Mathcad Professional 14.0
Felix Stark
Parametric Technology Corporation
Felix Stark
1
4AE77278-A4D6-44A6-BAE5-E0D594201A18
3A1E0EEE-BEC1-4652-9EDD-04AFAAEC204D
00000000-0000-0000-0000-000000000000
00000000-0000-0000-0000-000000000000
- iVBORw0KGgoAAAANSUhEUgAAAGAAAAAlCAYAAAC9DeznAAAAAXNSR0IArs4c6QAAAARnQU1B
AACxjwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAA
AoBJREFUaEPtmUuSwiAQhp3bus7aI3gDDuDeJVXewUU2Lt1m5Q0YmsdICBjaSaAraaosnQny
+D/6hT9KtwO3dgoAAG7tFDi0m5pnNt6HZWirAANoqz9bQGP9GQAD0Aq8Xi9IhbOv5/PZWqfV
5icRA87ns7rf7wYEfHa1yWqbpjQwCQD+hAMEBtDweFyv1xGAx+PRcDV1piZhAX6rEAcAArTj
8WheW29ZAOCPazcA4N0RnH74e+stu8M9bF4NUnUm++qUHNKoB9m57GzaxzwTffKLvTiozKNR
/x0D6JXwwhsQQk2k1P8Xjkws9h+YlMoO7L8BtHBD1VxOL4LTOyjZzZxY3b+LzCRnAb2USn5j
AeB/wfWcTifzDgER3m+3W84+jQmXkK4mbOFEsXjgMmKB30NpQHLqapIANCjQ4ysXFGYhPgb4
KvVzSmhPULKarUIHPz+IFwqeBwCuyu5t3gLeoNAAoAgKA2/82RdIhQesqNun64fcs6KBCzqV
A7CDWZ8/jhMTC+i163HBHA0gTvtwAPAnsEAjRJcv5sfGAB2ixQwAED0+OHm3Zrc3yoLgy5fL
xT5wOXiZC0JoRaZrlAV1UmUyUbviEbDAKpZMQ0FsqD59EAYYWw3Czq9M64AghXzXAPpkx0ID
EH+Dm4CAdkHxwdxFIUbAGndciBFQP44B4ZJ8LKi1zGROXXBVUGt9a81D4rYrXdYXXBWspUrF
cUkA+Muzw2CGThMrqrbgVGQB4K4KFlSk8lCkAZRdFVRWbOHpGMDCgmKHIwtgXHkWXBdjd06k
P10A5u7F/QoF6ejcVQERQbHLoAEgV9ZzHYDlyf2xCtCwAOyqN9SfATSGyQAaA/gFD7vy8XJJ
cV8AAAAASUVORK5CYII=
- iVBORw0KGgoAAAANSUhEUgAAAFgAAAARCAYAAABZwmuQAAAAAXNSR0IArs4c6QAAAARnQU1B
AACxjwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAA
AldJREFUWEftlzG6wiAMx/tu68zsEbwBB3B37Pd5B4cujq6degNekkJIeaHQKj4Hu6gtheTH
P//gj4Or+17tCCDg79WOQNdu6u/M5A7vxjBN07uX/Nf1GgEenO2sG5TUwOySuzDW9G5sgWHs
nYH1us64PrPA2BvsQcmY0fUG72nvYm7hmZ6jTGWZ7WCd1ahsSh4DyCf0FzBMTiDKwW4KA7aX
48jND/etJ0+gffJjb3lDBgswhQDks5p4BOB5154FjAGtzYGAVZuAzQ0J1gReHLOYryI3GG80
mS82J6pXHatV7HxPlgTsGO9kKB+xi7QgKlSUSiCKz5RyfzweVG7H45E+L5cLfV6vVxESxpBX
fhFoMkAqEh/hxuehwNp9pnS1nLz11EAWCp6BRfVJHw3lpvgPKsVbQppUyDlApa7qPRhVjN/v
9zujyas/EQB7YBRDugEYiwSQB1xQZU7ZZEFlW1sB7EMmgMLsWcH+ufidJoUjbrcbQ5WAw/fT
6cRstPe3KjeMrwfsa5iaXQpsvQEP9inAfmdJ0mnDEKVcAIwKlY0t/V4HeLuCwROEp1d4sKLI
dYA45zOAMUD203rAWqNCqOfzmaSyzyL26DiJuXQUTJosVgDbpThtCD9b8fQY7+KYRkcStANW
bTwLGjoXgq/x+RB3TygLE8g0OfTbw+HATQ5ht25yc+9WzsH+HqYYz8BLL2cO7PW+Ytku896f
SuHlfzRqjmmqHl99TNsj+gbvvBzwwq+VgN/3R6MBrR1TNgBMtZltAMGLY6x1x50duX3EK40A
f0RuHxHELwQNLibuFA5BAAAAAElFTkSuQmCC
- iVBORw0KGgoAAAANSUhEUgAAAOkAAABTCAYAAAB6ZiDwAAAAAXNSR0IArs4c6QAAAARnQU1B
AACxjwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAA
DNBJREFUeF7tXT1SAzsM5t2WOjVH4AY5AD1lZrgDxTaUtKm4QZ7/V9ZatryxNnnPYoaBJF5Z
/uTPkr3sxz838/WiX4qAIvC8CFiS6tdYBEy07cI31qhamxYBnUkCoVeSCoA6sUklqUDwlaQC
oO4w+ff3t+Oq57vEk3Q5u/LMfp8u19XL6+V2Cu+/nC438AlzJMvtbK4/L8zm7GZSdtkOVBuW
SXq9XU6nm4PX4u1Ase953OF3FoMxLiErJV96O8Ix8K/dOMYHvOKc7fd8K02x7ZbDtGXM4+W8
Y84mroQYkx6vMefClGXS6+XkQM4vNkYve1jW70zvNHnW9nyS+hHYSZGIGRZMbgDZGBi7q80R
JIU9A3tusrYmql+o7h+jJSjdV/FcwPlXJjUckY3JC2ccPoKrH1X7YSHrHDgi6cUQ0hIVDmIv
SaPzO1Yl9sx7zoY0SQOuZoLCbJmRNGbXzkDWkfALZk7Ssi+7EOUSMxnH/uzq1S1uNZhsHIol
b6pkWv3GRNNYdDJ71Nj8+3uqpA1Jbc50q0gqC3KSxmzrJiIsHWBpnEgeSyJQ1rlr1tLovODP
wutoG9hNA0STgvKJ9BXHJvQxihfUnnS5hC2D6Q8WJxlJgy9xrL1j27ZHJXUYJOVLa9quPAsZ
cwFbIlapW/anOM4U50IpbT8rlK6/v7+uGnx7e3M/Pz8/3c+vry8wNJD5WQMOPhMTxPkOPssX
3dBByLBnl6H7tgRFkvr0HVkPSQrrf1hqwN/hihHBDSsRJFcGMgLNBN5vjeH7sQ9k0/m6Zv7r
soS9M/V+LSrlPWI3qJ23YHxpBb5TwGt494x59B6+ElfWpC/tZ+N4cJwtLmvWjyUoJkbsNhLT
vo7lrs2m9vefn5/kXSsLr8Ool9RulhqS0pWRt+T9NeNwRxF+YeMmBYKk0FCh3E0HTfggBEeo
fLgQnVuBgrU66C/Lzn4S+/OWfN8TJzkuJaj3WfPojka9p7vFlRf2j/GO1Q4+6CPfH01SFIPu
cpfwB48T2wWvMTEsXN/f39n9abgntb+/v7+DQiAn1jbccSFq71+5JG0RmZpyNEkj+83m+ZRq
M0gmsMJYcIunZnWSulNOc91yOZvMGeyZ39MKQ23Ci5OCApUPNnXaekQmLe9VCLzXfBBOVPFE
wmN+dpIS4+wkqc2UmJgww3JJ6hf3NjlBWgblbnlPyiqJCZZmJF1sOs4aolo8IyMud9HBhCN2
g6TokCTfC7siId9sxxPBLHiLOexabw4t57jJp96/I0UyLx2WSSt49435yUlKjbNB0tKtHov9
x8eHi9SYcpcTdMAFYq+cV3/tEhr2GkgK92L4JMsYzPZIce9kMqy7xxeInZWm3sa618KvwX7K
ZdHgkrFxhvdpHU/BwQS+t4gOofKMF7MJY6PeuUdohY1P0vIhymofjgHiTY2NHnOKBXcjVB0k
POwzfoH9NNd87k9pnHG8cY6hA0aCDHb/+fr6mg6OLGF7D442ZwSc+79pngL+4HkF/h6Bi5Nb
bFoTTj/vR4BP0n7begVYwhi3YIp4sW/BPAfaSlKBOChJBUAts03sjxmOGgGnHyUpB6XONkrS
TsDuam7L4PIhT9yb5tuHjgOhu/wad7GSdByWyZKSVADUiU0qSQWCryQVAHVik0pSgeArSQVA
ndikklQg+EpSAVAnNqkkFQi+klQA1IlNKkkFgq8kFQB1YpNKUoHgK0kFQJ3YpJJUIPhKUgFQ
JzapJBUIvpJUANSJTSpJBYKvJBUAdWKTSlKB4JdJClQmHq4WyB005xE3TpvYXwkDri972vX4
tsd+vEa2HyXpPbEhruWT1Bs4Xi1w1KDXx8fIR69EVQoL40j9MXwbBYOwHSWpAMA0SZ9FLXDk
oGtZBKsUgD+GR4qJYzzC/clmuDE+t60oSdsYdbeg9qTPpBaYBtVS5IPas12KkEIqhb72WIW4
k3+l/iJJsSJlGH1NidKIEcQ4em0tbCO8tsIDTPVKKGDQI+2pJO2mYPuC3oOjx6kFwsmOFfni
Z6sczSpEzVSE3MjntLFrt8izZa5HVJbrSSLXGZlqSpRAcrOpalnCqaTkWOqvPVrbQknKw6mr
1R6SVldWSbXAio5QpstDqhnUdKwEys2av01NLeAPU4kynhn4PTcUTMOqlqtsSlGlkuqPMbOU
pAyQepuMI+kBaoE9JO1WhBQgqVuwsI4QzPZQEK+ygPQoUbJULQvaYE4bCWqA7XvgXEnay0BG
+2EkPUItkEvSTZaKmeTgTJplM5vcoJxsS50Sfs5RoozBzlUzN6qWLPVKoj/OfGK00SadCPBJ
+mi1QNi/XeXh4YjRP47/8a3wLz9iNmspQo5VKdwe+GB9XNhfy7eqEiXS3b2Sqpb4QKmiUrlR
vuRNLM2kPJy6WvFJ2mVWG0+KgJJUIPBKUgFQJzapJBUIvpJUANSJTSpJBYKvJBUAdWKTSlKB
4CtJBUCd2KSSVCD4SlIBUCc2qSQVCL6SVADUiU0qSQWCryQVAHVik0pSgeArSQVAndikklQg
+EpSAVAnNqkkFQi+klQA1IlNKkkFgq8kFQB1YpNKUoHgK0kFQN1h8u/vb8dVz3eJklQgJnwh
MvQUjHv+8OXWI62xz/0Rqn2UCgJQNdjnXOdV1o/yc5oWy/zLtC0+E8voknzofb32ejndXkhF
NkYfRBMl6X7syCv5JPUmjlcLHEFSOHxgDz+fSqGUqQjuDYIlKH7YerW1Jan5jHrYm3IhPl7W
IJ8jqF1klaR7g3nsdc+vFjhYtY9LzBQGrOq3Lz52catxwsahWPIysmKSSunIvJpJ98XxIVf9
F9QCKeVCNmCRmMvldgplOi+TlB90T5nI2soeMreZEjxIHVmZCYStXv/+/rqM9vb25n5+fn66
n19fX2BoUBRsO+Jc3IyNiEnSWu7y0Xpwy96Do8epBe4FCinkdWfS0n427itjCVtTMrRVa5kQ
kZh2ZLHctdnU/v7z85MG3MrCPpPSpXQJOSXp3vn0gOv2kPRhaoF78YHEvJukwQmsiljRX7KE
wJh9f38nYkKSxt/f39/Xgrtw/RaKmPV5ZFWS7p1MD7huHEkPUAvci89QkhLj7CSpzZTwsAj/
3k/SCE4uREafMWm5u3c6HX7dMJIeoRa4F52RJKXG2SBp6STVYv/x8eFGdV+52w+MZtJ+zB52
BZ+kj1YL3AsRVMgzZSc4OOLegchVBPN/G3FyKoXGblQrdPdBkSofcXBk95+vr6/p4MgSdt/B
kb9nnX3XBpdK9fG3YfQ+6d55WrmOT1KBzicy2Tr8Kd4ntfiwbsE8D5BKUoFYKEkFQC2aPOCP
GY4aSm3RfwIf/ncuKEmPDCn4wwzUbdybrm/Tf0J4pMe9fWkm7UWM0V5JygBJm7ARUJKyoeI3
VJLysdKWbQSUpG2MulsoSbsh0wt0T3rsHFCSHov3/703zaQCEVaSCoA6sUklqUDwlaQCoE5s
UkkqEHwlqQCoE5tUkgoEX0kqAOrEJpWkAsFXkgqAOrFJJalA8JWkAqBObFJJKhD8MklL4l+P
UgvkDhorKJSu47SJ140WQGuNo8e3lq3a57L9KEnviQ1xLZ+k3sDxaoGjBr0uMuRTXJkq4AEk
Tf0xfBsFg7AdJakAwDRJg46PmUhQ+iMjaXxukvtgJsv/Mep85a5qWQT3O1ilcOMQ7k82w7Gg
H9BISToARGyC2pNSCn0ZSYPOayRxUUXPdMh/v/FgeVI/IBT5oBhX1KB1D0ND4TArrYkeyoYP
aQM92rtVCn3tYUTC4gPZUX+oNM5IUuxbiBgYT1o0Ix6Xc/bANzk+q2yIFCSo2HjN334BdCXp
gSSlunqcWmBNkQ8pAmbqeX7S+4ldUw6UyGR5tszlNylV/UDkjExQ1rOgUFiUDkVSoEbOdJUb
jYtF/jjcdbGaEvar1B9v8ilJeTh1teo93c3L3UJXWEUv7GNtP1gxLxI+f79CloqOkF/5w+Qj
1QzKxPBzXICkNX83/VV8y6oCn92czwXlw1UBAgqmGdJd3CA31xRjQPXHmFlKUgZIvU3GkfQA
tcAekhbV3A8mqVuwgMRm5n/NF7RoUP9uoiRPGoTSFlMC+8xp+je/p2ODoqRprDDCtoDqjzG5
lKQMkHqbDCPpEWqBXJJuslTMJAeTNJbXkSEbjOC/nqj5Bkt2V5qQmdSXqqvAmMuUcMFCC8XF
bQP813LO98ypwun4XzhK0l4GMtrzSfpotUDYP1bkM5M2qvVl//YhP7BZ99N+Mq6vfQbJVQEZ
4HGaFA+wIimCf4bELd/gQY6XB8V4rM5cXRYNr03/5/WFJ3D69xhwn4+UA6HfHaf3SlLOpOhs
wydpp2FtPiUCSlKBsCtJBUCd2KSSVCD4SlIBUCc2qSSdOPg69P8GAv8CQKqUSRJLDn8AAAAA
SUVORK5CYII=
- iVBORw0KGgoAAAANSUhEUgAAAH8AAAARCAYAAAD0Q3M5AAAAAXNSR0IArs4c6QAAAARnQU1B
AACxjwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAA
AotJREFUaEPtWNGxhCAM9LVMO3RCHVRhEz4ICSR5cICn70O5mZtRxBh22U305wi/bf3eiUAk
f/3eicD2zmWvVYPjLxjei0Ai39tY9+Fv3F7Q2N1hcHwz7mBXBhHzhw33Wz84fXjaXXFHE9gP
Z8wBUEXsYIFxLGHI/wLP0fBT82q5jAUQyt+dgcQlWSG4O8NeAeN68scWd9+sNuDeMgGhqC5f
f4hbYl5GvgtExw1gj0L3WfLBUm5S/n20jkWOgCNGgQiubkE+ucGl7CdRSfLrufTWopTvgPS4
gGLzknxyB7A2Xgp4icibh8hnlgj3pPHkMvoanlNsFjeDDGNou9Fw0bF0Ts1ce6gMXPcOy2DI
hRujIB9zp7xn8/w7X5UW3AGtXHrLqJJPik1Jc/IjaeQK8ZgI4McpwXQvkYzzOGnxOG8eZl1g
GAFQaDD4OD1DxYRnFKfavcfepDWuIanXathIJxQLwuF1P8f4hN1M/te5aYN8kBM0e6BMXfNz
g6ibHg2sTlSeR6ASNkgoNU70POEm5BSUW1E+Aa6bq9Z4TxHfXJe2X4mksSOn1c12c/w/yM92
aoKKqQPgJDG1xwVV3wY+kw+dcrjPOxuUjvHCcRYLkM/7DwRT2X4aJUfQ81vjRMz1yq93+A3s
8v4Yzf8m8r3VwCEwxIYgWdu+akJgw3TIVw2R7DXI9mX3nMyB13wfnKm8hHpbSlF9/Btd9+9t
Kv8DdnP5X04+3/3FTrOiRN2imhYcAd5rccMIi04xSv3T56zGgeqLoi3/zgD8s28N+n1aNY+y
Tpem8mz97lPNZ9SbsTKD58Oxa+XZzj/jeqIn4RmvL3xzDD9q9iL/UXTOLWaRP4fXo2Yv8h9F
59xifgGaoiQl7mKm4wAAAABJRU5ErkJggg==