
P R O G R A M M E R ' S G U I D E

Customizing
SOLID EDGETM

MU28000-ENG

Version 11

Copyright
©2001

UGS Inc.

All Rights Reserved

Software, file formats, and audiovisual displays may be used pursuant to the applicable Software
License Agreement and contain confidential and proprietary information of UGS, Inc. which is
protected by copyright and trade secret law. Such materials may not be reproduced or transferred to
other documents or used or disclosed to others for manufacturing or for any other purpose except as
specifically authorized within the terms of the Software License Agreement, or as specifically authorized
in writing by UGS, Inc.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in DFARS
252.227-7013 (Oct. 1988), DFARS 252.227-7014 (June 1995), FAR 52.227-19 (June 1987), and any
successor or similar regulation, as applicable.

Unpublished—rights reserved under the copyright laws of the United States.

UGS, Inc.
13736 Riverport Drive
Maryland Heights, MO 63043

Warranties and Liabilities
All warranties given by UGS Inc. regarding software are set forth in your Software License Agreement,
and nothing stated in, or implied by, this document or its contents shall be considered or deemed a
modification or amendment of such warranties.

The information and the software discussed in this document are subject to change without notice and
should not be considered commitments by UGS, Inc. UGS, Inc. assumes no responsibility for any error
that may appear in this document.

The software discussed in this document is furnished under a license and may be used or copied only in
accordance with the terms of the license.

No responsibility is assumed by UGS, Inc. for the use or reliability of software on equipment that is not
designated for software operability by UGS Inc. or its affiliated companies.

Trademarks
Solid Edge is a trademark of UGS, Inc. Microsoft, the Windows logo, Visual Basic, Visual C++,
Windows, and Windows NT are registered trademarks of Microsoft Corporation. IntelliMouse is a
trademark of Microsoft Corporation. MicroStation is a registered trademark of Bentley Systems Inc.
AutoCAD is a registered trademark of AutoDesk. TrueType is a registered trademark of Apple
Computer, Inc. Netscape is a trademark of Netscape Communications Corporation. All other brands and
product names are trademarks or registered trademarks of their respective owners.

T A B L E O F C O N T E N T S

Contents

Introduction ...1

Purpose of the Programming Utilities ...2
What You Should Know Before You Start ...3
Using this Document ...4

Introduction to ActiveX Automation...5

Introduction to ActiveX Automation...6
Understanding the Object Hierarchy ...7
Dereferencing Object Variables ..10
Handling Measurement Values..11

Using Programming Tools..13

Using the Visual Basic Object Browser ..14
Working with Solid Edge Commands ...19
Adding a Command...21
Using the Command Control ...27
Edit Owners and Environments ...30
Using the Mouse Control...31
Using the Part Viewer Control ..32

Invoking Solid Edge from Visual Basic ...33

Invoking Solid Edge from Visual Basic—Overview.................................34
Sample Program—Invoking Solid Edge from Visual Basic36

Invoking Solid Edge from Visual C ..39

Invoking Solid Edge from Visual C++—Overview40
Structuring Visual C++ Programs ...41

Solid Edge Programmer's Guide

iv

How a Visual Basic Application Gathers Data43

Gathering Input from the User at Runtime ..44
Gathering Input from a Data File...45
Gathering Input from Solid Edge...46
Gathering Input from Other Applications..47

Working with Documents ...49

Working with Documents—Overview ..50
Working with Different Solid Edge Document Types51
Sample Program—Opening and Printing a Document..............................53

Working with Reference Elements...55

Creating Reference Elements ..56
Working with Reference Planes ..57
Working with Reference Axes...58
Sample Program—Creating Reference Elements......................................59

Working with Profiles..61

Creating Profiles ..62
Sample Program—Creating a Profile ..64
Running Macros in the Profile Environment...69
Sample Program—Running a Macro...70
Modifying and Querying Profiles ..72

Working with Features..73

Creating Solids...74
Working with the Part Object Hierarchy ...76
Understanding the Modeling Coordinate System......................................77
Creating Features ...78
Sample Program—Creating a Feature ...79
Querying the Solid Model..83
Modifying the Solid Model..87
Programming Families of Parts ...88

Working with Assemblies ...89

Working with Assemblies—Overview..90
Placing Occurrences ..91
Manipulating Occurrences...92
Using Occurrence Attributes ...95
Analyzing Existing Assembly Relationships...97
Adding New Assembly Relationships ...99

Preface

v

Working with Dimensions...103

Working with Dimensions—Overview ...104
Linear Dimension ..106
Placing Dimensions ...107
Displaying Dimensions..109

Working with Variables...111

Working with Variables—Overview...112
Sample Program—Creating and Accessing Variable Objects114
Sample Program—Accessing Dimensions through the Variable Table..115
Sample Program—Variable Objects ...117
Using External Sources..118

Working with 2-D Graphic Objects...121

Working with 2-D Graphic Objects—Overview.....................................122
Sample Program—Creating 2-D Graphic Objects123

Working with Units of Measure ..125

Working with Units of Measure—Overview...126
UnitsOfMeasure Methods..129
Sample Program—Formatting and Displaying Units..............................130

Working with 2-D Relationships...131

Working with 2-D Relationships—Overview ...132
Sample Program—Adding Relationships..134
Sample Program—Querying for Existing Relationships.........................135

Working with Selection Sets ..137

Working with Selection Sets—Overview..138
Sample Program—Collecting Selected Objects139
Sample Program—Adding To/Removing From Selection Sets140

Working with Property Sets..141

Working with Property Sets—Overview...142
Sample Program—Accessing the Subject Property146
Sample Program—Reviewing All Properties..147

Working with Dynamic Attributes ..149

Working with Dynamic Attributes—Overview.......................................150

Solid Edge Programmer's Guide

vi

Defining Attribute Sets ..151
Manipulating Attribute Sets...153
Sample Program—Creating Attribute Sets..154
Sample Program—Enumerating Attribute Sets.......................................155

Working with Routing Slips..157

Working with Routing Slips—Overview...158
Sample Program—Editing and Sending a Routing Slip..........................159
Sample Program—Approving a Document...160

Working with SmartFrames..161

Working with SmartFrames—Overview ...162
Sample Program—Creating a SmartFrame ...164
Sample Program—Linking and Embedding..165
Manipulating SmartFrames ...166
Sample Program—Using SmartFrame Styles..167

Working with Symbols..169

Working with Symbols—Overview ..170
Sample Program—Placing Symbols..172
Sample Program—Moving and Rotating a Symbol174
Sample Program—Retrieving Symbol Properties175
Sample Program—Accessing the Dispatch Interface of a Source Document
...176

Working with Text ...177

Working with Text—Overview...178
Sample Program—Placing a Text Box..179

Learning Visual Basic ...207

Learning Visual Basic—Overview..208
Exercises ..209
References and Helpful Documentation..211

Sample Programs..213

How to Run the Samples ...214

Visual C++ Sample Program...219

Visual C++ Program Syntax..220

Preface

vii

Glossary...227

Index...233

Solid Edge Programmer's Guide

viii

Preface

ix

Before You Begin

Who Should Read This Book

This book was written for Solid Edge users who want to customize or automate
their modeling workflow. You should be familiar with using Solid Edge
interactively and with the basic concepts of programming using ActiveX
Automation. Although this book supplies sample code using the Microsoft
Visual Basic syntax, you can use any programming language that supports
ActiveX Automation.

Running Sample Code

To run the sample code included in this book, create a new project in Visual
Basic. Cut and paste the sample code into the Form Load section of the default
form. On the Project menu, click References to add the Solid Edge Type
Libraries to the project’s references.

Note Microsoft recommends setting object variables to “Nothing” after you are
finished using the object. This ensures that the object will be released from
memory. For example:

Dim objX As Object
Set objX = CreateObject("Excel.Sheet")
MsgBox objX.Version
Set objX = Nothing

Accessing the Solid Edge Programming Help

The Solid Edge Programming Help is referenced throughout this document as a
place to find more detailed information on objects, methods, and properties. On
the Help menu, click Programming with Solid Edge to access the Solid Edge
Programming Reference on-line Help file. You can also access context-specific
information on any Solid Edge type library element by highlighting the object in
the Visual Basic object browser and pressing F1.

Solid Edge Programmer's Guide

x

Document Conventions

Quotation
marks

Indicates a reference to an actual parameter or a variable
name used in the sample code.

Courier Indicates sample code.

Preface

xi

If You Need Assistance
The Global Technical Access Center provides technical support for Solid Edge
customers.

Telephone

In the USA and Canada, call 1-800-955-0000 or 1-714-952-5444. Outside
North America, contact your local UGS office. For more information or the
telephone number of an office near you, call 800-807-2200.

World Wide Web

For more information about Solid Edge, visit:

http://www.solid-edge.com/

You can also access GTAC on the Web:

http://support.ugs.com/

Mail

Our mailing address is:
UGS, Inc.
675 Discovery Drive
Suite 100
Huntsville, Alabama 35806
U.S.A.

Solid Edge Programmer's Guide

xii

Technical Support

For more details about technical support, follow these steps:

1. In Solid Edge, on the Help menu, click Solid Edge Help.

2. On the Help dialog box, click the Index tab.

3. On the Index tab, type "support."

4. Click the Display button to display information about Solid Edge support.

1

C H A P T E R 1
Introduction

This chapter contains overview information on how to use various programming
utilities. Prerequisites and suggested references are also included.

Purpose of the Programming Utilities... 2

What You Should Know Before You Start.. 3

Using this Document.. 4

Chapter 1 Solid Edge Programmer's Guide

2

Purpose of the Programming Utilities
The Solid Edge programming utilities allow you to quickly customize or automate
Solid Edge with ActiveX Automation. With these tools, you can modify and enhance
standard commands to tailor Solid Edge to your specific needs. You can also create
tools that allow you to reduce or automate repetitive tasks.

Customizing Solid Edge is easy and efficient. Using your favorite standard Windows
programming tools and languages, such as Visual Basic or Visual C++, you can
create command extensions that precisely match the needs of your workplace.
Through the automation of repetitive tasks, you save time, ensure consistency, and
better control design integrity.

Introduction Chapter 1

3

What You Should Know Before You Start
To customize Solid Edge, you need access to a Windows programming tool to be
used as an automation client. An automation client is an application that can access
objects from other applications that support ActiveX Automation. There are several
applications that can be used to create an automation client, such as Visual Basic and
Visual C++. Any product that supports ActiveX Automation can be used to automate
Solid Edge.

This book is tailored primarily for the Visual Basic user. Suggested self-paced
training for Visual Basic is included in Appendix A, Learning Visual Basic. Visual
Basic allows you to quickly create an application that uses features from other
applications.

Because many of the programs you create will automate the interactive workflow,
you should have a working knowledge of that workflow. That is, you need to
understand the task you are automating. A set of tutorials is delivered with Solid
Edge to teach you many of the fundamentals for using the product. On the Help
menu, click Tutorials to access the on-line tutorials.

Some programs, developed with Visual Basic and Visual Basic for Applications, are
delivered with Solid Edge. See Appendix B, Sample Programs, for a description of
the samples and for information on how to access them.

Chapter 1 Solid Edge Programmer's Guide

4

Using this Document
Solid Edge consists of five environments: Part, Sheet Metal, Weldment, Assembly,
and Draft. Part, SheetMetal, and Weldment share a programming interface;
Assembly and Draft each have a unique programming interface.

This document begins with generic information about how to program Solid Edge.
Chapter 2, Introduction to ActiveX Automation, defines ActiveX Automation and
provides a basis for the remainder of the document. If you do not have any previous
experience with ActiveX Automation, this is an important chapter to study. Chapter
3, Using Programming Tools, describes some helpful tools provided by Visual Basic
and Solid Edge.

Chapter 10, Working with Features, and Chapter 11, Working with Assemblies,
provide information about the programming interfaces specific to each environment.
These chapters list the capabilities available in the associated environment and tell
you where to get more information.

The remaining chapters describe specific components of the product. Some
components are only available within a single environment; others are available in
all environments.

5

C H A P T E R 2
Introduction to ActiveX
Automation

This chapter contains general information on how to access Solid Edge objects and
their properties and methods.

Introduction to ActiveX Automation .. 6

Understanding the Object Hierarchy... 7

Dereferencing Object Variables .. 10

Handling Measurement Values.. 11

Chapter 2 Solid Edge Programmer's Guide

6

Introduction to ActiveX Automation
ActiveX is the term used to describe the Microsoft component object technology.
The ability to customize Solid Edge is based on an important part of this object
technology—ActiveX Automation. This is the same technology frequently referred
to as OLE Automation.

Through automation, Solid Edge exposes functions called objects to programming
languages.

Objects, Properties, and Methods

Properties are the characteristics that define an object (for example, the length and
angle of a line). Changes to an object's properties usually change the object's
graphics. Methods are the operations that can be performed on an object (such as
copy). For example, a circle as a graphic object has certain characteristics. Its
location in space, its color, and its radius are examples of the circle's properties.
Methods for the circle include copy, move, delete, and so on.

The concepts of properties and methods are common to Visual Basic programming,
as Visual Basic uses some object-oriented programming techniques. An example of
an object in Visual Basic is the command button. When you place a command button
on a dialog box, a set of properties is provided to control the appearance and
behavior of the button. Some of these properties are Caption, Font, Height, Width,
Name, and Tag. The command button also supports methods such as Drag and
Move.

When you program with Solid Edge, every part of the product—every document,
every model, every part, and every feature of that part—is treated as an object and
has its own set of properties and methods. Using these objects and their properties
and methods, you can interact with Solid Edge to create, edit, and query the objects.
You can program these objects using Visual Basic because Solid Edge has exposed
them—that is, made them available—to automation.

Introduction to ActiveX Automation Chapter 2

7

Understanding the Object Hierarchy
Objects are related to one another in a form that is called an object model or object
hierarchy. Customizing Solid Edge requires an understanding of the various
hierarchies that form the automation interface. In this document, an object hierarchy
is depicted as a cascading diagram with the parent object always being the
application. Solid Edge consists of five environments: Part, Sheet Metal, Weldment,
Assembly, and Draft. Part, Sheet Metal, and Weldment share an object hierarchy;
Assembly and Draft each have their own unique hierarchy. A simplified object
hierarchy of the Assembly module is as follows:

Many of the items in the hierarchy are listed twice; one is plural and one is singular
(for example, Occurrences/Occurrence). The plural names are collection objects. A
collection is a special type of object whose purpose is to provide a way to create and
access all of the objects of a specific type. For example, the Occurrences collection
has methods to place Occurrence objects (instances of parts and subassemblies). It
also contains all the Occurrence objects that have been placed, and provides the
interface to access them.

The following program, which places two parts into an assembly and positions them,
shows how you traverse parts of the hierarchy to automate Solid Edge.

'Declare the program variables.
Dim objApp as Object
Dim objOccurrences as Object
Dim objBox as Object
Dim objLid as Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(,"SolidEdge.Application")

'Open an existing document.
Call objApp.Documents.Open("c:\My Documents\Drawing

Files\file.asm")

'Access the Occurrences collection.
Set objOccurrences = objapp.ActiveDocument.Occurrences

Chapter 2 Solid Edge Programmer's Guide

8

'Place two grounded parts.
Set objBox = objOccurrences.AddByFilename("C:\My Documents\Drawing

Files\Box.par")
Set objLid = objOccurrences.AddByFilename("C:\My Documents\Drawing

Files\Lid.par")

'Move the lid to the correct location.
Call objLid.Move(0, 0, .055)

This program connects to a running instance of Solid Edge, places two parts, and
repositions one of them.

The first lines of the program set up the variables, which are declared as type
"Object." Object variables are used exclusively with ActiveX Automation to store
objects that are exposed by an application. Object variables can also be declared as
specific Solid Edge object types, which is known as early binding. For example, in
the preceding code fragment, the objApp variable could have been declared as the
Solid Edge Application object type. Early binding and late binding are advanced
Visual Basic subjects, but for those readers who are familiar with them, the Solid
Edge type libraries support early binding.

After declaring the variables, the program connects to the Solid Edge application.
The GetObject function is a standard Visual Basic function that connects to an
application and returns a reference to the application as an object. In this case, the
first argument is empty, and the second argument specifies the type of application to
be returned. The application object is stored in the object variable objApp. The Set
statement assigns an object reference to an object variable. The GetObject function
is described in more detail in Chapter 4, Invoking Solid Edge from Visual Basic.

After connecting to the Solid Edge application object, the program opens an existing
document and accesses the Occurrences collection object from it. All methods to
create objects are accessible through collection objects. In this case, we want to add
a part to an assembly, so we use an Add method provided by the Occurrences
collection.

To access objects in the application, use a period to step down through the hierarchy.
To access the Occurrences collection object, you establish a connection to the
Application object, step down through the hierarchy to the AssemblyDocument
object, and step to the Occurrences collection object.

Some objects provide properties and methods that enable you to access an "active"
object. For example, Solid Edge can have multiple documents loaded but only one
document is active at a time. The Application object has a method, ActiveDocument,
that enables you to access this document. In the example program, we access the
Occurrences collection from the active document; the reference to this collection is
stored in the objOccurrences variable.

It is not required that the Occurrences collection be stored in a variable, but doing so
creates a more optimized and readable program. There is nothing syntactically
incorrect in expressing a statement as follows:

Introduction to ActiveX Automation Chapter 2

9

Set Box =
objApp.ActiveDocument.Occurrences.AddByFilename("Box.par")

However, this statement requires Visual Basic to resolve the references of the
methods and properties specified, which increases the processing time of your
program. If you will need to reference an object more than once, your program will
run faster if you assign the object to a variable. It can also make your code easier to
read.

After establishing a connection to the Occurrences collection object, the example
program places two occurrences—in this case, parts—using the AddByFilename
method. This method uses as input the file name of the part or subassembly to be
added. The Set statement assigns the object variables objBox and objLid to the new
Occurrence objects. These objects can be used in subsequent statements. If you do
not need to use the objects later, you can create them without storing the resulting
object.

In the final lines of the program, objLid is set when the lid part is placed into the file,
and the Move method is called to move the lid to the correct location.

This example shows the importance of understanding the object hierarchy. The
purpose of this program is to place two parts, but to do that, you must trace down
through the hierarchy to the collection that can place parts. This is the same for all
other tasks you want to perform with the Solid Edge automation interface. You must
determine where the methods that you need are and then access those methods by
tracing through the hierarchy, beginning at the application object.

To understand the hierarchy and to access the objects you need is one part of the
process. The other part is to understand the methods and properties that each object
supports. You can use the on-line Help and the Object Browser to learn about the
Solid Edge hierarchies, objects, properties, and methods that Solid Edge exposes.
Information on how to use these tools is provided in Chapter 3, Using Programming
Tools.

Chapter 2 Solid Edge Programmer's Guide

10

Dereferencing Object Variables
Whenever you use object variables in Visual Basic, you must ensure that any
references to objects are released before your object variables go out of scope. If you
declare an object variable within a subroutine or function, you must set that object
variable equal to Nothing within that function or subroutine. If you declare a public
or private object variable in a form or module, you must set that variable equal to
Nothing in a corresponding unload or terminate event.

If you fail to dereference object variables, your application will certainly use
memory inefficiently. It is also likely to cause run-time errors, possibly causing Solid
Edge to abort as well.

It is good programming practice to write the lines of code that dereference your
object variables at the same time that you write the declaration statements for the
object variables.

For the sake of brevity, this important programming step is omitted within the code
samples that this document shows.

Introduction to ActiveX Automation Chapter 2

11

Handling Measurement Values
Internally, Solid Edge converts all measurements to a uniform set of units,
sometimes referred to as database units. All methods and properties expect database
units as input. Therefore, when automating Solid Edge, first convert user input to
these internal units. Calculations and geometric placements use the internal units.
When displaying units, you must convert from internal units to default units. The
UnitsOfMeasure object handles these conversions. For more information, see
Chapter 15, Working with Units of Measure.

The following internal units are used:

Unit Type Internal Units

Distance Meter

Angle Radian

Mass Kilogram

Time Second

Temperature Kelvin

Charge Ampere

Luminous Intensity Candela

Amount of Substance Mole

Solid Angle Steradian

Chapter 2 Solid Edge Programmer's Guide

12

13

C H A P T E R 3
Using Programming
Tools

This chapter describes how you can set up Visual Basic programs to develop and
run custom event-driven Solid Edge commands.

Note You must use the Professional version of Visual Basic to access the
Command and Mouse controls.

Using the Visual Basic Object Browser... 14

Working with Solid Edge Commands .. 19

Adding a Command.. 21

Using the Command Control ... 27

Edit Owners and Environments ... 30

Using the Mouse Control ... 31

Using the Part Viewer Control .. 32

Chapter 3 Solid Edge Programmer's Guide

14

Using the Visual Basic Object Browser
Visual Basic's Object Browser allows you to examine objects and review their
supported properties and methods. Because the Object Browser classifies a child
object as a property of its parent object, you can also determine the object hierarchy
from within the Object Browser. For example, a Sheet object is the parent of the
Lines2d collection, so the Object Browser shows the Lines2d collection as one of the
properties of the Sheet object.

The information about an application’s objects is contained in files known as object
libraries (OLB files), type libraries (TLB files), or dynamically linked libraries (DLL
files). Solid Edge delivers several type libraries and dynamic linked libraries.

To make Solid Edge type libraries available to the Visual Basic Object Browser,
click References on the Project menu. On the References dialog box, select the Solid
Edge libraries you want to access.

Once you have added the Solid Edge libraries to your project, you can access the
Object Browser dialog box by clicking Object Browser on the View menu.

Project/Library

The Project/Library list, which is located in the top left of the dialog box, displays all
available libraries. The following libraries are delivered with Solid Edge: Assembly,
Constants, Draft, File Properties (delivered as a DLL), FrameWork Support,

Using Programming Tools Chapter 3

15

FrameWork, Geometry, Part (which includes SheetMetal and Weldment), and
Revision Manager.

Search Text

The Search Text box, which is located below the Project/Library list, allows you to
search for a string within the specified library. You can use standard Visual Basic
wildcard characters to extend a search. In addition, you can limit the search to find
only whole words by setting the Find Whole Word Only option on the shortcut
menu.

Classes

The Classes list contains all of the objects in the selected library. Class is an object-
oriented programming term for a type of object. For example, a line is one class of
object, while a circle is another.

Chapter 3 Solid Edge Programmer's Guide

16

You can use the class names when declaring object variables. For example, the
following syntax shows how to declare a variable that will be used to hold a line
object:

Dim Line1 as Object

With the correct type library attached, you can also declare the line to be a specific
class. In the following syntax, Line1 is declared as class Line2d:

Dim Line1 as Line2d

Declaring an object as a specific object type allows Visual Basic to do type
checking, creates faster running code, and makes the code more readable. The
generic Object type is useful when you do not know what type of object will be
assigned to the variable until runtime or if the variable will hold many types of
objects.

Constants are also listed in the Classes section of the Object Browser.

The constant set shown in the illustration specifies the types of edges or faces to find
when querying a model or feature. When a method or property has an argument that
can be one of several values, a constant is usually provided. Using these constants
rather than the corresponding number makes the code easier to read; this is the
recommended practice. Having these constants available through the Object Browser
also provides a convenient interface for determining valid options for a property or
method.

Using Programming Tools Chapter 3

17

Members

The Members list shows all of the available methods, properties, and events for the
selected object class. When you select an item from the Members list, the definition
for the member is displayed in the Details pane at the bottom of the Object Browser.
This definition includes jumps to the library and class to which the element belongs,
and to constants and classes that are included in the element's definition. You can
copy or drag text from the Details pane to the Code window.

For example, the following illustration shows the definition for the AddFinite
method of the ExtrudedProtrusions class. The definition also provides jumps to the
Profile, FeaturePropertyConstants, ExtrudedProtrusion, SolidEdgePart, and
ExtrudedProtrusions class definitions.

The Object Browser visually differentiates among the types of members displayed in
the Members list as follows:

Method—A member that performs some action on the object, such as saving it
to disk.

Property—A member that establishes characteristics of the associated object.

Event—A notification that the object sends for an associated condition, such as
when a file is opened or closed.

Chapter 3 Solid Edge Programmer's Guide

18

You can also differentiate among members by the appearance of the definition. The
following are example definitions for methods and properties available for the
Circle2d class.

• A property that declares the entire function to be of a specific type, in this case
Double:

Radius() As Double

• A method that takes a single value, called factor, as input:

Scale(factor As Double)

• A method that takes three values (angle, x, and y) as input:

Rotate(angle As Double, x As Double, y As Double)

Using Programming Tools Chapter 3

19

Working with Solid Edge Commands
Commands in Solid Edge have certain rules of behavior. For example,

• Only one command can be run at a time.

• Selecting a command while another command is running terminates the running
command.

Note An exception to this rule is that View commands can temporarily interrupt
running commands. For example, you can begin to place a line, scroll the view, and
then continue placing the line. This is known as command stacking.

For a Visual Basic program to behave as a standard Solid Edge command, interaction
between the Visual Basic program and Solid Edge is required. In most examples
throughout this document, the programs created do not behave as Solid Edge
commands. In these examples, the Visual Basic program is connected to Solid Edge
using ActiveX Automation and acts as the ActiveX Automation client, while Solid
Edge acts as the server.

In ActiveX Automation, the client initiates all activity. To illustrate this, the
following code shows a program that places a part (an Occurrence object), moves the
part, and then stores the current origin of the part in a variable array.

'Declare the program variables.
Dim objApp As Object
Dim objOccurrences As Object
Dim objNewOccurrence As Object
Dim Origin(1 To 3) As Double

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the Occurrences collection.
Set objOccurrences = objApp.ActiveDocument.Occurrences

'Create a new Occurrence object.
Set objNewOccurrence = objOccurrences.AddByFilename("C:\My

Documents\Drawing Files\box.par")

'Move the Occurrence object.
objNewOccurrence.Move 0.05, 0.05, 0.1

'Access the current origin of the occurrence.
objNewOccurrence.GetOrigin Origin(1), Origin(2), Origin(3)

This program illustrates two important concepts:

• How to communicate with Solid Edge.

• How to have Solid Edge communicate with you.

Even though there is a two-way information exchange, the Visual Basic program
always initiates the communication and Solid Edge responds to the request. This is

Chapter 3 Solid Edge Programmer's Guide

20

typical of all ActiveX Automation programs; the client (a Visual Basic/Visual C++
application) drives the server (Solid Edge).

This program can run in parallel with interactive commands. Solid Edge services this
ActiveX Automation server in parallel with any interactive command that is running.
While the automation program is running, you could continue to work interactively
with Solid Edge, although this is not recommended.

Having the Visual Basic program perform as the ActiveX Automation client works
well for many tasks. In other cases, it is important that Solid Edge be able to initiate
communication with the Visual Basic process to notify it of events and to supply
information. In these cases, the Visual Basic program requires notification from
Solid Edge to create a program that behaves as a standard command. For Solid Edge
to control the Visual Basic process, the Visual Basic program must act as the
Automation server, with Solid Edge acting as the Automation client. Visual Basic
can create a program that is an Automation server.

In addition to the ability to create an Automation server, you must be able to
interpret events from Solid Edge. An ActiveX custom control that is delivered with
Solid Edge (SECCtl.ocx) provides this capability. This control enables the Visual
Basic program to behave as a command. Solid Edge also provides a Mouse control
(SEMCtl.ocx) to allow your programs to receive mouse events.

Using Programming Tools Chapter 3

21

Adding a Command
To create a customized command, use the Command custom control delivered with
Solid Edge. On the Project menu, click Components to attach the Solid Edge controls
to the project.

When you add the controls to a project, they are attached to the Visual Basic
toolbox.

To use any control in a project, the project must contain a dialog box. Most projects
use dialog boxes to exchange information with users. In some cases, however, there
is no need for user interaction. In these cases, you must still add a dialog box—one
that is never displayed—to the project.

The following example provides step-by-step guidelines for creating a command.
This example creates a simple command to display the current coordinates of the
cursor. It uses the Command control and the Mouse control.

Chapter 3 Solid Edge Programmer's Guide

22

1. Develop the main Visual Basic dialog box. This dialog box must contain an
instance of the Command control and can optionally contain an instance of the
Mouse control. For this example, a text box and label control have been placed
on the dialog box to display the coordinate, and a command button has been
added to cancel the command.

2. To start the program without displaying a dialog box, you will need to create a

subroutine. This subroutine, named Main, must be in a module. On the Project
menu, click Add Module to insert a module.

3. From within the module you just created, on the Tools menu, click Add
Procedure.

4. On the Add Procedure dialog box, type Main for the name of the procedure.

Using Programming Tools Chapter 3

23

5. On the Project menu, click Properties to display the Project Properties dialog
box.

6. On the General tab, set Startup Object to Main. Also, set the Project Type to
ActiveX EXE.

7. Modify the Command control Activate event to display the main Visual Basic

dialog box.

8. Modify the Command control Deactivate event to hide the main Visual Basic

dialog box.

Chapter 3 Solid Edge Programmer's Guide

24

9. On the Project menu, click Add Class Module to create a new class. This class

allows Solid Edge to connect to your program.

10. Modify the Terminate event to unload the main Visual Basic dialog box.

11. On the Tools menu, click Add Procedure to create a new subroutine. Name the

subroutine Command_Initialize. Add the argument and the single line as shown
to set the Command property of the Command control.

You have completed the steps required to make a command. If the command did not
require the Mouse control, you could skip to Step 14.

12. Modify the MouseMove event of the Mouse control as follows:

Using Programming Tools Chapter 3

25

This sets the text in the text box to the XYZ coordinates of the current mouse
location.

13. Set the EnabledMove property of the Mouse control to True.

14. On the File menu, click Make Project.exe to build the ActiveX Automation

server.

15. Start Solid Edge to test your command.

Chapter 3 Solid Edge Programmer's Guide

26

16. From within Solid Edge, on the Tools menu, click Macro. On the Run Macro
dialog box, open your program. As you move your cursor across the window, the
Coordinate field displays the cursor location.

Using Programming Tools Chapter 3

27

Using the Command Control

The Command control enables Solid Edge and your custom program to
communicate with each other. Because it does not interact with the end user, it is
visible only at design time. Events and properties that are associated with the overall
command state are part of the Command control. This section describes how the
Command control fits into the overall architecture of commands.

To understand the Command control, you must first understand the anatomy of a
Solid Edge command. The Command control represents the command object and
therefore reflects the properties and events that are available to commands. There
can only be one active command running at a time. The active command receives
keyboard and mouse events that occur in the Solid Edge window.

It is possible for Solid Edge commands to become temporarily inactive without being
terminated. This temporary deactivation is referred to as command stacking.

Command stacking occurs when certain nondestructive commands are run. Examples
of stacking commands include the viewing commands, such as Pan and Zoom Area.
After a stacked command is terminated, the previous command is reactivated.
However, it is not possible to develop stacking commands using Visual Basic.

When you select a command from the Run Macro dialog box, Solid Edge creates an
instance of the exported class, which in turn causes the Class_Initialize method on
the class to be invoked. At this point, the Command control needs to be activated so
that it can connect to the Run Macro command. This allows the command to detect
events that occur in the Solid Edge window. This is accomplished by having Run
Macro call a predefined method, which must be implemented on the exposed class.
The method is implemented as follows:

Sub Command_Initialize(BasicCmd As Object)
Set Form1.igcommand1.Command = BasicCmd
End Sub

The BasicCmd parameter represents the Run Macro command and initializes the
Command control by means of the Command property. Once the Command control
has been activated, it invokes an Activate event to inform the Visual Basic command
that it is active and should display its associated dialog box. This is when the
Command control and Mouse control begin receiving events.

Note Commands should not display their dialog boxes when the Form_Load event
is invoked. Dialog boxes should be displayed only when the Activate event on the
Command control is invoked.

To prevent the main Visual Basic dialog box from going behind the Solid Edge
window, the window handle of the main Visual Basic dialog box must be known by
the Run Macro command. The window handle of a Visual Basic dialog box is
available by means of the hWnd property on the dialog box. This handle can also be
set by means of the hWndForm property on the Command control, although it is

Chapter 3 Solid Edge Programmer's Guide

28

necessary to do this only if the Command control is not placed on the main Visual
Basic dialog box. As long as Solid Edge is active, the main Visual Basic dialog box
is kept on top of all application windows and is collapsed and expanded
automatically in response to the same events on the main application window.

In this sense, the Visual Basic command appears to be built into Solid Edge. It is not
necessary for the main Visual Basic dialog box to be made visible. It is also possible
for the main Visual Basic dialog box to bring up other dialog boxes, including
message boxes. Other dialog boxes can be displayed from any place in your code,
including event procedures that react to events invoked as a result of something that
happened in Solid Edge.

If you display a dialog box outside of these event procedures, you must disable and
enable Solid Edge using the Interactive property on the Application object, which is
available from the Command control. Disabling Solid Edge allows you to manage
your command’s dialog boxes appropriately for the command (for example, showing
and hiding your command’s dialog boxes). Disabling also prevents Solid Edge from
trying to send your command an event when the command is not ready to process it
(for example, when another dialog box is displayed).

Once a command is running, it is likely that the command will become inactive (for
example, when the command is terminated or when a Solid Edge stacking command
is run). In these cases, the Deactivate event is invoked and the Visual Basic
command is required to hide any associated dialog box. If the Deactivate event is the
result of command stacking, the command receives an Activate event after the
stacking command terminates. If the Deactivate event is the result of normal
command termination, it is followed by a Terminate event.

When a command is terminated, the Terminate event is invoked. This event allows
the command to clean up any command-specific allocated resources. Commands can
be terminated for the following reasons:

• The command signals termination by setting the Done property on the Command
control to True. If the property is set during the execution of an event invoked by
either the Command or Mouse control, command termination is deferred until
the event completes. If the property is set in response to some other event,
termination is immediate.

• The interactive user presses the ESC key when Solid Edge has focus.

• The interactive user runs another nonstacking command.

• An error is encountered. Typically, in an error condition, the Deactivate event is
not invoked before the Terminate event.

• The dialog box that contains the Command control is destroyed. In this case,
neither the Deactivate nor the Terminate event is invoked unless the Visual
Basic command explicitly sets the Done property to True during the
Form_Unload event.

• The active edit owner is changed (as determined by the value of the
OnEditOwnerChange property on the Command control).

Using Programming Tools Chapter 3

29

• An active environment is changed (as determined by the value of the
OnEnvironmentChange property on the Command control).

Chapter 3 Solid Edge Programmer's Guide

30

Edit Owners and Environments
Edit owners can be thought of as places where objects are stored. An edit owner can
be a document or substorage in a document. Objects are typically created in the
storage location specified by the active edit owner. An example of substorage can be
illustrated using the Group object. If a group is active when additional objects are
created, the objects belong to the active group.

When the active edit owner is changed, commands are typically terminated. Each
command can specify whether termination should occur when the active edit owner
is changed via the OnEditOwnerChange property on the Command control.

Specifying that the command be terminated on such changes provides two additional
benefits. The first benefit is that mouse events are detected only on windows whose
edit owner is the active edit owner. The second benefit is that, in the Profile, Part,
and Draft environments, edit owner substorage is automatically transacted for the
Undo command. This implies that if the Visual Basic command creates or modifies
any objects, an entry in the Undo menu automatically appears on command
termination. The string that appears in the menu is the class description string, which
is set in the Object Browser. Commands that work across multiple edit owners are
responsible for transaction management by way of the exposed automation model of
Solid Edge.

Commands, menus, and toolbars are typically grouped into sets that are referred to as
environments. Environments can be changed programmatically or by the end user,
either explicitly or implicitly based on workflow, window selection, or object
selection. Commands are typically environment-centric; that is, their lifetime does
not span environment changes. Commands can control their lifetimes using the
OnEnvironmentChange property on the Command control.

Using Programming Tools Chapter 3

31

Using the Mouse Control

The Mouse control enables a Solid Edge macro to process mouse events that
occur in Solid Edge windows. Use of the Mouse control is optional, but if you use it,
you must place it on the same dialog box as the Command control.

Chapter 3 Solid Edge Programmer's Guide

32

Using the Part Viewer Control

The Part Viewer control enables you to include Solid Edge SmartView features
in your desktop and Internet applications with or without Solid Edge installed on a
system. It allows you to use Solid Edge Part as a control and to host it on various
ActiveX control containers such as an HTML document, a Visual Basic application,
or a Visual C++ application with the correct host interfaces.

With this control, you can programmatically manipulate the view of the part being
displayed. You can also let end users view Solid Edge Part files and interactively
manipulate the views with the toolbar located at the bottom of the control. The
displayed Part file can be on the local computer or anywhere else on the network.

33

C H A P T E R 4
Invoking Solid Edge from
Visual Basic

This chapter describes commands you can use to access Solid Edge from Visual
Basic.

Invoking Solid Edge from Visual Basic—Overview 34

Sample Program—Invoking Solid Edge from Visual Basic..................... 36

Chapter 4 Solid Edge Programmer's Guide

34

Invoking Solid Edge from Visual Basic—Overview
To program any application that supports ActiveX Automation from Visual Basic,
you need to be able to communicate with that application. To make this possible,
Solid Edge exposes the Application ActiveX Automation object, which is the root
object that provides access from Visual Basic to all of the other objects in Solid
Edge. There is one Solid Edge Application object; there are four types of documents
that the Solid Edge Application object can reference: part, sheet metal, assembly,
and draft. The following illustration shows a simplified version of the object
hierarchy of Solid Edge with two types of documents.

Syntax Examples

Two Visual Basic functions are available to invoke Solid Edge: CreateObject and
GetObject. CreateObject creates a new instance of the Application object. GetObject
allows you to create a new instance of an object or to connect to an existing instance.

For example, the following syntax uses CreateObject to launch Solid Edge:

Set objApp = CreateObject("SolidEdge.Application")

Similarly, GetObject can also launch Solid Edge:

Set objApp = GetObject("", "SolidEdge.Application")

Both CreateObject and GetObject create invisible instances of Solid Edge. New
instances of Solid Edge created through the Application object can be made visible
by setting the visible property of the Application object to True. The following
syntax makes an application visible once it has been started:

objApp.Visible = True

Invoking Solid Edge from Visual Basic Chapter 4

35

The following syntax uses GetObject to connect to an existing instance of Solid
Edge:

Set objApp = GetObject(, "SolidEdge.Application")

GetObject looks for an existing instance of Solid Edge. If an instance is found, the
objApp variable points to it. The command fails if there is not an existing instance.

When starting an application using GetObject or CreateObject, the application does
not automatically create a Document. To create one, use the Add method of the
Documents collection. If no arguments are passed to the Add method, you are
prompted to select a template. Arguments can be used to specify the type of
document and the template to be used. For example, you can add a Part document
using the associated normal template as follows:

Set objApp = GetObject(, "SolidEdge.Application")
Set objDocument = objApp.Documents.Add("SolidEdge.PartDocument")

To remove an instance of Solid Edge from memory, use the Quit method of the
Application object. The following statement removes an instance of Solid Edge:

objApp.Quit

Chapter 4 Solid Edge Programmer's Guide

36

Sample Program—Invoking Solid Edge from Visual
Basic

The following sample code connects to a running instance of Solid Edge. If Solid
Edge is not running, the Visual Basic program starts Solid Edge. Once Solid Edge is
running, the Visual Basic program accesses the Application object, determines if any
documents are open, and creates one if none exist. From the reference to the
AssemblyDocument object, the program accesses the Occurrences collection.

'Declare the program variables.
Dim objApp As Object
Dim objDocs As Object
Dim objDoc As Object
Dim objOccurrences As Object

'Turn on error handling.
On Error Resume Next

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")
If Err Then

'Clear the error.
Err.Clear
'Start Solid Edge.
Set objApp = CreateObject("SolidEdge.Application")

End If

'Turn off error handling.
On Error GoTo 0

'Make the application window visible.
objApp.Visible = True

'Access the Documents collection.
Set objDocs = objApp.Documents

'Find out if any documents are open.
If objDocs.Count = 0 Then

'Add an Assembly document.
Set objDoc = objDocs.Add("SolidEdge.AssemblyDocument")

Else
'Access the currently open document.
Set objDoc = objApp.ActiveDocument

End If

'Check to make sure the active environment is Assembly.
If objApp.ActiveEnvironment <> "Assembly" Then

MsgBox "This program must be run in the Assembly
environment."

End
End If

'Access the Occurrences collection.
Set objOccurrences = objDoc.Occurrences

In this example, variables are defined for the Application object (objApp), the
Documents collection (objDocs), the Document object (objDoc), and the

Invoking Solid Edge from Visual Basic Chapter 4

37

Occurrences collection (objOccurrences). First, GetObject connects to Solid Edge.
GetObject is successful only if Solid Edge is already running. If this fails,
CreateObject creates a new instance of Solid Edge.

The next step is to access a Document object. If there is not already an open
document, one is created using the Add method on the Document object. If there is
already a document open in the application, it is referenced using the Application's
ActiveDocument property. Finally, the Occurrences collection is referenced from the
Document object.

Chapter 4 Solid Edge Programmer's Guide

38

39

C H A P T E R 5
Invoking Solid Edge from
Visual C

This chapter describes how to access Solid Edge from Visual C++.

Invoking Solid Edge from Visual C++—Overview 40

Structuring Visual C++ Programs .. 41

Chapter 5 Solid Edge Programmer's Guide

40

Invoking Solid Edge from Visual C++—Overview
To be able to create programs with Visual C++, you must first be able to
communicate with that application. The Solid Edge Application automation object is
the root object that provides access to all of the other Solid Edge objects; the implied
hierarchy for automation is the same whether you are programming with Visual C++
or Visual Basic.

When programming Solid Edge with Visual C++, you will import entire type
libraries into the client code. Visual C++ automatically creates .TLI and .TLH files
from the imported type libraries. The .TLH files define the smart pointers for every
interface (both v-table and dispatch interfaces) defined in the associated type library
using the _COM_SMARTPTR_TYPEDEF macro. If there is an interface of type
"IFoo" in the typelib, the smart pointer associated with that is named "IFooPtr" (by
appending "Ptr" to the interface name).

The smart-pointer implementation basically encapsulates the real COM interface
pointers and eliminates the need to call the AddRef, Release, and QueryInterface
functions that all interfaces support. In addition, the CoCreateInstance call is hidden
when creating a new COM object. Because these smart pointers also know the UUID
for the interface they are wrapping, simply equating two smart pointers will call
QueryInterface on the interface on the right-hand side for the UUID of the interface
supported by the smart pointer on the left-hand side (much like Visual Basic).

For more information on COM smart pointers, see the topics "Compiler COM
Support Classes" and "Compiler COM Support: Overview" in the MSDN Library.
Useful information is also included in the comdef.h file delivered with Visual
Studio.

For more information, see Appendix C, Visual C++ Sample Program.

Invoking Solid Edge from Visual C++ Chapter 5

41

Structuring Visual C++ Programs
The following information applies to setting up a Visual C++ program to run with
Solid Edge:

• Be sure that the following directories are in your include path:

• The directory containing the Solid Edge type libraries

• The directory containing the Visual Studio includes

• Keep the #import statements in the standard pre-compiled header so that all the
.CPP files automatically have access to the smart pointers generated from the
type libraries.

• Smart pointers handle error returns by converting error HRESULTs into
"_com_error" exceptions. The "_com_error" class encapsulates the HRESULT
error code. Because these objects generate exceptions, you will need a try-catch
within your code. However, if you use the "raw" versions of the interface
functions that are returned, you can avoid exceptions, and deal with regular
HRESULTs instead.

• The compiler support implementation converts properties into Get/Put pairs. But
the property is also usable directly, as in Visual Basic. For example, the
"Visible" property on the Application object is usable in the following ways:

ApplicationPtr pApp; ... [get the app pointer] ... pApp-
>Visible = VARIANT_TRUE; // this is VB-like syntax pApp-
>PutVisible(VARIANT_TRUE); // this is the equivalent C++
like syntax

However, methods are called as usual, such as "pApp->Activate()".

• Solid Edge creates type libraries that are self-contained with respect to the
constants that are used by the objects within that type library. This allows users
to browse for constants used in a specific type library within that same type
library, without having to review another type library in the type library browser.
However, a side effect of this when the compiler support #import of type
libraries is being used is that you will have to explicitly qualify the constant as
coming from a specific type library (because more than one may have the same
constant). In most such cases, you will have to scope the constant to the type
library where the method/property/object resides, because that is how the
compiler will expect it to be declared. If that does not work, scope it to
SolidEdgeConstants, which contains all of the constants.

• Unfortunately, parameters of type SAFEARRAY do not have compiler support
classes, unlike VARIANT, whose corresponding compiler support class is
"_variant_t", or BSTR, whose corresponding class is "_bstr_t". Therefore,
SafeArrays have to be managed using the various SafeArray APIs that Visual
C++ provides to manage the creation/manipulation/deletion of SafeArrays.

• Interfaces that start with an underbar (for example, "_<some_interface>") are v-
table interfaces that support the corresponding dispatch versions. Although these

Chapter 5 Solid Edge Programmer's Guide

42

do show up in the type library and "#import" generates smart pointers for them,
clients must not use these in their code.

• The v-table interfaces that do not have an "underbar" prefix can be used. For
example,

• Do not use "_IApplicationAutoPtr", but use "ApplicationPtr"

• Do not use "_IPartDocumentAutoPtr", but use "PartDocumentPtr"

• Do not use "_IDMDBodyPtr", but use "BodyPtr"

• Do use "ISEDocumentEventsPtr"

• Do use "ISEMousePtr"

• Be careful when you mix smart pointers and non-smart pointers (that is, straight
COM interfaces). In this case you have to be aware of the AddRefs and Releases
going on in the background and may have to manually insert code to do some
AddRefs and Releases to be COM compliant.

43

C H A P T E R 6
How a Visual Basic
Application Gathers Data

This chapter contains brief descriptions of ways to gather data for input to Solid
Edge. For more specific information, refer to your Visual Basic documentation.
There are many ways in which a Visual Basic program gathers needed
information. This chapter describes how to retrieve data from the user, data files,
Solid Edge, and other applications that support ActiveX Automation.

Gathering Input from the User at Runtime .. 44

Gathering Input from a Data File.. 45

Gathering Input from Solid Edge... 46

Gathering Input from Other Applications.. 47

Chapter 6 Solid Edge Programmer's Guide

44

Gathering Input from the User at Runtime
Visual Basic allows the programmer to interact with the end user through dialog
boxes. The dialog boxes present a user interface that can be designed specifically for
the task at hand. Using Visual Basic controls, such as text boxes and command
buttons, the programmer can design a user interface that will communicate
information to the program.

How a Visual Basic Application Gathers Data Chapter 6

45

Gathering Input from a Data File
Visual Basic provides the ability to directly access many types of data files. The
three types described here are text files, Microsoft Access database files, and
Microsoft Excel spreadsheet files.

Text Files

One of the most common data files is a text file. A text file has the advantage of
being readable through the basic text editor. Using Visual Basic file commands such
as Open, Input, and Close, you can open a data file, read its contents, and then close
the file. See the Visual Basic on-line Help for more information on manipulating text
files.

Microsoft Access Database Files

Visual Basic has a built-in Jet Database Engine that allows the program to access and
manipulate databases such as the one used by Microsoft Access. The Visual Basic
on-line Help describes the Jet database engine as "...a database management system
that retrieves data from and stores data in user and system databases. The Microsoft
Jet database engine can be thought of as a data manager component with which other
data access systems, such as Microsoft Access and Visual Basic, are built."

The Routing sample uses this built-in data manager to retrieve information from a
Microsoft Access database. For more information about using the Jet database
engine, refer to the Visual Basic on-line Help.

Microsoft Excel Spreadsheet Files

Microsoft Excel workbooks and worksheets can be accessed directly or through a
Microsoft Jet database. This allows you to access the Excel spreadsheet without
actually having Excel installed on the system. For details, refer to the Visual Basic
on-line Help. An example spreadsheet that is delivered with Solid Edge, bearing.xls,
shows how to work with Excel data. For a description of this program and for
information on how to run it, see the Modifying Graphics from Excel Data section in
Appendix B, Sample Programs.

Chapter 6 Solid Edge Programmer's Guide

46

Gathering Input from Solid Edge
Solid Edge supports ActiveX Automation. This gives Visual Basic programs the
ability to control Solid Edge through its automation interface. The samples provided
with Solid Edge demonstrate ways in which the automation interface can be used.

Using the automation interface, a Visual Basic program can start and stop Solid
Edge, draw, retrieve, create, modify, and delete graphical objects, manipulate
document routing slips, and customize the user interface. You can also develop
custom commands. Most Solid Edge functions can be controlled through ActiveX
Automation. For more information on objects exposed through ActiveX Automation,
see the Programming with Solid Edge on-line Help.

In addition to the automation interfaces, three custom controls are provided with
Solid Edge: the command control, the mouse control, the part viewer control, and the
draft viewer control. Using the mouse and command controls, Visual Basic
applications can intercept Solid Edge events that are generated by moving the mouse,
pressing any of the mouse buttons, or pressing any of the keys on the keyboard. For
more information on these controls, see Chapter 3, Using Programming Tools.

How a Visual Basic Application Gathers Data Chapter 6

47

Gathering Input from Other Applications
A Visual Basic program can control and retrieve data from any application that
supports ActiveX Automation. Solid Edge delivers several samples that demonstrate
using automation from other applications. For example, the Parametric Family of
Parts sample (Custom\Bearing directory) demonstrates how ActiveX Automation can
be used to retrieve data from Microsoft Excel and then transfer it to Solid Edge. For
more information, see Appendix B, Sample Programs.

Chapter 6 Solid Edge Programmer's Guide

48

49

C H A P T E R 7
Working with Documents

This chapter contains a description of documents and how to access them through
ActiveX Automation.

Working with Documents—Overview .. 50

Working with Different Solid Edge Document Types 51

Sample Program—Opening and Printing a Document 53

Chapter 7 Solid Edge Programmer's Guide

50

Working with Documents—Overview
The term document is a standard object name throughout various applications.
"Documents" refers to a collection of Document objects that have been opened by
the application. The following illustration shows the Document object and how it
relates to the rest of the application:

An application can have only one Documents collection, but the collection can
contain any number of document objects. In Solid Edge, these document objects can
represent any Assembly, Draft, Sheet Metal, Weldment, and Part documents that are
currently open in the application. Many properties and methods are common across
all document types; other properties and methods are specific to a document type.
Part, Sheet Metal, and Weldment documents share a common automation interface.

Each type of Solid Edge document object has its own methods and properties, along
with several that are common across all types of documents. For more information
on the properties and methods of the documents collection and document objects, see
the AssemblyDocument, DraftDocument, SheetMetalDocument,
WeldmentDocument, and PartDocument objects in the Programming with Solid
Edge on-line Help.

Working with Documents Chapter 7

51

Working with Different Solid Edge Document Types
The following lists the classes (also called ProgIDs) associated with Solid Edge and
each type of document. These class names are used in the Visual Basic functions
CreateObject and GetObject. They are also used in the Add method of the Document
object.

• Solid Edge Application—SolidEdge.Application

• Part Document—SolidEdge.PartDocument

• Sheet Metal Document—SolidEdge.SheetMetalDocument

• Assembly Document—SolidEdge.AssemblyDocument

• Weldment Document—SolidEdge.WeldmentDocument

• Draft Document—SolidEdge.DraftDocument

The following syntax starts Solid Edge and creates a Part document, a Sheet Metal
document, an Assembly document, and a Draft document:

Set objApp = CreateObject("SolidEdge.Application")
objApp.Visible = True
Set objDocs = objApp.Documents
objDocs.Add("SolidEdge.PartDocument")
objDocs.Add("SolidEdge.SheetMetalDocument")
objDocs.Add("SolidEdge.AssemblyDocument")
objDocs.Add("SolidEdge.DraftDocument")

The following syntax starts Solid Edge, creating an Assembly document, and returns
an AssemblyDocument object. The Application object is then retrieved using the
Application property of the document object:

objDoc = CreateObject("SolidEdge.AssemblyDocument")
objApp = objDoc.Application

Sections/Section—Draft Documents Only

The structure of Draft documents differs significantly from other Solid Edge
document types. From the DraftDocument object, you access the Sheets collection
and then the individual Sheet objects. The Sheets collection contains both working
sheets and background sheets.

In addition, DraftDocument supports a Sections object. The Sections object is a
collection of Section objects that group Sheets by the characteristics of the data they
contain. As users create drawings interactively, data from these drawings is
automatically placed in one of three Section objects:

• Section1—Contains Sheet objects (Working Sheets) on which normal 2-D
drawing objects (Lines, Arcs, DrawingViews, and so forth) are placed.

Chapter 7 Solid Edge Programmer's Guide

52

• Backgrounds—Contains background sheets, which hold the sheet borders.

• DrawingViews—Contains the Sheet objects on which the 2-D geometry of
DrawingView/DraftView objects is placed. For each DrawingView/DraftView
object, there is a separate sheet in the DrawingViews section.

Sections are a part of the graphical interface, although they are not immediately
apparent. When the interactive user selects View > Background Sheet, Solid Edge
internally changes to the Backgrounds section and displays its sheets. Similarly, the
View > Working Sheet command allows you to modify the sheets that are in the
Sections1 section. When a DrawingView is added, a new sheet is added to the
DrawingViews section.

However, it is not possible through the graphical interface to create and manipulate
sections directly. Although it is possible through automation to create new Sections,
it is not a supported workflow. Although the same information is available on the
Sheets collection that is a child of the DraftDocument object, within Sections, the
information is separated by its functional characteristics.

Working with Documents Chapter 7

53

Sample Program—Opening and Printing a Document
The following program opens a Part document, prints the document, and then closes
it.

'Declare the program variables.
Dim objApp As Object
Dim objDocs As Object
Dim objDoc As Object
Dim IntNumCopies As Integer
Dim Orientation As PrinterObjectConstants
Dim PaperSize As PrinterObjectConstants

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the Documents collection object.
Set objDocs = objApp.Documents

'Open an existing document.
Set objDoc = objDocs.Open("c:\My Documents\Drawing

Files\block.par")

'Print two copies of the document on the default paper,
using
'letter size paper with a landscape orientation.
IntNumCopies = 2
Orientation = vbPRORLandscape
PaperSize = vbPRPSLetter
Call objDoc.PrintOut _

(NumCopies:=IntNumCopies, _
Orientation:=Orientation, _
PaperSize:=PaperSize)

'Close the document.
Call objDoc.Close

Chapter 7 Solid Edge Programmer's Guide

54

55

C H A P T E R 8
Working with Reference
Elements

This chapter provides an overview of the automation interface for reference
planes and reference axes.

Creating Reference Elements... 56

Working with Reference Planes... 57

Working with Reference Axes .. 58

Sample Program—Creating Reference Elements.................................... 59

Chapter 8 Solid Edge Programmer's Guide

56

Creating Reference Elements
Reference elements—reference planes and reference axes—are important parts of 3–
D design. Most features require that you define a 2–D profile and project that profile
through space to shape the feature. Creating a representative profile often requires
working with a reference plane. For revolved features, a reference axis is also
needed. Methods for creating these reference elements are similar to the interactive
commands that perform the same functions. The hierarchical chart for reference
elements is as follows:

Working with Reference Elements Chapter 8

57

Working with Reference Planes
Reference planes exist in the Part, SheetMetal, Weldment, and Assembly
environments. When modeling a part, a reference plane (the RefPlane object) must
exist before you can create a profile. The corresponding collection object, RefPlanes,
provides several methods to enable you to place reference planes; these methods
roughly correspond to the reference plane commands that are available in the
interactive environment.

• AddAngularByAngle—Creates angular and perpendicular reference planes. The
perpendicular reference plane is a special case of the angular reference plane
where the angle is pi/2 radians (90 degrees).

• AddNormalToCurve and AddNormalToCurveAtDistance—Create reference
planes that are normal to a part edge. With AddNormalToCurve, if the edge is a
closed curve, the plane is placed at the curve's start point.
AddNormalToCurveAtDistance places the plane at a specified offset from the
start point.

• AddParallelByDistance—Creates coincident and parallel reference planes. A
coincident reference plane is a parallel reference plane where the offset value is
zero.

• AddParallelByTangent—Creates parallel reference planes that are tangent to a
curve.

• AddBy3Points—Creates reference planes associative to three points you specify.

Similarly, in the Assembly environment, the AsmRefPlanes object exposes
AddAngularByAngle and AddParallelByDistance methods.

Chapter 8 Solid Edge Programmer's Guide

58

Working with Reference Axes
A reference axis defines the axis of revolution for a revolved feature. Reference axes
are usually created in the Profile environment when a user defines the profile of the
revolution. Two objects—the collection object, RefAxes, and the instance object,
RefAxis—are available to enable you to manipulate reference axes in your models.

Working with Reference Elements Chapter 8

59

Sample Program—Creating Reference Elements
The following program connects to a running instance of Solid Edge, creates an
Assembly document and places an assembly reference plane using the
AddAngularByAngle method. Then the program creates a Part document and places
a reference plane using the AddParallelByDistance method.

'Declare the program variables.
Dim objApp As Object
Dim objDocs As Object
Dim objAssyDoc As Object
Dim objAsmRefPlanes As Object
Dim objAsmRefPlane As Object
Dim objPPlane As Object
Dim objPartDoc
Dim objRefPlanes As Object
Dim objRefPlane As Object
Const PI = 3.14159265358979

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the Documents collection object.
Set objDocs = objApp.Documents

'Add an Assembly document.
Set objAssyDoc = objDocs.Add("SolidEdge.AssemblyDocument")

'Access the AsmRefPlanes collection object.
Set objAsmRefPlanes = objAssyDoc.AsmRefPlanes

'Create a reference plane at an angle to a
'principal reference plane.
Set objPPlane = objAssyDoc.AsmRefPlanes(2)
Set objAsmRefPlane = objAsmRefPlanes.AddAngularByAngle(_

ParentPlane:=objPPlane, _
Angle:=(2 * PI / 3), _
Pivot:=objAssyDoc.AsmRefPlanes(1), _
PivotOrigin:=igPivotEnd, _
NormalSide:=igNormalSide, _
Local:=True)

'Add a Part document.
Set objPartDoc = objDocs.Add("SolidEdge.PartDocument")

'Access the RefPlanes collection object.
Set objRefPlanes = objPartDoc.RefPlanes

'Create a global reference plane parallel to the top reference
plane.
Set objRefPlane = _

objRefPlanes.AddParallelByDistance(ParentPlane:=objRefPlanes(1),
_

Distance:=0.1, _
NormalSide:=igNormalSide,
Local:=False)

Chapter 8 Solid Edge Programmer's Guide

60

61

C H A P T E R 9
Working with Profiles

This chapter provides an overview of how to use the Solid Edge profile
automation.

Creating Profiles.. 62

Sample Program—Creating a Profile ... 64

Running Macros in the Profile Environment ... 69

Sample Program—Running a Macro... 70

Modifying and Querying Profiles .. 72

Chapter 9 Solid Edge Programmer's Guide

62

Creating Profiles
With many types of features, one of the first steps in the construction process is to
draw a two-dimensional profile. It is the projection of this profile through a third
dimension that defines the shape of the feature.

The workflow for modeling a feature through automation is the same as the
workflow in the interactive environment. For profile-dependent features, you draw
the profile and then project or revolve it. In the automation environment, the profile
is a required input to the add method for certain types of features. In addition, profile
automation includes the ability to create, query, and modify profiles. The object
hierarchy for the Profile object is as follows:

A profile consists of one or more wireframe elements. If the profile consists of more
than one element, the elements must be end-connected. You do this by adding
relations between the elements' endpoints.

Creating a Profile Through Automation

To create a profile in the automation environment, follow these steps:

1. Create an empty Profile object.

2. Place geometry to define the shape of the profile. The collections that support
the add methods are on the Profile object.

Working with Profiles Chapter 9

63

3. Place relationships on the geometry. You can use any of the add methods
supported by the Relations2d collection object. The only required relations are
key point relations between the endpoints of elements that you intend to connect.

4. Place required dimensions on the geometry.

5. Use the End method to validate the profile. Depending on the validation criteria
specified, the system checks to verify that the profile is valid. After validation, a
profile is available that you can use it as input to the feature add methods.

Creating Multiple Disjoint Solid Regions

When interactively creating an extruded protrusion base feature (that is, the first
feature in the feature tree), you are not limited to using a single closed shape; you
can use multiple closed shapes. All the shapes are extruded using the same extents to
create a single extruded protrusion feature. The result is several disjoint solid
regions.

You can also perform this function through automation. When drawing the geometry
in the blank Profile object, you can create multiple closed shapes. The End method
evaluates the geometry, and if there are multiple shapes, it breaks them up so that
there is a single closed shape per Profile object. This set of Profile objects is
contained in a single Profiles collection object. Each Profiles collection is owned by
a ProfileSet object. All the profiles that define a profile-based feature, which in most
cases is a single profile, are contained in a single ProfileSet.

Chapter 9 Solid Edge Programmer's Guide

64

Sample Program—Creating a Profile
The following example shows how to create a profile that is used to place an
extruded protrusion feature. The program assumes that the face and edge of the
model have been retrieved and a reference plane has been created on the face. See
Chapter 8, Working With Reference Planes, and Chapter 10, Working With Features,
for more information on how to do this. The initial part and the existing reference
plane are shown in the following illustration:

The finished part is as follows:

The following program creates the profile and the protrusion feature. The RefPlane
variable is assumed to be a public variable that is referencing the reference plane on
the face. The size and position of the initial part is known; the center of the face is
located at the coordinate (3.5, 2.5, 3.5).

Private Sub Command1_Click()
'Declare the variables.
Dim objApp As Object
Dim objDoc As Object
Dim objRefPlane As Object
Dim objProfileSet As Object
Dim objProfile As Object
Dim XOrigin As Double, YOrigin As Double

Working with Profiles Chapter 9

65

Dim ToSide As Double
Dim ToCorner As Double
Dim SideLength As Double
Dim objLines As Object
Dim objRelations As Object
Dim objHexLines(1 To 6) As Object
Dim Status As Long

'Define the constants.
Const PI = 3.14159265358979
Const HexSize = 2.5

'Define variables.
Set objApp = GetObject(, "SolidEdge.Application")
Set objDoc = objApp.ActiveDocument

'Set a reference to the RefPlane object on which the profile
'is to be constructed.
Set objRefPlane = objDoc.RefPlanes(4)

'Create a ProfileSet object.
Set objProfileSet = objDoc.ProfileSets.Add

'Create the blank Profile object using the known
'reference plane.
Set objProfile = objProfileSet.Profiles.Add(objRefPlane)

'Determine the location on the reference plane
'to draw the profile.
Call objProfile.Convert3DCoordinate(_

x3d:=3.5 * 0.0254, _
y3d:=2.5 * 0.0254, _
z3d:=3.5 * 0.0254, _
x2d:=XOrigin, _
y2d:=YOrigin)

'Calculate some sizes used to draw the hexagon.
ToSide = (HexSize * 0.0254) / 2
ToCorner = ToSide / Cos(30 * (PI / 180))
SideLength = ToSide * Sin(30 * (PI / 180))

'Reference drawing object collections from the Profile.
Set objLines = objProfile.Lines2d
Set objRelations = objProfile.Relations2d

'Place lines to draw the hexagon.
Set objHexLines(1) = objLines.AddBy2Points(_

XOrigin + ToCorner, _
YOrigin, _
XOrigin + SideLength, _
YOrigin + ToSide)

Set objHexLines(2) = objLines.AddBy2Points(_
XOrigin + SideLength, _
YOrigin + ToSide, _
XOrigin - SideLength, _
YOrigin + ToSide)

Set objHexLines(3) = objLines.AddBy2Points(_
XOrigin - SideLength, _
YOrigin + ToSide, _
XOrigin - ToCorner, _
YOrigin)

Set objHexLines(4) = objLines.AddBy2Points(_
XOrigin - ToCorner, _
YOrigin, _

Chapter 9 Solid Edge Programmer's Guide

66

XOrigin - SideLength, _
YOrigin - ToSide)

Set objHexLines(5) = objLines.AddBy2Points(_
XOrigin - SideLength, _
YOrigin - ToSide, _
XOrigin + SideLength, _
YOrigin - ToSide)

Set objHexLines(6) = objLines.AddBy2Points(_
XOrigin + SideLength, _
YOrigin - ToSide, _
XOrigin + ToCorner, YOrigin)

'Place key point relationships to connect the ends.
Call objRelations.AddKeypoint(_

objHexLines(1), igLineEnd, _
objHexLines(2), igLineStart)

Call objRelations.AddKeypoint(_
objHexLines(2), igLineEnd, _
objHexLines(3), igLineStart)

Call objRelations.AddKeypoint(_
objHexLines(3), igLineEnd, _
objHexLines(4), igLineStart)

Call objRelations.AddKeypoint(_
objHexLines(4), igLineEnd, _
objHexLines(5), igLineStart)

Call objRelations.AddKeypoint(_
objHexLines(5), igLineEnd, _
objHexLines(6), igLineStart)

Call objRelations.AddKeypoint(_
objHexLines(6), igLineEnd, _
objHexLines(1), igLineStart)

'Validate the profile.
Status = objProfile.End(igProfileClosed)

If Status <> 0 Then
MsgBox "Profile Validation failure: " & Status
Exit Sub

End If

'Create the feature.
Call objDoc.Models(1).ExtrudedProtrusions.AddFinite(_

Profile:=objProfile, _
ProfileSide:=igLeft, _
ProfilePlaneSide:=igRight, _
Depth:=1.5 * 0.0254)

This example follows the steps previously outlined:

Step 1: Create an empty Profile object.

First create a ProfileSet object, and then use the Add method on its Profiles
collection object. Once you have created the Profile object, you have access to the 2-
D geometry and relationships to define the shape of the profile.

Working with Profiles Chapter 9

67

Step 2. Place geometry to define the shape of the
profile.

In this example, the requirement is to draw a hexagon with its center at the center of
the face. The difficulty in doing this is determining the relationship between the 2-D
profile space and the 3-D model space. You do not have any control over the origin
of the profile; it is automatically defined by the system.

In the interactive environment, you position the profile relative to the solid by
placing dimensions. While this is possible in automation, dimensionally constraining
the profile to the edges of the solid can be a difficult process, since you would need
to determine the edges to which to constrain. The technique described here avoids
this problem and allows you to create an under-constrained—but dimensionally
correct—part.

Because the size and position of the initial solid in this example is known, the center
of the face relative to 3-D model space (3.5, 2.5, 3.5) can be inferred. A profile is a
2-D object and represents a 2-D planar space. The Convert3DCoordinate method of
the Profile object allows you to convert from 3-D model space to 2-D profile space.
The input 3-D point is projected onto the reference plane, and the 2-D point in
profile space is output.

The reference plane determines the axes of the profile. The small box in the corner
of the reference plane represents the origin, and the x axis is in the long direction of
the box. The following illustration shows the x and y axes for the reference plane
and the calculated center point of the profile:

The hexagon is drawn relative to this center point. The system determines whether
the profile elements are connected by checking to see if key point relationships exist
between the endpoints of the elements.

Chapter 9 Solid Edge Programmer's Guide

68

Steps 3 and 4: Place relationships and
dimensions on the geometry.

The program uses the AddKeyPoint method to fully constrain the geometry. In this
example, dimensions are omitted.

Step 5: Validate the profile.

The program uses the End method on the Profile object, using a single argument,
igProfileClosed (the profile must be closed), to define the validation criteria to use.
The End method returns 0 if the validation succeeds, 1 if the validation fails. Once
the profile is complete, it can be used as input to many of the feature add methods. In
this example, an extruded protrusion feature is added.

Working with Profiles Chapter 9

69

Running Macros in the Profile Environment
In some cases, it is not necessary to automate an entire modeling process.
Automating the entire process can limit the program's flexibility. For example, if you
have parts that frequently have hexagonal-shaped features on them, you can increase
your productivity by automating the creation of these features. The problem is that
you might need both extruded and revolved protrusions, and also cutouts. This
means you must use four different commands or an interface that allows the user to
choose the type of feature. It can also be difficult to interact with the user to identify
where a feature is to be placed.

One simple solution is to create a program that runs in the Profile environment. The
interactive user selects the feature, face, and edge to define the profile plane, and
then runs a program to draw the profile. In this way, the program can be used to
create any feature that uses a profile. Once the profile is created, it behaves the same
as any interactively placed geometry.

Writing a program to run from the Profile environment is easier than writing a
program to perform the entire workflow of creating a feature. When you run from the
Profile environment, the Solid Edge feature command does much of the work. You
determine the Profile object on which to draw geometry, sketch the geometry, and
add relationships.

Chapter 9 Solid Edge Programmer's Guide

70

Sample Program—Running a Macro
The following program illustrates how to automate using a macro. In this program, a
square profile is drawn in the Profile environment:

'Declare the variables.
Dim objApp As Object
Dim objProfile As Object
Dim objProfileSets As Object
Dim objLines As Object
Dim objRelations As Object
Dim objL(1 To 4) As Object

'Set a constant for the size of the square.
Const SIZE = 4 * 0.0254

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Check to make sure the user is in the Profile environment.
If objApp.ActiveEnvironment <> "Profile" Then

MsgBox "This macro must be run from the Profile environment."
End

End If

'Determine the profile on which to draw.
Set objProfileSets = objApp.ActiveDocument.ProfileSets
Set objProfile = objProfileSets(objProfileSets.Count).Profiles(1)

'Set references to the collections used.
Set objLines = objProfile.Lines2d
Set objRelations = objProfile.Relations2d

'Draw the geometry.
Set objL(1) = objLines.AddBy2Points(0, 0, SIZE, 0)
Set objL(2) = objLines.AddBy2Points(SIZE, 0, SIZE, SIZE)
Set objL(3) = objLines.AddBy2Points(SIZE, SIZE, 0, SIZE)
Set objL(4) = objLines.AddBy2Points(0, SIZE, 0, 0)

'Add key point relationships between the ends of the lines.
Call objRelations.AddKeypoint(objL(1), igLineEnd, objL(2),

igLineStart)
Call objRelations.AddKeypoint(objL(2), igLineEnd, objL(3),

igLineStart)
Call objRelations.AddKeypoint(objL(3), igLineEnd, objL(4),

igLineStart)
Call objRelations.AddKeypoint(objL(4), igLineEnd, objL(1),

igLineStart)

The sample code connects to Solid Edge and verifies that the user is in the Profile
environment. If the user is not in the Profile environment, a message is displayed,
and the program exits.

Being in the Profile environment means that the feature command has already
created a blank Profile object on which to sketch. In addition, a new ProfileSet
object also exists. This ProfileSet will usually be the last one in the ProfileSets
collection. The program sets a reference to the Profile object in this ProfileSet.

Working with Profiles Chapter 9

71

Note The workflow used in this example for connecting to the current Profile
object works only when the user is creating a new feature. If the user edits an
existing feature, this workflow could create a reference to the wrong profile.

Once you have accessed the Profile object, you can place geometry and apply
relationships. In this example, a box is placed at the origin of the Profile object.

You may want to let the user specify where to place the geometry; the Solid Edge
mouse control provides access to mouse input. In this way, the interactive user can
use IntelliSketch to specify points relative to existing Profile geometry and part
edges.

Chapter 9 Solid Edge Programmer's Guide

72

Modifying and Querying Profiles
You can modify and query geometry contained in a profile. The OrderedGeometry
method supported on the Profile object provides a way to iterate through the 2-D
graphic objects in the profile. You can use the methods and properties of the 2-D
graphic objects to directly manipulate the geometry in the profile. You can also use
these methods and properties to access information about the geometry.

Another way to modify a profile is to edit the values of driving dimensions that
control the geometry in the profile. The preferred way to do this is to access the
Variable table. For information on how to edit Variable table dimensions, see
Chapter 13, Working with Variables.

73

C H A P T E R 1 0
Working with Features

This chapter describes the automation interface for Solid Edge features. The
operations you can perform with features can be divided into three distinct
functions: creating, querying, and modifying.

Creating Solids... 74

Working with the Part Object Hierarchy... 76

Understanding the Modeling Coordinate System.................................... 77

Creating Features .. 78

Sample Program—Creating a Feature.. 79

Querying the Solid Model .. 83

Modifying the Solid Model... 87

Programming Families of Parts .. 88

Chapter 10 Solid Edge Programmer's Guide

74

Creating Solids
In Solid Edge, all geometry is created relative to existing geometry in the file. For
example, when you create a base protrusion feature, the feature depends on the
profile, and the profile depends on the reference plane. Relationships between these
geometry elements are referred to as parent/child relationships. In this case, the
reference plane is the parent of the profile, and the profile is the parent of the
protrusion feature.

If a parent is modified in any way, its children are automatically updated to maintain
the correct relationships. While this parent/child relationship is inherently a part of
designing in the interactive environment, it is even more apparent when you create
features and solids through the automation interface.

To better understand the process of creating solid geometry using automation,
compare the steps required to create the following cutout feature interactively with
the steps to create it through automation:

Creating the Cutout Interactively

1. Define the profile plane by selecting a face and defining an edge and origin.

2. Create the profile by sketching wireframe geometry and defining geometric and
dimensional relationships.

3. Define the side of the profile from which material is to be removed.

4. Define the extents of the feature.

Creating the Cutout Through Automation

The steps for creating this feature through automation are similar to those used to
create it interactively. However, many elements of feature creation in the interactive

Working with Features Chapter 10

75

environment are automatically inferred or are trivial for the user to define. You must
directly address these elements when creating features through automation.

1. Determine the top face of the solid where the profile is to be created.

2. Determine the appropriate edges of the face to use to control the orientation of
the reference plane.

3. Create a reference plane on the face of the solid.

4. Create an empty profile object.

5. Determine the location in 3-D space where the profile elements are to be created,
and compute the corresponding location in the 2-D reference plane or profile
space.

6. Create the 2-D wireframe geometry, and constrain it as needed to define the
shape of the profile.

7. Complete the profile by performing validation to determine whether it meets the
expected criteria.

8. Determine the side of the profile from which material is to be removed.

9. Determine the extent of the cutout. In this case, the cutout is finite, so the
direction of the cutout needs to be determined. In other types of extents, this can
also involve finding faces of the solid to specify the feature extents.

10. Create the cutout feature.

Although the automation workflow is similar to the interactive workflow, creating a
feature through automation is not trivial. Fundamentally, creating a feature depends
on providing the parent geometry and values for the feature to reference. In the
previous example, Steps 1 through 9 create the parent geometry and determine input
values for the feature. The feature is created in Step 10. Creating and collecting the
parents of the feature is the most difficult part of defining a feature through
automation.

The functions needed to perform these steps can be broken into several categories.

• Querying the solid, its faces, and its edges.

• Accessing information from the solid.

• Creating reference planes.

• Creating profiles.

• Placing and constraining 2-D geometry to define the shape of the profile.

• Determining sides and directions for input to the feature functions.

• Creating the feature.

Chapter 10 Solid Edge Programmer's Guide

76

Working with the Part Object Hierarchy
A simplified object hierarchy for the Solid Edge Part environment is as follows:

The PartDocument supports a Models collection. A Model is a group of graphics. In
Solid Edge, a Model consists of a set of Features that make up a single solid (which
may consist of nonoverlapping solid regions, a disjoint solid). In addition to the
objects shown in this hierarchy diagram, the PartDocument object supports the
following methods/properties: AttachedPropertyTables, AttributeQuery,
Constructions, CoordinateSystems, DocumentEvents, FamilyMembers,
HighlightSets, Properties, PropertyTableDefinitions, RoutingSlip, SelectSet,
Sketches, SummaryInfo, UnitsOfMeasure, and Windows, among others.

Working with Features Chapter 10

77

Understanding the Modeling Coordinate System
When you work interactively in Solid Edge, there is no need to be aware of a
coordinate system. This is because you create profiles and features relative to the
initial reference planes and existing geometry. When modeling non-interactively,
however, it is often easier to identify specific locations in space to position profiles
and features rather than to define relationships to existing geometry. Understanding
the coordinate system is necessary to correctly place and orient profiles and features.

Solid Edge uses the Cartesian coordinate system. The units used when expressing
coordinates in the system are always meters. See Chapter 15, Working with Units of
Measure, for more information about units. The following illustrations show the
Solid Edge coordinate system. As viewed from standard isometric view, the
coordinate system is as follows:

As viewed from a top view, positive x is to the right, positive y is up, and positive z
is pointing toward you. The origin of the coordinate system is at the intersection of
the three base reference planes as follows:

Chapter 10 Solid Edge Programmer's Guide

78

Creating Features
When you create a model interactively, you always begin by creating a base feature.
You then add subsequent features to this base feature to completely define the
model. When you create a model using automation, the workflow is identical. Using
add methods on the Models collection, you first create a base feature commonly
using either an extruded or revolved protrusion. The simplified hierarchical diagram
is as follows:

An add method from the Models collection creates a Model object. Use an add
method on the Models collection one time to create the base feature. Use the add
method on the Features collection to create subsequent features. The Model object
serves as the parent of the features that define the part. You access the individual
features through the Model object.

Note Even though the add methods used to create the base feature are on the
Models collection (because the base feature creation method implicitly creates the
model), the base feature is a member of a Features collection. For example, an
extruded base feature is a member of the ExtrudedProtrusion collection, and a
revolved protrusion base feature is a member of the RevolvedProtrusion collection.
You access a base feature through its associated collection, not the Models
collection.

Working with Features Chapter 10

79

Sample Program—Creating a Feature
The following program creates a cutout feature. This program uses many separate
components of the automation model to form a complete workflow for creating a
feature. The following program components are used: querying, working with
reference planes, working with profiles, and placing features.

This program assumes that a base feature already exists in the file. The base feature
is a rectangular block, 6x5x2 inches and oriented as follows:

The corner of the block is at the intersection of the three base reference planes. This
places the corner of the block at the coordinate (0,0,0), the 6-inch dimension in the
positive x direction, the 5-inch dimension in the positive y direction, and the 2-inch
dimension in the positive z direction. The cutout to be created is 4 x 1½ inches and
½ inch deep. It is centered on the top face of the block.

Private Sub Command1_Click()

'Declare the variables.
Dim objApp As Object
Dim objModel As Object
Dim objFaces As Object
Dim objTopFace As Object
Dim objFaceEdges As Object
Dim objRefPlane As Object
Dim objEdge As Object
Dim objXEdge As Object
Dim objProfileSet As Object
Dim objProfile As Object
Dim objLines As Object
Dim objL1 As Object, objL2 As Object
Dim objL3 As Object, objL4 As Object
Dim objRelations As Object
Dim dblStartPoint(3) As Double
Dim dblEndPoint(3) As Double
Dim dblHighY As Double
Dim dblLowY As Double
Dim dblProfileX As Double
Dim dblProfileY As Double
Dim dblPocketXSize As Double
Dim dblPocketYSize As Double
Dim intStatus As Integer

Chapter 10 Solid Edge Programmer's Guide

80

Dim i As Integer

'Enable error handling.
On Error Resume Next

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")
If Err Then

MsgBox "Solid Edge must be running."
Exit Sub

End If

'Determines the top face of the base feature.

'Reference the single model in the file.
Set objModel = objApp.ActiveDocument.Models(1)
If Err Then

MsgBox "A model must exist in the file."
Exit Sub

End If

'Reference the faces intersected by the defined ray.

Set objFaces = objModel.Body.FacesByRay _
(0.01, 0.01, 0.01, 0, 0, 1)

'Save the top face (the first face intersected).
Set objTopFace = objFaces(1)
If Err Then 'no intersection occurred

MsgBox "The base feature is not positioned correctly."
Exit Sub

End If

'Turn off error handling
On Error GoTo 0

'Determine the edge of the face to use for
'defining the x axis of the reference plane by
'finding the horizontal edge with the smallest
'y values.

'Reference all the edges of the top face.
Set objFaceEdges = objTopFace.Edges

'Initialize y to a very small value.
dblLowY = -9999999

'Iterate through the edges.
For i = 1 To objFaceEdges.Count

'Reference the geometry object of the current edge.
Set objEdge = objFaceEdges.Item(i)

'Reference the endpoints of the edge.
Call objEdge.GetEndPoints(dblStartPoint, dblEndPoint)

'Check to see if y coordinates match (in tolerance) to see
'if the line is vertical.
If WithinTol(dblStartPoint(1), _

dblEndPoint(1), _
0.0000001) Then
'Save the edge with the smallest y value.
If dblLowY < dblStartPoint(1) Then
'Save small y value and corresponding edge.
dblLowY = dblStartPoint(1)
Set objXEdge = objFaceEdges(i)
End If

Working with Features Chapter 10

81

End If
Next I

'Create the reference plane.
Set objRefPlane =

objApp.ActiveDocument.RefPlanes.AddParallelByDistance _
(ParentPlane:=objTopFace, _
Distance:=0, _
NormalSide:=igNormalSide, _
Pivot:=objXEdge, _
PivotOrigin:=igPivotEnd, _
Local:=True)

'Create the 2d profile.

'Create a ProfileSet object.
Set objProfileSet = objApp.ActiveDocument.ProfileSets.Add

'Create an empty Profile object.
Set objProfile = objProfileSet.Profiles.Add(objRefPlane)

'Reference the corresponding location on the profile for
'coordinate (1, 1.75, 2). All units must be converted to
'database units (meters).
Call objProfile.Convert3Dcoordinate _

(1 * 0.0254, _
1.75 * 0.0254, _
2 * 0.0254, _
dblProfileX, _
dblProfileY)

'Reference the Lines2d collection from the profile.
Set objLines = objProfile.Lines2d

'Determine the size of the pocket (in meters).
dblPocketXSize = 4 * 0.0254
dblPocketYSize = 1.5 * 0.0254

'Draw lines that define the shape of the pocket.
Set objL1 = objLines.AddBy2Points _

(dblProfileX, _
dblProfileY, _
dblProfileX + dblPocketXSize, _
dblProfileY)

Set objL2 = objLines.AddBy2Points _
(dblProfileX + dblPocketXSize, _
dblProfileY, _
dblProfileX + dblPocketXSize, _
dblProfileY + dblPocketYSize)

Set objL3 = objLines.AddBy2Points _
(dblProfileX + dblPocketXSize, _
dblProfileY + dblPocketYSize, _
dblProfileX, _
dblProfileY + dblPocketYSize)

Set objL4 = objLines.AddBy2Points _
(dblProfileX, _
dblProfileY + dblPocketYSize, _
dblProfileX, _
dblProfileY)

'Reference the Relations2d collection so you can add
relationships.
Set objRelations = objProfile.Relations2d

Chapter 10 Solid Edge Programmer's Guide

82

'Add keypoint relationships to connect the endpoints of the lines.
Call objRelations.AddKeypoint _

(objL1, igLineEnd, _
objL2, igLineStart)

Call objRelations.AddKeypoint _
(objL2, igLineEnd, _
objL3, igLineStart)

Call objRelations.AddKeypoint _
(objL3, igLineEnd, _
objL4, igLineStart)

Call objRelations.AddKeypoint _
(objL4, igLineEnd, _
objL1, igLineStart)

'Complete the profile and validate it.
intStatus = objProfile.End(igProfileClosed)
If intStatus <> 0 Then

MsgBox "profile validation failed."
Exit Sub

End If

'Place the feature.
Set objFeature = objModel.ExtrudedCutouts.AddFinite _

(Profile:=objProfile, _
ProfileSide:=igLeft, _
ProfilePlaneSide:=igLeft, _
Depth:=0.5 * 0.0254)

'Turn off the profile display.
objProfile.Visible = False

End Sub

Public Function WithinTol (Val1 As Double, _
Val2 As Double, _
Tol As Double) As Boolean

'Compare input values within specified tolerance.
If Abs(Val1 - Val2) <= Tol Then

WithinTol = True
Else

WithinTol = False
End If
End Function

Working with Features Chapter 10

83

Querying the Solid Model
A solid model contains information such as features, faces, and edges. Extracting
specific information programmatically from a solid model can be difficult. For
example, to create a cutout feature, you specify a face of the solid on which to sketch
the profile. While it is trivial to identify this face interactively, it can be a difficult
task to simulate in a non-interactive program. Several methods are available to obtain
useful information from a model.

Lists of Features

You can find all of the features in a solid by using the collections in the object
hierarchy. To perform an operation on all of the features of a specific type, iterate
through the collection of that feature type. To review all of the features in a model
regardless of type, use the Features collection, which contains all the features in the
model.

This example uses the Chamfers collection to iterate through all the chamfers in the
model. It checks each one to see if it is defined as a 45-degree chamfer and changes
the setback of each 45-degree chamfer to 0.25 inches.

Dim objApp As Object
Dim objChamfers As Object
Dim i As Integer

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the Chamfers collection.
Set objChamfers = objApp.ActiveDocument.Models(1).Chamfers

'Iterate through all chamfers in the collection.
For i = 1 To objChamfers.Count

'Check that the chamfer is a 45-degree setback type.
If objChamfers(i).ChamferType = igChamfer45degSetback Then
'Change the setback value of the chamfer.
objChamfers(i).ChamferSetbackValue1 = 0.25 * 0.0254
'(ChamferSetbackValue1 must be converted to database units,

meters.)
End If

Next i

The next example uses the Features collection on the Model object to turn on the
dimension display for all features in the model.

Dim objApp As Object
Dim objFeatures As Object
Dim objFeature As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the Features collection.
Set objFeatures = objApp.ActiveDocument.Models(1).Features

'Iterate through all the features in the collection.

Chapter 10 Solid Edge Programmer's Guide

84

For Each objFeature In objFeatures
'Turn on the dimension display.
objFeature.ShowDimensions = True

Next

Getting Definition Information from a Feature

Each type of feature has a set of properties that define it. Using these properties and
methods, you can extract the defining information from the feature. Below is a
simple example that uses a property of a cutout feature to determine its extent.
Depending on the extent of the cutout, it uses another property to determine the
depth of the cutout.

'Declare the program variables.
Dim objApp As Object
Dim objCutout As Object
Dim Depth As Double

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the Cutout.
Set objCutout = _

objApp.ActiveDocument.Models(1).ExtrudedCutouts(1)

'If the cutout has a finite extent,
If objCutout.ExtentType = igFinite Then

'store the depth of the cutout in the Depth variable,
Depth = objCutout.Depth

'and show the results.
MsgBox "The depth of the cutout is " & Depth & "."

End If

Getting Geometric Information from the Model
and Features

A model is the result of placing a series of features. At its lowest level, the model is
a set of faces that enclose a volume. Two faces connect at an edge. It is frequently
necessary to go beyond the feature information and extract geometric information
from the faces and edges of the model. Many feature constructions require the input
of faces and/or edges of the model.

Properties on the Model object and the individual feature objects allow you to access
faces and edges from the model. The Faces, FacesByRay, and Edges properties are
supported by the Model object and all feature objects. For most profile-based
features, the TopCap, BottomCap, and SideFaces properties are supported.

The Geometry property on the Faces and Edges returns various 3-D wireframe and
surface objects. The type of object returned depends on the geometry of the face or
edge. You can determine the type returned through the Type property of the
associated object. All of the objects returned by the Geometry property support a

Working with Features Chapter 10

85

Type property. You can use this property to determine what type of 3-D geometry
the edge or face is, and consequently what methods and properties it supports. See
the Programming with Solid Edge on-line Help file for specific information about the
properties and methods supported for each object.

Note Because these edges and faces are actually defined by the solid model, only
the methods and properties that allow you to extract information from the geometry
are supported. Any properties or methods that modify the geometry are not supported
in Solid Edge.

Most of the profile-based features also support properties that allow you to access
specific faces from the solid. These properties are BottomCap, TopCap, and
SideFaces. The faces are located on the feature as follows:

Except for features created with a symmetric extent, the top cap is always in the
same plane as the profile.

The following example shows how to use these methods. In this example, a ray is
defined and intersected with the model. The result is a Faces collection that contains
all of the faces intersected. The first face from this collection is assigned to a Face
variable. This Face object is used to reference a single item.

The next step uses the Edges method of the Face object to access all the edges of the
face. One of the edges from this collection is assigned to an Edge object.

The Geometry property returns a 3-D geometry object from the edge. The type of
geometry object returned depends on the geometry of the edge, so the type can vary;
it can be a line, an arc, a curve, or whatever geometry exists in the model. This
sample verifies that the geometry is a line and uses Line object methods to obtain the
endpoints of the line.

'Declare the program variables.
Dim objApp As Object
Dim objFaces As Object
Dim objFace As Object
Dim objEdges As Object

Chapter 10 Solid Edge Programmer's Guide

86

Dim objEdge As Object
Dim objLine As Object
Dim StartPoint(3) As Double
Dim EndPoint(3) As Double
Dim objFeature As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the first Extruded Protrusion in the Model.
Set objFeature =

objApp.ActiveDocument.Models(1).ExtrudedProtrusions(1)

'Access the faces on that Feature that intersect with
'the defined vector.
Set objFaces = objFeature.FacesByRay(Xorigin:=0, _

Yorigin:=0, _
Zorigin:=1, _
Xdir:=0, _
Ydir:=0, _
Zdir:=-1)

'Access the first face intersected.
Set objFace = objFaces(1)

'Access all the edges of the face.
Set objEdges = objFace.Edges

'Access the first edge in the collection.
Set objEdge = objEdges(1)

'If the edge is a line,
If objEdge.Geometry.Type = igLine Then

'Determine the StartPoint and EndPoint of the line.
Call objEdge.GetEndPoints(StartPoint, EndPoint)

'Store the array values in variables.
X1 = StartPoint(0)
Y1 = StartPoint(1)
Z1 = StartPoint(2)
X2 = EndPoint(0)
Y2 = EndPoint(1)
Z2 = EndPoint(2)

'And then format them to 2-decimal point accuracy.
X1 = Format(X1, ".00")
Y1 = Format(Y1, ".00")
Z1 = Format(Z1, ".00")
X2 = Format(X2, ".00")
Y2 = Format(Y2, ".00")
Z2 = Format(Z2, ".00")

'Use the coordinates as needed.
Text1.Text = X1 & ", " & Y1 & ", " & Z1
Text2.Text = X2 & ", " & Y2 & ", " & Z2

End If

Working with Features Chapter 10

87

Modifying the Solid Model
There are several ways to modify a model through automation.

The simplest and most common modification is to change the dimensions of a
feature. You can do this either by editing the properties of the feature or by editing
the parent profile. For example, to edit the depth of a cutout, change the value of the
feature's Depth property. To change the size of the cutout, change the profile
geometry or the dimensions that control the profile.

Either workflow is acceptable. However, the recommended workflow is to edit
dimensional values using the variable table entries that correspond to the feature's
dimensions. For information on the Variable Table and how to create parametric
libraries, Chapter 13, Working with Variables.

In addition to using the properties of the part to change dimensional values, you can
also use the properties of the feature to control other attributes. Some of these
properties are unique to each feature, and others are common properties shared by all
features. The following properties are commonly shared by all features:

• The ability to display the dimensions associated with the feature and its profile.

• The ability to suppress the feature.

• The ability to change its order of placement among the features of the model.

Chapter 10 Solid Edge Programmer's Guide

88

Programming Families of Parts
A family of parts is a series of similar parts in different sizes or with slightly
different features. For example, a standard hex head bolt comes in many diameters,
lengths, and thread specifications. All of these potentially unique bolts are simply
variations of a single design. That is, they are all members of the same family.

Solid Edge provides a robust interface for users to construct families of parts.
However, another way to do it through automation is to interactively create a single
member of the family in Solid Edge, and then automatically edit the dimensional
values of the part to create any other member in the family. The primary advantage
to this method is that you create the graphics of the part interactively a single time.
Once the part is created, it can be modified through the variable table. Using
programming tools and Microsoft Office products, you can provide an interface for
editing the parts. If needed, you can easily limit designers to a predefined set of
dimensions.

One of the sample programs delivered with Solid Edge demonstrates this. The
Modifying Graphics from Excel Data sample, which is described in Appendix B,
Sample Programs, illustrates a family of parts application that uses the variable table
to create a link between a part and an Excel spreadsheet.

89

C H A P T E R 1 1
Working with Assemblies

This chapter describes the automation interface of the Solid Edge Assembly
environment.

Working with Assemblies—Overview .. 90

Placing Occurrences.. 91

Manipulating Occurrences .. 92

Using Occurrence Attributes ... 95

Analyzing Existing Assembly Relationships .. 97

Adding New Assembly Relationships ... 99

Chapter 11 Solid Edge Programmer's Guide

90

Working with Assemblies—Overview
An assembly is a document that is a container for OLE links to other documents that
contain parts or other assemblies. An assembly document is used exclusively for
assemblies and has its own ActiveX automation interface. This programming
interface allows you to place parts into an assembly and examine existing parts and
subassemblies and their relationships. The assembly automation model is as follows:

The Assembly Coordinate System

When you work interactively in Solid Edge, there is no need to be aware of a
coordinate system. This is because you can place parts and subassemblies relative to
existing parts and subassemblies. When modeling programmatically, however, it is
often easier to position parts and subassemblies by specifying locations in space
rather than by defining relationships to existing geometry.

The Solid Edge Part and Assembly environments use the Cartesian coordinate
system. Solid Edge uses a uniform set of measurement definitions, a system referred
to as internal or database units. The internal unit for distance is a meter; it follows
then that units used when expressing coordinates are always meters. See Chapter 10,
Working with Features, for more information on the coordinate system. See Chapter
15, Working with Units of Measure, for more information about units.

Working with Assemblies Chapter 11

91

Placing Occurrences
The automation interface for the assembly environment allows you to place parts and
subassemblies into an assembly. This is handled by the AddByFilename method,
which is provided on the Occurrences collection object. Parts and subassemblies are
differentiated by the Subassembly property on each Occurrence object. The
following example shows how to place a part into an assembly. This example
accesses the Occurrences collection from the active document and places the part.

'Declare the program variables.
Dim objApp As Object
Dim objOccurrences As Object
Dim objOccurrence1 As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the Occurrences collection object.
Set objOccurrences = objApp.ActiveDocument.Occurrences

'Add an Occurrence object.
Set objOccurrene1 =

objOccurrences.AddByFilename("c:\Drawing Files\Block.par")

Parts or subassemblies are initially placed into the assembly at the same location and
position they maintain in their original files. The following illustration shows a block
and its position relative to the three initial global reference planes. The block is
positioned so its corner is at the coordinate (0,0,0). When this part is placed into an
assembly using the AddByFilename method, it is placed in the same location and
orientation in the assembly file as it existed in the original part file. Subassemblies
follow the same rules.

Chapter 11 Solid Edge Programmer's Guide

92

Manipulating Occurrences
Because occurrences are placed in the same relative location and orientation in
which they were initially created, you will typically change the part or subassembly’s
position and orientation after placement.

Note These methods apply only to grounded occurrences. Occurrences that are
placed with relationships to other occurrences have their location and orientation
defined by their relationships to the other occurrences.

To show how to use these methods, consider a block with dimensions of 100 mm in
the x axis, 100 mm in the y axis, and 50 mm in the z axis. Assume that you need to
place three of these parts to result in the following assembly:

The following program creates this assembly:

'Declare the program variables.
Dim objApp As Object
Dim objOccurrences As Object
Dim objTemp As Object

'Create constant (pi) for converting angles.
Const PI = 3.14159265358979

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the Occurrences collection object.
Set objOccurrences = objApp.ActiveDocument.Occurrences

'Place the first block.
Call objOccurrences.AddByFilename("Block.par")

'Place the second block.
Set objTemp = objOccurrences.AddByFilename("Block.par")

'It is currently in the same position and orientation as the first
'block, so reposition it.
Call objTemp.Move(0, 0, 0.05)

Working with Assemblies Chapter 11

93

'Place the third block.
Set objTemp = objOccurrences.AddByFilename("Block.par")

'Rotate the third block to a vertical position.
Call objTemp.Rotate(0, 0, 0, 0, 1, 0, -PI / 2)

'Reposition the third block.
Call objTemp.Move(-0.075, 0, 0.025)

The following illustration shows the assembly after placing the second block and
moving it into place:

And after placing the third block, rotating it, and moving it into place, the assembly
is as follows:

This example positions the blocks using the Move method. You can also use the
SetOrigin method, which is available on the Occurrence object, to move occurrences.
SetOrigin works together with GetOrigin; GetOrigin returns the coordinates of the

Chapter 11 Solid Edge Programmer's Guide

94

occurrence origin with respect to the assembly origin, and SetOrigin positions the
occurrence's origin relative to the assembly's origin.

Working with Assemblies Chapter 11

95

Using Occurrence Attributes
The following properties are available on Occurrence objects to return information
about it and to set its characteristics:

• Locatable—Determines whether the Occurrence can be located interactively in
the assembly. The other properties set and retrieve information about the
Occurrence.

• OccurrenceDocument—Returns the ActiveX Automation object for the
document. This object can be either a PartDocument (for a part) or an
AssemblyDocument (for a subassembly).

• Subassembly—Indicates if the occurrence is a subassembly.

Some other supported properties include OccurrenceFileName, Quantity,
ReferenceOnly, and Status. For information on these properties, see the
Programming with Solid Edge on-line Help file.

The following example shows how to use the OccurrenceDocument and
Subassembly properties. Using recursion, this program returns all of the components
of an assembly no matter how many levels or parts it contains. The program finds
every part and subassembly in an assembly and ensures that its display is turned on.
To understand the program logic, assume that your assembly is structured as follows:

The first subroutine, cmdDisplay_Click, starts the process by calling the subroutine
DisplayOn and passing in the current file (Part A) as input. DisplayOn iterates
through the parts in A, which are B and C. It determines whether B is a subassembly,
checks if its display is on, and calls the subroutine DisplayOn, passing in B as input.
DisplayOn iterates through the parts in subassembly B. In this case, they are not
subassemblies so each one is checked to make sure its display is on and then the
subroutine is exited. This causes program control to return to where DisplayOn is
processing the parts in A. It has finished B and now moves to C where the process
continues.

Using recursion, this simple program traces through each subassembly to the
individual parts. This technique can be used whenever you need to access each part
in an assembly.

Private Sub Command1_Click()
Dim objApp As Object

Chapter 11 Solid Edge Programmer's Guide

96

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Call the function with the current document as input.
Call DisplayOn(objApp.ActiveDocument)

End Sub

Public Sub DisplayOn(Document As Object)
'Declare variables.
Dim objOccurrences As Object
Dim objOccurrence As Object

'Reference the Parts collection object.
Set objOccurrences = Document.Occurrences

'Iterate through each part in the current document.
For Each objOccurrence In objOccurrences
'Check to see if the current attachment is
'a subassembly.
If objOccurrence.Subassembly Then

'Turn on the display of the subassembly.
objOccurrence.Visible = True

'Call this function with the subassembly as input.
Call DisplayOn(objOccurrence.OccurrenceDocument)

Else
'Turn on the display of the part.
objOccurrence.Visible = True

End If
Next

End Sub

Working with Assemblies Chapter 11

97

Analyzing Existing Assembly Relationships
When interactively placing parts in an assembly, you define relationships between
parts to control their relative positions. Using the automation interface for the
Assembly environment, you can access and modify properties of the assembly
relationships.

Relationship objects are accessible through two collections: Relations3d on the
AssemblyDocument object and Relations3d on each Part object. The Relations3d
collection on the AssemblyDocument allows you to iterate through all relationships
in the document. The Relations3d collection on each Part object allows you to iterate
through the relationships defined for that specific part.

There are five types of 3-D relationships: AngularRelation3d, AxialRelation3d,
GroundRelation3d, PlanarRelation3d, and PointRelation3d. These do not directly
correlate to the interactive commands that place relationships. The relationships are
as follows:

• AngularRelation3d—Defines an angular relationship between two objects.

• AxialRelation3d—Defines a relationship between conical faces. This is an axial
align in the interactive interface.

• GroundRelation3d—Defines a ground constraint.

• PointRelation3d—Applies a connect relationship between points (vertices) of the
points in an assembly.

• PlanarRelation3d—Defines a relationship between two planar faces. This
includes both mates and planar aligns.

The following example shows how to use some of these relationship objects. This
sample finds all of the PlanarRelation3d objects that define mates and modifies their
offset values.

'Declare the program variables.
Dim objApp As Object
Dim Offset As Double
Dim objRelations As Object
Dim objRelation As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Set the value of the offset.
Offset = 0.05

'Access the Relations3d collection.
Set objRelations = objApp.ActiveDocument.Relations3d

'Iterate through each relationship in the collection.
For Each objRelation In objRelations

'If the relationship is a PlanarRelation3d, then
If objRelation.Type = igPlanarRelation3d Then

Chapter 11 Solid Edge Programmer's Guide

98

'Check to see if it is align relationship.
'If it is an align relationship, do nothing.

If objRelation.NormalsAligned Then
Else
'Otherwise, apply the offset.
objRelation.Offset = objRelation.Offset + Offset
End If

End If
Next

Working with Assemblies Chapter 11

99

Adding New Assembly Relationships
There are five methods to define assembly relationships through the automation
interface: AddAngular, AddAxial, AddGround, AddPlanar, and AddPoint. These do
not exactly correspond with the assembly relationship commands that are available
interactively. However, they do correspond to the relationships that the interactive
commands create.

For example, the AddPlanar method can be used to create either a Mate or an Align.
The inputs to the AddPlanar method are two reference objects which are described
below (but they correspond to the faces being mated or aligned), a Boolean that
specifies whether or not the normals to the faces are aligned (this determines whether
the faces are mated or aligned), and constraining points on each face (that
correspond to the locations where you would click to locate the faces when you work
interactively).

The following sample demonstrates the AddAxial method. This produces the same
relationship that the interactive Align command produces when you align cylindrical
faces. The inputs to this method are similar to those for the AddPlanar method. The
first two inputs are reference objects that represent the cylindrical faces being
aligned, and the third input is the Boolean that specifies whether normals to these
faces are aligned. This method does not have input parameters for the constraining
points the AddPlanar method uses.

To programmatically create the relationships that the Insert interactive command
creates, you would use the AddPlanar and AddAxial methods. This would define the
two cylindrical faces whose axes are aligned, and it would define the two planar
faces that are mated. To remove the final degree of freedom, you would edit the axial
relationship and set its FixedRotate property to True.

To create a Connect relationship, use the AddPoint method. The first input parameter
is a reference object corresponding to the face or edge on the first part; the second
input parameter is a constant that defines which key point from the input geometry
defines the connection point (for example, CenterPoint, EndPoint, MidPoint, and so
forth); and the third and fourth input parameters describe the same characteristics of
the second part.

Within this general description, there are some important refinements. The methods
previously described refer to reference objects, which correspond to part geometry.
Each Assembly relationship must store a means of retrieving the geometric Part
information that defines it. When using the AddPlanar method, for example, you
need to pass in references to two planar faces (or reference planes).

The AssemblyDocument object has a CreateReference method whose job is to create
the reference objects. The CreateReference method takes as input an Occurrence (an
object that represents a member document of the assembly—which in this case
would be a part document) and an Entity. The Entity can be an Edge, Face, or
RefPlane object from the Occurrence document. The Reference object stores a path
to the geometric representations necessary to construct the relationships.

Chapter 11 Solid Edge Programmer's Guide

100

To create assembly relationships via the automation interface, Occurrence objects
(the Part and Subassembly models that comprise the assembly) must be placed in the
Assembly document. You do this with the
AssemblyDocument.Occurrances.AddByFilename method. This places the
Occurrence in the assembly with a ground relationship. Therefore, (except for the
first Occurrence added to the assembly) before any other relationships can be applied
between this Occurrence and others in the assembly, the ground relationship must be
deleted.

Dim objApp As Application
Dim objDoc As AssemblyDocument
Dim objScrew As Occurrence
Dim objScrewConicalFace As Face
Dim objReferenceToConeInScrew As Reference
Dim objNut As Occurrence
Dim objNutConicalFace As Face
Dim objReferenceToConeInNut As Reference
Dim objFace As Face
Dim objFaces As Object
Dim objGroundRel As GroundRelation3d
Dim objRelNuttoScrew As AxialRelation3d

Set objApp = GetObject(, "SolidEdge.Application")
Set objDoc = objApp.ActiveDocument

Set objScrew = objDoc.Occurrences.AddByFilename("Screw.par")
Set objFaces =

objScrew.OccurrenceDocument.Models(1).RevolvedProtrusions(1).SideFa
ces
For Each objFace In objFaces

If objFace.Geometry.Type = igCone Or objFace.Geometry.Type =
igCylinder Then

Set objScrewConicalFace = objFace
Exit For

End If
Next objFace

Set objReferenceToConeInScrew =
objDoc.CreateReference(Occurrence:=objScrew,
entity:=objScrewConicalFace)

Set objNut = objDoc.Occurrences.AddByFilename("Nut.par")
Set objFaces =

objNut.OccurrenceDocument.Models(1).RevolvedCutouts(1).SideFaces
For Each objFace In objFaces

If objFace.Geometry.Type = igCone Or objFace.Geometry.Type =
igCylinder Then

Set objNutConicalFace = objFace
Exit For

End If
Next objFace

Set objReferenceToConeInNut =
objDoc.CreateReference(Occurrence:=objNut,
entity:=objNutConicalFace)

'All Occurrences placed through automation are placed "Grounded."
You must
'delete the ground constraint on the second Occurrence before you
'can place other relationships.
Set objGroundRel = objDoc.Relations3d.Item(2)
Call objGroundRel.Delete

'Rather than passing literal axes to the AddAxial method, pass

Working with Assemblies Chapter 11

101

references to conical faces,
'just as you select conical faces when you use the interactive

Align command.
Set objRelNuttoScrew =

objDoc.Relations3d.AddAxial(objReferenceToConeInNut,
objReferenceToConeInScrew, False)

Chapter 11 Solid Edge Programmer's Guide

102

103

C H A P T E R 1 2
Working with
Dimensions

This chapter describes how to place dimensions, edit dimensions, and query for
information about dimensions. In the profile environment, dimensions can
control the size and position of profile geometry. In the Draft environment,
dimensions can be used to document drawings of 3-D models and to control 2-D
geometry.

Working with Dimensions—Overview ... 104

Linear Dimension... 106

Placing Dimensions ... 107

Displaying Dimensions .. 109

Chapter 12 Solid Edge Programmer's Guide

104

Working with Dimensions—Overview
Solid Edge allows you to place and edit dimensions on elements. In the Draft
environment, dimension objects primarily communicate characteristics such as size,
distance, and angle. In the Profile environment, dimension objects control the size
and orientation of geometry.

Dimensions can be linear, radial, or angular. Dimensions supply information about
the measurements of elements, such as the angle of a line or the distance between
two points. A dimension is related to the element on which it is placed. In the Draft
environment, if an element on which a dimension is placed changes, the dimension
updates. In the Profile environment, the dimensions control the geometry; if the
dimension changes, the geometry updates.

The object hierarchy for dimensions is as follows:

In a Part document, the Dimensions collection is accessed through the Profile object.
In the Draft environment, the Dimensions collection is accessed through the Sheet
object. The Dimensions collection provides the methods for placing dimensions and
for iterating through all the dimensions on the entire sheet or profile.

Working with Dimensions Chapter 12

105

In a Draft document, the DimensionStyles collection on the document provides the
methods for adding dimension styles and for iterating through all the dimension
styles in the document.

Chapter 12 Solid Edge Programmer's Guide

106

Linear Dimension
A linear dimension measures the distance between two or more elements, the length
of a line, or an arc's length. For a complete description of the properties that define
how a linear dimension is placed, see the Programming with Solid Edge on-line
Help.

Radial Dimensions

Radial dimensions measure the radius or diameter at a point on the element. These
dimensions are similar except that they show the radius or diameter value depending
on the type. With the ProjectionArc and TrackAngle properties, you can define the
measurement point on the element. For a complete description of the properties, see
the Programming with Solid Edge on-line Help.

Angular Dimensions

Angular dimensions measure the angle between two lines or three points. An angular
dimension defines two intersecting vectors and four minor sectors. These sectors are
distinguished according to whether the angle is measured in the sector where the
vector direction goes outward from the intersection point or comes inward, and
whether the angle is measured in the clockwise or counterclockwise direction.

The angles are always measured in the counterclockwise direction with both vector
directions going outward from the intersection point (sector one condition). To
measure in any other angle, certain properties are set so that the dimension object
modifies the vector direction and computes the angle.

Working with Dimensions Chapter 12

107

Placing Dimensions
Two techniques are available for placing dimensions:

• Placing driven dimensions (Draft environment)—Driven dimensions are
controlled by the graphic elements to which they refer. If the element changes,
the dimensional value updates. A driven dimension measures (that is,
documents) the model. You can override the value of a driven dimension by
setting the OverrideString.

• Placing driving dimensions (Profile environment)—Driving dimensions control
the elements to which they refer. When you edit a driving dimension, the
geometry of the element that is related to that dimension is modified.

You can place dimensions only on existing elements. A set of Add methods is
provided on the Dimensions collection, one for each type of dimension. The element
to which the dimension is attached determines the type of dimension (driving or
driven) that will be placed. The Add methods on the Dimensions collection object
take minimal input and place the dimensions with specific default values. For a
complete description of the add methods and properties available for setting the
default values, see the Programming with Solid Edge on-line Help.

When you place dimensions between two elements interactively, the dimensions are
measured at a specific location on an element. For example, when you place a
dimension between the end points of two lines, you select one end of each line.
When you place dimensions through automation, you specify a point on the element
and a key point flag to define the dimension.

In the following program, four lines are drawn and connected with key point
relationships. The lengths of two of the lines and the distance between two lines are
dimensioned. The dimension is set to be a driving dimension so it will control the
length and position of the geometry. The sample also shows how to modify a
dimension style by changing the units of measurement of one of the dimensions to
meters.

'Declare the program variables.
Dim objApp As Object
Dim objProfile As Object
Dim objProfileSets As Object
Dim objLines As Object
Dim objRelations As Object
Dim objDimensions As Object
Dim L(1 To 4) As Object
Dim A(1 To 4) As Object
Dim D1 As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Make sure that the active environment is Profile. Exit if it is
not.
If objApp.ActiveEnvironment <> "Profile" Then

MsgBox "This macro must be run from the Profile environment."
End

End If

Chapter 12 Solid Edge Programmer's Guide

108

'Reference the profile on which to place the geometry.
Set objProfileSets = objApp.ActiveDocument.ProfileSets
Set objProfile = objProfileSets(objProfileSets.Count).Profiles(1)

'Reference the collections used.
Set objLines = objProfile.Lines2d
Set objRelations = objProfile.Relations2d
Set objDimensions = objProfile.Dimensions

'Draw the geometry.
Set L(1) = objLines.AddBy2Points(0, 0, 0.1, 0)
Set L(2) = objLines.AddBy2Points(0.1, 0, 0.1, 0.1)
Set L(3) = objLines.AddBy2Points(0.1, 0.1, 0, 0.05)
Set L(4) = objLines.AddBy2Points(0, 0.05, 0, 0)

'Add endpoint relationships between the lines.
Call objRelations.AddKeypoint(L(1), igLineEnd, L(2), igLineStart)
Call objRelations.AddKeypoint(L(2), igLineEnd, L(3), igLineStart)
Call objRelations.AddKeypoint(L(3), igLineEnd, L(4), igLineStart)
Call objRelations.AddKeypoint(L(4), igLineEnd, L(1), igLineStart)

'Add dimensions, and change the dimension units to meters.
Set D1 = objDimensions.AddLength(object:=L(2))
D1.Constraint = True
D1.Style.PrimaryUnits = igDimStyleLinearMeters

Set D1 = objDimensions.AddLength(object:=L(4))
D1.Constraint = True
D1.Style.PrimaryUnits = igDimStyleLinearMeters

Set D1 = objDimensions.AddDistanceBetweenObjects(_
Object1:=L(2), X1:=0.1, Y1:=0.1, z1:=0, _
KeyPoint1:=False, _
Object2:=L(3), X2:=0, Y2:=0.05, z2:=0, _
KeyPoint2:=False)

D1.Constraint = True
D1.Style.PrimaryUnits = igDimStyleLinearMeters
End

Working with Dimensions Chapter 12

109

Displaying Dimensions
Dimensions can measure elements in different ways and are positioned relative to the
elements being measured. When you create a dimension, default values are set for
the properties to position the dimensions properly. Most of these default values are
derived from the dimensional style associated with the dimension. In addition, the
following values are set:

• BreakDistance is set to 0.5, which centers the dimension text.

• BreakPosition is set to igDimBreakPositionCenter.

• TrackDistance is set to be 10 times the dimension text size in case of angular
dimensions. In all other cases, it is set to two times the dimension text size.

The DisplayType Property

Dimension values can be displayed in different ways. The DisplayType property and
the Tolerance value allow you to set the display you need.

Chapter 12 Solid Edge Programmer's Guide

110

111

C H A P T E R 1 3
Working with Variables

This chapter describes how to work with variables when customizing Solid Edge.

Working with Variables—Overview .. 112

Sample Program—Creating and Accessing Variable Objects 114

Sample Program—Accessing Dimensions

through the Variable Table... 115

Sample Program—Variable Objects.. 117

Using External Sources.. 118

Chapter 13 Solid Edge Programmer's Guide

112

Working with Variables—Overview
The variable system allows you to define relationships between variables and
dimensions using equations, external functions, and spreadsheets. For example, you
can construct a rectangular profile using four lines, and place two dimensions to
control the height and width. The following illustration shows the Variable Table
with these two dimensions displayed. (Every dimension is automatically available as
a variable.)

Using these variables, you can make the height a function of the width by entering a
formula. For example, you could specify that the height is always one-half of the
width. Once you have defined this formula, the height is automatically updated when
the width changes.

All variables have names; it is through these names that you can reference them. In
the preceding illustration, the names automatically assigned by the system are V108
and V109. You can rename these dimensions; in the following illustration, V108 has
been renamed to "height," and V109 has been renamed to "width."

Every variable has a value. This can be a static value or the result of a formula.
Along with the value, a unit type is also stored for each variable. The unit type
specifies what type of measurement unit the value represents. In this example, both
of the variables use distance units. You can create Variables for other unit types such
as area and angle. Values are displayed using this unit type and the unit readout
settings.

The object hierarchy for variables is as follows:

Working with Variables Chapter 13

113

Chapter 13 Solid Edge Programmer's Guide

114

Sample Program—Creating and Accessing Variable
Objects

All variable automation is accessed through the Variables collection and Variable
objects. The Variables collection serves two purposes: it allows you to create and
access variable objects, and it allows you to work with dimensions as variables.

The Variables collection supports an Add method to create new Variable objects. It
also supports the standard methods for iterating through the members of the
collection. The following program connects to the Variables collection, creates three
new variables, and lists them.

Note When debugging programs that interact with the Variable Table, it helps to
have the Variable Table displayed while stepping through the program. The Variable
Table shows the results as they are executed.

'Declare the program variables.
Dim objApp As Object
Dim objVariables As Object
Dim objVariable As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the Variables collection.
Set objVariables = objApp.ActiveDocument.Variables

'Create a variable with distance unit type.
Call objVariables.Add("Var1", "1.25", igUnitDistance)

'Create a variable without specifying the unit type (defaults to
distance).
Call objVariables.Add("Var2", "3.56 cm")

'Create a variable with area unit type.
Call objVariables.Add("Var3", "Var1 * Var2", igUnitArea)

'Iterate through all the variables, printing their name and value.
For Each objVariable In objVariables
Debug.Print objVariable.Name & " = " & objVariable.Value
Next

Units with variables work the same as units in the system. Units are stored using
internal values and then are appropriately converted for display. For example, all
length units are stored internally as meters. When these units are displayed in the
Variable Table, they are converted to the units specified in the Properties dialog box.
See Chapter 15, Working with Units of Measure, for more information.

Note When iterating through the Variables collection, Variable objects—not
Dimension objects—are returned. To iterate through dimensions, use the Dimensions
collection.

Working with Variables Chapter 13

115

Sample Program—Accessing Dimensions through the
Variable Table

When working interactively with the Variable Table, both variables and dimensions
are displayed in the table. This enables you to create formulas using the values of
dimensions and also have formulas that drive the values of dimensions. In this
workflow, there is no apparent difference between variables and dimensions.
Internally, however, variables and dimensions are two distinct types of objects that
have their own unique collections, properties, and methods.

The Variables collection allows you to work with dimensions in the context of
variables through several methods on the collection. These methods include Edit,
GetFormula, GetName, PutName, Query, and Translate. The following program uses
dimensions through the Variables collection. The program assumes that Solid Edge
is running and in the Profile environment.

'Declare the program variables.
Dim objApp As Object
Dim objVariables As Object
Dim objVariable As Object
Dim objLines As Object
Dim objTempLine As Object
Dim objDims As Object
Dim objDim1 As Object
Dim objDim2 As Object
Dim Dim2Name As String
Dim Formula As String
Dim objNamedDims As Object
Dim objNamedDim As Object
Dim objProfileSets As Object
Dim objProfile As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the current Profile object.
Set objProfileSets = objApp.ActiveDocument.ProfileSets
Set objProfile = objProfileSets(objProfileSets.Count).Profiles(1)

'Reference the collections used.
Set objVariables = objApp.ActiveDocument.Variables
Set objLines = objProfile.Lines2d
Set objDims = objProfile.Dimensions

'Create a line.
Set objTempLine = objLines.AddBy2Points(0, 0, 0.1, 0.1)

'Place a dimension on the line to control its length.
Set objDim1 = objDims.AddLength(objTempLine)

'Make the dimension a driving dimension.
objDim1.Constraint = True

'Create a second line.
Set objTempLine = objLines.AddBy2Points(0, 0.1, 0.1, 0.2)

'Place a dimension on the line to control its length.
Set objDim2 = objDims.AddLength(objTempLine)

'Make the dimension a driving dimension.
objDim2.Constraint = True

Chapter 13 Solid Edge Programmer's Guide

116

'Assign a name to the dimension placed on the first line.
Call objVariables.PutName(objDim1, "Dimension1")

'Retrieve the system name of the second dimension, and display
'it in the debug window.
Dim2Name = objVariables.GetName(objDim2)
Debug.Print "Dimension Name = " & Dim2Name

'Edit the formula of the second dimension to be half
'the value of the first dimension.
Call objVariables.Edit(Dim2Name, "Dimension1/2.0")

'Retrieve the formula from the dimension, and print it to the
'debug window to verify.
Formula = objVariables.GetFormula(Dim2Name)
Debug.Print "Formula = " & Formula

'This demonstrates the ability to reference a dimension object by
its name.
Set objDim1 = objVariables.Translate("Dimension1")

'To verify a dimension object was returned, change its
'TrackDistance property to cause the dimension to change.
objDim1.TrackDistance = objDim1.TrackDistance * 2

'Use the Query method to list all all user-defined
'variables and user-named Dimension objects and
'display in the debug window.
Set objNamedDims = objVariables.Query("*")
For Each objNamedDim In objNamedDims

Debug.Print objVariables.GetName(objNamedDim)
Next

Working with Variables Chapter 13

117

Sample Program—Variable Objects
In addition to the properties and methods on the Variables collection, properties and
methods are also available on the Variable objects. These properties and methods
read and set variable names, define formulas, set values, and specify units of
measure. The following program shows how to work with Variable objects:

'Declare the program variables.
Dim objApp As Object
Dim objVariables As Object
Dim objVar1 As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the Variables collection.
Set objVariables = objApp.ActiveDocument.Variables

'Add a variable, and print its value to the debug window.
Set objVar1 = objVariables.Add("NewVar", "1.5")
Debug.Print "NewVar = " & objVar1.Value

'Change the formula of the variable to a function.
objVar1.Formula = "Sin(0.1)"

'Change the name of the variable.
objVar1.Name = "NewName"

'Change the value of the variable. This will not change
'the value of the variable.
objVar1.Value = 123

'Change the formula of the variable to a static value.
'This causes the formula to be removed and sets the value.
objVar1.Formula = "456"

'Change the value of the variable. It works now.
objVar1.Value = 789

'Delete the variable.
objVar1.Delete

Note If a variable's value is defined using a formula, the value of the variable can
be changed only by editing the formula. You can remove a formula by setting the
value of the formula to a static value. In addition, when you set the Value property of
a variable, it is assumed to be in database units, such as meters for distance. Use the
Formula property for user-defined units.

Chapter 13 Solid Edge Programmer's Guide

118

Using External Sources
Two external sources are available to drive the values of variables and dimensions:
Visual Basic functions and subroutines and Excel spreadsheets.

Visual Basic Functions and Subroutines

Interactively, when using functions and subroutines to drive a variable's formula, you
use the Function Wizard to define the link to the function. You can also set up this
link through automation as shown in the following example. The following is a
listing of a .BAS file that contains a function and a subroutine. For this example, the
.BAS file is called UserFunc.BAS.

Function AddThree(InValue As Double) As Double
AddThree = InValue + 3
End Function

Sub AddMultiply(InOne As Double, InTwo As Double,
ByRef OutOne As Double, ByRef OutTwo As Double)
OutOne = InOne + InTwo
OutTwo = InOne * InTwo

End Sub

The following program shows how to use user-defined functions from an external
.BAS file.

'Declare the program variables.
Dim objApp As Object
Dim objVariables As Object
Dim objVar1 As Object
Dim objVar2 As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Reference the Variables collection.
Set objVariables = objApp.ActiveDocument.Variables

'Add four variables.
Set objVar1 = objVariables.Add("A", "0")
Call objVariables.Add("B", "34")
Call objVariables.Add("C", "0")
Set objVar2 = Variables.Add("D", "0")

'Modify the formula of the variable to call the
'external function AddThree. The input is the
'value of variable B and the result will be
'assigned the variable A.
objVar1.Formula = "C:\Temp\UserFunc.AddThree (B)"

'Modify the formula of variable D to use the external
'subroutine AddMultiply. The input is the variables
'A and B, and the output is C and D.
Var2.Formula = "C:\Temp\UserFunc.AddMultiply (A,B,C,D)"

Use the following notation when creating a formula that contains an external
function or subroutine:

Working with Variables Chapter 13

119

module.function (argument1, argument2, ...)

Specify the module name without the .BAS extension. Specify the arguments of the
function after the function name.

In the previous example, first an external function is used. This function requires a
single argument for which the variable B has been specified. The resulting value of
the function is assigned to the variable A since the formula is being added to that
variable object.

In the next step, the program assigns an external subroutine as the formula of a
variable. Using a subroutine is slightly different than using a function, since a
subroutine does not explicitly return a value as a function does. A subroutine can
return values through one or more of its arguments.

When calling an external subroutine through the variable table, its arguments must
be either input or output and cannot serve both purposes. In this example, the
subroutine has two input arguments, InOne and InTwo, and two output arguments,
OutOne and OutTwo. Whether a variable is input or output is specified in the
subroutine definition using the ByVal keyword for input variables and the ByRef
keyword for output variables.

The formula specifies that the subroutine AddMultiply is to be called with the
variables A and B as input, and C and D as output. This formula is being defined for
the variable object referenced by the object variable Var2, which is named D.
However, because the variable named C is an output of this subroutine, the formula
is also assigned to that variable. The following illustration shows the results in the
variable table after running the program.

Chapter 13 Solid Edge Programmer's Guide

120

121

C H A P T E R 1 4
Working with 2-D
Graphic Objects

This chapter describes how to use two-dimensional geometry objects when
automating tasks or customizing Solid Edge.

Working with 2-D Graphic Objects—Overview 122

Sample Program—Creating 2-D Graphic Objects................................ 123

Chapter 14 Solid Edge Programmer's Guide

122

Working with 2-D Graphic Objects—Overview
The Solid Edge automation model allows you to place many different two-
dimensional geometry objects. Through automation, you can place and manipulate
objects such as arcs, B-Spline curves, circles, ellipses, elliptical arcs, hole centers,
and lines. The object hierarchy for 2-D geometry is as follows:

To create a 2-D geometry object, first access a Profile object. The Profile object
owns the 2-D graphic object collections, and it is through add methods on these
collections that you create geometry. For example, to create a line, you could use the
AddBy2Points method, which is available through the Lines2d collection.

Note The Parent property of the 2-D geometry object is the Profile object, not the
collection. The collection provides a way to create objects and iterate through them.

When a 2-D geometry object is created, it is assigned a name. This name, which is
stored in the Name property, consists of two parts: the object type (such as Line2d,
Arc2d, or Circle2d) and a unique integer. Each object's name is therefore unique, and
because it never changes, you can always use the Name property to reference a 2-D
graphic object.

Working with 2-D Graphic Objects Chapter 14

123

Sample Program—Creating 2-D Graphic Objects
The following program creates 2-D geometry objects and uses the collection to
iterate through the objects by index or by name. The program assumes that Solid
Edge is running and is in the Profile environment.

In this example, twenty lines are drawn on a profile. The start point of each line is
random. The endpoint of each line is the profile’s origin. The program uses three
different methods to iterate through the Lines2d collection.

• First, the collections enumeration technique is used to iterate through the Line
objects in the Lines2d collection by means of a “For Each” statement. With this
technique, each line in the collection is automatically accessed and moved using
the Move method. This is the most efficient of these three techniques.

• Second, the collection is traversed using a For loop. The Item property on the
Lines2d collection is used to access each line in the collection by the object’s
Index property. As each line is accessed, the angle of the line is changed. The
Item property is the default property for a collection. Therefore, the
collection.Item(I) call can be shortened to collection(I). Both calls have the same
result.

• The third technique also uses the Item property, but instead of using the Index of
the object, it uses each object's Name to access it in the collection. The Item
property can use either the object’s Index or the object’s Name to access the
object. To hold a reference to an object for later use, use the Name property. The
Name is a safer reference than the Index because an object’s Name never
changes, but its Index can change as objects are added to and removed from a
collection.

Dim objApp As Object
Dim objLine2d As Object
Dim objProfile As Object
Dim objProfSets As Object
Dim objRefPlane As Object
Dim objLines As Object
Dim objLine As Object
Dim i As Integer
Dim pnt2x As Double
Dim pnt2y As Double
Dim vAngle As Double
Dim vName As String

'Connect to a running instance of Solid Edge
Set objApp = GetObject(, "SolidEdge.Application")

'Make sure the active environment is Profile.
If objApp.ActiveEnvironment <> "Profile" Then

MsgBox "You must be in Profile environment."
End

End If

'Access the current Profile.
Set objProfSets = objApp.ActiveDocument.ProfileSets
Set objProfile = objProfSets(objProfSets.Count).Profiles(1)

'Invoke random number generation.
Randomize

Chapter 14 Solid Edge Programmer's Guide

124

'Initialize the base point to (0,0).
pnt2x = 0
pnt2y = 0

'Reference the Lines2d collection.
Set objLines = objProfile.Lines2d

'Draw 20 lines.
For i = 1 To 20

Call objLines.AddBy2Points(Rnd / 10, Rnd / 10, pnt2x, pnt2y)
Next i

'Iterate through the Lines2d collection and move each line.
For Each objLine In objProfile.Lines2d

Call objLine.Move(0#, 0#, 0.01, 0.01)
Next objLine

'Use the Count attribute on the Lines2d collection to iterate
through the
'collection, changing the angle of each line.
For i = 1 To objLines.Count

vAngle = objLines(i).Angle
objLines(i).Angle = vAngle + 0.2

Next i

'Finally, use the shortened form of the Item attribute
'via the Name value to iterate through the collection,
'changing the length of each line.
For i = 1 To objLines.Count

vName = objLines(i).Name
objLines(vName).Length = 0.05

Next i

125

C H A P T E R 1 5
Working with Units of
Measure

This chapter describes how to work with units of measurement when customizing
Solid Edge.

Working with Units of Measure—Overview .. 126

UnitsOfMeasure Methods .. 129

Sample Program—Formatting and Displaying Units 130

Chapter 15 Solid Edge Programmer's Guide

126

Working with Units of Measure—Overview
In the interactive environment, Solid Edge allows you to specify the length, angle,
and area units to use when placing, modifying, and measuring geometry. For
example, you can specify millimeters as the default length unit of measurement; you
can also specify the degree of precision of the readout. You specify these properties
on the Units and Advanced Units tabs of the Properties dialog box. (On the File
menu, click Properties to display the dialog box.)

This is strictly a manipulation of the display of the precision; internally all
measurements are stored at their full precision.

With a Length Readout precision of 0.12, the length of any linear measurement is
displayed as follows:

Working with Units of Measure Chapter 15

127

Because millimeters are the default units in this example, whenever distance units
are entered, they have to be in millimeters. If a user enters a distance value in inches,
for example, the units are automatically converted to millimeters.

The units system in Solid Edge allows users to specify the default units and to
control how values are displayed for each of the units. Users can change the default
units and their display at any time and as often as necessary.

You can customize Solid Edge so that your commands behave in a similar way. For
example, suppose you are creating a program to place hexagons. The program
displays a dialog box that allows you to enter the size of the hexagon and then
creates the hexagon at a location specified by a mouse click. When users enter the
size of the hexagon, they should be able to enter the value in the user-specified
default unit. Also, users should be able to override the default unit and specify any
linear unit. The program will need to handle any valid unit input.

In this example, the dialog box on the left assumes that the key-in is in the user-
defined default unit. The dialog box on the right shows how the user can override the
default and specify any unit. The automation for units allows you to easily handle
either inputs.

Internal Units

The following internal units are used:

Unit Type Internal Units

Distance Meter

Angle Radian

Mass Kilogram

Time Second

Temperature Kelvin

Chapter 15 Solid Edge Programmer's Guide

128

Charge Ampere

Luminous Intensity Candela

Amount of Substance Mole

Solid Angle Steradian

All other units are derived from these. All calculations and geometry placements use
these internal units. When values are displayed to the user, the value is converted
from the internal unit to the user-specified unit.

When automating Solid Edge, first convert user input to internal units. Calculations
and geometric placements use the internal units. When displaying units, you must
convert from internal units to default units. The UnitsOfMeasure object handles
these conversions.

Object Hierarchy

The hierarchical diagram for UnitsofMeasure is as follows:

Working with Units of Measure Chapter 15

129

UnitsOfMeasure Methods
The UnitsofMeasure object provides two methods: ParseUnit and FormatUnit. In
addition, a set of constants is provided to use as arguments in the methods. The
following syntax shows how to access the UnitsofMeasure object from the
application:

Dim objApp as Object
Dim objUOM as object

Set objApp = GetObject(,"SolidEdge.Application")
Set objUOM = objApp.ActiveDocument.UnitsOfMeasure

The ParseUnit method uses any valid unit string to return the corresponding database
units. The FormatUnit method uses a value in database units to return a string in the
user-specified unit type, such as igUnitDistance, igUnitAngle, and so forth. The units
(meters, inches, and so forth) and precision are controlled by the active units for the
document.

Chapter 15 Solid Edge Programmer's Guide

130

Sample Program—Formatting and Displaying Units
The following example uses both the ParseUnit and FormatUnit methods to duplicate
the behavior of unit fields in Solid Edge. The code could be used in association with
the LostFocus event of a text box control. In this example, the text box is named
TxtSize.

This code checks whether the input is a valid unit key-in and replaces it with a
correctly formatted string according to the user-specified setting.

Error handling is used to determine if a valid unit has been entered. The Text
property from the text field is used as input to the ParseUnit method, and the unit is a
distance unit. If the ParseUnit method generates an error, focus is returned to the text
field, and an error is displayed, giving the user a chance to correct the input. This
cycle continues until the user enters a correct unit value. If the key-in is valid, then
the database value is converted into a unit string and displayed in the text field.

'Declare the program variables.
Dim ObjApp As Object
Dim objUOM As Object

Private Sub Form_Load()
'Connect to a running instance of Solid Edge.
Set ObjApp = GetObject(, "SolidEdge.Application")

'Access the UnitsOfMeasure object.
Set objUOM = ObjApp.ActiveDocument.UnitsOfMeasure
End Sub

Private Sub Text1_LostFocus()
Dim HexSize As Double

'Turn on error handling.
On Error Resume Next
HexSize = objUOM.ParseUnit(igUnitDistance, Text1.Text)
If Err Then

'Set focus back to text field.
Text1.SetFocus
'Display error.
MsgBox "Invalid unit key-in."

End If
'Turn off error handling.
On Error GoTo 0

'Assign correct text to the control's text property.
Text1.Text = objUOM.FormatUnit(igUnitDistance, HexSize)
End Sub

131

C H A P T E R 1 6
Working with 2-D
Relationships

This chapter describes how to use the automation interface to establish and
maintain relationships. Information is also provided on placement, editing, and
querying techniques and how to use key points to identify a specific point on an
element.

Working with 2-D Relationships—Overview... 132

Sample Program—Adding Relationships .. 134

Sample Program—Querying for Existing Relationships 135

Chapter 16 Solid Edge Programmer's Guide

132

Working with 2-D Relationships—Overview
Solid Edge allows you to establish and maintain relationships on the 2-D elements
that you draw in the Profile environment. These relationships control the size, shape,
and position of an element in relation to other elements.

When an element changes, it is the relationships that drive the update of related
elements. For example, if you have drawn a polygon with two lines parallel to one
another and you modify the polygon, the two lines remain parallel. You can also
change elements that have dimensions. If a driving dimension measures the radius of
an arc, you can edit the value of the dimension to change the radius of the arc. (See
Chapter 12, Working with Dimensions.)

The object hierarchy for relationships is as follows:

The Relations2d object provides the methods for placing relationships and for
iterating through all the relationships that exist on the associated profile. To establish
a relationship between elements, use an add method on the Relations2d collection on
the profile.

The objects for which you want to define the relationship must already exist on the
profile. There is an add method on the Relation2d object for each type of
relationship that can be defined. Once a relationship is defined, properties and
methods on the Relation2d object allow you to edit existing relationships or query
for information about relationships.

Working with 2-D Relationships Chapter 16

133

Many relationships are placed at a specific location on an element. For example,
when you place a key point relationship to link the endpoints of two lines, you select
one end of each line. The programming interface for placing relationships provides
the ability to select specific points on an element by using predefined key points for
each geometrical element. The key point to use is specified by using key point
indexes. The following illustration shows the key points for an Arc element:

For more information on the methods to place, edit, and query relationships, see the
Programming with Solid Edge on-line Help. For a complete list of defined types for
different relationships and key point index constants for different elements, see the
list of constants for ObjectType and KeypointIndexConstants available in the Solid
Edge Constants type library using the Visual Basic Object Browser.

Chapter 16 Solid Edge Programmer's Guide

134

Sample Program—Adding Relationships
The following program places four lines and then adds key point and parallel
relationships to create a closed parallelogram. You can learn the most from this
example by stepping through the code and watching the results one step at a time.
The original four lines are placed so that their ends are not connected. As each of the
key point relationships is added, the endpoints of the lines are connected. When the
parallel relationships are added between the sides, each side aligns itself with the
opposite side.

'Declare the program variables.
Dim objApp As Object
Dim objProfileSets As Object
Dim objProfile As Object
Dim objLines As Object
Dim objRelations As Object
Dim L(1 To 4) As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Make sure Profile is the active environment.
If objApp.ActiveEnvironment <> "Profile" Then

MsgBox "This macro must be run from the Profile environment."
End

End If

'Access the Profile object.
Set objProfileSets = objApp.ActiveDocument.ProfileSets
Set objProfile = objProfileSets(objProfileSets.Count).Profiles(1)

'Set references to the necessary collections.
Set objLines = objProfile.Lines2d
Set objRelations = objProfile.Relations2d

'Draw the geometry.
Set L(1) = objLines.AddBy2Points(0, 0, 0.1, 0)
Set L(2) = objLines.AddBy2Points(0.1, 0, 0.1, 0.2)
Set L(3) = objLines.AddBy2Points(0.1, 0.2, 0, 0.2)
Set L(4) = objLines.AddBy2Points(0, 0.2, 0, 0)

'Add keypoint relationships between the ends of the lines.
Call objRelations.AddKeypoint(L(1), igLineEnd, _

L(2), igLineStart)
Call objRelations.AddKeypoint(L(2), igLineEnd, _

L(3), igLineStart)
Call objRelations.AddKeypoint(L(3), igLineEnd, _

L(4), igLineStart)
Call objRelations.AddKeypoint(L(4), igLineEnd, _

L(1), igLineStart)

'Add parallel relationships between opposing lines.
Call objRelations.AddParallel(L(1), L(3))
Call objRelations.AddParallel(L(2), L(4))
End

Working with 2-D Relationships Chapter 16

135

Sample Program—Querying for Existing Relationships
It is sometimes useful to determine the relationships that are already defined for a
specific object. For example, suppose you want to place horizontal relationships on
all lines in a selection set. Rather than place a horizontal relationship on each object
in the selection set, you can first check to see if the line already has a relationship
that defines its orientation. To determine what relationships are already defined for a
2-D object, use the Relationships property of the object. This property returns a
Relationships2d collection that contains all of the relationships on that object.

The following program shows how to access existing relationships:

'Declare the program variables.
Dim objApp As Object
Dim objSelectSet As Object
Dim objRelations2d As Object 'All relationships.
Dim objRelation2d As Object 'The first relationship in the

collection.
Dim objLineRelations As Object 'The collection of relationships on

each line.
Dim objLineRelation As Object 'A relationship on a line.

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the SelectSet object.
Set objSelectSet = objApp.ActiveDocument.SelectSet

'Make sure the selection set is not empty.
If objSelectSet.Count = 0 Then

MsgBox "You must select the geometry first."
End

End If

'Access the Relations2d collection from the parent profile.
Set objRelations2d = objSelectSet(1).Parent.Relations2d

'Iterate through each element in the selection set.
For Each object In objSelectSet

'Look for Line2d objects.
If object.Type = igLine2d Then

'Get the Relations collection from the line
Set objLineRelations = object.Relationships
'If there are no relationships on the line,
'add a horizontal one.
If objLineRelations.Count = 0 Then
objRelations2d.AddHorizontal object
Else
'Check to make sure no positional
'relationship exists.
For Each objLineRelation In objLineRelations
If _
objLineRelation.Type <> igHorizontalRelation2d _
And _
objLineRelation.Type <> igParallelRelation2d _
And _
objLineRelation.Type <> igPerpendicularRelation2d _
And _
objLineRelation.Type <> igVerticalRelation2d _

Then
'Add horizontal relationship.
objRelations2d.AddHorizontal (object)
End If

Chapter 16 Solid Edge Programmer's Guide

136

Next objLineRelation
End If

End If
Next object

137

C H A P T E R 1 7
Working with Selection
Sets

This chapter describes how to work with selection sets when automating tasks or
customizing Solid Edge.

Working with Selection Sets—Overview.. 138

Sample Program—Collecting Selected Objects 139

Sample Program—Adding To/Removing From Selection Sets.............. 140

Chapter 17 Solid Edge Programmer's Guide

138

Working with Selection Sets—Overview
Solid Edge allows you to select multiple objects at one time. For example, you can
select multiple features in the Part environment, or multiple parts and subassemblies
in the Assembly environment. This temporary collection of objects is referred to as a
selection set. Selection sets provide a way for an operation to be performed
simultaneously on multiple elements.

Just as you can create a selection set interactively, you can also create one using
automation. With automation, you use the SelectSet object to create a selection set.
The object hierarchy for the SelectSet object is as follows:

Working with Selection Sets Chapter 17

139

Sample Program—Collecting Selected Objects
With a selection set, you can create commands that work in an object-action
sequence. For example, when you delete a feature, you first select the feature and
then perform the delete action. This is an object-action sequence because you first
identify the objects and then perform an action on them.

The following syntax shows this methodology by using the selection set to collect
selected objects. The Depth property of each object in the selection set is then
modified to a common value. If a feature is selected that does not support the Depth
property, a message box is displayed notifying the user, and the processing of the
other features continues.

'Declare the program variables.
Dim objApp As Object
Dim objSelectSet As Object
Dim objFeature As Object

'Enable error handling.
On Error Resume Next

'Connect to running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")
If Err Then

MsgBox "Solid Edge must be running."
End

End If

'Access the SelectSet collection.
Set objSelectSet = objApp.ActiveDocument.SelectSet

'Use the Count property to make sure the selection
'set is not empty.
If objSelectSet.Count = 0 Then

MsgBox "You must select the features to process."
End

End If

'Process each feature in the selection set.
For Each objFeature In objSelectSet

'Make sure the feature has a finite extent.
If objFeature.ExtentType = igFinite Then

'Change the depth of the feature.
objFeature.Depth = 0.01
End If

If Err Then
'Display and clear the error.

MsgBox "Feature " & objFeature.Name & _
" doesn’t support the depth property."
Err.Clear

End If
Next objFeature

Chapter 17 Solid Edge Programmer's Guide

140

Sample Program—Adding To/Removing From
Selection Sets

The SelectSet collection object also supports methods to add and remove objects
from the selection set as well as several methods that affect all objects in the
selection set. These are the Delete method and two Clipboard-related methods: Copy
and Cut.

The following syntax shows how to use these methods by adding all the round
features in a model to the selection set. It then uses the Delete method to delete them
from the model.

'Declare variables.
Dim objApp As Object
Dim objSelectSet As Object
Dim objRounds As Object
Dim objRound As Object

'Connect to running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the Rounds and SelectSet collections.
Set objRounds = objApp.ActiveDocument.Models(1).Rounds
Set objSelectSet = objApp.ActiveDocument.SelectSet

'Process each round in the Rounds collection.
For Each objRound In objRounds

objSelectSet.Add objRound
Next

'Delete all the geometry in the selection set.
objSelectSet.Delete

141

C H A P T E R 1 8
Working with Property
Sets

This chapter contains general information on how to access Solid Edge objects
and their properties and methods.

Working with Property Sets—Overview .. 142

Sample Program—Accessing the Subject Property............................... 146

Sample Program—Reviewing All Properties .. 147

Chapter 18 Solid Edge Programmer's Guide

142

Working with Property Sets—Overview
Property sets are a mechanism for grouping and storing attribute information. This
attribute information is made available to the end user in the following ways:

• Through an application’s user interface.

• Through an automation interface.

The automation interface is provided through Solid Edge to allow end user programs
access to the attribute information that is stored in a document. The object hierarchy
for property sets is as follows:

There are three levels of objects for properties. The highest level, the PropertySets
object, is a collection of property set objects. This collection object provides an
index to the property sets stored in a document. The second level, the Properties
object, is a representation of the property set object. This object is the parent object
of all the properties stored in the property set. The third level, the Property object,
represents the individual property stored in the property set.

To access a property, you traverse the object hierarchy starting at the document
level. From the Document object, you can use the property named Properties, which
actually returns a PropertySets object. Once you have access to this object, you can
query for the number of property sets that are contained in the collection, the parent
of the collection, the application which contains the collection, or a specific property
set. Once the Properties object is located, you can access individual properties.

Solid Edge supports five property sets: summary information, extended summary
information, project information, document information, and mechanical modeling.
In addition, there is a Custom property set which gives access to all user-created
properties defined through the Custom pane on the Properties dialog box.

Working with Property Sets Chapter 18

143

Summary Information Property Set

The document summary information property set is the standard common property
set. The stream name is SummaryInformation. The following properties are
contained in this property set:

• Application name

• Author

• Comments

• Creation date

• Keywords

• Last author

• Last print date (not maintained)

• Last save date

• Number of characters (not maintained)

• Number of pages (not maintained)

• Number of words (not maintained)

• Revision number (not maintained)

• Security (not maintained)

• Subject

• Template

• Title

• Total editing time (not maintained)

Note Solid Edge does not update the values for the properties listed as "not
maintained." You can, however, access these properties through automation and
manually maintain their values.

Extended Summary Information Property Set

The extended summary information property set consists of properties that are of a
summary or statistical nature, but that are not included in the Summary Information
property set. The stream name is ExtendedSummaryInformation. The following
properties are contained in this property set:

• CreationLocale

• Name of Saving Application

Chapter 18 Solid Edge Programmer's Guide

144

• Status

• Username

Project Information Property Set

The project information property set consists of project-related properties. The
stream name is ProjectInformation. The following properties are contained in this
property set:

• Document Number

• Project Name

• Revision

Document Summary Information Property Set

The document summary information property set consists of document-related
properties. The stream name is DocumentSummaryInformation. The following
properties are contained in this property set:

• Category

• Company

• Format (not maintained)

• Manager

• Number of bytes (not maintained)

• Number of hidden slides (not maintained)

• Number of lines (not maintained)

• Number of multimedia clips (not maintained)

• Number of notes (not maintained)

• Number of paragraphs (not maintained)

• Number of slides (not maintained)

Note Solid Edge does not update the values for the properties listed as "not
maintained." However, you can access these properties through automation and
manually maintain the values.

Working with Property Sets Chapter 18

145

Mechanical Modeling Property Set

The mechanical modeling property set consists of mechanical modeling properties.
The stream name is MechanicalModeling. The Material property is contained in this
property set.

Chapter 18 Solid Edge Programmer's Guide

146

Sample Program—Accessing the Subject Property
The following example accesses the value of the Subject property from the summary
information property set:

'Declare variables
Dim objApp As Object
Dim objDoc As Object
Dim objProp As Object
Dim objSummaryInfoPropSet As Object
Dim objSubjectProperty As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the active document.
Set objDoc = objApp.ActiveDocument

'Initialize the PropertySets collection object.
Set objProp = objDoc.Properties

'Access the SummaryInformation properties collection
Set objSummaryInfoPropSet = objProp("SummaryInformation")

'Retrieve the Subject property.
Set objSubjectProperty = objSummaryInfoPropSet("Subject")

'Show the value of the property.
MsgBox "Subject is " & objSubjectProperty.Value & "."

Working with Property Sets Chapter 18

147

Sample Program—Reviewing All Properties
The following example iterates through each Properties collection in the
PropertySets object and displays every property in the document to the debug
window.

'Declare the program variables.
Dim objApp As Object
Dim objDoc As Object
Dim objPropCollection As Object
Dim i As Integer

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the PropertySets collection object.
Set objPropCollection = objApp.ActiveDocument.Properties

'Iterate through each Properties object in the
'PropertySets collection.
For Each objProps In objPropCollection

Debug.Print "Printing Properties " & objProps.Name

'Iterate through each Property object in the
'Properties collection.
For i = 1 To objProps.Count

Debug.Print " " & objProps(i).Name & "=" & objProps(i).Value
Next i
Debug.Print " "

Next

Chapter 18 Solid Edge Programmer's Guide

148

149

C H A P T E R 1 9
Working with Dynamic
Attributes

This chapter contains information on how to attach user-defined attributes to an
existing object. This is very useful for users who want to include their own data
with Solid Edge objects in a persistent manner (that is, data that is saved in the
Solid Edge document).

Working with Dynamic Attributes—Overview....................................... 150

Defining Attribute Sets... 151

Manipulating Attribute Sets ... 153

Sample Program—Creating Attribute Sets.. 154

Sample Program—Enumerating Attribute Sets 155

Chapter 19 Solid Edge Programmer's Guide

150

Working with Dynamic Attributes—Overview
Dynamic attributes allow you to define new properties for most objects in Solid
Edge. This feature is available only through automation.

Dynamic attributes are contained in attribute sets. An attribute set is a group of
attributes associated with a host object. An object can contain many uniquely named
attribute sets, so that attributes added by one user don't interfere with another user's
attributes on the same object. Most objects in Solid Edge can be host objects; an
object is a host if it supports the AttributeSets property.

Note To avoid confusion, attribute names should be unique. While this is not an
enforced rule, you can avoid confusion by adopting a naming convention that
ensures uniqueness. One common practice is to use a company or organization
prefix.

Working with Dynamic Attributes Chapter 19

151

Defining Attribute Sets
You create Attribute Sets at runtime using the Add method of the AttributeSets
collection. The syntax for creating a new attribute set and attaching it to an object is
as follows:

<Object>.AttributeSets.Add ("<AttrSetName>")

The Add method returns the newly created attribute set object, so the following
syntax is also valid:

Dim objAttrSet as Object
objAttrSet = <Object>.AttributeSets.Add ("<AttrSetName>")

An Attribute Set is a collection; you use the Add method to add attributes to the
collection as follows:

objAttrSet.Add "<AttributeName>", <type>

The Add method returns the newly created attribute. This can be used to set the
value of the attribute, as described in Manipulating Attribute Sets.

Constants for attribute types are defined in the SolidEdgeConstants type library as
AttributeTypeConstants. The following is a list of the available types and the
constant values that correspond to them:

Constant Value Attribute Type

seBoolean Boolean

seByte Byte

seCurrency Currency

seDate Date

seDouble Double-precision floating point number

seInteger Integer (2 byte)

seLong Long integer (4 byte)

seSingle Single-precision floating point number

seStringANSI ANSI string

seStringUnicode Unicode string

Chapter 19 Solid Edge Programmer's Guide

152

To remove a property from an attribute set, use the following syntax:

objAttrSet.Remove "<AttributeName>"

Working with Dynamic Attributes Chapter 19

153

Manipulating Attribute Sets
To access a user-defined attribute set, use either of the following statements.
Because Item is the default property of the AttributeSets collection, these statements
are equivalent:

<Object>.AttributeSets.Item("<AttributeSetName>")

<Object>.AttributeSets("<AttributeSetName>")

You can access the value of a property in a user-defined attribute set in any of the
following ways:

<AttributeSet>.Item("<AttributeName>")

<AttributeSet>("<AttributeName>")

You can combine the various ways to access Attribute and Attribute Sets as needed.
For example, the following statements are equivalent:

<Object>.AttributeSets("<AttributeSetName>")("<AttributeName>")

<Object>.AttributeSets("<AttributeSetName>").Item("<AttributeName>"
)

The following syntax (with the equal sign on the right side of the property name) sets
the value of a property in a user-defined attribute set:

<Object>.AttributeSets("<AttributeSetName>").Item("<AttributeName>"
) = "<user-defined string>"

To access an attribute in a user-defined attribute set, the equal sign is placed on the
left side of the property name. Each attribute is an object that supports three
properties: Name, Type, and Value.

You can modify only the Value property, which gives the current value of the
attribute. Value is the default property of the Attribute object. In the following
example, the property value is stored in the strData variable:

Dim objAttribute As Object
Dim strData As String
objAttribute =

<Object>.AttributeSets("<AttrSetName>").Item("<AttributeName>")
If objAttribute.Type = seStringUnicode Then
strData = objAttribute.Value
End If

The following syntax allows you to determine if a named attribute set is present on
an object:

<Object>.IsAttributeSetPresent "<AttributeSetName>"

Chapter 19 Solid Edge Programmer's Guide

154

Sample Program—Creating Attribute Sets
The following program defines a new attribute set and attribute for a cylinder. First,
the program draws a line in Solid Edge and defines a new attribute for the line.
Using the Add method of the AttributeSets collection, a new attribute set named
MachineInfo is created and attached to a feature in the selection set. A new string
attribute, FeatureType, is added to the attribute set using the Add method of the
Attribute Set object. The new attribute is assigned the character string, "a string
value."

'Declare the program variables.
Dim objApp As Object
Dim objFeature As Object
Dim objSelectSet As Object
Dim objAttrSet As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access an object from the selection set.
Set objSelectSet = objApp.ActiveDocument.SelectSet
If objSelectSet.Count <> 1 Then

MsgBox "You must select a single feature."
End

End If

Set objFeature = objSelectSet(1)

'Create a new attribute set and attach it to the object.
Set objAttrSet = objFeature.AttributeSets.Add("MachineInfo")

'Define a new string attribute for the line.
objAttrSet.Add "FeatureType", seStringUnicode

'Define the string value of the new attribute.
objAttrSet.FeatureType.Value = "a string value"

Note: The technique of accessing the attribute value through the attribute set is
specific to Visual Basic. When programming with Visual C++, it is better to iterate
through the AttributeSet, access the attribute, and then change the specific value.

Working with Dynamic Attributes Chapter 19

155

Sample Program—Enumerating Attribute Sets
You can use the AttributeSets collection to determine which attribute sets are
connected to an object. Similarly, you can use the attribute set collection to extract
the attributes that it contains.

The following sample code extracts the names of the attribute sets connected to
objects in a selection set:

'Declare the program variables.
Dim objApp As Object
Dim objAttributeSets As Object
Dim objAttributeSet As Object
Dim objAttribute As Object
Dim strSetName As String
Dim strAttributeName As String
Dim objGeometry As Object
Dim objSelectSet As Object
Dim strMsgText As String

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the SelectSet object.
Set objSelectSet = objApp.ActiveDocument.SelectSet

'If objects exist in a selection set
If objSelectSet.Count <> 0 Then

'For each object
For Each objGeometry In objSelectSet

'Access the AttributeSets collection object.
Set objAttributeSets = objGeometry.AttributeSets

'For each AttributeSet object in the AttributeSets collection
For Each objAttributeSet In objAttributeSets

'display attribute set Name to a message box.
If objAttributeSet.SetName = "MachineInfo" Then
strMsgText = "Attribute Set" & Chr(13)
strMsgText = strMsgText & "Name: " & _
objAttributeSet.SetName & _
Chr(13)
For Each objAttribute In objAttributeSet
strMsgText = strMsgText & _
objAttribute.Name & _
": " & objAttribute.Value
Next
MsgBox strMsgText
End If

Next objAttributeSet
Next objGeometry

Else
MsgBox "There are no objects selected.", vbExclamation

End If

Note Most, but not all objects support attribute sets.

Chapter 19 Solid Edge Programmer's Guide

156

157

C H A P T E R 2 0
Working with Routing
Slips

This chapter describes how to customize or automate the process of routing a
Solid Edge document. It also describes the properties and methods that are
associated with routing slips.

Working with Routing Slips—Overview... 158

Sample Program—Editing and Sending a Routing Slip 159

Sample Program—Approving a Document ... 160

Chapter 20 Solid Edge Programmer's Guide

158

Working with Routing Slips—Overview
As users share information in workgroups and across enterprises, the need for
simple, easy-to-use commands to route documents from one user to another over
standard mail protocols is needed. Solid Edge allows you to create a routing slip for
a document that specifies recipients of this document to be sent through electronic
mail in a specified way. The interactive user can attach a routing slip by clicking
Add Routing Slip on the File menu.

Routing slips allow you to distribute a document to either a distribution list or a
series of reviewers and to have the document returned to you. For one-after-another
routing, optional status messages keep the originator informed of the document
progression. A routing slip is saved as part of the document; it requires an electronic
mail system that is compliant with the Messaging Application Programming
Interface (MAPI).

Routing slips can become even more powerful through the use of task automation.
For example, you can compile the list of users for the routing slip from a database,
such as Microsoft Access.

The hierarchy chart for the Routing Slip object is as follows:

The RoutingSlip object is a dependent of the Document object. For Solid Edge, this
includes the PartDocument, SheetMetalDocument, AssemblyDocument, and
DraftDocument objects.

Working with Routing Slips Chapter 20

159

Sample Program—Editing and Sending a Routing Slip
The following example shows how to access the RoutingSlip object, define
information for the routing slip, and route it:

Dim objApp As Object
Dim objRoutingSlip As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the RoutingSlip object of the active document.
Set objRoutingSlip = objApp.ActiveDocument.RoutingSlip

'Fill out the routing slip.
With objRoutingSlip

.Recipients = Array("Melanie Baeske", "Melanie Baeske")

.Subject = "Document for Review"

.Message = "Review this document and add your comments"

.Delivery = igOneAfterAnother

.ReturnWhenDone = True

.TrackStatus = True

.AskForApproval = True

'Route the document.
.Route

End With

Chapter 20 Solid Edge Programmer's Guide

160

Sample Program—Approving a Document
The following syntax shows how a recipient can act on a document with a routing
slip:

Dim objApp As Object
Dim objRoutingSlip As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Access the RoutingSlip object for the active document.
Set objRoutingSlip = objApp.ActiveDocument.RoutingSlip

If objRoutingSlip.Status <> igInvalidSlip _
And Not objRoutingSlip.HasRouted Then
objRoutingSlip.Approve = True
objRoutingSlip.Route

End If

161

C H A P T E R 2 1
Working with
SmartFrames

This chapter describes the capabilities of SmartFrames. Information is provided
on how to link or embed objects and how to manipulate them.

Working with SmartFrames—Overview .. 162

Sample Program—Creating a SmartFrame .. 164

Sample Program—Linking and Embedding .. 165

Manipulating SmartFrames ... 166

Sample Program—Using SmartFrame Styles.. 167

Chapter 21 Solid Edge Programmer's Guide

162

Working with SmartFrames—Overview
SmartFrames are shapes (rectangles or ellipses) on a sheet that enclose embedded or
linked object(s) and have some intelligence about how to deal with the data in that
frame. SmartFrames provide control over the way automation objects are displayed
and manipulated on a Solid Edge sheet. SmartFrames have intelligence about their
contained objects that includes the following features:

• A transformation matrix to convert between the framed object’s local coordinate
system and the containing document’s coordinate system.

• Methods to manipulate the contained object, such as scale, crop, move, or rotate.

• Frame symbology that shows the state of the framed object such as linked,
embedded, or a link that needs updating.

• Link update rules (such as automatic and manual).

• In-place activation rules.

• Knowledge about favorite commands.

• Knowledge about a preferred file location or extension used in first associating
the file to a frame.

• Knowledge for converting between links, embeddings, and native data.

When using Solid Edge, you may sometimes find it useful to reference data that
exists in a format other than a Solid Edge file. For example, while in the Solid Edge
drawing environment, you might want to link to a portion of a Microsoft Excel
spreadsheet. Solid Edge supports this cross-referencing through the implementation
of SmartFrames. A SmartFrame is a Solid Edge object that contains a view of an
embedded or linked object.

The object hierarchy for SmartFrames is as follows:

Working with SmartFrames Chapter 21

163

Chapter 21 Solid Edge Programmer's Guide

164

Sample Program—Creating a SmartFrame
Initially, you can create an empty SmartFrame without specifying an object to be
linked or embedded. A SmartFrame style must be specified, or you can use the
default style for a sheet. A SmartFrame style has properties that affect how the object
within the SmartFrame can be manipulated. For example, a SmartFrame that is based
on a reference file style can either align the origin of the external file with the Solid
Edge file or provide an option to scale the contents.

When you create a SmartFrame, four solid black lines are drawn to represent the
frame. Once you have created the SmartFrame, you can select and manipulate the
object as you would other Solid Edge objects.

You can create and manipulate SmartFrame objects through the automation interface
using the methods that are associated with the SmartFrames2d collection object. In
the following example, the AddBy2Points method creates a SmartFrame. The first
argument of AddBy2Points specifies a style to be applied to the SmartFrame. In this
case, the style is set to a blank string (""), so the default style is applied.

'Declare the program variables.
Dim objApp As Object
Dim objSFrames As Object
Dim objSFrame As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Reference the SmartFrames2d collection.
Set objSFrames = objApp.ActiveDocument.ActiveSheet.SmartFrames2d

'Create a SmartFrame2d object by two points.
Set objSFrame = objSFrames.AddBy2Points("", 0.02, 0.02, 0.07,

0.07)

'Add a description to the SmartFrame.
objSFrame.Description = "myframe"

You can also use the AddByOrigin method to create a SmartFrame object. With
AddByOrigin, you specify an origin and offset parameters for the top, bottom, left,
and right sides of the frame.

Working with SmartFrames Chapter 21

165

Sample Program—Linking and Embedding
You can link or embed objects to existing SmartFrames using the CreateEmbed
method. The syntax for this method is as follows:

Call SmartFrame.CreateEmbed("c:\temp\myfile.doc")

You can also link to a document with the CreateLink method.

Call SmartFrame.CreateLink("c:\temp\myfile.doc ")

In the following example, the program searches all of the members of the
SmartFrames collection, looking for the SmartFrame with the Description of
"myframe." Once this object is found, CreateEmbed is called to embed the specified
file (in this case, c:\temp\myfile.doc).

Dim objApp As Object
Dim objSFrames As Object
Dim objSFrame As Object
Dim NumFrames As Integer

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Reference the SmartFrames2d collection.
Set objSFrames = objApp.ActiveDocument.ActiveSheet.SmartFrames2d

'Set NumFrames equal to the Count property of objSFrames.
NumFrames = objSFrames.Count

'Return the frame with the description "myframe".
If NumFrames > 0 Then

For I = 1 To NumFrames
Set objSFrame = objSFrames.Item(I)

If objSFrame.Description = "myframe" Then
Exit For
End If
Next I

End If

'Embed document within the identified SmartFrame.
Call objSFrame.CreateEmbed("c:\temp\myfile.doc")

Chapter 21 Solid Edge Programmer's Guide

166

Manipulating SmartFrames
Once you have linked or embedded data, there are several ways through automation
to manipulate a SmartFrame. For example, you can cut, copy, and paste the data.
You can also edit the contained object, change the SmartFrame styles and properties,
and perform other operations. Property values that are set for the SmartFrame style
determine what types of manipulations are permitted. For the Visual Basic user,
many properties are accessible on the SmartFrame object itself that control the
SmartFrame. For example, the following syntax shows how to change the size of the
SmartFrame, make its contents visible, and ensure that it cannot be selected.

Call SFrame.ChangeCrop(0.05, 0.0, 0.0, 0.07)
SFrame.ContentsVisible = True
SFrame.ProtectFromSelection = True

Another related property is the Object property. This property returns the object that
is contained in the SmartFrame. For example,

Dim activexObject as Object
Set activexObject = SFrame.Object

If the object is a type that supports its own automation interface, you can call its
native methods and properties. For example, if the object is an Excel spreadsheet,
you can call properties and methods exposed for Excel spreadsheet objects.

Working with SmartFrames Chapter 21

167

Sample Program—Using SmartFrame Styles
When you create a SmartFrame in Solid Edge, you also have the option to specify a
style to be associated with that frame. With most Solid Edge objects, the SmartFrame
style determines characteristics such as color and line weight.

A SmartFrame style can also determine certain behaviors of the SmartFrame. For
example, you can create a SmartFrame style that specifies a default command for the
contained object, determines that the contained object is read-only, and specifies that
the user cannot move the SmartFrame. You can also create specific styles for
specific types of objects. For example, you can create a SmartFrame style for linking
or embedding data from an Excel spreadsheet.

You can retrieve existing SmartFrame styles from the SmartFrame2dStyles
collection object accessed from the Document object. The following syntax shows
how to locate a specific SmartFrame style object from the collection based on its
Name property:

'Declare the program variables.
Dim objApp As Application
Dim objSFStyleCollection As Object
Dim objSFStyle As Object
Dim NumStyles As Integer
Dim I As Integer

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Reference the SmartFrames2dStyles collection.
Set objSFStyleCollection =

objApp.ActiveDocument.SmartFrame2dStyles

'Set NumStyles equal to the Count property of the collection
object.
NumStyles = objSFStyleCollection.Count

'Find a specific style object by name.
If NumStyles > 0 Then

For I = 1 To NumStyles
Set objSFStyle = objSFStyleCollection.Item(I)

If objSFStyle.Name = "Style1" Then
Exit For
End If
Next I

End If

'Create a new SmartFrame style using the Add method as follows:
If NumStyles < 1 Then

Set objSFStyle = objSFStyleCollection.Add("Style1", "parent")
End If

You can use the SmartFrame style name when you create a SmartFrame object to
associate a style with a SmartFrame object. The following syntax creates a
SmartFrame object with a specific style:

Set SFrame = SFrameCollection.AddBy2Points(SFStyle.Name, 0.02,
0.02, 0.07, 0.07)

Chapter 21 Solid Edge Programmer's Guide

168

169

C H A P T E R 2 2
Working with Symbols

This chapter describes how to place symbols in Solid Edge through automation
and how to manipulate the symbols in a drawing.

Working with Symbols—Overview... 170

Sample Program—Placing Symbols .. 172

Sample Program—Moving and Rotating a Symbol 174

Sample Program—Retrieving Symbol Properties 175

Sample Program—Accessing the Dispatch Interface

of a Source Document .. 176

Chapter 22 Solid Edge Programmer's Guide

170

Working with Symbols—Overview
Symbols are documents that contain graphic elements. You can place these
documents at a specified scale, position, and orientation. The document that contains
the graphic elements is the source document; the document into which the source is
placed is the container document. A source document is represented in a container
document by a symbol. The symbol references the source document as the ActiveX
object. Using symbols, you can store a drawing of a nut, bolt, or screw in one
document and place it in several documents at a user-defined size. In addition,
symbols have the following benefits:

• Save memory when placing multiple instances of the same source document in
the same container.

• Automatically update the container document when modified.

• Maintain the properties defined in the source document.

On the Insert menu, click Object to place a symbol in the interactive environment.
When using Solid Edge though automation, you can place a symbol using the
methods associated with the Symbols collection. The object hierarchy for symbols is
as follows:

The Symbols collection object provides methods that enable you to place new
symbols and to query for information about existing ones. The Symbol2d object
provides methods and properties to enable you to review or manipulate the symbol
geometry, the attachment between the symbol and the source document, and the user
properties. You can also move and copy symbols.

Working with Symbols Chapter 22

171

Creating Symbol Source Documents

You can place a symbol from any source document that is implemented as an
ActiveX object. For example, a source document could be a Microsoft Word file, an
Excel spreadsheet, or a Solid Edge document.

Chapter 22 Solid Edge Programmer's Guide

172

Sample Program—Placing Symbols
When you place a symbol, you must specify an insertion type. The insertion type
affects the way the symbol is updated. Three options are available:

• Linked—The symbol and the initial source document are directly connected. The
symbol is automatically updated when its source document is edited. The source
document is external to the container. It is a separate file that is visible with
Explorer.

• Embedded—A copy of the initial source document is stored in the container. The
symbol is attached to this copy and is automatically updated when the copy is
updated. After placement, the symbol is strictly independent of the initial source
document.

• Shared Embedded—When placing a symbol more than one time into the same
container, the initial source document is copied only one time. The symbols are
attached to that copy and are all updated automatically when the copy of the
initial source document is updated. After placement, the symbols are strictly
independent of the initial source document.

The following program demonstrates the three ways to place a symbol:

'Declare the program variables.
Dim objApp As Object
Dim objSheet As Object
Dim objSymbols As Object
Dim objSymbol1 As Object
Dim objSymbol2 As Object
Dim objSymbol3 As Object

'Turn on error checking.
On Error Resume Next

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")
If Err Then

MsgBox "Solid Edge must be running."
End

End If

On Error GoTo 0

'Make sure the active environment is Draft.
If objApp.ActiveEnvironment <> "Detail" Then

MsgBox "You must be in the Drafting environment."
End

End If

'Reference the active sheet.
Set objSheet = objApp.ActiveDocument.ActiveSheet

'Reference the Symbols collection.
Set objSymbols = objSheet.Symbols

'Create a linked symbol at location x=0.1, y=0.1.
Set objSymbol1 = _

objSymbols.Add(igOLELinked, "c:\temp\test1.doc", 0.1, 0.1)

'Create an embedded symbol at location x=0.1, y=0.15.
Set objSymbol2 = _

Working with Symbols Chapter 22

173

objSymbols.Add(igOLEEmbedded, "c:\temp\test2.doc", 0.1, 0.15)

'Create a shared embedded symbol at location x=0.1, y=0.2.
Set objSymbol3 = _

objSymbols.Add(igOLESharedEmbedded, "c:\temp\test3.doc", 0.1,
0.2)

Chapter 22 Solid Edge Programmer's Guide

174

Sample Program—Moving and Rotating a Symbol
You can manipulate a symbol much as you would manipulate other objects and
elements in a drawing. For example, you can manipulate a symbol by editing its
properties or symbology or by using element manipulation commands such as Move,
Copy, Scale, and so forth. When manipulated, the symbol is treated as a single
element. For more information on manipulating individual elements, see Chapter 14,
Working with 2-D Graphic Objects.

The following program manipulates the symbol geometry by referencing the origin
of a symbol and setting a new origin. It also sets a new rotation angle.

'Declare the program variables.
Dim objApp As Object
Dim objSheet As Object
Dim objSymbols As Object
Dim objSymbol As Object
Dim x As Double
Dim y As Double

'Turn on error checking.
On Error Resume Next

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")
If Err Then

MsgBox "Solid Edge must be running."
End

End If

On Error GoTo 0

'Make sure the active environment is Draft.
If objApp.ActiveEnvironment <> "Detail" Then

MsgBox "You must be in the Drafting environment."
End

End If

'Reference the active sheet.
Set objSheet = objApp.ActiveDocument.ActiveSheet

'Reference the Symbols collection.
Set objSymbols = objSheet.Symbols

'Reference the first symbol in the collection.
Set objSymbol = objSymbols(1)

'Retrieve the origin of the symbol.
Call objSymbol.GetOrigin(x, y)

'Modify the symbol's origin.
objSymbol.SetOrigin x + 0.1, y + 0.1

'Set the angle of rotation to 45 degrees (in radians).
objSymbol.Angle = 45 * (3.14159265358979 / 180)

Working with Symbols Chapter 22

175

Sample Program—Retrieving Symbol Properties
The following program shows how to access the path and name of a linked symbol.
It also shows how to access the Class property, which tells what type of file is
referenced by the symbol.

'Declare the program variables.
Dim objApp As Object
Dim objSheet As Object
Dim objSymbols As Object
Dim objSymbol As Object
Dim InsertionType As Integer
Dim SourcePathName As String

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Make sure the active environment is Draft.
If objApp.ActiveEnvironment <> "Detail" Then

MsgBox "You must be in the drafting environment."
End

End If

'Reference the active sheet.
Set objSheet = objApp.ActiveDocument.ActiveSheet

'Reference the Symbols collection.
Set objSymbols = objSheet.Symbols

'Reference the first symbol in the collection.
Set objSymbol = objSymbols(1)

'Reference the OLE type.
InsertionType = objSymbol.OLEType

'Retrieve the attachment type.
If InsertionType = igOLELinked Then

SourcePathName = objSymbol.SourceDoc
End If

'Display the type of file to a message box.
MsgBox "Symbol is " & objSymbol.Class & " File."
End

Chapter 22 Solid Edge Programmer's Guide

176

Sample Program—Accessing the Dispatch Interface of
a Source Document

The following program shows how you can access the source document dispatch
interface. The source document is modified by way of its automation interface. In
this example, the symbol is a Microsoft Word document, so the syntax that modifies
the content of the symbol is part of the Microsoft Word automation interface. This
syntax varies depending on the type of document represented by the symbol. When
the file is saved, the attached symbol is updated.

'Declare the program variables.
Dim objApp As Object
Dim objSheet As Object
Dim objSymbols As Object
Dim objSymbol As Object
Dim SourceDispatch As Object

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")

'Make sure the active environment is Draft.
If objApp.ActiveEnvironment <> "Detail" Then

MsgBox "You must be in the drafting environment."
End

End If

'Reference the active sheet.
Set objSheet = objApp.ActiveDocument.ActiveSheet

'Reference the Symbols collection.
Set objSymbols = objSheet.Symbols

'Reference the first symbol in the collection.
Set objSymbol = objSymbols(1)

'Reference the source document dispatch interface.
Set SourceDispatch = objSymbol.Object

'Open the source document to modify it.
objSymbol.DoVerb igOLEOpen

'Add some additional text to the document.
SourceDispatch.Range.InsertParagraphBefore
SourceDispatch.Range.InsertBefore "New Text"

'Save and close the file.
SourceDispatch.Save
SourceDispatch.Close

'Exit Word.
SourceDispatch.Application.Quit
End

177

C H A P T E R 2 3
Working with Text

This chapter describes how to work with text elements—how to create text, edit
text, and query for information about text.

Working with Text—Overview ... 178

Sample Program—Placing a Text Box .. 179

Chapter 23 Solid Edge Programmer's Guide

178

Working with Text—Overview
Solid Edge allows you to place and edit text boxes. Through the automation
interface, this is handled by means of the TextBox object. The hierarchy for the
TextBox object is as follows:

The object hierarchy shows the objects specific to text boxes. The TextBoxes
collection on the sheet provides the methods for placing TextBox objects. It also
allows for iterating through all the TextBox objects that exist on the sheet. The
TextStyles collection on the document provides the methods for adding text styles
and also allows you to iterate through all the text styles in the document. The
TextEdit object provides methods to edit the text contained in a TextBox object.

Working with Text Chapter 23

179

Sample Program—Placing a Text Box
Several add methods on the TextBoxes collection enable you to place a text box on a
drawing sheet by specifying the origin, height, width, and/or rotation angle of the
box. In the following example, the AddByTwoPoints method is used to create a
TextBox object. Once the text box is created, text is added, and TextEdit is called to
bold selected characters.

'Declare the program variables.
Dim objApp As Object
Dim objSheet As Object
Dim objTextBoxes As Object
Dim objTextBox1 As Object
Dim objTextEdit As Object
Dim X1 As Double, X2 As Double
Dim Y1 As Double, Y2 As Double

'Turn on error checking.
On Error Resume Next

'Connect to a running instance of Solid Edge.
Set objApp = GetObject(, "SolidEdge.Application")
If Err Then

MsgBox "Solid Edge must be running."
End

End If

'Make sure the active environment is Draft.
If objApp.ActiveEnvironment <> "Detail" Then

MsgBox "You must be in the Draft environment."
End

End If

'Reference the Sheet object.
Set objSheet = objApp.ActiveDocument.ActiveSheet

'Reference the TextBoxes collection.
Set objTextBoxes = objSheet.TextBoxes

'Use the AddByTwoPoints method to create a text box.
'The points are defined by the X1, Y1, X2, Y2 variables.
'The z values of the point are defined as zero.
X1 = 0.02: Y1 = 0.02
X2 = 0.14: Y2 = 0.14

Set objTextBox1 = objTextBoxes.AddByTwoPoints _
(X1, Y1, 0, X2, Y2, 0)

'Place the text in the text box.
objTextBox1.Text = "Testing TextBox in Solid Edge."

'Reference the new TextEdit object.
Set objTextEdit = objTextBox1.Edit

'Bold the word "TextBox."
'First, select the range of characters in the editor.
Call objTextEdit.SetSelect(8, 15, seTextSelectRange)

'Then set the bold flag.
objTextEdit.Bold = True

Chapter 23 Solid Edge Programmer's Guide

180

181

C H A P T E R 2 4
Working with Add-ins

This chapter describes how to create custom programs that are tightly integrated
with Solid Edge.

Working with Add-ins—Overview.. 182

Implementing an Add-in... 183

Working with the ISolidEdgeAddIn Interface.. 184

Working with ISEAddInEvents and DISEAddInEvents 187

Working with Solid Edge Objects, Interfaces, and Events 189

Registering an Add-in .. 205

Chapter 24 Solid Edge Programmer's Guide

182

Working with Add-ins—Overview
The Solid Edge API provides an easy-to-use set of interfaces that enable
programmers to fully integrate custom commands with Solid Edge. These custom
programs are commonly referred to as add-ins. Specifically, Solid Edge defines an
add-in as a dynamically linked library (DLL) containing a COM-based object that
implements the ISolidEdgeAddIn interface. More generally, an add-in is a COM
object that is used to provide commands or other value to Solid Edge.

The only restriction placed on an add-in is that the add-in must use standard
Windows-based resources. An example of such a resource would be device-
independent bitmaps to be added to the Solid Edge graphical user interface. You can
create these resources using any of the popular visual programming tools that are
available in the Windows programming environment—Visual C++ or Visual Basic,
for example.

The following interfaces are available to the add-in programmer:

• ISolidEdgeAddIn—The first interface implemented by an add-in. Provides the
initial means of communicating with Solid Edge.

• ISEAddInEvents and DISEAddInEvents—Provides command-level
communication between the add-in and Solid Edge.

In addition, several Solid Edge interfaces are available once the add-in is connected
to Solid Edge. These include ISEAddIn, ISECommand/DISECommand,
ISECommandEvents/DISECommandEvents, ISEMouse/DISEMouse,
ISEMouseEvents/DISEMouseEvents, ISEWindowEvents/DISEWindowEvents, and
ISolidEdgeBar.

Working with Add-ins Chapter 24

183

Implementing an Add-in
A Solid Edge add-in has the following requirements:

• The add-in must be a self-registering ActiveX DLL. You must deliver a registry
script that registers the DLL and adds Solid Edge-specific information to the
system registry.

• The add-in must expose a COM-creatable class from the DLL in the registry.

• The add-in must register the CATID_SolidEdgeAddin as an Implemented
Category in its registry setting so that Solid Edge can identify it as an add-in.

• The add-in must implement the ISolidEdgeAddIn interface. The definition of this
interface is delivered with the Solid Edge SDK (addins.h). The add-in can
implement any additional interfaces, but ISolidEdgeAddIn is the interface that
Solid Edge looks for.

• During the OnConnect call (made by Solid Edge on the add-in's
ISolidEdgeAddIn interface), the add-in can add commands to one or more Solid
Edge environments.

• If a graphical user interface (buttons or toolbars, for example) is associated with
the add-in, then the add-in must provide a GUI version to be stored by Solid
Edge. If the GUI version changes the next time the add-in is loaded, then Solid
Edge will purge the old GUI and re-create it based on the calls to
AddCommandBarButton with the OnConnectToEnvironment method. A GUI is
an optional component of an add-in; some add-ins, for example, simply monitor
Solid Edge events and perform actions based on those activities.

• You must follow COM rules and call AddRef on any Solid Edge pointers that
the add-in is holding on to. You must also release the pointers when they are no
longer needed. In Visual Basic, AddRef is done automatically by Set SEInterface
= <Solid Edge interface>; to release the interface, set the interface to "Nothing."

• For Visual C++ users, a Solid Edge Add-in Wizard exists. The wizard is
currently available for download from the Solid Edge web site. The wizard
generates fully functional add-ins based on Microsoft's Active Template Library
(ATL) for COM.

Chapter 24 Solid Edge Programmer's Guide

184

Working with the ISolidEdgeAddIn Interface
The ISolidEdgeAddIn interface is the first interface that is implemented by an add-in
and provides the initial means of communication with Solid Edge. It allows for
connection to and disconnection from an add-in. The implementation of this
interface is what identifies a COM object as being a Solid Edge add-in.

OnConnection
HRESULT OnConnection(IDispatch *pApplication, seConnectMode

ConnectMode, AddIn *pAddIn)

Solid Edge passes in a pointer to the dispatch interface of the Solid Edge application
that is attempting to connect to the add-in. The add-in uses this pointer to make any
necessary calls to the application to connect to Solid Edge event sinks, or to
otherwise communicate with Solid Edge to perform whatever tasks the add-in needs
when first starting up.

Solid Edge passes in a connect mode that indicates what caused Solid Edge to
connect to the add-in. Current modes are as follows:

• seConnectAtStartUp—Loading the add-in at startup.

• seConnectByUser—Loading the add-in at user's request.

• seConnectExternally—Loading the add-in due to an external (programmatic)
request.

Solid Edge also passes in a dispatch interface of a Solid Edge Add-in object that
provides another channel of communication between the add-in and Solid Edge. An
equivalent v-table form of this interface can be obtained by querying the input Add-
in's dispatch interface for the ISEAddIn interface (also described in addins.h).

In general, the add-in needs to do very little needs when OnConnection is called.
Here are a few basic steps that an add-in may want to perform during connection.

1. Connect to any Solid Edge application event sets the add-in plans on using by
providing the appropriate sinks to the application object.

2. Connect to the Solid Edge Add-in object's event set if the add-in plans to add any
commands to any environments.

3. Set the GUI version property of the Solid Edge Add-in object.

Working with Add-ins Chapter 24

185

OnDisconnection
HRESULT OnDisconnection(SeDisconnectMode DisconnectMode)

Solid Edge passes in a disconnect mode that indicates what caused Solid Edge to
disconnect to the add-in. Current modes are as follows:

• SeDisconnectAtShutDown—Unloading at shutdown.

• SeDisconnectByUser—Unloading the add-in due to a user request.

• SeDisconnectExternally—Unloading the add-in due to an external
(programmatic) request.

To disconnect, the add-in should do the following:

4. Disconnect from any Solid Edge event sets it may have connected to.

5. Disconnect from the Add-in event set (if connected).

6. Release any other objects or interfaces the add-in may have obtained from the
application.

7. Close any storage and/or streams it may have opened in the application's
document.

8. Perform any other cleanup such as freeing any resources it may have allocated.

OnConnectToEnvironment
HRESULT OnConnectToEnvironment(BSTR EnvCatID, LPDISPATCH

pEnvironment, VARIANT_BOOL* bFirstTime)

Solid Edge passes in the category identifier of the environment as a string. If the add-
in is registered as supporting multiple environments, the add-in can use the string to
determine which environment to which it is being asked to connect.

Solid Edge passes in the dispatch interface of the environment.

Solid Edge passes in the bFirstTime parameter to specify that a Solid Edge
environment is connecting to the add-in for the first time. When connecting for the
first time, the add-in, if necessary, should add any needed user interface elements
(for example, buttons). On exiting, Solid Edge will save any such buttons so they can
be restored during the next session.

To connect to a Solid Edge environment, the add-in will perform the following steps
in its OnConnectToEnvironment:

Chapter 24 Solid Edge Programmer's Guide

186

1. The add-in should always call the SetAddInInfo method of the add-in interface
passed to it during OnConnection if it provides any command bars or command
bar buttons in the environment.

2. The add-in uses the bFirstTime parameter to determine if it is the first time the
add-in has been loaded into the environment by checking to see if it is
VARIANT_TRUE. If it is, the add-in should add any command bar buttons it
needs to carry out its commands by calling the add-in interface's
AddCommandBarButton method. If the add-in is not disconnected, and its GUI
version has not changed the next time Solid Edge loads the add-in, then Solid
Edge will set the parameter to VARIANT_FALSE because Solid Edge will save
the data provided it by the add-in the last time the parameter was
VARIANT_TRUE. Note that if the add-in's OnDisconnect function is called
with a disconnect mode different from seDisconnectAtShutdown, this parameter
will be VARIANT_TRUE the next time Solid Edge calls OnConnection. This
happens because when an add-in is disconnected by the user or programatically,
Solid Edge will purge all GUI modifications made by the add-in from all
environments.

3. Add any commands not included in any of the calls to SetAddInInfo by calling
the application's AddCommand method. Generally this method is used when a
command is being added to the menu but not any command bar.

Note Command bars are persisted by Solid Edge when exiting. When an
environment is first loaded, connection to the add-in is performed before the
environment's command bars are loaded. This allows an add-in to call SetAddInInfo
to supply any glyphs needed by any buttons that were previously saved by Solid
Edge.

Add-ins cannot assume the existence of any particular environment, until this
function is called with that environment's catid. Any calls with a catid for an
environment that does not yet exist will be rejected.

Working with Add-ins Chapter 24

187

Working with ISEAddInEvents and DISEAddInEvents
When an add-in adds commands to a Solid Edge environment, a system of
notifications must exist between the add-in and Solid Edge to enable and disable
commands, invoke commands, and provide help for the commands. The
ISEAddinEvents interface and its equivalent dispatch interface, DISEAddinEvents,
serve this purpose.

One of these two interfaces is implemented by the add-in object and is used by Solid
Edge to invoke commands added to Solid Edge by the add-in and to allow the add-in
to perform basic user interface updates. The interface contains three methods:
OnCommand, OnCommandUpdateUI and OnCommandHelp.

OnCommand
HRESULT OnCommand(long nCmdID)

Solid Edge calls this method, passing in nCmdID whenever the user invokes an add-
in command. The value of the add-in command identifier passed in is the same value
the add-in previously gave the AddIn object when it called its SetAddInInfo method.

When OnCommand is called, if the add-in wants to take advantage of the Solid Edge
command control or mouse control, it can create a command object using the
application's CreateCommand method. CreateCommand returns a DISECommand
interface (from which the ISECommand equivalent v-table interface can be
obtained).

OnCommandUpdateUI
HRESULT OnCommandUpdateUI(long nCmdID, long* pdwCmdFlags,

BSTR Menutext, long *nIDBitmap)

Solid Edge calls this method, passing in nCmdID whenever it needs to determine the
availability of a command previously added to Solid Edge by the add-in. The value
of nCmdID will be one of the values the add-in previously passed in the
SetAddInInfo method. The add-in uses the pointer to the dwCmdFlags bit mask to
enable/disable the command and to notify Solid Edge to make other GUI changes.
The values of the masks are as follows:

• seCmdActive_Enabled—Used to enable the command.

• seCmdActive_Checked—Used to add a check mark on the command's menu
item.

• seCmdActive_ChangeText—Used to change the text that appears on the
command's menu item.

Chapter 24 Solid Edge Programmer's Guide

188

• seCmdActive_UseDotMark—Used to add a dot mark on the command's menu
item.

• seCmdActive_UseBitmap—Used to display the command's menu item as a
bitmap.

Menutext can be used to change the text that appears on the menu. In order to change
the text, allocate and return the desired text string. nIDBitmap can be used to have a
bitmap appear on the menu next to the text.

Note After calling OnCommandUpdateUI, Solid Edge will determine whether
seCmdActive_UseBitmap is set and if so, the returned value of nIDBitmap should
represent the resource identifier of a bitmap stored in the resource DLL whose
handle was passed in the SetAddInInfo method.

This method is called to determine if a command is enabled or disabled. It is called
for commands visible on toolbars during idle processing, just before displaying a
menu, when an accelerator is pressed, and when the application receives a
WM_COMMAND message.

OnCommandHelp
HRESULT OnCommandHelp(long hFrameWnd, long uHelpCommand, long
nCmdID)

Solid Edge calls this method, passing in nCmdID whenever the user requests help for
an add-in command previously added to Solid Edge by the add-in. The value of the
add-in command identifier passed in will be one of the values the add-in gave the
application when it previously called the SetAddInInfo method. If Solid Edge passes
in -1, the add-in should call help for the add-in in general (that is, not help for a
specific command).

The handle to the frame window, hFrameWnd as well as an indicator as to the type
of help (uHelpCommand) is also passed in. These two parameters can be used in the
WinHelp call and valid values of uHelpCommand are documented with the WinHelp
function documentation.

Note When a command bar button is added, the dispatch interface of the button is
returned. The interface contains help filename and context properties that can be set
by the add-in. If set, these properties are used to invoke WinHelp directly from Solid
Edge instead of calling OnCommandHelp.

Working with Add-ins Chapter 24

189

Working with Solid Edge Objects, Interfaces, and
Events

ISEAddIn

This interface is passed into the add-in's OnConnection method. The Solid Edge
objects that implement this interface are created one per add-in when Solid Edge
starts up regardless of whether the add-in is loaded. These objects represent the add-
in within Solid Edge. This same interface is exposed by means of the application's
add-in's collection object. Because this interface is exposed to automation, some of
the functions in the interface can only be called during the connection process, thus
ensuring that only the add-in itself makes the calls.

Syntax Examples

• To return the dispatch interface of the application:

HRESULT get_Application(IDispatch **Application)

• To return the IUnknown of the connectable object that provides the
ISEAddInEvents and DISEAddInEvents connection points:

HRESULT get_AddInEvents(AddInEvents **AddInEvents)

• To determine whether or not the add-in is connected. Connect is set to
VARIANT_TRUE if the add-in is connected otherwise VARIANT_FALSE:

HRESULT get_Connect(VARIANT_BOOL *Connect)

• To programmatically connect to (VARIANT_TRUE) or disconnect from
(VARIANT_FALSE) the add-in:

HRESULT put_Connect(VARIANT_BOOL Connect)

• To access a brief description of the add-in:

HRESULT get_Description(BSTR *Description)

• To set a brief description of the add-in. The description should be
internationalized and also serves as the menu text of a tools pop-up menu that
will be created if the add-in adds any commands to an environment. The
put_Description can only be called successfully during initial connection:

HRESULT put_Description(BSTR Description)

Chapter 24 Solid Edge Programmer's Guide

190

• To get the add-in's guid in the string format defined by the Win API
StringFromGUID. The CLSIDFromString Win API can convert the string back
into its globally unique identifier form:

HRESULT get_GUID(BSTR *GUID)

• To get the version of the add-in as it relates to the user interface changes it
makes in Solid Edge:

HRESULT get_GuiVersion(long *GuiVersion)

• To set the version of the add-in as it relates to the user interface changes it makes
in Solid Edge. An add-in that adds commands to any environment should always
set the version in OnConnect. Solid Edge will persist this version when it shuts
down. On subsequent runs, a difference in the last persisted version and the
version passed to put_GuiVersion will cause Solid Edge to purge any and all
menu entries and command bar buttons that were created and saved in the last
session. Also, when OnConnectToEnvironment is called, bFirstTime will be set
to VARIANT_TRUE when a change in the version is detected:

HRESULT put_GuiVersion(long GuiVersion)

• To get the dispatch interface of the add-in if it exists. Be sure to call Release()
when the interface is no longer needed:

HRESULT get_Object(IDispatch **Object)

• To set the dispatch interface of the add-in. Solid Edge will AddRef the object
when storing it and call Release when it successfully disconnects from the add-
in:

HRESULT put_Object(IDispatch *Object)

• To access the program identifier of the add-in if it has one. Solid Edge will call
ProgIDFromCLSID with the clsid of the add-in and return it as the string:

HRESULT get_ProgID(BSTR *ProgID)

• To determine whether the add-in should appear in the list of add-ins presented to
the user for connection and disconnection by Solid Edge. Setting Visible to
VARIANT_FALSE will also prevent the add-in from being disconnected
programatically:

HRESULT get_Visible(VARIANT_BOOL *Visible)

• To prevent Solid Edge from presenting the add-in in the list of add-ins presented
to the user for connection and disconnection and to prevent the add-in from
being disconnected programatically, called with a value of VARIANT_FALSE.

Working with Add-ins Chapter 24

191

Note that add-ins that set Visible to VARIANT_FALSE ensure that the add-in
will only be disconnected at shutdown:

HRESULT put_Visible(VARIANT_BOOL Visible)

To call SetAddInInfo:
HRESULT SetAddInInfo(long nInstanceHandle, BSTR

EnvCatID, BSTR CategoryName,
long nIDColorBitMapResourceMedium,
long nIDColorBitMapResourceLarge,
long nIDMonochromeBitMapResourceMedium,
long nIDMonochromeBitMapResourceLarge,
long nNumberOfCommands, SAFEARRAY

**CommandNames,
SAFEARRAY **CommandIDs)

• nInstanceHandle is the HINSTANCE of the add-in's resource DLL, cast to a
long.

• EnvCatID is the category identifier of the environment to which commands are
being added.

• CategoryName is a name that the add-in associates with the set of commands it
is adding to the environment. The name should be internationalized as it can be
presented to the user by Solid Edge.

• nIDColorBitMapResourceMedium is the ID of the bitmap resource containing
medium-sized images of all the toolbar buttons that the add-in is adding.

• nIDColorBitMapResourceLarge is the ID of the bitmap resource containing
large-sized images of all the toolbar buttons that the add-in is adding.

• nIDMonochromeBitMapResourceMedium is the ID of the bitmap resource
containing medium-sized monochrome images of all the toolbar buttons that the
add-in is adding.

• nIDMonochromeBitMapResourceLarge is the ID of the bitmap resource
containing large-sized monochrome images of all the toolbar buttons that the
add-in is adding.

• nNumberOfCommands is the number of commands being added to the
environment.

• CommandNames is an array of BSTRs. Each string can contain sub-strings
separated by "\n". The substrings are defined as follows:

• Name of the command you are adding. This should not be internationalized
and should be tagged in such a way to help ensure uniqueness.

• Text displayed on the menu entry for the command. This substring may
contain backslash characters, which Solid Edge (Version 7 or later) will use
to create additional pop-up submenus and/or to add a separator preceding the
command entry (Version 8 or later). The strings appearing between the

Chapter 24 Solid Edge Programmer's Guide

192

backslashes become the title of the pop-up menu and the last string becomes
the entry on the final menu. If the first character of any substring (including
the first) is itself a backslash, Solid Edge will add a separator preceding the
menu entry.

• Status bar string. This is the string displayed on the status bar.

• Tooltip string. This is the string displayed as the tooltip.

• Macro string. If present, this string becomes the macro associated with the
command. Commands that have a macro string will not be invoked by
calling OnCommand. Instead, Solid Edge runs the macro.

• Parameter string. If present, this string is passed as an argument to the
macro.

Example:

"MyAddinCommand1\nSEaddin Sample Command\nDisplays a message
box\nSeaddin Command"

The non-internationalized tag for the command is "MyAddinCommand1".
"Seaddin Sample Command" will appear as an entry on the addin's pop-up
menu created by Solid Edge. "Displays a message box" will appear in the
status field of the frame window. "Seaddin Command" is displayed as the
tooltip for the command if it is added to a command bar by calling
AddCommandBarButton.

Example:

"MyAddinCommand1\nSEaddin\ Sample Command\nDisplays a message
box\nSeaddin Command"

This example is identical to the one above with one exception. That being
that an additional pop-up submenu named "Seaddin" will exist with "Sample
Command" being an entry on that pop-up

Example:

"MyAddinCommand1\nSEaddin\\ Another Sample Command\nDisplays
a message box\nSeaddin Command"

This example is identical to the one above with one exception. Due to the
additional backslash, a separator will be inserted preceding the menu entry
"Another Sample Command".

• CommandIDs on input is a pointer to a SAFEARRAY of identifiers the add-in
is to associate with each command being added. The add-in is free to choose any
identifier it wishes. The command identifier chosen by the add-in is what is
passed in OnCommand, OnCommandUpdateUI and OnCommandHelp.

Working with Add-ins Chapter 24

193

CommandIDs is also an output of SetAddInInfo. When the function returns, the
array contains the runtime command identifier Solid Edge has associated with
the command. This identifier is what the operating system will pass in the
WM_COMMAND message. It can also be used to add a button for the command
using the "Add" method available in the command bar controls' automation
interface.

To call AddCommandBarButton:
HRESULT AddCommandBarButton(BSTR EnvCatID, BSTR CommandBarName,

long nCommandID, CommandBarButton
**CommandBarButton)

• EnvCatID is the category identifier of the environment to which a button is
being added.

• CommandBarName is the name of the command bar the button will be added
to. Solid Edge will create the command bar if it does not exist.

• nCommandID is any of the command identifiers the add-in passed to
SetAddInInfo (not the identifier passed back from Solid Edge).

• CommandBarButton is the dispatch interface of the button object that provides
for additional programming capabilities. The v-table equivalent interface,
ISECommandBarButton can be obtained by querying the returned object for
IID_ISECommandBarButton. For example, if the add-in wants to have Solid
Edge invoke WinHelp for the command, it can set the help filename and help
context properties.

AddCommandBarButton is used by the add-in to have Solid Edge display a
button for the command. This routine only needs to be called if the
OnConnectToEnvironment argument, bFirstTime is VARIANT_TRUE. Note
that this method can be called anytime (that is, Solid Edge does not restrict calls
to this routine to emanate from the add-in's OnConnectToEnvironment method).
Buttons can also be added via the command bar automation interfaces but there
are advantages to using this method.

• Solid Edge will create the command bar if it does not exist.

• Solid Edge can maintain the relationship between the button and the add-in. This
allows Solid Edge to remove such buttons when the add-in is disconnected or if
in subsequent startups, the add-in no longer exists because it has been
uninstalled by the user. It also allows Solid Edge to purge old commands if the
GUI version of the add-in has changed.

• One function call as opposed to the many calls needed to add a button via the
automation interfaces.

Note Always be sure to Release the returned CommandBarButton interface.

An add-in can set its CommandBarButton OnAction properties (and
ParameterText) to a valid Solid Edge "macro" and not connect up to the AddIn

Chapter 24 Solid Edge Programmer's Guide

194

event set to listen for OnCommand. When the user selects the command, Solid
Edge uses its "Run Macro" subsystem to run the command.

Working with Add-ins Chapter 24

195

Example:

OnAction = "notepad.exe "
ParameterText = "test.txt"

Pressing a button with these properties and added by an add-in that is not
connected to the AddIn event set will cause Solid Edge to launch Notepad with
"test.txt" as the file for Notepad to open.

To call AddCommand:

Use this method instead of SetAddInInfo for those commands without a GUI that
goes with it (that is, there are no command bar buttons).

HRESULT AddCommand(BSTR EnvCatID, BSTR CmdName, long lCommandID)

• EnvCatID is the category identifier of the environment to which a command is
being added.

• CmdName is a string that contains sub-strings separated by a new line character
('\n'). In order, the substrings are:

• Name of the command you are adding. This should not be internationalized and
should be tagged in such a way to help ensure uniqueness.

• Text displayed on the menu entry for the command. This substring may contain
backslash characters, which Solid Edge (Version 7 or later) will use to create
additional pop-up submenus and/or to add a separator preceding the command
entry (Version 8 or later). The strings appearing between the backslashes
become the title of the pop-up menu and the last string becomes the entry on the
final menu. If the first character of any substring (including the first) is itself a
backslash, Solid Edge will add a separator preceding the menu entry.

• Status bar string. This is the string displayed on the status bar.

• Tooltip string. This is the string displayed as the tooltip.

• Macro string. If present, this string becomes the macro associated with the
command. Commands that have a macro string will not be invoked by calling
OnCommand. Instead, Solid Edge runs the macro.

• Parameter string. If present, this string is passed as an argument to the macro.

Example:

"MyAddinCommand1\nSEaddin Sample Command\nDisplays a message
box\nSeaddin Command"

The non-internationalized tag for the command is "MyAddinCommand1".
"Seaddin Sample Command" will appear as an entry on the addin's pop-up menu
created by Solid Edge. "Displays a message box" will appear in the status field

Chapter 24 Solid Edge Programmer's Guide

196

of the frame window. "Seaddin Command" is displayed as the tooltip for the
command if it is added to a command bar by calling AddCommandBarButton.

Example:

"MyAddinCommand1\nSEaddin\ Sample Command\nDisplays a message
box\nSeaddin Command"

This example is identical to the one above with one exception. That being that an
additional pop-up submenu named "Seaddin" will exist with "Sample Command"
being an entry on that pop-up

Example:

"MyAddinCommand1\nSEaddin\\ Another Sample Command\nDisplays a
message box\nSeaddin Command"

This example is identical to the one above with one exception. Due to the
additional backslash, a separator will be inserted preceding the menu entry
"Another Sample Command".

• lCommandID is the index used by Solid Edge to identify to the add-in which
command is being invoked when Solid Edge calls the OnCommand,
OnCommandUpdateUI and OnCommandHelp events.

ISECommand/DISECommand

When the application's CreateCommand method is called, it returns the
DISECommand dispatch interface of an object (that can be queried for ISECommand
using IID_ISECommand to get its equivalent v-table interface). The properties and
methods are as follows:

• Mouse—Read-only property that returns the DISEMouse interface object (which
can be queried for ISEMouse using IID_ISEMouse to get its equivalent v-table
interface) of the mouse control. The object that implements the interface is also a
connectable object that provides the DISEMouseEvents and ISEMouseEvents
event sets.

• CommandWindow—Read-only property that returns the IUnknown interface of
a connectable object that provides the DISECommandWindowEvents and
ISECommandWindowEvents event sets.

• Done—Read-write Boolean property used to notify Solid Edge that the
command is finished and is to be terminated. Commands that are created with
the seTerminateAfterActivation setting do not have to set this property as they
will be terminated after Activate is called. Other commands should set this
property when their command is finished. The initial (default) value is FALSE.

Working with Add-ins Chapter 24

197

• OnEditOwnerChange—Read-write Long property used to notify Solid Edge that
the command is to be terminated whenever an edit owner change occurs.
Commands that set this variable will be relieved of undo transaction calls.
Commands that modify multiple edit owners (for example, multiple documents)
should set this flag to zero. In such cases, it is up to the command to make any
necessary undo transaction calls using the automation interfaces.

• OnEnvironmentChange—Read-write Long property used to notify Solid Edge
that the command is to be terminated whenever an environment change occurs.

• Start—Call this method after creating the command and connecting to the
command event set. After Start is called and control is returned to Solid Edge,
the command, its mouse and window will start sending events to the add-in for
processing.

Note To receive the Activate, Deactivate and Terminate events, the add-in must
connect up to the command event set before calling Start.

ISECommandEvents/DISECommandEvents

The object returned from CreateCommand provides these event sets. The add-in
command will normally provide this event sink and connect the sink to the object
acquired by calling CreateCommand. The object passed in implements
IID_IConnectionPointContainer so the command can connect the sink using the
standard COM connection point interfaces (don't forget to Advise/Unadvise). The
member functions of this sink are as follows:

• Activate()—Activates the command.

• Deactivate()—Deactivates the command. Either the user has terminated the
command or has invoked another command (that is, the command is being
stacked). At this point, if the command has any modal dialog boxes displayed, it
should undisplay them until Activate is called.

• Terminate()—Notifies the command that it is being terminated.

• Idle(long lCount, LPBOOL pbMore)—Notifies the command that idle cycles
are available. lCount represents the number of cycles that have occurred. The
command can set pbMore to FALSE in which case Solid Edge will not give the
command any more idle cycles. If a command does not perform any idle
processing, it should set this to FALSE.

• KeyDown(unsigned short * KeyCode, short Shift)—Notifies the command of a
key down event. The keycode and a shift indicator is passed into this method.

• KeyPress(unsigned short * KeyAscii)—Notifies the command of an ASCII key
press event. The ASCII character is passed into this method.

• KeyUp(unsigned short * KeyCode, short Shift)—Notifies the command of a
key up event. The keycode and a shift indicator is passed into this method.

Chapter 24 Solid Edge Programmer's Guide

198

Note that the difference between KeyDown and KeyPress is subtle. KeyDown occurs
whenever any key is pressed while KeyPress occurs only when an ASCII key is
pressed. Also be aware that both of these events "repeat" as long as the user
continues to keep a key pressed.

Examples:

• The user presses and releases the SHIFT key. Solid Edge sends the command a
KeyDown event followed by a KeyUp event.

• The user presses and releases the ENTER key. Solid Edge sends the command a
KeyDown event, a KeyPress, and then a KeyUp event, in that order.

• The user presses the F1 key and continues to hold the key down. Solid Edge
sends the command a series of KeyDown events until the user releases the key,
at which time Solid Edge sends a KeyUp event.

• The user presses the number 5 key and continues to hold the key down. Solid
Edge sends the command a series of KeyDown and KeyPress events until the
user releases the key, at which time Solid Edge sends a KeyUp event.

ISEMouse/DISEMouse

This is the interface returned from the command's Mouse property. This interface is
used by the add-in command to get and set certain properties used by Solid Edge to
help the add-in command manage mouse events. This includes the capability to
specify various Solid Edge locate modes and to set locate filters that enable the add-
in command to specify what types of objects should be located.

The properties of this interface are as follows:

• ScaleMode—Read-write Long value. Setting ScaleMode to 0 implies that
coordinates of the mouse events are in the underlying window coordinate system
and 1 implies that they are in design modeling coordinate system.

• EnabledMove—Read-write Boolean that, if set to True, causes Move and Drag
in progress events to be fired.

• LastEventWindow—Read-only. Returns the dispatch interface of the window
object in which the last mouse event occurred.

• LastUpEventWindow—Read-only. Returns the dispatch interface of the window
object in which the last mouse up event occurred.

• LastDownEventWindow—Read-only. Returns the dispatch interface of the
window object in which the last mouse down event occurred.

• LastMoveEventWindow—Read-only. Returns the dispatch interface of the
window object in which the last mouse move event occurred.

Working with Add-ins Chapter 24

199

• LastEventShift—Read-only Short that is the state of the CTRL, ALT, and SHIFT
keys when the last mouse event occurred. Valid values are those enumerated by
the seKey constants.

• LastUpEventShift—Read-only Short that is the state of the CTRL, ALT, and
SHIFT keys when the last mouse up event occurred. Valid values are those
enumerated by the seKey constants.

• LastDownEventShift—Read-only Short that is the state of the CTRL, ALT, and
SHIFT keys when the last mouse down event occurred. Valid values are those
enumerated by the seKey constants.

• LastMoveEventShift—Read-only Short that is the state of the CTRL, ALT, and
SHIFT keys when the last mouse move event occurred. Valid values are those
enumerated by the seKey constants.

• LastEventButton—Read-only Short that indicates which button the last mouse
event occurred on. Valid values are those enumerated by the seButton constants.

• LastUpEventButton—Read-only Short that indicates which button the last
mouse up event occurred on. Valid values are those enumerated by the seButton
constants.

• LastDownEventButton—Read-only Short that indicates which button the last
mouse down event occurred on. Valid values are those enumerated by the
seButton constants.

• LastMoveEventButton—Read-only Short that indicates which button the last
mouse move event occurred on. Valid values are those enumerated by the
seButton constants.

• LastEventX—Read-only Double that is the X coordinate of the mouse when the
last mouse event occurred.

• LastEventY—Read-only Double that is the Y coordinate of the mouse when the
last mouse event occurred.

• LastEventZ—Read-only Double that is the Z coordinate of the mouse when the
last mouse event occurred.

• LastUpEventX—Read-only Double that is the X coordinate of the mouse when
the last mouse up event occurred.

• LastUpEventY—Read-only Double that is the Y coordinate of the mouse when
the last mouse up event occurred.

• LastUpEventZ—Read-only Double that is the Z coordinate of the mouse when
the last mouse up event occurred.

• LastDownEventX—Read-only Double that is the X coordinate of the mouse
when the last mouse down event occurred.

• LastDownEventY—Read-only Double that is the Y coordinate of the mouse
when the last mouse down event occurred.

Chapter 24 Solid Edge Programmer's Guide

200

• LastDownEventZ—Read-only Double that is the Z coordinate of the mouse
when the last mouse down event occurred.

• LastMoveEventX—Read-only Double that is the X coordinate of the mouse
when the last mouse move event occurred.

• LastMoveEventY—Read-only Double that is the Y coordinate of the mouse
when the last mouse move event occurred.

• LastMoveEventZ—Read-only Double that is the Z coordinate of the mouse
when the last mouse move event occurred.

• WindowTypes—Read-write Long which, if set to 0, implies that mouse events
emanate from all windows. If set to 1, WindowTypes implies that mouse events
emanate only from graphic windows.

• LastEventType—Read-only Long that returns the last mouse event type. Valid
values are those enumerated by the seMouseAction constants.

• EnabledDrag—Read-write VARIANT_BOOL that if set to VARIANT_TRUE
causes drag events to be fired.

• LocateMode—Read-write Long that indicates how to locate: 0 implies
SmartMouse locate, 1 implies simple click locate (no multi-select dialog), 2
implies quick pick locate (multi-select dialog where applicable) and 3 implies no
locate (used to receive mouse events without performing any locate). For simple
and quick pick locate modes, users will be able to mouse down, drag and mouse
up for fence locate. This property is applicable when a mouse service object is
registered.

• DynamicsMode—Read-write Long that specifies which shape to draw in
dynamics: 0 implies off, 1 implies line, 2 implies circle, 3 implies rectangle.

• PauseLocate—Read-write Long that specifies how long in milliseconds to wait
before a locate occurs. Use this property when you don't want to locate during
mouse moves but do want to locate as the mouse pauses or hesitates.

The methods of this interface are as follows:

• ClearLocateFilter()—Clears the locate filter. If the locate mode is not
seLocateOff, clearing the filter enables all filters.

• AddToLocateFilter—Restricts locates to the graphic types specified. Valid
values are those enumerated by the seLocateFilterConstants constants.

Working with Add-ins Chapter 24

201

ISEMouseEvents/DISEMouseEvents

The command's Mouse property also supports these event sets. Add-in commands
that are interested in mouse events, including locate capability, will normally provide
one of these event sinks and connect the sink to the Mouse. The Mouse implements
IConnectionPointContainer so the command can connect the sink using the standard
COM connection point interfaces (be sure to Advise/Unadvise). When a command is
in a state where it does not want to process mouse events or perform locates, it can
Unadvise this sink until such time it requires those events, in which case it can call
Advise again. Note that there is no limit to the number of connections attached to
this connection point. However, be aware that there is only one set of properties that
control the behavior of this sink. The member functions of this sink are as follows:

• MouseDown—This event is sent whenever the user presses a mouse button
down. Button and Shift are identical to those used in the mouse property events.

MouseDown(short sButton, short sShift,
double dX, double dY, double dZ,
LPDISPATCH pWindowDispatch, long lKeyPointType,
LPDISPATCH pGraphicDispatch)

• MouseUp—This is the same as the MouseDown event except that it is sent
whenever a mouse up event occurs.

• MouseMove—This is the same as the MouseDown event except that it is sent
whenever a mouse move event occurs.

• MouseClick—This is the same as the MouseDown event except that it is sent
whenever a mouse click event occurs.

• MouseDblClick—This is the same as the MouseDown event except that it is sent
whenever a mouse double click event occurs.

• MouseDrag—This event is sent whenever the user presses a mouse button down.
Button and Shift are identical to those used in the mouse property events. See the
seMouseDragStateConstants constants for values for the drag state.

MouseDrag(short sButton, short sShift,
double dX, double dY, double dZ,
LPDISPATCH pWindowDispatch, ,
short DragState, long lKeyPointType,
LPDISPATCH pGraphicDispatch) -

When a mouse click occurs in a Solid Edge window, the Down, Up, and then Click
events are fired to the add-in command. Correspondingly, when a mouse double
click occurs the Down, Up, Click, Double Click, and then Up events are fired. If
enabled, drag events are fired when the mouse moves with a mouse button down.
Let's take the case where the user clicks a button, moves the mouse with the button
down, and then releases the button. In this case the following four possibilities exist:

Chapter 24 Solid Edge Programmer's Guide

202

Enabled
Drag

Enabled
Move

Events Fired on the Mouse control

Case 1 False False Down, Up, Click

Case 2 False True Down, Move, ... Move, Up, Click

Case 3 True False Down, Drag (State = Enter), Drag (State = Leave)

Case 4 True True Down, Drag (State = Enter), Drag (State = In
progress), …, Drag (State = In progress), Drag
(State = Leave)

Effort is made to ensure that the mouse events are fired in sequence. To do this when
a mouse down event occurs, the mouse input is locked to the window in which the
down event occurred. When the corresponding mouse up event occurs, the lock is
removed. This sequence ensures that the add-in command will always receive a
mouse up event after receiving a mouse down event. Because the mouse up event
will occur in the same window as the down event, this implies that it is not possible
to drag across windows.

ISEWindowEvents/DISEWindowEvents

The command's CommandWindow property supports these event sets. Add-in
commands that are interested in generic window events, including any registered
private window messages (see the Window's API, RegisterWindowMessage), will
want to provide this event sink and connect the sink to the CommandWindow
property object. The object passed in implements IConnectionPointContainer so the
command can connect the sink using the standard COM connection point interfaces
(be sure to Advise/Unadvise). When a command is in a state where it does not want
to process window events, it can Unadvise this sink until such time it requires those
events, in which case it can call Advise again. Note that there is no limit to the
number of connections attached to this connection point. The member functions of
this sink are as follows:

WindowProc(IDispatch* pDoc, IDispatch pView, UINT nMsg,
WPARAM wParam, LPARAM lParam, LRESULT *lResult)

Note that this function is analogous to the standard WindowProc function used by
Window applications everywhere. The main difference is the dispatch pointers and
the LRESULT passed into it. The reason the LRESULT exists is that this function is
a member of a COM interface and hence must return an HRESULT. Since
WindowProc functions normally return a value whose value and meaning is
determined by the nMsg argument, this argument has been added and serves the
same purpose.

Working with Add-ins Chapter 24

203

An example of why an add-in may want to implement this sink is to take advantage
of the WM_SETCURSOR message. For more information on that message, and what
the value of LRESULT means to the caller of this event function, see the Window's
documentation for WM_SETCURSOR.

ISolidEdgeBar

This interface can be used by an add-in to insert a page into the Solid Edge Edgebar
tool. The Edgebar is available starting with Version 8. The pages that exist on the
Edgebar tool are always document-specific. That means that a page added to the
Edgebar for one document, will not appear on the Edgebar for any other document.
In order to obtain the Edgebar interface, query the AddIn interface passed into the
ISolidEdgeAddIn::OnConnection method using IID_ISolidEdgeBar. Once obtained,
the interface can be used to add a page to the Edgebar, remove a previously added
page from the Edgebar, and to set the active page of the Edgebar to one that has been
added.

AddPage

AddPage is called to add a page to the Edgebar tool for the document passed in. The
HWND passed back can be used in Windows APIs. For Visual C++ users this handle
can also be used, for example, to create a CWnd object that can be used as the parent
of a CDialog object that may be positioned inside the client area of the returned
page.

HRESULT AddPage(IDispatch *theDocument, long nInstanceHandle,
long nBitmapID, BSTR strTooltip, long nOption,
long *hWndPage)

• theDocument is the dispatch interface of the document for which the page is
being added.

• nInstanceHandle is HINSTANCE of the add-in's resource DLL, cast to a long,
in which the bitmap resides.

• nBitmapID is the resource identifier of the bitmap that will appear on the added
page's tab. The bitmap dimensions should be 20 by 20.

• sStrTootip is a string which appears as a tooltip for the user when the cursor is
passed over the page's bitmap.

• nOption indicates which options the page wants. The options available are
enumerated by EdgeBarConstant located in the Solid Edge constants typelib. A
value of zero is valid and indicates no option. When this document was written,
the only available option indicates that resize events are not needed. Hence, zero
indicates that resize events are needed.

• hWndPage is the HWND of the added page and is returned by Solid Edge to the
caller. The handle can be used to, for example, to draw items on the page.

Chapter 24 Solid Edge Programmer's Guide

204

RemovePage
RemovePage(IDispatch *theDocument, long hWndPage, long nOptions)

• theDocument is the dispatch interface of the document for which the page is
being removed.

• hWndPage is the HWND of the page being removed.

• nOption indicates which options are needed. This argument is not currently
supported; set nOption to zero.

SetActivePage
SetActivePage(IDispatch *theDocument, long hWndPage, long nOptions
)

• theDocument is the dispatch interface of the document for which the page is
being activated.

• hWndPage is the HWND of the page being activated.

• nOption indicates which options are needed. This argument is not currently
supported; set nOption to zero.

Additional Solid Edge objects, interfaces and
events

Additional Solid Edge objects, interfaces and event sets are obtainable by means of
the automation interface pointers (the IDispatch pointers passed into any of the add-
in's event sinks or interfaces). These interfaces are not directly related to the add-in
system. They are generic automation related interfaces and thus are documented by
the Solid Edge SDK.

Working with Add-ins Chapter 24

205

Registering an Add-in
For Solid Edge to know there is an add-in registered for use with it, the add-in needs
to add the "Implemented Categories" subkey in the registry and add the GUID for
CATID_SolidEdgeAddIn.

Solid Edge also defines a set of categories that are used to indicate which
environment(s) an add-in is designed for. These categories are not directly supported
by the Category Manager (the COM-supplied ICatInformation interface). Solid Edge,
however, will search for an additional key, the "Environment Categories" key, which
is much like the "Implemented/Required Categories" keys supported by the Category
Manager. Add-ins will enumerate as subkeys to that key, any Solid Edge
environment for which the add-in plans to add commands and/or events. An add-in
must implement at least one of these categories.

The following categories identify what environments an add-in is designed for:

4. CATID_SEApplication

5. CATID_SEAssembly

6. CATID_SEPart

7. CATID_SEProfile

8. CATID_SESheetMetal

In addition to registering the COM object that represents the add-in, which includes
not only the normal registry entries that the Microsoft Component Object Model
specifies, but also the component categories the add-in implements, there are a few
other registry entries that Solid Edge requires the add-ins to register. These entries
will be the values or subkeys of the classid key of the add-in classid registered in the
HKEY_CLASSES_ROOT\CLSID registry entry. Currently, the entries and their
meanings are as follows:

• Automatic connection indicator — This value name should be "AutoConnect"
and the type should be a DWORD. Set the value to 1 for now.

• LocaleID — The value name should be a Microsoft defined locale id and the
type should be a string. The string should contain a locale specific description of
the add-in. Example: "409" (which identifies the locale as U.S. English) and "My
company's Solid Edge Add-in". The id should be stored in hexadecimal format.
For more information on locale ids (also known as LCIDs), see the Microsoft
documentation concerning locales.

In addition to the previously described registry entries, Solid Edge Versions 8 and
greater look for additional registry entries. These are used by the Add-In Manager
(as is the original LocaleID value string already registered).

• Summary—The key name should be "Summary," and it should contain the
following:

Chapter 24 Solid Edge Programmer's Guide

206

• LocaleID—The value name should be a Microsoft defined locale id (for
example, 409), and the type should be a string. The string should contain a
locale-specific summary of the add-in. The summary string will be presented
to the user upon invocation of the Solid Edge Add-In Manager. This entry is
analogous to the add-in's description mentioned above. The id should be
stored in hexadecimal format.

• Help—The key name should be "Help" and it should contain the following:

• LocaleID—This named value is a string. The string is the name of the
localized help filename. The help file can be invoked by the user via the
Solid Edge Add-In Manager's GUI.

Sample Registry File
REGEDIT4
;Copyright (C) 1999 Unigraphics Solutions. All rights reserved.
;Changes for REGISTRY format Change
; 10/27/99 JsBielat
REGEDIT4

; Sample script for VB-based AddIns.
; VB automatically puts out most of the basic reg entries. Just

add the Solid Edge specific entries.

[HKEY_CLASSES_ROOT\CLSID\{C7CF857B-7FE0-11D2-BE8E-080036B4D502}]
@="My Solid Edge Add-in CLSID"
"AutoConnect"=dword:00000001
"409"="This is my localized (US English) addin registry string"

[HKEY_CLASSES_ROOT\CLSID\{C7CF857B-7FE0-11D2-BE8E-
080036B4D502}\Environment Categories]

[HKEY_CLASSES_ROOT\CLSID\{C7CF857B-7FE0-11D2-BE8E-
080036B4D502}\Environment Categories\{26618396-09D6-11d1-BA07-
080036230602}]
@="Solid Edge Part Environment"

[HKEY_CLASSES_ROOT\CLSID\{C7CF857B-7FE0-11D2-BE8E-
080036B4D502}\Implemented Categories]

[HKEY_CLASSES_ROOT\CLSID\{C7CF857B-7FE0-11D2-BE8E-
080036B4D502}\Implemented Categories\{26B1D2D1-2B03-11d2-B589-
080036E8B802}]
@="My Solid Edge AddIn"

; Register the SolidEdge Addins CATID in case it is not already
registered

[HKEY_CLASSES_ROOT\Component Categories\{26B1D2D1-2B03-11d2-B589-
080036E8B802}]
@="Solid Edge AddIn CATID"
[HKEY_CLASSES_ROOT\Component Categories\{26B1D2D1-2B03-11d2-B589-

080036E8B802}\409]
@="This is the CATID for SolidEdge AddIn"

207

A P P E N D I X A
Learning Visual Basic

This chapter contains a suggested self-paced learning plan for Microsoft Visual
Basic.

Learning Visual Basic—Overview... 208

Exercises .. 209

References and Helpful Documentation .. 211

Appendix A Solid Edge Programmer's Guide

208

Learning Visual Basic—Overview
This section outlines a plan for learning Microsoft Visual Basic. Several books and
resources are available on Visual Basic. The suggested exercises guide you through
the Visual Basic concepts you need to understand before you can work efficiently
with the Solid Edge automation interface. The following topics are covered:

• Creating and using Controls

• Menus and dialog boxes

• Managing projects

• Programming fundamentals

• Variables, constants, and data types

• Objects and instances

• ActiveX Automation

• Debugging

• Handling runtime errors

Learning Visual Basic Appendix A

209

Exercises

Day One

Objective: To create and save a Visual Basic project. To design a dialog box using
the objects available in the default tool box.

1. Read and work through the exercises in the first four chapters of Teach Yourself
Visual Basic in 21 Days. These chapters give an introduction to creating projects
in Visual Basic, as well as information on programming fundamentals. The
exercises also teach how to create dialog boxes with Visual Basic.

Day Two

Objective: To design dialog boxes using objects in the default toolbox. To add
custom controls to the toolbox and menus to dialog boxes.

2. Read and work through the exercises in Chapters 5 and 6 of Teach Yourself
Visual Basic in 21 Days. These chapters describe how to add menus and custom
dialog boxes.

3. Read Chapters 1 through 4 of the Visual Basic Programmer’s Guide, preferably
at the computer, to expand your understanding of the fundamentals of working
with forms, modules, controls, and projects.

Day Three

Objective: To understand the data types used in Visual Basic. To implement the
techniques described in these chapters to add code to the objects introduced in the
exercises from Day One.

4. Read Chapters 5 through 7 of the Visual Basic Programmer’s Guide to learn the
most frequently used programming techniques. This includes an explanation of
control structures, arrays, and the various data types available in Visual Basic.

5. Work through the examples in Chapter 15 of Teach Yourself Visual Basic in 21
Days. This chapter explains the data types used in Visual Basic.

Day Four

Objective: To understand the basics of how ActiveX Automation is used with Visual
Basic. To know how to use Visual Basic’s debugging functions to find and correct
errors in your code.

6. Read the section on ActiveX (OLE) in Chapter 15 of Teach Yourself Visual
Basic in 21 Days for a brief introduction to implementing ActiveX Automation

Appendix A Solid Edge Programmer's Guide

210

in Visual Basic. For more detailed information about ActiveX Automation, read
Chapters 7 through 9 of the Visual Basic Programmer’s Guide.

7. Read Chapters 20 and 21 of the Visual Basic Programmer’s Guide to learn how
to use the debugging capabilities in Visual Basic.

Learning Visual Basic Appendix A

211

References and Helpful Documentation

Books

• Sam's Teach Yourself Visual Basic 6.0 in 21 Days, ISBN 0672313103

• Microsoft Visual Basic 6.0 Programmer’s Guide, ISBN 1572318635

• Microsoft Visual Basic 6.0 Reference Library, ISBN 1572318643

Internet References

• Carl & Gary’s Visual Basic Home Page (http://www.cgvb.com)

• Visual Basic on-line (http://www.vbonline.com/vb-mag/)

Appendix A Solid Edge Programmer's Guide

212

213

A P P E N D I X B
Sample Programs

This appendix describes the sample programs delivered with Solid Edge and explains
how to run them.

How to Run the Samples .. 214

Adding Geometric Constraints Automatically (AutoCnst) 214

Controlling Batch Processing (batch) ... 214

Copying Dimension Styles (CopyDimStyle) .. 214

Creating a Bill of Materials (bom) .. 215

Creating Features Using the Stock Wizard (stock)................................ 215

Customizing the Sheet Metal Application (SheetMetal) 215

Extracting the Edges of a Flattened Model (GandT) 216

Modifying Graphics from Excel Data (bearing).................................... 216

Opening and Saving Part Files (OpenSave).. 216

Placing a Hexagonal Profile (HexPro) ... 217

Reading and Writing Dynamic Attributes (DynAttrib) 217

Setting the Document CreationLocale Property (ChngLcl) 217

Using Mouse and Command Controls (mouse) 218

Working with Revision Manager (Astruct) .. 218

Appendix B Solid Edge Programmer's Guide

214

How to Run the Samples
You can run the Solid Edge sample programs by accessing them from the Solid
Edge\custom directory. A readme.txt file, which explains how to run the associated
sample, is included in each directory

Adding Geometric Constraints Automatically
(AutoCnst)

This sample allows you to select a set of geometry in Profile, Layout, or Draft and
automatically recognize and add geometric constraints.

This sample shows how to make a DLL that will run "in-process," resulting in faster
startup and performance. The autocnst.vbp project must be compiled as a DLL file
and then run from the Solid Edge Profile, Layout, or Draft environment.

Demonstrates:

• Recognizing geometric constraints automatically.

• Adding geometric constraints automatically.

• Creating DLLs.

Controlling Batch Processing (batch)

This sample uses a dialog box that allows the user to choose three types of batch
processing:

1. Printing a directory of Draft files.

2. Converting a set of files into Solid Edge (for example, converting a set of DXF
files into Solid Edge draft files).

3. Converting Solid Edge files into another format.

Run this program (batch.exe) from Explorer. Batch.exe starts Solid Edge if it is not
already running.

Demonstrates:

• How to control batch processing.

Copying Dimension Styles (CopyDimStyle)

This sample copies the style from one dimension to another. The program is a DLL
that you run from within Solid Edge using the Run Macro command.

Sample Programs Appendix B

215

Demonstrates:

• How to read the current properties of a dimension.

• How to set the properties of a dimension.

Creating a Bill of Materials (bom)

This sample takes a currently open assembly and produces one of several Bill of
Material reports. The sample navigates through the assembly structure and reports on
all of the subassemblies and parts that exist in the assembly. The resulting list is
displayed on a dialog box.

You can run this program (bom.exe) from Explorer. The program expects Solid Edge
to be running with an open Assembly file. The program honors the IncludeInBOM
property on the part and ignores parts and assemblies that have this property set to
false.

Demonstrates:

• Working with assemblies.

Creating Features Using the Stock Wizard (stock)

This sample displays a dialog box that shows standard stock shapes. From the dialog
box, users select a shape and enter values to define dimensions. When the user has
defined the shape and dimensions, the solid base feature is created.

You run this program (stock.exe) from Explorer. The program expects Solid Edge to
be running with an open Part file.

Demonstrates:

• Working with reference planes.

• Working with profiles.

• Working with features.

Customizing the Sheet Metal Application
(SheetMetal)

This sample demonstrates how you can use Visual Basic to customize the Solid Edge
SheetMetal application to compute the flat pattern length of bend features using
different standards.

Demonstrates:

• Working with Din Standard.

Appendix B Solid Edge Programmer's Guide

216

• Working with a table.

• Working with an ANSI table.

• Working with an ISO table.

Extracting the Edges of a Flattened Model
(GandT)

This sample demonstrates how you can use Visual Basic to flatten a sheet metal part
and then use Geometry and Topology (G&T) portions of the automation interface to
extract the edges of the flattened model. The resulting 2-D edges of the flattened
model are written out to the c:\temp\SEDump.txt file.

You run this program (gandt.exe) from Explorer. The program expects Solid Edge to
be running with an open Sheet Metal file.

Demonstrates:

• Working with sheet metal parts.

• Working with geometry and topology.

Modifying Graphics from Excel Data (bearing)

This sample demonstrates how to link cells in a Microsoft Excel spreadsheet to
variables in a Solid Edge part drawing. The variables are linked to the spreadsheet
cells using the variable table in Solid Edge. Once the cells are linked to the variables
in the part drawing, the part is automatically updated by Solid Edge whenever a cell
in the spreadsheet changes.

Demonstrates:

• How to attach Solid Edge variables to an Excel spreadsheet.

Opening and Saving Part Files (OpenSave)

This sample opens, saves, and closes each of the part files in the specified directory.
The sample uses the Visual Basic Drive, Directory, and File List Box controls

Using this sample, you can update documents created before version 5 to the new
Parasolids-based file formats.

Demonstrates:

• Opening, saving, and closing files.

Sample Programs Appendix B

217

Placing a Hexagonal Profile (HexPro)

This sample demonstrates running a macro in the Profile environment of Solid Edge.
It uses the Command and Mouse controls to get a coordinate from the user. It then
uses this coordinate as the center point to place a hexagonal-shaped profile. This
sample performs only the sketching step of placing a feature. Once the profile has
been placed, users exit the program and then interactively edit the profile to complete
the feature.

Demonstrates:

• How to automate portions of a workflow.

• Working with units of measure.

• Working with 2-D graphic objects.

Reading and Writing Dynamic Attributes
(DynAttrib)

This sample demonstrates how to use the automation interface to read and write
Solid Edge dynamic attributes. To run this sample, Solid Edge must be running and a
document of any type that contains graphics must be open.

Demonstrates:

• Working with dynamic attributes.

Setting the Document CreationLocale Property
(ChngLcl)

This sample changes the CreationLocale property of Solid Edge documents. This
property prevents documents from having incompatible locale-specific data written
to them. Solid Edge will not let users save data from one locale in a file that was
created in another locale. This preserves users' data from accidental corruption, but
can pose an obstacle to sharing Solid Edge documents. This utility provides a
workaround.

Note Users can safely change the CreationLocale property originally created on
English systems to any other language because all Windows operating systems
recognize the English character data. This is not the case with some of the other
languages, so you should not use this utility to change CreationLocale, for example,
to allow Japanese and Polish data to be written to the same document. Most
importantly, you should never use this utility to change the CreationLocale property
from a double-byte language to a single-byte language.

Run this utility (ChngLcl.exe) from Explorer.

Appendix B Solid Edge Programmer's Guide

218

Demonstrates:

• How to open documents.

• How to change property values.

• How to close documents.

• How to display messages.

Using Mouse and Command Controls (mouse)

This sample demonstrates how to use the Solid Edge Mouse and Command controls
to allow a Visual Basic application to receive and process mouse events from Solid
Edge. The sample displays a dialog box that allows you to manipulate all of the
Mouse control properties and view the results.

On the Tools menu, click Macro from within any of the Solid Edge environments to
run the sample.

Demonstrates:

• Using Mouse and Command controls.

Working with Revision Manager (Astruct)

This sample demonstrates how to use the Revision Manager Automation Interface by
navigating an assembly and displaying the assembly components in a dialog box.

Run this program (Astruct.exe) from Explorer. Solid Edge must be running with an
Assembly document open.

Demonstrates:

• Working with Revision Manager.

219

A P P E N D I X C
Visual C++ Sample
Program

This appendix provides a Visual C++ example program that connects to Solid Edge,
creates an assembly document, adds a part to the assembly, and generates a draft file
with a view of the assembly document.

Visual C++ Program Syntax ... 220

Appendix C Solid Edge Programmer's Guide

220

Visual C++ Program Syntax
// system includes
#include <objbase.h>
#include <comdef.h>
#include <iostream.h>

// Import all the Solid Edge type libraries. This will create a .tli and
.tlh file
// for each of these type libraries, that will wrap the code to call into

the
// methods and properties of the objects in the type libraries.

#import "constant.tlb"
#import "framewrk.tlb"
#import "fwksupp.tlb"
#import "geometry.tlb"
#import "part.tlb"
#import "assembly.tlb"
#import "draft.tlb"

// Use the typelib namespaces.

using namespace SolidEdgeConstants;
using namespace SolidEdgeFramework;
using namespace SolidEdgeFrameworkSupport;
using namespace SolidEdgeGeometry;
using namespace SolidEdgePart;
using namespace SolidEdgeAssembly;
using namespace SolidEdgeDraft;

// Error handling macro. Every function that calls this macro needs to
// have a label called "wrapup" declared, to jump to in case of error.
// This is where any cleanup should be done or resources freed before
// exiting the function.
#define HandleError(hr, message) \
\
if FAILED(hr) \
{ \

cerr << "Error: 0x" << hex << hr << dec << " Line: " << __LINE__ << "
Message: " << message << endl; \

goto wrapup; \
}\
\

// NOTES:
// -----
//
// 1. "RunSEAutomation()" is a driver function that attaches to
// an instance of Solid Edge and gets an interface pointer to the
// Solid Edge application. The real client code that does anything
// useful is encapsulated within this function. The "main()" function
// simply initializes COM, calls "RunSEAutomation()" and un-initializes
// COM. See the "Warning" section below for more information on this.
//

Visual C++ Sample Program Appendix C

221

// 2. We have chosen to use the easiet means of calling methods on the
// Solid Edge automation objects. While there are MFC COleDispatchDriver
// classes that can wrap IDispatch interfaces, it is significantly
// easier to use the "#import" technique to import entire typelibs into
// client code, which automatically creates all the wrapper classes and
// their corresponding implementation of "IDispatch->Invoke()"
// using smart pointers.
//
// 3. Some familiarity with COM smart pointers is assumed. For more
// information/help:
// a) See topics "Compiler COM Support Classes" & "Compiler COM
// Support: Overview" in MSDN.
// b) See Visual Studio include file "comdef.h.".
//
// When you #import a typelib, VC++ automatically creates .tli and
// .tlh files. The former define smart pointers for each and every

interface
// defined in the typelib (both vtable and dispinterface), using
// the "_COM_SMARTPTR_TYPEDEF" macro. If there is an interface of type
// "IFoo" in the typelib, the smart pointer associated with that is
// named "IFooPtr" (by adding "Ptr" to the interface name). The
// smart-pointer implementation basically encapsulates the real COM
// interface pointers and eliminates the need to call the AddRef, Release,
// QueryInterface methods that all interfaces support. In addition, they
// hide the CoCreateInstance call for creating a new COM object. Since
// these smart pointers are also know the UUID for the interface they
// are wrapping, simply equating two smart pointers will call
// QueryInterface on the interface on the right hand side for the
// UUID of the interface supported by the smart pointer on the left
// hand side (much like VB).
//
//
// For example the following code (error checking omitted) :
//
// {
// IUnknown *pUnk;
// IAnyInterface *pAnyInterface;
// [some code to get pAnyInterface]
// pAnyInterface->QueryInterface(IID_IUnknown, (LPVOID**) &pUnk);
// pUnk->Release();
// pAnyInterface->Release();
// }
//
// can be replaced by
//
// {
// IUnknownPtr pUnk;
// IAnyInterfacePtr pAnyInterface;
// [some code to get pAnyInterface]
// pUnk = pAnyInterface; // does the QI internally on pUnk
// } // destructors on smart pointers "pAnyInterface" and "pUnk"
// automatically call Release
//
// 4. Ensure that the following directories are in your include path:
// a) The directory containing the Solid Edge typelibs
// b) The directories containing the Visual Studio includes
//
// 5. Try to keep the "#import" statements in the standard pch header
// so that all the .cpp files in the project automatically have access
// to the smart pointers generated from the typelibs.
//

Appendix C Solid Edge Programmer's Guide

222

// 6. Smart pointers handle error returns by converting error
// HRESULTs into "_com_error" exceptions. The "_com_error" class
/ encapsulates the HRESULT error code. Since these objects throw
// exceptions, you will need a try-catch within your code, as shown
// in function "RunSEAutomation()". However, if you use the "raw"
// versions of the interface functions that are returned, you can
// avoid exceptions, and deal with regular HRESULTs instead. For
// more information, read the MSDN articles mentioned above.
//
// 7. The compiler support implementation converts properties into
// Get/Put pairs. But the property is also usable directly, as in
// VB. For example,the "Visible" property on the
// Application object is usable in the following ways:
//
// ApplicationPtr pApp;
// [get the app pointer]
// pApp->Visible = VARIANT_TRUE; // this is VB like syntax
// pApp->PutVisible(VARIANT_TRUE); // this is the equivalent C++ like

syntax
//
// However, methods are called as usual, such as "pApp->Activate()".
//
// 8. When Solid Edge creates typelibs, it tries to make each one
// of them self-contained with respect to the constants that are
// used by the objects within that typelib. This will allow users to
// browse for constants used in a particular typelib within that same
// typelib, without having to bring up another typelib in a typelib
// browser. But a side effect of this when we are using compiler
// support #import of typelibs is that we have to explicitly qualify
// the constant as coming from a particular typelib (because more than
// one has the same constant). In most such cases, we have to scope
// the constant to the type library where the method/property/object
// resides, because that is how the compiler will expect it to be
// declared. If that does not work, scope it to SolidEdgeConstants. The
// latter contains ALL the constants.
//
// 9. Unfortunately, parameters of type SAFEARRAY don't have compiler

support
// classes, unlike VARIANT, whose corresponding compiler support class
// is "_variant_t", or BSTR, whose corresponding class is "_bstr_t". So
// SafeArrays have to be managed using the various SafeArray APIs that

Visual
// C++ provides to manage the creation/manipulation/deletion of

SafeArrays.
//
//
// WARNING:
// -------
//
// 1. You will find interfaces of type "_<SomeInterface>" defined in the
// typelib. These are vtable interfaces that support the corresponding
// dispatch versions. Although these do show up in the typelib and
// "#import" generates smart pointers for these, clients MUST NOT use
// these in their code, for two reasons:
// a) These interfaces are intentionally not marshalled so that any
// out-of-proc client (exe) cannot use these interfaces.
// b) These are private to Solid Edge and subject to change from version
// to version, so client code can behave unpredictably when these are
// used, including causing crashes.
//
// The vtable interfaces that COULD be used however, don't have

Visual C++ Sample Program Appendix C

223

// an "underbar" prefix, and can be used.
//
// For example:
//
// - Don't use "_IApplicationAutoPtr", but use "ApplicationPtr"
// - Don't use "_IPartDocumentAutoPtr", but use "PartDocumentPtr"
// - Don't use "_IDMDBodyPtr", but use "BodyPtr"
// - Can use "ISEDocumentEventsPtr"
// - Can use "ISEMousePtr"
//
// 2. The function "main()" only does initialization and uninitialization
// of the COM runtime. The function it calls (i.e. "RunSEAutomation()")
// does all the work. The reason is that we do NOT want to use any smart
// pointers within "main()". What happens is this: smart pointers are
// created on the stack and therefore destructed at the end of the
// function scope. If there are any smart pointers declared in "main()",
// then they will be destroyed AFTER the COM runtime has been

uninitialized.
// This is a no-no, because un-initializing the COM runtime has to be
// the VERY last thing we do. If we use any COM objects/interfaces
// after un-initializing COM, it can cause runtime crashes. The other
// alternative is to use a local scope in "main()" so that all
// smartpointers are declared within it and are therefore destroyed
// before CoUninitialize is called.
//
// 3. Be careful when you mix smart pointers and non-smart pointers (i.e.
// straight COM interface pointers). In this case, you have to be aware
// of the AddRefs and Releases going on in the background and
// may have to manually insert code to do some AddRefs and Releases to
// be COM-compliant.
//

void RunSEAutomation();
HRESULT CreateAssemblyUsingPartFile(ApplicationPtr pSEApp);
HRESULT CreateDrawingUsingAssemblyFile(ApplicationPtr pSEApp);

// The entry-point function

void main()
{

bool initialized = false;
HRESULT hr = NOERROR;

// Very first thing to do is to initialize the Component Object
// Model (COM) runtime.
hr = CoInitialize(NULL);
HandleError(hr, "Failed to initialize COM runtime");

// Very important. CoInitialize and CoUninitialize have to be called in
pairs.

initialized = true;

// Now get down to business
RunSEAutomation();

wrapup:

Appendix C Solid Edge Programmer's Guide

224

// Make sure to un-initialize on the way out
if (initialized)
{
// If we have initialized the COM runtime, we now have to uninitialize

it.
CoUninitialize();
}

return;
}

// This function shows you how to connect to Solid Edge. After connecting
// to Solid Edge, it runs some useful client automation code, by calling
// "CreateAssemblyUsingPartFile()" and "CreateDrawingUsingAssemblyFile()".

void RunSEAutomation()
{

HRESULT hr = NOERROR;

ApplicationPtr pSEApp; // Smart pointer for
SolidEdgeFramework::Application

// Since the compiler support classes throw C++ exceptions when servers
// return an error HRESULT, we have to have this try-catch block here.

try
{
// Try to get a running instance of Solid Edge from the
// running object table.
if (FAILED(pSEApp.GetActiveObject("SolidEdge.Application")))
{
// Dont have Solid Edge running. Create a new instance.
hr = pSEApp.CreateInstance("SolidEdge.Application");
HandleError(hr, "Failed to create an instance of Solid Edge");
}

// Now that we are sure Solid Edge is running, create new assembly
// and drawing files. Note that any exceptions thrown from within
// "CreateAssemblyUsingPartFile" and "CreateDrawingUsingAssemblyFile"
// will be caught in this function.

// First make the application visible.
pSEApp->Visible = VARIANT_TRUE;

hr = CreateAssemblyUsingPartFile(pSEApp);
HandleError(hr, "Failed in CreateAssemblyUsingPartFile");

hr = CreateDrawingUsingAssemblyFile(pSEApp);
HandleError(hr, "Failed in CreateDrawingUsingAssemblyFile");

}
catch (_com_error &comerr)
{
cerr << "_com_error: " << comerr.Error() /* HRESULT */ << " : "
<< comerr.ErrorMessage() /* Error string */ << endl;

}
catch (...)
{
cerr << "Unexpected exception" << endl;
}

Visual C++ Sample Program Appendix C

225

wrapup:

return;
}

HRESULT CreateAssemblyUsingPartFile(ApplicationPtr pSEApp)
{

HRESULT hr = NOERROR;

AssemblyDocumentPtr pAsmDoc;

// First create a new Assembly document (default parameters
// that are not specified are handled just as in VB)
pAsmDoc = pSEApp->GetDocuments()->Add(L"SolidEdge.AssemblyDocument");

// Add a new occurrence using a Part file. Creates a grounded
occurrence.

if (pAsmDoc)
{
pAsmDoc->GetOccurrences()->AddByFilename("c:\\block.par");

// Finally, save the assembly file.
pAsmDoc->SaveAs("c:\\block.asm");
}
else
{
hr = E_FAIL;
}

return hr;

}

HRESULT CreateDrawingUsingAssemblyFile(ApplicationPtr pSEApp)
{

HRESULT hr = NOERROR;

DraftDocumentPtr pDftDoc;
ModelLinkPtr pLink;

// First create a new Draft document (default parameters that are
// not specified are handled just as in VB)
pDftDoc = pSEApp->GetDocuments()->Add(L"SolidEdge.DraftDocument");

if (pDftDoc)
{
// Link the newly created assembly file to this draft document
pLink = pDftDoc->GetModelLinks()->Add("c:\\block.asm");

if (pLink)
{
// Now create a drawing view using the model link above
pDftDoc->GetActiveSheet()->GetDrawingViews()->Add(pLink,
SolidEdgeDraft::igTopBackRightView, 1.0, 0.1, 0.1);
}
else

Appendix C Solid Edge Programmer's Guide

226

{
hr = E_FAIL;
}

// Finally, save the drawing file.
pDftDoc->SaveAs("c:\\block.dft");

}
else
{
hr = E_FAIL;
}
return hr;

}

227

G L O S S A R Y

Glossary

ActiveX automation

A technology that allows any object to expose a set of commands and functions that some other
piece of code can invoke. Automation is intended to allow applications to create system macro
programming tools.

API

The acronym for Application Programming Interface. An API is a collection of formal
definitions that describe the funciton calls and other protocols a program uses to communicate
with the outside world.

argument

A value passed to a procedure. The value can be a constant, variable, or expression.

assembly

A group of parts specified as a single component. The parts in an assembly are usually
individually specified elsewhere, combined according to requirements, and physically connected.
When the assembly is a unit to be used in higher level assemblies, it is called a subassembly;
when the assembly is a product, it is a top-level assembly.

associative

A condition in which an element is related to another element.

available

A condition in which a document can be accessed by a user for review or revision.

base feature

A feature that defines the basic part shape. Solid models are constructed by adding material to
and removing material from a base feature.

chamfer

A corner that has been cut at an angle.

Glossary Solid Edge Programmer's Guide

228

class

The definition of a data structure and the functions that manipulate that structure. C++ classes
are generally defined in include files.

collection

A special type of object whose purpose is to provide methods of creating objects and also
providing a way of accessing all the objects of a specific type.

COM

The acronym for the Component Object Model. This model specifies a binary standard for object
implementation that is independent of the programming language you decide to use. This binary
standard lets two applications communicate through object-oriented interfaces without requiring
either to know anything about the other’s implementation. It is supported at the operating system
level and is the basis of all Microsoft products.

command stacking

The process of temporarily deactivating a command without terminating it.

compound document

A document that contains files with various formats. For example, a Word document that has a
Solid Edge file embedded in it.

container

A document that contains documents created with other applications. Through ActiveX, you can
access the application that created the document and link and embed a document created by
another application.

cutout

A feature created by removing material from a part by extrusion, revolution, sweeping, or lofting.
A profile defines the feature’s shape.

dimension

A control that assigns and maintains a dimensional value to an individual element or establishes
a dimensional relationship between multiple elements. Dimensions are represented graphically
by a label consisting of text, lines, and arrows.

dimension axis

An axis for dimension orientation that you define by selecting a line. You can place linear
dimensions that run parallel or perpendicular to the axis. By default, dimensions are placed
horizontally or vertically.

Glossary

229

dimension group

A series of dimensions. You can place a chained dimension group, a coordinate dimension group,
or a stacked dimension group.

driven dimension

A dimension whose value depends on the value of other dimensions or elements.

driving dimension

A dimension whose value controls the size, orientation, or location of an element.

element

A single, selectable unit. You can select geometric elements, dimensions, annotations, objects
placed in the drawing through ActiveX, and so forth. The type of element that can be selected is
determined by command context.

embed

A method for inserting information from a source document into the active document. Once
embedded, the information becomes part of the active document; if changes are made to the
source document, the updates are not reflected in the active document.

enumerator

An object that iterates through a sequence of items.

feature

A characteristic of a part that is usually created by adding material to or removing material from
the basic part shape. Features include holes, cutouts, protrusions, and so forth.

host object

Any object in Solid Edge to which you have attached an attribute set.

iterator

A statement that sequences through a set of objects for a specified number of times or until a
certain condition is met. The three iteration statements in C++ are while, do, and for. In Visual
Basic, two iteration statements are for, next and do, while. See also enumerator.

key point

A recognizable point on an element. Key points include vertices, mid points, center points, and
so forth.

Glossary Solid Edge Programmer's Guide

230

link

A method for inserting information stored in a source document into the active document. The
two documents are connected, and changes made in the source document are reflected in the
active document.

macro

A sequence of actions or commands that can be named and stored. When you run the macro, the
software performs the actions or runs the commands.

method

Any operation that can be performed on an object.

native data

All the information that an application requires to edit an object.

object

Information that can be linked or embedded into an ActiveX-compliant product.

object browser

A feature of Microsoft Visual Basic that allows you to examine the contents of a specified object
library to access information about the objects in that library.

object hierarchy (object model)

A diagram that shows the relationships among objects.

object persistance

A method for saving a complex network of objects in a permanent binary form, usually disk
storage, that persists after those objects are deleted from memory.

parent feature

A feature upon which another feature is based. For example, a circular pattern feature is created
by copying other features in a circular arrangement. The copied feature is the parent of the
circular pattern feature.

profile

A 2-D set of variational elements used to construct a feature.

property

A unique characteristic of an element or object in a file. The characteristics can include the
name, parent, application, and so forth.

Glossary

231

reference element

An element that is not included in the part model. Reference elements, such as profile planes and
centerline axes, are used for construction only.

reference plane

A flat, rectangular, infinite surface whose position and orientation provide a frame of reference
for creating and working with profiles in 3-D space.

routing slip

A list that indicates the users that should receive electronic mail containing an attached
document.

selection set

A single selected object or a group of selected objects.

server

The application that created objects that are linked or embedded in a compound document
(container).

share embed

A document copied directly into a drawing. When you embed the same document more than once
in the same document, the document elements are copied each time. When you share embed the
same document more than once in the same document, the documents are not copied each time.
Instead, the other documents reference the initial placement of the document.

SmartFrame

A placeholder for an ActiveX object. The contained ActiveX object can be 2-D or 3-D, but will
be mapped to 2-D space. SmartFrames are generally rectangles on a sheet that enclose embedded
or linked object(s) and have some intelligence about how to deal with the data in that frame.

symbol

A document placed in a drawing. You can override and edit the properties and style of the
symbol. A document can be linked, embedded, shared embedded, or inserted as elements.

toolbar

Toolbars are menus that allow you to quickly access commands. You can define custom toolbars
or use the toolbars delivered with the software.

type library (object library)

A standalone file or a component within another file (typically a DLL) containing type
information that is used by automation controllers such as Visual Basic to find and invoke the
properties and methods on an object.

Glossary Solid Edge Programmer's Guide

232

window

An area defined by a standard border and buttons that is used to display information in an
application.

233

I N D E X

Index

2
2-D graphic objects

object hierarchy • 122
2-D relationships • 132

A
Access files as program input •

45
accessing Solid Edge

creating a document • 36
Visual Basic syntax • 36
Visual C++ syntax • 40

ActiveX Automation • 2, 6
AddAngularByAngle • 57
AddBy2Points method • 164
AddByFilename method • 91
AddByOrigin method • 164
AddByTwoPoints method •

179
adding geometric constraints

• 214
AddNormalToCurve • 57
AddNormalToCurveAtDistanc

e • 57
AddParallelByDistance

method • 57
AddRefs • 41
address

Unigraphics Solutions • xi
angular dimensions • 104
AngularRelation3d • 97
Application

document • 51
Application object • 34, 41

Quit method • 36
AsmRefPlanes object • 57
Assembly

adding relationships • 99
coordinate system • 90

document • 51
manipulating occurrences •

91
placing occurrences • 91
using relationships • 97

assembly object • 90
object hierarchy • 90

AssemblyDocument object •
97

assistance • xi
attribute sets • 150

defining • 151
manipulating • 153

attributes • 95, 150
object hierarchy • 150
occurrence • 95

AttributeSets • 151
audience • ix
automation overview • 4
axes • 56
AxialRelation3d • 97
axis of revolution • 58

B
Backgrounds • 50
BottomCap property • 83

C
characteristics of occurrences •

95
classes • 14
code samples • 214

running • ix
running • 214

COM • 41
uninitializing • 41

COM objects/interfaces • 41
command

creating • 21
command control • 21, 27, 218

Index Solid Edge Programmer’s Guide

234

command stacking • 19, 27
Commands • 19
connecting to Solid Edge

creating a document • 36
Visual Basic syntax • 36
Visual C++ syntax • 40

constants • 14
container • 170
controlling batch processing

• 214
controls • 21, 27, 46

command • 27, 218
mouse • 31, 218
part viewer • 32

conventions • x
Convert3DCoordinate method

• 64
coordinate system • 77

assembly • 90
Copy method • 140
copying dimension styles •

214
CreateEmbed method • 165
CreateInstance • 40
CreateLink method • 165
CreateObject • 36
creating a Bill of Materials •

215
creating a profile • 62
creating Features using the

Stock Wizard • 215
CreationLocale • 217
customer service • xi
customizing SheetMetal • 215
Cut method • 140

D
Delete method • 140
dereferencing • 10
Dimension Display • 109
dimensions • 104

display • 109
driven • 107
driving • 107
object hierarchy • 104
placing • 107
types • 104

disjoint solids • 62
display of dimensions • 109
displaying units • 130
DisplayType property • 109
Document • 50

object hierarchy • 50
sections • 50

document conventions • x
document overview • 4
document summary

information property set •
142

document types • 51
documents • 53

sample program • 53
Draft

document • 51
Draft document

sections • 50
DrawingViews • 50
driven dimensions • 107
driving dimensions • 107
dynamic attributes • 150, 217

E
Edges property • 83
Edit method • 115
edit owers • 27
embedded symbols • 172
embedding objects • 165
End method • 62
environments • 27
example program

cutout • 79
Excel files as program input •

45
Exercises • 209
extended summary information

property set • 142
ExtentType property • 139

F
Faces property • 83
FacesByRay property • 83
families of parts • 88
feature

definition information • 83
Edges property • 83
Faces property • 83
FacesByRay property • 83
geometric information • 83
lists • 83

Features • 78
creating • 78

formatting units • 130
FormatUnit method • 130
Formula property • 117

Index

235

G
GandT • 216
gathering data input

from a data file • 45
from external applications •

47
from Solid Edge • 46
from users • 44

geometry • 122
Geometry and Topology •

216
GetActiveObject • 40
GetFormula method • 115
GetName method • 115
GetObject • 7, 36
GetOrigin method • 92
GroundRelation3d • 97

H
help • ix, xi
hierarchy • 7, 34

I
internal units • 11, 126
invoking Solid Edge • 34

creating a document • 36
Visual Basic • 34
Visual Basic syntax • 36
Visual C++ syntax • 40

L
linear dimensions • 104
linked symbols • 172
linking objects • 165
Locatable property • 95

M
mailing address

Unigraphics Solutions • xi
mechanical modeling property

set • 142
members • 14
method • 6

AddBy2Points • 164
AddByFilename • 91
AddByOrigin • 164
AddByTwoPoints • 179
Convert3DCoordinate • 64
Copy • 140
CreateEmbed • 165

CreateLink • 165
Cut • 140
Delete • 140
Edit • 115
End • 62
FormatUnit • 130
GetFormula • 115
GetName • 115
GetOrigin • 92
Move • 92
ParseUnit • 130
PutName • 115
Query • 115
SetOrigin • 92
Translate • 115

Modeling Coordinate System •
77

modifying a model • 87
modifying graphics from

Excel data • 216
modifying profiles • 72
mouse control • 21, 31, 218
Move method • 91, 92

O
object

Application • 34
object browser • 14

dialog box description • 14
object hierarchy • 7, 34

2-D graphic objects • 122
Application object • 34
assembly object • 90
Attribute object • 150
Document object • 50
Part object • 76
profile object • 62
Property object • 142
RefAxes • 56
RefAxis • 56
reference elements • 56
Relations2d object • 132
RoutingSlip object • 158
SelectSet object • 138
SmartFrames object • 162
Symbol2d object • 170
TextBoxes object • 178
UnitsOfMeasure object •

126
variable object • 112

object linking and embedding •
6

object model • 7
object variables • 10

Index Solid Edge Programmer’s Guide

236

Occurrence
placing in assembly • 91

OccurrenceDocument property
• 95

online help • ix
opening and saving Part files

• 216
overview • 4

P
ParseUnit method • 130
Part

document • 51
family of parts • 88

Part object • 76
object hierarchy • 76

Part Viewer control • 21, 32
phone number

Unigraphics Solutions • xi
placing a Hexagonal Profile •

217
PlanarRelation3d • 97
planes • 57
PointRelation3d • 97
prerequisite knowledge • 3
profile • 62

creating • 62
creating through automation

• 62
running macros • 69, 70
validating • 62

profiles
modifying • 72
querying • 72

ProfileSet object • 64
Programming with Solid Edge

• 2
project information property

set • 142
property • 6, 142

DisplayType • 109
ExtentType • 139
Formula • 117
object hierarchy • 142

property sets • 142
document summary

information • 142
extended summary

information • 142
mechanical modeling • 142
project information • 142
summary information • 142

PropertySets • 142
object hierarchy • 142

PutName method • 115

Q
Query method • 115
querying profiles • 72
Quit method • 36

R
radial/diameter dimensions •

104
reading and writing dynamic

attributes • 217
RefAxes • 56, 58
RefAxis • 56
Reference Axes • 58
reference documents • 211
reference elements • 56

creating • 56
object hierarchy • 56
sample program • 59

Reference Planes • 57
references • 14
RefPlane object • 57
RefPlanes • 57
Relations2d • 132

object hierarchy • 132
Relations3d object • 97
relationships • 132

in assembly • 97
object hierarchy • 132
placing • 134

removing an instance of Solid
Edge • 36

Revision Manager • 218
routing slip • 158
routing slips • 159, 160
RoutingSlip • 158

object hierarchy • 158
running macros • 69, 70
running sample programs • 214

S
SafeArrays • 41
Sample Program

dimensions • 107
sample programs

2-D graphic objects • 123
accessing properties • 146
adding assembly

relationships • 99
adding geometric

constraints • 214

Index

237

approving a document • 160
assembly example • 95
assembly relationships • 97
autoconstrain • 214
batch • 214
bearing • 216
Bill of Materials • 215
bom • 215
collecting selected objects •

139
controlling batch

processing • 214
copying dimension styles •

214
creating a feature • 79
creating a SmartFrame • 164
creating and printing a

document • 53
creating features via stock

wizard • 215
creating reference elements •

59
defining a new attribute set •

154
deleting from a selection set

• 140
dynamic attributes • 217
enumerating attribute sets •

155
geometry and topology •

216
hexagonal profile • 217
manipulating symbols • 174
opening and saving part

files • 216
opensave • 216
placing a Hexagonal

Profile • 217
placing symbols • 172
placing text • 179
querying for relationships •

135
reading and writing

dynamic attributes • 217
relationships • 134
retrieving symbol properties

• 175
reviewing properties • 147
Revision Manager • 218
routing slips • 159
running • 214
running a macro • 70
setting the CreationLocale

property • 217

sheetmetal • 215
SmartFrame styles • 167
source document automation

• 176
stock • 215
traversing a collection of

lines • 123
units • 130
using mouse and command

controls • 218
variables • 117
working with Excel data •

216
Section1 • 50
sections • 50
selection sets • 138
SelectSet • 138

object hierarchy • 138
service • xi
SetOrigin method • 92
setting the document

CreationLocale property •
217

shared embeddded symbols •
172

SheetMetal • 215
sheets • 50
SideFaces property • 83
SmartFrame2dStyles • 167

adding • 167
SmartFrames • 162, 165, 166

creating • 164
manipulating • 166
object hierarchy • 162
styles • 167

solid • 74
creating interactively • 74
creating through automation

• 74
modifying • 87
querying • 83

source • 170
status • 95
Stock Wizard • 215
subassemblies • 91
Subassembly property • 95
summary information property

set • 142
support • xi
Symbol2d

object hierarchy • 170
symbols • 170

moving • 174
object hierarchy • 170
placing • 172

Index Solid Edge Programmer’s Guide

238

properties • 175
rotating • 174

T
technical support • xi
telephone number

Unigraphics Solutions • xi
text • 178
text files as program input • 45
TextBoxes • 178

object hierarchy • 178
TextEdit • 178
TextStyles • 178
TopCap property • 83
Translate method • 115
type library • 14
Types of Dimensions • 104
types of documents • 51
typographical conventions • x

U
uninitializing COM • 41
unit conversion • 11
units • 11, 126

internal • 126
variables • 114

UnitsOfMeasure • 126
object hierarchy • 126

user input • 44
Using the Visual Basic Object

Browser • 14
Utilities • 2

V
validating a profile • 62
variables • 112

accessing • 114
creating • 114
object hierarchy • 112
properties • 117
units • 114

Visual Basic
functions in Variable table •

118
references • 211

Visual C++ • 41
Structuring programs • 41

