdel ComboBox AddList CP21-3 fimCP21-3_cmbBlocks

| Stringlist [as Lisf of Strings]) Using the Intelligent Help
=% DeleteSting highlight the AddList method

_____ Sl — of the ComboBox and dlick

----- E& DropD owrHeight E “Copy to Clipboard", then

""" o EditChanged paste the code into the Visual
""" el Lisp IDE in the Onlnitialize

----- E& Eventlrvoke
----- =3 FirndColor

% FindLineweight
-8 FindShing

----- = FindStingE xact

event function.

----- E&' FontBold

----- B Fontltalic

----- EH FontSize

----- EH' FontSizeStyle

----- EH FontStikeOut

----- B FontUnderline

@ ForcellpdateM ow
-8 [FetCount :
----- -® GelCuPos | Copy To Clipboard |

i

Since we want to list all of the blocks within a drawing, we will need a function to generate that list. Here is an example:

;;function to list all the blocks within the drawing ‘
{defun GetBlockList (/ BlockList)
{vlax-for item {vla-get-blocks {(vla-get-activedocument {vlax-get-acad-object)})}) ,
{if (and {(not {wcmatch {vla-get-name item} "=Paper_="}}
{not (wcmatch {vla-get-name item) "=*Hodel ="}) L
)
{setq BlockList (cons (vla-get-name item) BlockList)}) {
) .
) ¢
) 4

"« Wearegoing torun this
;;oninitialize event Ful:ll:iliil]l:l “ method when the form is
{defun c:frmCP21-3_0OnInitialize () h b ina th
{0dcl_ComboBox_addList CP21-3_frmCP21-3_cmbBlocks (EetBlockList)) shown, Dy using the
) 4 Onlnitialize event of the form.
. " f Your Onlnitialize event
NI A I L Y R i T function should ook like the

example code to the left.

(18) Autodesk University 2003 15

Going Beyond DCL

Checkpoint!
By now we have covered quite a bit of information. At this point you should test the form and code to see if everything is

working as planned. Below is what your code should look like. Be sure to save your ODCL file before running the command!

;:function to load objectdcl?@84.arx
{defun LoadODCL ()
{if (not (member "0bjectDCL2064_arx™ (arxl)))
{arxload “0bjectDCL2884.arx™ "0ObjectDCL2884.arx not fFound."™)
)
}

{defun c:CP21-3 ()

;:load ObjectDCL
{LoadODCL)

;;function to list all the blocks within the drawing
{defun GetBlockList {7/ BlockList)
{ulax-for item {vla-get-blocks {vla-get-activedocument (vlax-get-acad-object})})
{if (and {not {wcmatch (vla-get-name item)} "=Paper_="}}
{not {wcmatch {vla-get-name item) "=Hodel =*"})
)
(setq BlockList (cons {(vla-get-name item) BlockList)})
)
)
)

;;oninitialize event Function
{defun c:frmCP21-3 OnlInitialize ()

{0dcl_ComboBox_addList CP21-3_frmCP21-3_cmbBlocks {GetBlockList))
}

;;onclick event for the OK button
{defun c:frmCP21-3_txtO0K_OnClicked {)}

{0dcl_HMessageBox “To Do: code must be added to txtOK™ “To do™)
)

;s;onclick event for the Cancel button
{defun c:frmCP21-3_txtCancel_OnClicked ()

(0dcl_HMessageBox “'To Do: code must be added to txtCancel™ "To do')
}

;:1load the project
{0dcl_LoadProject “CP21-3.odc™ T)

;:%how the form
{0dcl_Form_Show CP21-3_frmCP21-3)

Finishing Touches.... =
To wrap things up, we will add a BlockView control to the form, so we can | 3dBol =l

preview the blocks. A BlockView control will also allow a user to pan, zoom,
and orbit within the control. Then we will complete the OK and Cancel
button code. Below is what the final command will look like along with the
completed code.

Hopefully you now have an understanding of the concepts behind ODCL
and can take what you have leamed here and apply the same concepts to
the other types of forms and controls.

‘W) Autodesk University 2003

Going Beyond DCL

;smain function

;;notice that we can localize the event Functions

{defun c:=CP21-3 (/
GetBlockList
BlockHame
c:frmGP21-3_cmbBlocks_0OnSelChanged
c:frmCP21-3_0OnlInitialize
c:frmCP21-3_txt0K_OnClicked
c:frmCP21-3_txtCancel OnClicked

)
;;1load 0bjectDCL
{LoadoDCL)

;;function to list all the blocks within the drawing
(defun GetBlockList (/ BlockList)
{vlax-for item {vla-get-blocks (vla-get-activedocument (vlax-get-acad-object})})
{if (and (not {ucmatch (vla-get-name item) "=Paper ="}}
{not (uwcmatch {vla-get-name item) "=Hodel ="}}

}
{setq BlockList (cons (vla-get-name item) BlockList)})
}
)
}

;;onselchanged event function

(defun c:frmCP21-3 cmbBlocks OnSelChanged {nSelection s3elText /)
;;notice that we can use the arguments to get the text of the selected item
(setq BlockMame s3elText)
{0dcl_BlockUiew DisplayBlock CP21-3_frmCP21-3_blkPreview BlockMHame)

)

;;oninitialize event function
(defun c:frmCP21-3_OnlInitialize ()

{0dcl ComboBox_ AddList CP21-3_frmCP21-3_cmbBlocks {GetBlockList))
)

;;onclick event For the 0K button

(defun c:frmCP21-3 txtOK OnClicked ()}
{0dcl_Form_Close CP21-3_frmCP21-3)
{command " .insert” BlockHame pause pause pause)

)

;;onclick event for the Cancel button

(defun c:frmCP21-3_txtCancel_OnClicked ()
(0dcl_Form_Close CP21-3_frmCP21-3)

)

;;load the project
(0dcl_LoadProject “CP21-3.o0dc™ T)

s:5how the form
(0dcl_Form_Show CP21-3_frmCP21-3)

:L’!_‘"-Autodesk University 2003 17

Going Beyond DCL

Advanced Topics:

Making your program MDI aware

The ODCL help file explains the technique fairly well. Here is a snippet from the help file:

“To make the dockable and modeless forms MDI aware requires that your code updates the dialog box after every time a
different drawing receives focus. The event “*OnDocumentActivated” has been added to Dockable and Modeless forms so that
you may receive notification from the dialog box that it needs to be updated. Your program is responsible to update what the
dialog box displays to the user. Note that the event is not fired when a new drawing is created or a drawing file is opened. With
these two cases your lisp code that is auto-loaded should handle the initialization of the dialog box.”

ActiveX Controls B e
ODCL supports the use of most ActiveX controls. You can access “non-ODCL"” controls - _
by diicking the “Insert ActiveX Control” button on the Control Toolbox. Onceyou have |@) S1d § e 252)
an ActiveX control on your form, you can use the same concepts outlined above to i 0
manipulate them. If you use an ActiveX control that is not installed on a machine that K 4"
will be running your program, you will need to register the control on that machine. Insert Activel Control '
ODCL also has a function called (Oddl_RegisterActiveXCtrl) that makes this task easier. | 5. e ¥, /

Drag and Drop
ODCL supports drag and drop functionallity. The user can drag from a control or AutoCAD to another control or to AutoCAD.
Each control that supports drag and drop has four events to support this feature.

e DragnDropBegin - Indicates the user has just begun a drag and drop selection from this control.

e DragnDropToAutoCAD - Indicates the user has just dragged and dropped on to the AutoCAD Drawing from this
control.

e DragnDropFromControl - Indicates the user has just dragged and dropped from another control to this control.

e DragnDropFromAutoCAD - Indicates the user has just dragged and dropped a selection from the AutoCAD Drawing to
this control.

Eventlnvoke Property

If you intend to use the (command) function in your program, you will need to make sure that the EventInvoke property is set
to 1. A setting of 1 will force ODCL to give focus to the command line allowing the (command) function to be used. A setting
of 0 will keep the focus on the control.

:L’!_‘"'Autodesk University 2003 18

