

Abbildung 1 – Einfache harmonische Schwingung

6

10

Eine Fourier-Reihe ist eine lineare Kombination aus Sinus- und Kosinusfunktionen, die zum Annähern an periodische Funktionen dient. Anders ausgedrückt erfüllt eine Fourier-Reihe bei periodischen Funktionen die gleiche Aufgabe wie eine Taylor-Reihe bei allgemeinen Funktionen.

2

Nicht-periodische Lasten sind entweder von kurzer (Impuls) oder von langer Dauer. Ein Beispiel ist ein Stoßereignis, das stark ansteigt und dann wieder abebbt, z.B. die Druckwelle einer Bombenexplosion an einem Gebäude. Ob Sie in einem bestimmten Fall eine dynamische Zeit- oder eine Frequenzanalyse ausführen sollten, hängt davon ab, ob die Lasten periodisch sind oder nicht. Wenn die Lastkraft periodisch ist, sollten Sie eine dynamische Frequenzanalyse ausführen. Entsprechend ist eine dynamische Zeitanalyse besser geeignet, wenn die Last

Abbildung 3 – Impulslast

Abbildung 4 – Last längerer Dauer

Sie können mit Pro/MECHANICA MOTION die folgenden dynamischen Analysen ausführen: Dynamische Zeitanalyse (Dynamic Time), Dynamische Frequenzanalyse (Dynamic Frequency), Dynamische Stoßanalyse (Dynamic Shock) und Stochastische Antwortanalyse (Dynamic Random). Dieses Dokument beschreibt hauptsächlich die Dynamische Zeitanalyse (Dynamic Time) und die Dynamische Frequenzanalyse (Dynamic Frequency).

Dynamische Zeitanalyse – Pro/MECHANICA berechnet Verschiebungen, Geschwindigkeiten, Beschleunigungen und Spannungen im Modell, die in unterschiedlichen Zeitabständen als Antwort auf eine zeitveränderliche Last auftreten. Pro/MECHANICA berechnet zudem alle für dynamische Zeitanalysen gültigen Meßgrößen, die Sie für das Modell definiert haben.

Dynamische Frequenzanalyse - Pro/MECHANICA berechnet Amplitude und Phase von Verschiebungen, Geschwindigkeiten, Beschleunigungen und Spannungen im Modell, die als Antwort auf eine oszillerende Last mit unterschiedlichen Frequenzen auftreten. Pro/MECHANICA berechnet zudem alle für dynamische Frequenzanalysen gültigen Meßgrößen, die Sie für das Modell definiert haben.

Die folgende Verfahrensweise beschreibt, wie Sie eine dynamische Zeit- und Frequenzanalyse an einem Auspuffrohr ausführen. Um zu bestimmen, ob das Auspuffrohr richtig ausgelegt ist, müssen Sie folgende Fragen beantworten:

- Widersteht die Konstruktion einer halbsinusförmigen Stoßlast von 20 g und einer Dauer von 10 ms, die typischerweise bei schnellen ٠ Geländefahrten auftritt?
- Wie wirken sich die Schwingungsfrequenzen des Motors auf die Konstruktion aus? Entsteht ein Problem durch Materialermüdung?

Die o.g. Probleme lösen Sie, indem Sie die Verformungen und Spannungen analysieren, die bei Geländefahrten bzw. aufgrund der Befestigung am Motor auftreten.

In diesem Beispiel arbeiten Sie mit der Richtung der Fußpunkterregung. Dazu muß die Analysestudie mindestes eine eingespannte Modalanalyse enthalten. Wenn Sie im Modell keine Lasten definiert haben, müssen Sie bei der Definition der Analyse die Option Fußpunkterregung (Base Excitation) wählen.

Mit der dynamischen Zeitanalyse bzw. der dynamischen Frequenzanalyse können Sie im allgemeinen zwei Probleme lösen:

1) Das System ist fest eingespannt, bei der Last tritt Zeit- oder Frequenzmodulation auf. Dies ist z.B. der Fall, wenn Sie mit einem Hammer auf ein Auspuffrohr schlagen.

2) Die Befestigungen halten nicht nur das Modell, sondern übertragen auch die Schwingungen. Ein Beispiel dafür ist der Flansch, mit dem das Auspuffrohr eines Motorrads am Motor befestigt ist. Dieser Vorgang wird allgemein als Fußpunkterregung bezeichnet.

Pro/MECHANICA errechnet mit der Option Fußpunkterregung (Base Excitation) Ergebnisse, die sich auf die Basis oder auf Lager beziehen

Bei Problemen vom Typ Fußpunkterregung (A) erstellt Pro/MECHANICA einen Bericht über Verformungen, Geschwindigkeiten und andere Größen mit Bezug auf die Basis – also mit einem gewissen Abstand zum Modell.

Bei Problemen vom Typ modulierte Schwerkraft (B) erstellt Pro/MECHANICA einen Bericht über Verformungen, Geschwindigkeiten und andere Größen mit Bezug auf den Mechanismus. So wird z.B. die Bewegung eines Auspuffrohrs am Zylinderkopf ermittelt.

Betrachten Sie folgendes Diagramm:

Hinweis: Das oben dargestellte Diagramm trifft nicht für alle Meßgrößentypen genau zu. Die Spannungen sind in beiden Fällen gleich, doch die Verformungen, Geschwindigkeiten und Beschleunigungen unterscheiden sich. Der Unterschied dieser Größen beruht auf dem Referenzrahmen, in dem sie ermittelt werden.

Der Wechsel von einem Bild zum anderen ist bei Zeitproblemen ein recht einfacher Vorgang, ist aber bei Frequenzproblemen aufgrund der Phasenproblematik komplexer. Spannungen bleiben jedoch unabhängig vom Einzelbild gleich.

Verfahrensweise

 Das Bauteil aus Abbildung 6 wurde im unabhängigen Modus von Pro/MECHANICA erzeugt. Beachten Sie, daß es sich um ein Halbmodell des Auspuffrohrs handelt. Aufgrund der Lastrichtung können Sie das Modell vereinfachen, indem Sie symmetrische Randbedingungen hinzufügen und die Analyse nur am halben Modell ausführen. Dieses Verfahren läßt zwar alle unsymmetrischen Eigenmoden außer acht, doch da dieses Beispiel nur über phasengleiche Lasten verfügt, spielt dies keine Rolle.

Abbildung 6

2. Wählen Sie Modell > Randbedingungen > Kurve (Model > Constraints > Curve), um allen Kurven in der xy-Ebene symmetrische Randbedingungen zuzuweisen. Wählen Sie Neu (New), und geben Sie dem Randbedingungssatz einen Namen, der sich vom vorgegebenen Namen unterscheidet. Beenden Sie die Definition der Randbedingungen im Modell, indem Sie die Verschiebung der beiden Schalenelemente am Zylinderkopf in x- und y-Richtung einschränken.

Abbildung 8

 Erzeugen Sie mit Modell > Lasten > Gravitation (Model > Loads > Gravity) eine Einheits-Gravitationskraft. Verwenden Sie als Einheitensystem in dieser Analyse IPS (Inch Pound Seconds).

4. Erzeugen Sie eine Modalanalyse, indem Sie zunächst Analyse (Analysis) wählen, dann die Option Modal (Modal) und anschließend Neu (New). Da Pro/MECHANICA mit einer Modalanalyse alle dynamischen Probleme löst, hängt die Qualität der Ergebnisse der dynamischen Analyse direkt von der Genauigkeit der Ergebnisse der Modalanalyse ab. Überprüfen Sie daher unbedingt die Werte für die prozentuale Konvergenz und die konvergierten Größen im Dialogfenster Definition der Modalanalyse (Modal Analysis Definition). Die Anzahl der Eigenmoden, die in der Modalanalyse erfaßt werden, ist ebenfalls von Bedeutung. Um festzustellen, ob Sie eine ausreichende Anzahl von Eigenmoden in der Modalanalyse erfassen, vergewissern Sie sich, daß Sie in den Dialogfenstern für dynamische Zeit- bzw. Frequenzanalysen das Kontrollkästchen Massenbeteiligungsfaktoren (Mass Participation Factors) aktiviert haben. Darüber hinaus können Sie eine dynamische Stoßanalyse usführen, um den Massenbeteiligungsfaktor einzeln zu bestimmen. Wenn Sie die gleiche Belastungsart (Fußpunkterregung bzw. aufgebrachte Lasten) in einer dynamischen Zeit- und Stoßanalyse vergleichen, können Sie davon ausgehen, daß die dynamische Zeithanalyse ordnungsgemäß verläuft, wenn der Massenbeteiligungsfaktor über 80% liegt. Der Massenbeteiligungsfaktor iber Rufpunkterregung vergigbar. Um die Genauigkeit einer dynamischen Zeit- oder Frequenzanalyse mit einer modulierenden Last zu bestimmen, müssen Sie die Analyse mindestens zweimal durchführen und dabei jedes Mal die Anzahl der erfaßten Eigenmoden vergrößern und die prozentuale Veränderung berechnen.

Name	lysis Definitio	n			×
p_modes					
Description					
) Constantista					_
sum const			C Corr	otrained	
			C Und	constrained	
			, □ Wit	h rigid mode sea	arch
			тт тт		
Modes	Temperature Distribution	Output	Convergence	Excluded Elements	
— Modes —			1 1		
Number of	f Modes				
C All Modes	in Frequency R	ange			
					-1
Number of Mc	des	4			<u> </u>
ritamber of the	1003	+ 			-
Minimum Freq	uency	0			_1
Maximum Free	quency	0			
<u> </u>					
				OK Ca	incel

Abbildung 10

Modes	Temperature Distribution	Output	Convergence	Excluded Elements
Calculate -			Plot	i
☑ Stresses				
Rotations			Plotting Grid	i 6 🚆
F Reactions				
-			[OK Cancel

Modes	Temperature Distribution	Output	Convergence	Excluded Elements
Method —			-	i
Multi-Pass Ada	aptive			•
- Polynomial Or	rder	— Limits —		
Minimum Maximum	1 ± 9 ±	Percent (Convergence 1	0
Converge on C Frequency				
C Frequency,	Local Displacem	ent and Loca	al Strain Energy	
Frequency,	Local Displacem	ient, Local St	rain Energy and RI	MS Stress
			[OK Cancel

Abbildung 12

5. Definieren Sie gültige Meßgrößen, indem Sie Modell > Meßgrößen (Model > Measures) wählen. Das Dialogfenster aus Abbildung 13 erscheint. Um dynamische Analysen zu definieren, aktivieren Sie das Kontrollkästchen Zeit/Frequenzberechnung (Time/Freq Eval.). Meßgrößen bilden einen wesentlichen Teil aller dynamischen Analysen. Mit Meßgrößen können Sie die Ergebnisse verschiedener Größen an jedem beliebigen Punkt im Modell bestimmen. Pro/MECHANICA berechnet automatisch vordefinierte Meßgrößen für statische und Modalanalysen. Diese werden als vordefinierte Meßgrößen bezeichnet. Für dynamische Analysen müssen Sie jedoch zusätzliche Meßgrößen erzeugen.

Measure Definition	on la constante de la constante	
Measure Name:	measure1	
Description:]
-	Quantity: Stress	
Entities:	Not Selected Select/Review	
Thi	s measure will be calculated for these analysis types: Dynamic Shock Static Prestress Static Contact	
Accept	[Cancel

Das folgende Diagramm verdeutlicht, welche Meßgrößen Sie bei dynamischen Zeit- und Frequenzanalysen verwenden können. Darüber hinaus finden Sie im Dialogfenster **Meßgrößendefinition (Measure Definition)** die Analysen, für die eine bestimmte Meßgröße berechnet wird (siehe Abbildung 13).

6. Erzeugen Sie folgende Meßgrößen:

Meßgröße	Größe	Komponente	Raumberechnung	Zeit/Frequenzberechnung
Disp_y_max	Verlagerung	Y	Max. über Modell	pro Zeitschritt
Stress_vm_max	Beanspruchung	Von Mises	Max. über Modell	pro Zeitschritt
Accel_y_tip	Beschleunigung	Y	an einem Punkt	pro Zeitschritt

Abbildung 15

Die Meßgröße **Beschleunigung (Acceleration)** erzeugen Sie am Mittelpunkt der kreisförmigen Kurve an der Spitze des Auspuffsrohrs (das linke untere Ende in Abbildung 6).

Erzeugen Sie eine erste dynamische Zeitanalyse, geben Sie ihr den Namen pt_init (siehe Abbildung 16), und nehmen Sie in der Registerkarte Eigenmoden (Modes) folgende Einstellungen vor.

Einschließlich Moden (Modes Included) - Das Optionsfeld Alle (All) bedeutet lediglich, daß alle Eigenmoden, die von der Modalanalyse erfaßt werden, in die dynamische Analyse einfließen. Niedriger als angegebene Frequenz (Below Specified Frequency) bedeutet, daß nur Eigenmoden mit natürlichen Frequenzen unterhalb eines angegebenen Wertes in die dynamische Analyse einfließen. Anhand der Ergebnisse einer Stoßanalyse wurde festgestellt, daß alle Eigenmoden oberhalb einer Frequenz von 400 Hz nicht mehr wesentlich zur prozentualen Gesamtmasse beitragen, daher können diese aus den dynamischen Analysen ausgeschlossen werden.

Dämpfungskoeffizient (Damping Coefficient) – Wählen Sie in diesem Listenfeld den Dämpfungskoeffizienten für die Eigenmoden der Analyse. Beim Dämpfungskoeffizienten handelt es sich um einen Prozentsatz der kritischen Dämpfung. Ein Dämpfungskoeffizient von 100% bedeutet, daß ein Modell kritisch gedämpft ist und nicht frei schwingt. Ein Dämpfungskoeffizient von 1% bedeutet, daß die Amplitude über eine Schwingungsperiode um etwa 6% abklingt. Normalerweise wird eine einfache, gleichförmige Prozentzahl verwendet. Gehen Sie in diesem Fall von geringer Flexibilität am verschraubten Übergang zwischen dem Zylinderkopf und dem Auspuffflansch aus. Wählen Sie daher eine kritische Dämpfung von 3%.

- Im Listenfeld können Sie mit einem der folgenden drei Verfahren Dämpfungskoeffizienten zuweisen:
 Für alle Eigenmoden (For All Modes) Wählen Sie diese Option, wenn Sie allen Eigenmoden einen gemeinsamen Dämpfungskoeffizienten zuweisen möchten. Geben Sie in das Textfeld einen einzigen Wert ohne Prozentzeichen ein. Der vorgegebene Wert in diesem Feld beträgt 0. In der Voreinstellung ist das Optionsfeld Alle (All) ebenfalls aktiviert.
 - Für individuelle Eigenmoden (For Individual Modes) Wählen Sie diese Option, wenn Sie jedem Eigenmode in der Analyse einen eigenen Dämpfungskoeffizienten zuweisen oder einen Dämpfungskoeffizienten bearbeiten möchten, die Sie bereits eingegeben haben.
 - Frequenzfunktion (Function of Frequency) Wählen Sie diese Option, wenn Sie die Dämpfung als Funktion der Frequenz definieren möchten. Um eine neue oder eine vorhandene Funktion zu wählen, klicken Sie auf *f(x)*.

📎 Dynamic Time	Analysis Defin	iition		×
Name:				
pt_init				
Description:				
Initial time respond	e analysis			
Loading: Load P	unctions			-
🔽 Sum Load Set	s			
Lo	oad Set		Amplitude	
y_gravity		f(*) impulse		-
,	,			
Modes	Previous Analysi	s Output		
— Modes Included	, 1	·	· ·	
C All		400		
Below specifie	ed frequency:	J400		
— Damping Coeffi	cient (%)			
For all modes				<u> </u>
3				
			ОК	Cancel

In der Registerkarte Vorige Analyse (Previous Analysis) nehmen Sie folgende Einstellungen vor (siehe Abbildung 17).

Verwenden Sie Moden von der vorigen Designstudie (Use modes from previous design study) – Aktivieren Sie dieses Kontrollkästchen, wenn Sie in der dynamischen Analyse die Ergebnisse einer bereits ausgeführten Modalanalyse verwenden möchten. Wenn Sie diese Option nicht wählen, führt Pro/MECHANICA die Modalanalyse als Bestandteil der dynamischen Analyse durch. Ist mehr als eine Modalanalyse definiert, können Sie im Listenfeld wählen, welche Modalanalyse Sie in der Analyse verwenden möchten. Der Randbedingungssatz wird automatisch auf den Randbedingungssatz eingestellt, der in der zugeordneten Modalanalyse verwendet wird.

Modes	Previous	Analysis	Output		
Use modes from	n previous	design stu	dy		
Design Study:		p_modes	:		•
Modal Analysis:		p_modes	:		•
Constraint Set:		sym_con:	st		

Abbildung 17

- In der Registerkarte Ausgabe (Output) nehmen Sie folgende Einstellungen vor (siehe Abbildung 18).
 Spannungen (Stresses) Mit diesem Kontrollkästchen weisen Sie Pro/MECHANICA an, Spannungen zu berechnen. Falls Sie keine Spannungsergebnisse benötigen, können Sie Festplattenspeicher sparen und dieses Kontrollkästchen deaktivieren. Die für die Änalyse benötigte Zeit wird dadurch erheblich verkürzt. Rotationen (Rotations) – Mit diesem Kontrollkästchen weisen Sie Pro/MECHANICA an, für das gesamte Modell die
 - Rotationen um alle Achsen des globalen Koordinatensystems (GKS) zu berechnen. Auch wenn dieses Kontrollkästchen aktiviert ist, berechnet Pro/MECHANICA keine Rotationen, wenn Ihr Modell nur aus 3D-Volumenelementen, 2D-Volumenelementen oder 2D-Plattenelementen besteht. Für diese Elementtypen sind die Rotationen stets gleich Null.

Im ersten Durchgang berechnen Sie, welche Resonanzfrequenzen durch die zeitlich begrenzte halbsinusförmige Welle erregt werden. Im zweiten sowie in allen folgenden Durchgängen benötigen Sie einen detaillierten, vollständigen Ergebnissatz, damit Sie die gewünschten Farbflächenplots erzeugen können. Übernehmen Sie daher im Gruppenfeld **Ausgabeintervalle** (Output Intervals) die voreingestellte Option Automatische Intervalle innerhalb des Bereichs (Automatic Intervals within Range). Pro/MECHANICA wählt dann geeignete Intervalle, an denen Ergebnisse berichtet werden, berechnet jedoch nicht bei jedem Schritt alle Ergebnisse.

Geben Sie einen unteren Wert (Anfangszeit) und einen oberen Wert (Ende) für die Zeitspanne ein, über die Pro/MECHANICA Ergebnisse für eine dynamische Zeitanalyse ausgeben soll. Der voreingestellte Maximalwert ist **Automatisch (Automatic)** und entspricht dem dreifachen der Periode des ersten Eigenmodes, d.h., der Bereich deckt drei Schwingungen des ersten Eigenmodes ab. Verwenden Sie in dieser Analyse **Automatisch (Automatic)**.

Modes	Previous Analysis	Output	
- Calculate			,
🔽 Stresses			
Rotations			
— Output Intervals			
Automatic Interv	als within Range		▼
— Minimum Time			
0			
— Maximum Time)		
 Automatic 			
C User-defined	1		
0			

Abbildung 18

8. Ändern Sie die Amplitudenfunktion von der vorgegebenen Impulslast in den gewünschten halbsinusförmigen Impuls von 20 g und einer Dauer von 10 ms. Dazu klicken Sie auf f(x) neben dem Lastsatz y_gravity (siehe Abbildung 16). Erzeugen Sie eine neue Zeitfunktion mit dem Namen *half-sine*. Der Funktionswert wird mit dem Lastwert multipliziert. Um also die gewünschte Last von 20 g zu erzielen, muß die Sinusfunktion eine Amplitude von 20 aufweisen.

S Function Definition	×
Name:	
half_sine	_
Description:	
1	
Туре	
Symbolic	- ∎
	_
if(time<0.01,20*sin(pi*time/0.01),0)	
Available function components	
OK Review Can	cel

Abbildung 19

Klicken Sie auf Überprüfen (Review), um die halbsinusförmige Eingabe zwischen 0 und 0,025 grafisch darzustellen.

9. Erzeugen Sie eine erste dynamische Frequenzanalyse mit dem Namen pf_init. Das Dialogfenster zur Definition der dynamischen Frequenzanalyse ähnelt dem der dynamischen Zeitanalyse. Die Einstellungen in den Registerkarten Eigenmoden (Modes), Vorige Analyse (Previous Analysis) und Ausgabe (Output) sind identisch mit denen aus der dynamischen Zeitanalyse pt_init (siehe Abbildungen 16, 17 und 18). Eine neue Funktion in Pro/MECHANICA 2001 ermöglicht, für jede Last in einer dynamischen Frequenzanalyse die Phasenverschiebung anzugeben. Die Phasenfunktion wird in Radian definiert. Wenn die Frequenzphase Null beträgt, wird der Last ein Phasenwinkel von Null Grad über den Frequenzbereich zugewiesen. Belassen Sie den Wert in dieser Analyse bei Null.

👌 Dynamic Freq	Juency	Analysis				
Name:						
pf_init						
Description:						
Initial frequency sv	weep and	alysis				
	Function	\$				Ľ
load Set	(S	Amplitude		Phase	(radiane)	
		f(r)		f(n)	-	
IV Jy_gravity		J(*) unirorm		J(*) zer	0	
1						
	1					
Modes	Previo	us Analysis	Output			
Modes	Previo	us Analysis	Output			
Modes — Modes Included	Previo d	us Analysis	Output			
Modes — Modes Included C All	Previo d	us Analysis	Output			
Modes — Modes Included C All © Below specifie	Previo d ed fregue	us Analysis	Output			
Modes - Modes Included C All C Below specifie	Previo d ed freque	us Analysis	Output			
Modes Modes Included All Below specific Damping Coeffi	Previo d ed freque icient (%)	us Analysis ency: 400	Output			
Modes Modes Included All Below specific Damping Coeffi For all modes	Previo d ed freque icient (%)	us Analysis ency: 400	Output			
Modes Modes Included C All C Below specifie Damping Coeffi For all modes	Previo d ed freque icient (%)	us Analysis ency: 400	Output			
Modes — Modes Included C All C Below specifie — Damping Coeffi For all modes	Previo d ed freque icient (%)	us Analysis ency: 400	Output			
Modes Modes Included C All Below specifie Damping Coeffi For all modes	Previo d ed freque icient (%)	us Analysis ency: 400	Output			×
Modes Modes Included C All Below specific Damping Coeffi For all modes 3	Previo d ed freque icient (%)	us Analysis ency: 400	Output			
Modes Modes Included C All Below specific Damping Coeffi For all modes	Previo d ed freque icient (%)	us Analysis 400	Output			X
Modes Modes Included All Below specific Damping Coeffi For all modes	Previo d ed freque icient (%)	us Analysis ency: 400	Output			
Modes Modes Included C All Below specifie Damping Coeffi For all modes 3	Previo d ed freque icient (%)	us Analysis ency: 400	Output			×
Modes Modes Included C All Below specific Damping Coeffi For all modes 3	Previo d ed freque icient (%)	us Analysis	Output			
Modes Modes Included All Below specific Damping Coeffi For all modes	Previo d ed freque icient (%)	us Analysis	Output			_
Modes Modes Included C All Below specific Damping Coeffi For all modes	Previo d ed freque icient (%)	us Analysis ency: 400	Dutput			
Modes Modes Included C All Below specific Damping Coeffi For all modes	Previo d ed freque icient (%)	us Analysis	Output			X
Modes Modes Included All Below specific Damping Coeffi For all modes	Previo d ed freque icient (%)	us Analysis	Output			X
Modes Modes Included All Below specific Damping Coeffi For all modes 3	Previo d ed freque icient (%)	us Analysis	Output			
Modes Modes Included All Below specific For all modes	Previo d ed freque icient (%)	us Analysis	Output			X
Modes Modes Included All Below specific For all modes	Previo d ed freque icient (%)	us Analysis	Output			×
Modes Modes Included All Below specifie Damping Coeffi For all modes	Previo d ed freque icient (%)	us Analysis	Output			×
Modes Modes Included All Below specifie Damping Coeffi For all modes	Previo d ed freque icient (%)	us Analysis	Output		ΠΚ	

10. Ändern Sie die Amplitudenfunktion von der vorgegebenen gleichförmigen Last in die gewünschte Funktion. Klicken Sie dazu auf *f(x)* neben dem Lastensatz y_gravity. Erzeugen Sie eine neue Funktion vom Typ **Tabelle (Table)** mit dem Namen engine_input. Verwenden Sie hierfür die Daten aus der Tabelle in Abbildung 23. Stellen Sie die Daten zwischen 2 und 3200 Hz grafisch dar, um sie zu überprüfen. Der hier gezeigte Graph verfügt über eine logarithmische y-Achse.

lame: engine_input Description: Various frequen:	cy and G levels fo a r	motorcycle engir	ne	
engine_input rescription: /arious frequen	cy and G levels fo a r	motorcycle engir	ne	
escription: /arious frequen:	cy and G levels fo a r	motorcycle engir	ne	
/arious frequen	cy and G levels to a r	notorcycle engir	ne	
				_
- Tupe				
Table				
Table				Ľ
frequency	•	Value		
1	2.000000	0.300000	_	Add Row
2	120.000000	6.000000		Delete
3	270.000000	2.000000		Clear All
4	376.000000	11.000000		Import
5	640.000000	2.500000	•	
Linear	Log]	•	
		Πκ	Beview	1 Cancel

Frequenz	Wert
2	0.3
120	6
270	2
376	11
640	2.5
770	8
1170	1.5
1360	1.5
1920	4
2880	0.4
3200	0.4

Abbildung 23

11. Mit einem ersten Rechenlauf sowohl für die dynamische Zeitanalyse als auch für die dynamische Frequenzanalyse können Sie feststellen, zu welchem Zeitpunkt bzw. bei welcher Frequenz besonders hohe Spannungen bzw. Verformungen auftreten. Sobald Sie den Zeit- und Frequenzbereich kennen, in dem diese höchsten Spannungen und Verformungen auftreten, führen Sie eine endgültige dynamische Zeit- und Frequenzanalyse durch, um an diesen Stellen vollständige Ergebnisse zu berechnen. Die Ergebnisse für die definierten Meßgrößen der ursprünglichen dynamischen Zeitanalyse sind in den Abbildungen 25, 26 und 27 dargestellt. Um diese Darstellung der Ergebnisse zu erzielen, wurde im Dialogfenster Inhalte für Ergebnisfenster definieren (Define Contents for Result Window) das Kontrollkästchen Markierungen (Markers) aktiviert.

Abbildung 26 – Maximale Verformung in y-Richtung für Modell pro Zeitschritt

Abbildung 27 – Beschleunigung in y-Richtung an einem Punkt pro Zeitschritt

12. Wenn Sie die oben gezeigten Graphen untersuchen, können Sie mit der Option Teilgraph (Seg Graph) die Zeiten bestimmen, an denen Spitzenwerte bei Spannung, Verformung und Beschleunigung auftreten. Diese Ergebnisse zeigen, daß die größten Spannungen, Verformungen und Beschleunigungen im Zeitbereich zwischen 0 und 0,03 Sekunden auftreten.

Abbildung 28 - Maximale Von Mises-Spannung für Modell pro Zeitschritt zwischen 0 und 0,03 s

 Erzeugen Sie eine neue Zeitanalyse mit dem Namen pt_final. Gehen Sie von der ursprünglichen dynamischen Zeitanalyse pt_init aus, und übernehmen Sie die Einstellungen außer denen in der Registerkarte Ausgabe (Output).

Wenn Sie im Gruppenfeld Ausgabeintervalle (Output Intervals) die Option Automatische Intervalle innerhalb des Bereichs (Automatic Intervals within Range) wählen, berechnet Pro/MECHANICA nur die Meßgrößen. Bei pt_init war dies der Fall. Wenn Sie Benutzerdefinierte Ausgabeintervalle (User-defined Output Intervals) wählen, können Sie unter folgenden Optionen wählen:

- Anzahl der Master-Intervalle (Number of Master Intervals) Geben Sie in diesem Textfeld die Anzahl der Master-Intervalle an, für die Pro/MECHANICA Ergebnisse ausgeben soll. Sie können bis zu 999 Intervalle angeben. Für jedes Intervall wird in die Tabelle eine Zeile eingefügt. In der Regel nimmt die Rechenzeit mit der Anzahl der Intervalle zu.
- Intervalle der Meßgrößenausgabe pro Master-Intervall (Measure Output Intervals per Master Interval) Geben Sie in dieses Textfeld die Anzahl der Zwischenpunkte ein, an denen das Programm nur Meßgrößen berechnen soll.

Klicken Sie auf **Benutzerdefinierte Schritte (User-Defined Steps)**, um die Master-Intervalle zu definieren und an den gewünschten Zeitpunkten vollständige Ergebnisse zu ermitteln. Da die Spannungsspitzen bei t = 0.0114s und t = 0.0234s auftreten (siehe Abbildung 28), wählen Sie für diese Zeitpunkte vollständige Ergebnisse.

🔯 Dynamic Time Analysis Definition 🛛 🛛 🔀						
Name:						
pt_final						
Description:						
Final time respond	e analysis					
Loading: Load Functions						
Sum Load Set	▼ Sum Load Sets					
Lo	oad Set	Amplitude				
I y_gravity		f(*) half_sine				
Modes Calculate Stresses	Previous Analysis	s Output				
Output Intervals						
User-defined Output Intervals						
Number of Master Intervals						
0. 0.0000	00	🔽 Full results				
1. 0.0114	00	Full results	User-defined Steps			
2. 0.0234	00	Full results	Space Equally			
3. 0.0300	00	Full results				
Measures Output Intervals per Master Interval 10						
			OK Cancel			

Abbildung 29

14. Der Farbflächenplot der endgültigen Von Mises-Spannung zum Zeitpunkt 11,4 ms ist in Abbildung 30 dargestellt.

Abbildung 30 – Farbflächenplot der Von Mises-Spannung für Zeitschritt 1 (11,4 ms)

15. Die Ergebnisse der ursprünglichen dynamischen Frequenzanalyse pf_init sind in den Abbildungen 31, 32 und 33 dargestellt. Die Frequenz für maximale Spannung und Beschleunigung liegt bei 395 Hz. Die Frequenz der maximalen y-Verformung liegt bei 138,9 Hz. Eine detailliertere Ansicht erhalten Sie mit **Teilgraph (Seg Graph)**.

Abbildung 31 - Maximale Von Mises-Spannung für Modell pro Frequenzschritt

Abbildung 32 – Maximale Verformung in y-Richtung für das Modell pro Frequenzschritt

Abbildung 33 - Beschleunigung in y-Richtung an einem Punkt pro Frequenzschritt

16. Erzeugen Sie zum Abschluß eine neue dynamische Frequenzanalyse mit dem Namen pf_final. Gehen Sie von der ursprünglichen dynamischen Frequenzanalyse pf_init aus, und übernehmen Sie sämtliche Einstellungen außer denen in der Registerkarte Ausgabe (Output). Wählen Sie vollständige Ergebnisse für die Frequenzen 138,9Hz und 395Hz, da die ursprüngliche Analyse dort die größten Spannungen, Beschleunigungen und Verformungen ermittelt hat.

📎 Dynamic Fre	equency Analysis		×				
Name:							
pf_final							
Description:							
Final frequency :	sweep analysis						
Loading: Load Functions							
Sum Load S	✓ Sum Load Sets						
Load Se	et Amp	litude	Phase (radians)				
V gravity	f(x) end	ine input 🧃	f(x) zero				
Modes Previous Analysis Output							
Calculate — Stresses	<u> </u>						
	- Output Intervais						
User-defined C)utput Intervals		<u> </u>				
Number of Mas	ter Intervals	3	-				
0. 0.000)000	Full results					
1. 138.9	900000	🔽 Full results	User-defined Steps				
2. 395.0	00000	🔽 Full results	Space Equally				
3. 500.0	00000	Full results					
Measures Output Intervals per Master Interval 10 🚊							
			OK Cancel				

17. Die folgende Abbildung zeigt den Farbflächenplot der Von Mises-Spannung an Schritt 2 bei 395 Hz. Der Motor des Motorrads zeigt einen Spitzenwert nahe an der natürlichen Frequenz des dritten Auspuffrohrs. Dies führt zu sehr hohen Spannungen im Bereich des Auspuffflansches.

Abbildung 35 – Farbflächenplot der Von Mises-Spannung bei 395 Hz

Zusammenfassung

Rufen Sie sich die allgemeine Gleichung für dynamische Analysen ins Gedächtnis: M(a)+C(v)+K(x)=F(Zeit oder Frequenz). Wenn Sie eine statische Analyse ausführen, sind nur die Steifigkeit (K) und die externe Kraft (F) von Bedeutung. In einer Modalanalyse müssen Sie darüber hinaus die Masse (M) korrekt modellieren. Beim Ausführen einer dynamischen Analyse müssen Sie auch noch die Dämpfung (C) berücksichtigen.

Die Genauigkeit jeder dynamischen Analyse hängt stark von der Qualität der Modallösung ab, sowohl bei der Frage, wie gut die Modalanalyse konvergiert ist als auch bei der Prüfung, ob ausrechend viele Eigenmoden erfaßt wurden. Bei Problemen vom Typ Fußpunkterregung, wie beim Auspuffrohr, erhalten Sie durch das Ausführen einer dynamischen Stoßanalyse die prozentuale Gesamtmasse. Sie können die Massenbeteiligung auch während einer dynamischen Zeit- oder Frequenzanalyse berechnen und dazu nur die Fußpunkterregung verwenden.

Erzeugen Sie vor dem Ausführen der ursprünglichen dynamischen Analyse Meßgrößen. Nur wenn Sie Master-Intervalle definiert haben, werden Ergebnisse ausgegeben.

Master-Intervalle sind Intervalle, die vollständige Ergebnisse ausgeben. Sub-Intervalle sind Intervalle, die nur Meßgrößen ausgeben.

[an error occurred while processing this directive]