Render methods, Compositing, Post-process and NPR in NX Render

Overview

What makes a good rendered image
Render methods in NX Render
Foregrounds and backgrounds
Post-processing effects
Compositing models in
photographic backgrounds
Non-photorealistic rendering
Radiosity

What makes a good rendered image

- Geometry
- Context
- Lighting
- Composition
 - Materials

Scene Geometry

- Scene geometry adds context
- Provides surfaces to cast shadows onto
- Provide reflections in raytraced objects
- Indication of scale and weight
 - Compositional element
- Create scenery libraries

Scene Geometry

Create your own scenery library Scenery provides surfaces to cast shadows onto Place model slightly above base plane

Setting the view

Define a view early in the image creation process Focusing on one view simplifies the problem

Setting the view – Frame Composition

The 3rds principle

Centres of interest coincide with vertical/horizontal thirds

Set horizon line, if applicable, level with upper or lower third line
 Negative space

Can be a good way to get a more interesting composition
 Experiment – there are no rules

Setting the view – Perspective

Photo-realism requires perspective view

- Distance defines the amount of foreshortening
- Use *Distance* equal to front clip plane as a starting point

Preferences>Visualization

What makes a good rendered image

- Scenery can help communicate design ideas and add realism
- Set up a view early on take time to compose the shot
- Lighting is key to communicating the objects' 3D form – borrow ideas from photography
- Develop a materials and textures library of your own
- Post process can add an extra touch of realism but its not always needed
 Copyright LightWork Design Ltd 2005

Working Quickly - Performance

Window size matters (smaller is better)
Resize render window
Sub-Region rendering
Work with smallest file possible
Modeling structure has an impact
Rendering control
Use lowest render mode that allows you to work

Setup	
Format 🛛	Raster Image 📃 🔽
Display	Nearest RGB 💌
Image Size	Fill View 💌
Resolution	Medium 💌
Plot Quality	Medium \star
X Size	1277
Y Size	838
DPI	180
🔽 Use Portrait i	Orientation
☐ Generate Sh I▼ Use Sub Rep	adows gion
Smooth Face	ets Coarse 1.00
.01	2.0
.01 Adv	anced Setup

View>Visualization>High Quality Image>Setup Shade

Working Quickly - Render Methods

Trade off time against quality

View>Visualization
High Quality Image
Copyright LightWork Design Ltd 2005

Flat Gouraud Phong Improved Preview Photorealistic Raytrace Raytrace/FFAA Radiosity

Preview renders for modelling verification

Higher render modes used to preview materials

Final render – No RT

Final render - RT

Global Illumination method

Render Methods – Super Sample

Super sampling internally renders an image Super Sample parameter times as large as the output resolution in width and height

- Image is scaled down to output resolution
- Sampling rate effectively increased
- Current render style used
- Can use a lower render mode
- Render time increases exponentially!

Method	Photo-Realistic	
<i>ta</i>	1 🚺 🙆	
Save	Plot	
	1	

Render Methods – Raytraced FFAA

Raytraced render method can suffer from pixel dropout where detailed features fall between samples

Raytraced FFAA renders the image internally then looks for areas of high frequency change and samples at a higher rate

This method is more efficient than the super sample technique

Raytrace FFAA

Raytraced

Render Methods – Glass Example

Render Methods- Detailed Bump maps

"Photo-Realistic"

"Raytraced/FFAA"

"Photo-Realistic" + super-sampling * 4

Render Method - Output Options

Render method

No ray-traced reflections/shadows

use photo-realistic

Scene contains Ray-traced shadows or reflections

use Raytraced

 Where very fine detail is lost with other render modes use *Raytraced/ffaa*

Rendering detailed bump maps

Use Raytraced/ffaa or *Photorealistic* with Super sampling
 Shadow Maps

Set shadow detail to Extra Fine

Raytrace optimisation - Options

Subdivision depth

- Default 0
- Use higher values when looking at a small part of a large model where raytrace materials are used

Raytrace Memory

- Memory allocated for the raytrace octree data
- If this memory is exceeded the octree data will be regenerated. For large models this can happen often and have a big impact on render time.
- Increase this to 128Mb for large models

File output

Tiff files at user defined resolution

- Image size defaults or user defined
- Format = raster image
- Render then save file
- QTVR panorama
- QTVR Object Movie
 - High or low quality settings
 - Number of images around the object

Increased smoothness of movement

anagenten	erences 🔀
Format F	Raster Image 📃
Display	Nearest RGB 💌
Image Size	User Defined 💌
Resolution	Medium
Plot Quality	Medium 💌
X Size	320
Y Size	240
DPI	300
🔽 Use Portrait (Orientation
Generate Sh	adows
Use Sub Reg	ion
Use Sub Reg	ion ts Coarse
Use Sub Reg	ts Coarse
Smooth Face	ts Coarse 1.00 2.00
Use Sub Reg Smooth Face .01 Advar	ts Coarse 1.00 2.00 nced Options

aniso.mov

Foregrounds

Fog Ground Fog Snow **TIF** Image Light Scatter Slower, but more accurate Depth Cue Useful for fades

Foregrounds - Depth Cue Fades

Depth Cue can be used to hide scene geometry edges
Near and Far distance parameters
Set Near distance to beyond the model
Set Far distance to before far clip plane

View > Visualization > Visual Effects > Foreground

Backgrounds

Clouds Set Detail high

Graduated
Plain
TIFF Image
Ray Cube and 2 planes
Important for RT reflections

View > Visualization > Visual Effects > Background

Post Process

Features relating to photographic lenses.

Depth of fieldLens Flare

Copyright LightWork Design Ltd 2005 View > Visualization > Visual Effects > Special Effects

Post Process

Lens Flare

- Burst of light caused by photographic optics
- Works well with animation
- Consider compositing afterwards for still images

Post Process – Depth of Field

Depth of field

- Image is blurred based on depth
- Simulation of real photographic lenses
- Focus plane can be defined

Shadow catcher can be used to composite a model into a photographic image

Create a bounded plane underneath your model

Set a tiff image background using a photo of a scene

Adjust the view to match the photo

Apply shadow catcher to the surface

KH 111 202

Stellay	🥬 Shadow Settings	×
the second se	Real-Time Shadows Environment or	r shadow catcher only 💌
	Senerate High Quality Image Sha	adows
	V Use Shadow Catcher	
	Show Current Shado	w Catcher
	Слания Сок	Apply Cancel
	whice subday	
059		

Set up lights that cast shadows

Try to approximate the light in the photographic background

Non-photorealistic Rendering

Artistic Image 8 styles with user parameters Cartoon ColourWash Pencil Shade Hand Drawn Ink Print Lines and shadows Rough Pencil Stipple

Solid styles

Vector Styles – Background shows through

У Artistic Imaç	je		×
		(
Current St	yle: Cartoor		¢
Outline Width			Thick
[ок		Cancel

View->Visualization->Artistic

Non-photorealistic Rendering

Non-photorealistic Rendering

Radiosity

- Radiosity is not a render method it is a lighting pre-processing step.
 - Light is emitted from the light sources to the surfaces in the scene
 - 2. The light from all of those surfaces is then emitted into the scene
 - 3. Step 2 is repeated until the required accuracy is reached
- Radiosity is suitable where large areas of the model are lit by secondary light (bounced off other surfaces)
- Not suitable for models floating in space as it requires surface to bounce light between
- Diffuse light only is considered so it is not suited to scenes where the majority of the materials are highly specular
- Radiosity is compute intensive

Radiosity

Set up lights as normal but with no ambient – radiosity calculates this accurately

Set render method to Radiosity

Advanced Image Options – Radiosity settings

- Always tick "Use Midpoint Sampling"
- Start with low Radiosity Quality and work upwards
- Distribute excess light will add in illumination that hasn't been computed - like an ambient light. As the solution progresses and becomes more accurate this effect is reduced

У Advanced Image	Options 🛛 🗙
T Allow Transparent S	hadows
Disable Raytracing	
🔲 Fixed Camera Viewin	ng
Super Sample	1
Subdivision Depth	
3	
)_	E
0	6
Raytrace Memory	4Mb 💌
Radiosity Quality	
	13
	<u> </u>
0	15
🔲 Distribute Excess Lig	jht
E and a set of a set	ng
Use Midpoint Samplii	10 7 10

Radiosity

Hybrid Radiosity

- Set render method to Hybrid Radiosity
- Hybrid radiosity calculates a solution for bounced light then removes the direct light
- Direct light and shadows are rendered in the normal way
- This avoids shadow artifacts while still giving secondary (bounced) light

🐓 Advanced Image	Options 🔀
T Allow Transparent S	hadows
Disable Raytracing	
🥅 Fixed Camera Viewin	ng .
Super Sample	1
Subdivision Depth	
3	
)_	O
0	6
Raytrace Memory	4Mb 💌
Radiosity Quality	
	13
	<u> </u>
0	15
🔲 Distribute Excess Lig	iht
🔽 Use Midpoint Samplin	ng

Hybrid Radiosity

