Following is a brief overview and description of the LISP routines available for accessing Architectural Desktop
Release 2004 Layer functionality.

For these to be operational, AecLMgrLISP40.arx must be loaded. Note that this ARX is never demand loaded out of
the box.

The first listing is an list of the LISP function names, followed by a

description of each function in turn. This will consist of function name, a

list of parameters, and the return type. An example, a short description and

a discussion of any known problems will immediately follow.

a) Functions available
AeclayerResetLayersInfo
AecLlayerSaveStdAsText
AecLayerSaveStdAsLDF
AecLayerLoadStdAsText
AecLayerLoadStdAsLDF
AeclayerLoadAllLDFFiles
AecLayerAddToSnapshot
AecLlayerGetSnapshot
AecLayerRestoreSnapshot
AecLayerImportSnapshot
AeclayerExportSnapshot
AecLKeyOverrides
AecToggleLKeyOverrides
AecImportLayerKeyingStyle
AecSetCurrentLayerKeying
AecSetLayerKeyOverride
AecExpandLayerKey
AecGeneratelayerKey
AeclayerKeyList
AecSetlLegacylLayerKey

Function: AecLayerResetLayersInfo
Parameters: <none>
Returns: void

Example: (AecLayerResetLayersInfo)

This function removes user defined Layer Standard assignments on all the layers in the drawing, and reassigns
according to ADT’s calculations.

Function: AecLayerSaveStdAsText
Parameters: LayerStd: String, FileName: String
Returns: void (nil if layer standard not found)

Example: (AecLayerSaveStdAsText “My Standard” “C:\\test.txt”)

This function saves the named Layer Standard as a structured text file.



Function: AeclLayerSaveStdAsLDF
Parameters: LayerStd: String, FileName: String
Returns: void (nil if standard not found)

Example: (AecLayerSaveStdAsLDF “My Standard” “C:\\test.ldf”)

This function saves the named Layer Standard as a proprietary Layer Definition File. This format is more robust
than the text format and is recommended when simply sharing layer standard definitions.

Function: AeclLayerLoadStdAsText
Parameters: FileName: String
Returns: void

Example: (AecLayerLoadStdAsText “c:\\test.txt”)

This function loads layer standards from the supplied file.

Function: AecLayerLoadStdAsLDF
Parameters: FileName : String
Returns: void

Example: (RAecLayerLoadStdAsLDF “c:\\test.ldf”)

This function loads layer standards from the supplied file

Function: AeclLayerLoadAllLDFFiles
Parameters: <none>
Returns: void

Example: (AecLayerLoadAllLDFFiles)

This function loads the layer standards from all LDF files in the current and AutoCAD search path

Function: AecLayerAddToSnapshot

Parameters: Snapshot: String, (LayerName: String, LayerState: Short, ACIColor: Short, HasUserDesc: Short,
UserDesc: String, LineType: String, LTypeFile: String)...

Returns: void

Example: (AecLayerAddToSnapshot “SnapshotName” (“Layerl” 1 152 0 “”
“Continuous” “) (“Layer2” 3 140 1 “UserDesc” “Continuous” “"))

This function allows a series of layers (not necessarily existing in the current drawing) to a snapshot.
The Layer State is the sum of 1= Visible, 2=Lock, 4=Frozen, 8=Frozen in new viewports



Function: AecLayerGetSnapshot
Parameters: Snapshot: String
Returns: Resbuf of all layers in snapshot

This functions returns a resbuf list of all layers in the specified snapshot, or void if the snapshot does not exist

Function: AecLayerRestoreSnapshot
Parameters: SnapshotName: String
Returns: void

Example: (AecLayerRestoreSnapshot “MySnapshot”)

The method restores the properties of all layers in a snapshot.

Function: AeclLayerImportSnapshot
Parameters: Filename: String
Returns: void (nil if error)

Example: (AecLayerImportSnapshot “mysnaps.ssl”)

This method imports snapshot(s) from the following file types
- Bonus tools files (*.lay)
- Comma delimited files (*.cdf, *.csv)
- Proprietary snapshot files (*.ssl)

Function: AecLayerExportSnapshot
Parameters: SnapshotName: String, Filename : String
Returns: void (nil if error)

Example: (AecLayerExportSnapshot “MySnapshot” “C:\\mysnaps.ssl”)

This function exports a specific snapshot to an external file in either of the following file types (determined by the
extension of the filename supplied)

- Bonus tools files (*.lay)

- Comma delimited files (*.cdf, *.csv)

- Proprietary snapshot files (*.ssl)

Function AecLKeyOverrides
Parameters: <none>
Returns: O if overrides are not enabled or available, 1 otherwise

Example: (setg useril (AecLKeyOverrides))



Function: AecTogglelLKeyOverrides
Parameters: <none>
Returns: 1 if overrides are subsequently enabled, O otherwise

Example: (setqg useri2 (AecToggleLKeyOverrides))

AecToggleLKeyOverrides is used to invert the status of the Overrides Enabled
flag. A short message is displayed on the command line to indicate the new
status of the global override enabled flag. Can be used in conjunction with

the AecLKeyOverrides function.

Function: AecImportLayerKeyingStyle
Parameters: FileName : String

LayerKeyStyle : String

Returns: T if success, Nil otherwise

Example: (AecImportLayerKeyingStyle "c:\\MyStds.dwg" "MyLayering")

AeclImportLayerKeyingStyle is used to force import of a layer key style from
an external drawing into the current one. Note the requirement for two '\'

as path directory seperators.

As seen in the example it requires a full path name or for the file to be in

the AutoCAD search path, followed by the textual name of the key style.

Function: AecSetCurrentLayerKeying
Parameters: KeyStyle : String
Returns: T if success, Nil otherwise

Example: (AecSetCurrentLayerKeying "AIA (256 Color)")

AecSetCurrentLayerKeying switch the current key style to the one supplied,
but if and only if that style exists in the drawing. Can be used in

conjunction with AecImportLayerKeyingStyle to import and the activate a key
style.

Function: AecSetLayerKeyOverride
Parameters: OverrideName : String
OverrideValue : String

Returns: T if successful, Nil otherwise

Example: (AecSetLayerKeyOverride "Status" "Demo")

AecSetLayerKeyOverride is used to apply a new override value. The example
above applies the demolition override on AIA (256 Color)'s status field.

Known problems: Calling this with OverrideValue set to "" will *not* clear
the override value, and this will remain in the final release version. A
workaround is to supply a value which is invalid for the format of the



field. In the example above, you could supply the string "<none>". This is
not valid for the status field, and so this override will be subsequently
ignored. Alternatively, you could always supply a string that is invalid for
all layers, such as "*"

Function: AecExpandLayerKey
Parameter: LayerKey: String
Returns: LayerName: String

Example: (setg USERS1 (AecExpandLayerKey "WALL"))

AecExpandLayerKey converts a supplied key name to the layer name that would
be generated (including current override settings) using the current key

style. Note that this function does not actually generate the layer, it is

for information purposes only.

Function: AecGenerateLayerKey
Parameters: LayerKey : String
Returns: LayerName: String

Example: (setg USERS1 (AecGeneratelayerKey "WALL"))

AecGenerateLayerKey is identical to AecExpandLayerKey *except* that it also
generates the layer if not already in existance in the drawing.

Function: AecLayerKeyList
Parameters: <none>
Returns: DefinedKeys : Resbuf

AecLayerKeyList returns a resbuf list of strings, defining all of the
currently defined keys for the active layer key style.

Function: AecSetLegacyLayerKey
Parameters: LegacyKey : Short
Returns: T if successful, Nil otherwise

Example: (AecSetLegacyLayerKey 1)

AecSetLegacyLayerKey can be used to flag the key style as being equivalent
to a Release 1 keying system, so that when a drawing is saved as R14 layer
keying will still work in Architectural Desktop Release 1. The numerical
value is identical to one of the values available in the Release 1 drawing
setup routine, i.e.

1 = AD 98 - 256 Color

2 =AD 98 - 16 Color

3=AIA

4 =BS1192



5 =SDESK

6 = ASG

7 = None (i.e. current layer)

For this to work, the drawing in which the key style is stored obviously
needs to be saved.

Mark Webb, Building Solutions Division
Autodesk., Inc
http://www.autodesk.com/archdesktop




