
 Customized Programming

contact us at http://forums.DoubleCAD.com

Parametric Part Manager

Introduction
Parametric parts (PPM) are defined using a text description (script). The script defines the structure, editable properties, and
output that result in a parametrically editable part.

The script must be saved with a *.PPM extension. The name of the file determines the name of the part.

Examining a Script
A simple example of a parametric part is a rectangle where the width, height and rotation angle are defined though
parameters. The script of such part might look as follows:

 // Here is a description of simple rectangle.
 H = Parameter(“Height”, 5, LINEAR, Interval(0, 1 00));
 L = Parameter(“Length”, 10, LINEAR, Interval(0, 2 00));
 Angle = Parameter(“Angle”, 0, ANGULAR, Interval(0 , 360);
 Rect1 = Rectangle(H, L);
 Rect = RotateZ(Rect1, Angle);
 Output(Rect);

Let’s examine each line of this example:

LINE 1
 // Here is a description of simple rectangle.

The ‘//’ indicates a comment. Comments do not affect the behavior of a part. All text following ‘//’ to the end of the line are
contained by the comment.

LINE 2
H = Parameter(“Height”, 5, LINEAR, Interval(0, 10 0));

The second line specifies the definition of the ‘H’ parameter. Let’s break out each element of the line to define its function:

 H This is the identifier (name) of the parameter in the part description

 = The equals sign associates the identifier with its definition

 Parameter This is a function. ‘Parameter’ defines that H is a Parameter

 (Specifies the start of the Parameter function’s properties

 “Height” The name of the parameter that will appear in the Properties dialog

 , Indicates the end of one property and the beginning of the next

DoubleCAD Parametric Parts Manager

2 For updates and additional information,

 5 Assigns the default value for H

 , Separates properties

 LINEAR Specifies that H is a linear value

 , Separates properties

 Interval(0, 100) Specifies the allowable values for H as an interval from 0 to 100

) Specifies the end of the Parameter function’s properties

 ; End of definition for H

LINES 3 – 4
L = Parameter(“Length”, 10, LINEAR, Interval(0, 20 0));
Angle = Parameter(“Angle”, 0, ANGULAR, Interval(0, 360);

The next two lines in the example are similar to the previous one. They define the characteristics of L and Angle parameters
in a similar layout. Note that the ‘Angle’ parameter uses an ANGULAR interval rather than LINEAR.

LINE 5
Rect1 = Rectangle(H, L);

This line uses the Rectangle function to define a rectangle called ‘Rect1’. It uses the previously defined H and L parameters
to specify its properties, height and length. The center of this rectangle will be at the world origin (x=0,y=0,z=0) in the
drawing. More on the rectangle tool will be covered later.

LINE 6
Rect = RotateZ(Rect1, Angle);

This line defines a new rectangle called ‘Rect’ which is a rotated version of ‘Rect1’, using the Angle parameter to define the
rotation.

LINE 7
Output(Rect);

The last line specifies that the output of the script will be the rotated rectangle called ‘Rect’. This is what the be drawn as the
part.

Script syntax
The description of a parametric part consists of the entire contents of a text file, except comments, tabs, and other control
characters, which are ignored.

 Customized Programming

contact us at http://forums.DoubleCAD.com

Comments are specified either using “//” characters that mean that all subsequent characters up to the end of the line are
comments, or using the pair “/*” and “*/” that denote beginning and end of the comment, respectively.

A text description is a set of two types of operators:

<Identifier>

and

<Expression>;

Identifiers
The <Identifier> defines the symbolic name of an object. It is a set of Roman letters and Arabic numerals, which must
start with a letter.

For example valid names would be:

PART2a
MyPart
A134

Object identifiers may not be the same as names of functions or such names as PI, or LINEAR. These are reserved words
that are used to designate the constants of the scripting language. The list of all reserved names is provided in the reserved
word list which appears at the end of this chapter.

Expressions
Expressions define the associated identifier. Expression syntax matches the expression syntax in the majority of
programming languages. They may define numeric value, arithmetic operations, the dependence of the defined object on
other objects and function calls.

The structure of a function call is:
<Function name> (<list of parameters>),

Examples of correct expression syntax:
(D –1/4) * k;
Polyline(Point(0, 0.25 - 1/8), Point(0, D), Arc1(L- C, - m, m), Point(0,0));
A = B + 0.5;
B = 7;

Arithmetic Operations

Arithmetic operations may use the standard arithmetical operators ‘+’ (addition), ‘–‘(subtraction), ‘*’ (multiplication), ‘/’
(Division) and parenthesis ‘(‘and ‘)’, to determine the sequence of performing arithmetic operations. Object identifiers and
numbers serve as operands.

DoubleCAD Parametric Parts Manager

4 For updates and additional information,

Script Semantics
A script contains full description of a parametric part. The collection of script operators determines which actions need to be
performed to create the resultant object(s). Correct understanding of a script, requires having a clear understanding of how
its operators are interpreted.

Identifiers that are used in a <Expression> must be defined. In other words it must have been used as:

<Identifier> = <Expression>;

The list of resultant objects is defined in the Output(..) operator. The Output(..) operator contains a list of
which objects are to be displayed in the resulting part. This operator must be present in the script. Each object in the list of
arguments for Output(..) must be defined. In other words it must have been used as:

<Identifier> = <Expression>;

This operator must be present in the script. At least one object must be listed in the Output operator, but you need not output
every object used in the script.

The Output operator determines the method that will be used to create an object with this name.

A correct script describing a parametric part should conform to the following rules:

1. A script may have more than one Output(..) operator, but any <Identifier> should contained in only one
Output(..) operator.

2. For each object used in the Output(..) operator there should be one, and only one, instance of any
<Identifier>.

3. For each object used in an <Expression> there should be one, and only one, instance of any <Identifier>.

4. Each identifier should be used only once as <Identifier>

5. Each identifier should be at least once in an <Expression> operator or in an
Output(..)operator .

6. Circular calculation and interdependent referencing are not allowed. The script must not contain interdependent where
“Item One” is defined by “Item Two”, and “Item Two” is defined by “Item One”.

The following situations:

A = B + 0.5;
B = sin(A);

or

A = C+5;
B = D+42;
C = (3*(2+A));
D = A/2;

 Customized Programming

contact us at http://forums.DoubleCAD.com

are not allowed. The first case A and B define each other directly. In the second case A is defined by B through C, and B is
defined by A through D. This also means that an identifier is not allowed to depend on itself. For example, you cannot use
an operator of this form:

 H = H*1.05;

7. The sequence of script operators is not important (except certain special cases that will be described later); because
operators are sorted before the script is run.

Basic Functions
Probably the most significant advantage of this method of creating parametric parts is the compact size and clarity of the text
description of parametric parts in script form. The set of basic functions used in such a description, determines the level of
clarity and simplicity of scripts for a particular class of parametric parts.

Note: It is intended that the set of basic functions will expand from version to version.

Description of Parameters
It is important to understand the structure used to within a Parameter function.

Format:
<id> = Parameter(<name>, <default value>, <type>[, <condition1>][,
<condition2>]..);

Note: The ‘<>’ markers are used to designate elements in the expression, and the ‘[]’ markers are used to indicate elements
which are optional.

<name> The name displayed in the user interface;

<default value> The default value of the parameter;

DoubleCAD Parametric Parts Manager

6 For updates and additional information,

<type> Defines the parameter type. The following example values are possible:

LINEAR , means that the parameter is a linear value in the selected linear units of
measure.

ANGULAR , means that the parameter is an angular value in the selected angular units of
measure. (only degrees are available at this time)

TEXT , a text string;

FONT, a font name;

COLOR , an RGB color value;

MATERIAL , a material name;

CHECKBOX , a logical value, either ON or Off

<condition> These are optional. They define possible restrictions imposed on parameters. Restrictions
can be listed in arbitrary order and may take on the following forms:

Set(<value>,...) — a list of permissible values of the parameter
Interval(<minvalue>, <maxvalue>) — sets the minimum and maximum values of the
parameter;
LessThan(<value>) — indicates that parameter value should be less than the specified
value
LessOrEqual(<value>) — indicates that parameter value should not be greater than the
specified value
GreaterThan(<value>) — indicates that parameter value should be greater than the
specified value
GreaterOrEqual(<value>) — indicates that parameter value should not be smaller than
the specified value

Set(FolderList) — particular case of Set operator, when a list of permissible values are
defined by operator FolderList.

Restrictions should not contradict each other. For example, you cannot combine
GreaterThan(5) with LessThan(2).

When specifying parameter restrictions, it is not allowed to use identifiers or expressions
that directly or indirectly depend on other parameters, as arguments of the above-
mentioned functions. Only constants or constant expressions can be used, for example:
LessOrEqual(PI/2).

Example of Parameter Description:

Alpha = Parameter(“Rotation Angle”, 45, ANGULAR, In terval(-90, 90)); // This
creates a parameter used to define a rotation angle . The name is ‘Rotation
Angle’, the default is 45, the value type is ANGULA R, and the Interval is

 Customized Programming

contact us at http://forums.DoubleCAD.com

from ‘-90’ to ‘90’

Functions for Creating 2D Entities
The following functions are used to create 2D graphic entities

Circle
The Circle function is used to create circles

Format:
Circle(<radius>[, <cx>, <cy>]);

<radius> Defines the circle’s radius

<cx>, <cy> Defines optional arguments that set the (x, y) coordinates of the circle center. By default,
cx = 0, cy = 0

Example:
 Ñ = Circle(D/2, 0, y0);

A more extensive example:
//circle.ppm -- two circles
r1 = Parameter("Radius1", 2.5, LINEAR, Interval(0.0 , 10.0));
r2 = Parameter("Radius2", 1.25, LINEAR, Interval(0. 0, 10.0));
xc = Parameter("CenterX", 3, LINEAR, Interval(-100, 100));
yc = Parameter("CenterY", 3, LINEAR, Interval(-100, 100));
c1 = Circle(r1); // circle centered on the origin
c2 = Circle(r2, xc, yc); // circle offset from the origin
Output(c1, c2);

Rectangle
The Rectangle function is used to create rectangles.

Format:
Rectangle(<width>, <height>[, <cx>, <cy>]);

<width> Defines the rectangle width

<height> Defines the rectangle height

<cx>, <cy> Defines optional arguments that set the (x, y) coordinates of the rectangle
center. By default, cx = 0, cy = 0

DoubleCAD Parametric Parts Manager

8 For updates and additional information,

Example:
rect = Rectangle(W, H, W/2. H/2); // Left bottom corner is in (0,0) point

Polyline
The Polyline function is used to create polylines consisting of straight line segments and arc segments.

Format:
Polyline(<list of arguments>);

<list of arguments> Defines the list of arguments, delimited with commas. Arguments define
individual segments of a polyline

A line segment is defined by 2 Points.

An arc segment is defined with a Fillet function or with an Arc0 or Arc1 function and two Points on the ends of the arc.

For polylines that contain only straight line segments, the <list of arguments> consists of only 2D points, defined using
Point(x,y) function.

Format:
Point(<cx>,<cy>)

<cx> Defines the x coordinates of the point

<cy> Defines the y coordinates of the point

For example, a rectangle can be defined in the following way:

rect = Polyline(// no end-of-line is used semicol on here
Point(0,0), // since this function in on multipl e lines
Point(W, 0),
Point(W,H),
Point(0, H),
Point(0,0));

It should be noted that when a polyline’s, first and last points are coincident, is called a closed polyline. This type of
polyline bounds a certain area, and can be used for creating 3D objects.

Polylines with arc segments are defined by adding auxiliary functions Arc0 and Arc1 to the list of arguments. Arc0 builds
the circular arc clockwise, while Arc1 builds the circular arc counterclockwise.

Format:
Arc0(<cx>,<cy>),

 Customized Programming

contact us at http://forums.DoubleCAD.com

Arc1(<cx>,<cy>),

<cx> Defines the x coordinates of the arc center

<cy> Defines the y coordinates of the arc center

The start and end point of an arc are defined by the preceding and the following arguments.

Arc0 and Arc1 cannot be the first or last argument in the list of arguments. For a polyline that contains only one arc
segment, the <list of arguments> consists of 2 Points defined with Point(x,y) function and an arc defined with either the
Arc0 or Arc1 function.

Example of arc0 and arc1 in a polyline:
//Polyarc.ppm -- polyline with arcs
YSize=5;
XSize=6;
R = 1;
Path = Polyline(Point(0, R), // start at top of rou nded lower left corner.
 Point(0, YSize-R), // go to bottom of rounded top left corner.
 Arc1(0, YSize, R), // make this corner a "cutout"
 Point(R, YSize), // left side of top edge
 Point(XSize-R, YSize),
 Arc0(XSize-R, YSize-R, R), // make this corner a "fillet"
 Point(XSize, YSize-R),
 Point(XSize, R),
 Arc0(XSize-R, R, R), // another fillet
 Point(XSize-R, 0),
 Point(R, 0),
 Arc1(0, 0, R), // another cutout
 Point(0, R));
Output(Path);

Another method of creating an arc in a polyline is to use the auxiliary function Fillet, which “smooths” two linear segments
that start and end in the preceding point, by adding an arc with the specified radius into the corner. This ensures smoothness
at the junction points.

Format:
 Fillet(<radius>);

<radius> Defines the radius of the fillet

DoubleCAD Parametric Parts Manager

10 For updates and additional information,

Example of fillets in a polyline:

// polyfillet.ppm -- polyline with fillets
H = 5;
L = 10;
FR = 1;
p2 = Polyline(// Rectangle with rounded corners
Point(0,0), // lower left corner
Point(L,0), // lower right corner
Fillet(FR), // places fillet at bottom right
Point(L,H), // upper right corner
Fillet(FR), // places fillet at top right
Point(0,H), // upper left corner
Fillet(FR), // places fillet at top left
Point(0,0), // closes rectangle
Fillet(FR) // fillets start/end corner. Since this is a closed shape,
 // no following Point function is needed.
);
Output(p2);

Fillet and Arcs can be used together in the same Polyline function.

Example of Arcs and Fillet in a polyline:
Poly1 = Polyline(// Rectangle with rounded corn ers
Point(0,0),
Point(W - r, 0), Arc1(W - r, r), Point(W, r),
Point(W, H - r), Arc1(W - r, H - r), Point(W – r ,H),
Point(0, H), Fillet(r),
Point(0,0), Fillet(r));

Functions for Creating 3D Entities from 2D Entities
You can use 2D entities as the basis for creating 3D objects.

Thickness
The Thickness function creates a 3D entity based on the 2D entity by adding thickness. It also allows you to change the
thickness property of the 3D object.

Format:
Thickness(<Object>, <value>);

<Object> Defines the initial graphic object

 Customized Programming

contact us at http://forums.DoubleCAD.com

<value> Defines new value of Thickness

Example of Thickness:

RectA = Rectangle(2, 5);
RectThick = Thickness(RectA, 3);

Example of Thickness Used to Create a Box Function:

Input(x0,y0,z0,x1,y1,z1)
R = Rectangle(x1-x0, y1-y0, (x0+x1)/2, (y0+y1)/2);
T = Thickness(R, z1-z0);
Output(Move(T, 0, 0, z0));

Another Example of Thickness:

//thickrect.ppm -- draws a 2D rectangle and adds th ickness
L = Parameter("Length", 4, LINEAR, Interval(0.1, 20));
W = Parameter("Width", 3, LINEAR, Interval(0.1, 20));
H = Parameter("Height", 1.5, LINEAR, Interval(0.1, 20));
Rect = Rectangle(L, W);
Box = Thickness(Rect, H);
Output(Box);

An Example of Thickness with a Circle:

// thickcircle.ppm -- draws a circle and adds thi ckness
Cylind=Thickness(Circle(1,2,2),2);
Output(Cylind);

An Example of Changing Thickness:

// thickcircle2.ppm -- draws a cylinder and chang es thickness
Cylind=Thickness(Circle(1,2,2),2);
Cyl2 = Thickness(Cylind, 4); // changes the thickne ss of the first cylinder
Output(Cyl2);

Sweep
The Sweep function creates a 3D object by extruding a specified profile along a path, defined by a 2D polyline or circle. The
profile is defined by a closed 2D polyline or circle.

Format:
Sweep(<profile>, <path>[,<rotation angle>]);

<profile> This defines the profile using a 2D polyline

DoubleCAD Parametric Parts Manager

12 For updates and additional information,

<path> This defines the path, along which the profile is “dragged”; the path is defined by
a 2D polyline

Note: The plane of the path and the plane of the profile must not be parallel.

<rotation angle> This optional argument, defines the rotation angle of the profile relative the Z
axis; by default, the argument is equal to zero

Example of Sweep:

Poly1 = Polyline(
Point(0,0),
Point(1, 0),
Point(1,2),
Point(0, 2),
Point(0,0));
PolyProfile = RotateX(Poly1, 90); // the Rotate fun ction will be explained
later
PolyPath = Polyline(
Point(0,0),
Point(10, 0),
Point(10,10),
Point(0, 10),
Point(0,0));
PolySweep = Sweep(PolyProfile, PolyPath);

Another Example of Sweep

//sweep1.ppm
R = 2;
D = 5;
C1 = RotateX(Circle(R, D/2+R, 0),90); // profile
C2 = Circle(D/2, 0, 0); // path
Torus = Sweep(C1,C2);
Output(C1, C2, Torus); //C1 and C2 shown for refere nce

An Extended Example of Sweep

//sweep2.ppm -- another sweep example
L = Parameter("Length", 5, LINEAR, Interval(0.005, 1000));
W = Parameter("Width", 3, LINEAR, Interval(0.005, 1 000));
H = Parameter("Height", 1, LINEAR, Interval(0.1, 3));
FR = Parameter("Fillet Radius", 0.3, LINEAR, Interv al(0.001,100));

p = Polyline(Point(0,0), Point(0,H), Point(-FR,H), Point(-FR,0),

 Customized Programming

contact us at http://forums.DoubleCAD.com

Point(0,0));
p1a = RotateX(p,90,0,0);
p1 = Move(p1a, 0, W/2, 0);
p2 = Polyline(Point(0,0), Point(0,W), Fillet(FR), Point(L,W), Fillet(FR),
Point(L,0), Fillet(FR), Point(0,0), Fillet(FR));

s = Sweep(p1, p2); Output(s);

Functions for Creating 3D Entities Directly
3D object may also be created directly without reference to a 2D entity.

Sphere
The Sphere function is used to create a 3D sphere.

Format:
Sphere(<radius>[,<cx1>,<cy1>,<cz1>]);

<radius> This value specifies the radius of the sphere

<cx1>,<cy1>,<cz1> These are optional argument used to specify the x, y, z location of the sphere’s
center point. By default the values for these argument is zero

Sphere Example:

 SR1 = Sphere(10,1,3,5.5);

Another Sphere example:

//sphere.ppm -- simple sphere example
R = Parameter("Radius", 2.5, LINEAR, Interval(0.01, 20));
cx = Parameter("CenterX", 0, LINEAR, Interval(-100, 100));
cy = Parameter("CenterY", 0, LINEAR, Interval(-100, 100));
cz = Parameter("CenterZ", 0, LINEAR, Interval(-100, 100));
S = Sphere(R, cx, cy, cz);
Output(S);

Cone
The Cone function is used to create a 3D cone.

Format:
Cone(<Height>,<baseradius>[,<topradius>]);

<Height> This value specifies the height of the cone

DoubleCAD Parametric Parts Manager

14 For updates and additional information,

<baseradius> This value specifies the radius for the base of the cone

<topradius> This optional argument specifies a radius for the top of the cone, creating a
truncated cone. By default the value for this argument is zero

Cone Example:

 CN1 = Cone(10,5,2);

Another Cone Example
//cone1.ppm -- a simple cone
R = Parameter("BaseRadius", 0.5, LINEAR, Interval(0 .01, 10));
H = Parameter("Height", 3, LINEAR, Interval(0.05, 2 0));
Cone1 = Cone(H, R, 0);
Output(Cone1);

Example of a Truncated Cone:
//cone2.ppm -- a truncated cone
R1 = Parameter("BaseRadius", 0.5, LINEAR, Interval(0.01, 10));
R2 = Parameter("TopRadius", 0.1, LINEAR, Interval(0 , 10));
H = Parameter("Height", 3, LINEAR, Interval(0.05, 2 0));
Cone2 = Cone(H, R1, R2);
Output(Cone2);

Functions for Transforming Geometric Objects
This class of functions is used for moving, and rotating geometric objects. These transformations are related to the
transformation of the coordinate system. As always functions create transformed objects, while original objects do not
change.

Move
The Move function is used to move (shift) graphic objects.
Format:

Move(<Object>, <dx>, <dy> , <dz>[,count]);

<Object> Defines the original graphic object

<dx>, <dy>, <dz> Defines value of movement along x, y and z axes, respectively

<count> Defines the number of created objects, where each subsequent object is created by
moving the preceding object; this argument is optional, with the default value of 1

 Customized Programming

contact us at http://forums.DoubleCAD.com

Example of Move:
PolyProfile = Move(Poly1, 1, 3);

Another Example:
//move.ppm -- illustrates the Move function
RB = Parameter("BaseRadius", 2, LINEAR, Interval(0. 1, 10));
RT = Parameter("TopRadius", 0.5, LINEAR, Interval(0 , 10));
H = Parameter("Height", 4, LINEAR, Interval(0.1, 20));
con1 = Cone(H, RB, RT);
cx = Parameter("CenterX", 5, LINEAR, Interval(-10, 10));
cy = Parameter("CenterY", 0, LINEAR, Interval(-10, 10));
cz = Parameter("CenterZ", 0, LINEAR, Interval(-10, 10));
count = Parameter("Copies", 2, LINEAR, Interval(1, 10));
con2 = Move(con1, cx, cy, cz, count);// create coun t copies, offsetting each
by cx, cy, cz
Output(con1, con2);

Rotate
The RotateX, RotateY. RotateZ functions are used to rotate graphic objects around the X, Y and Z axes, respectively.
Format:

RotateX(<Object>, <rotation angle>[, <cy>, <cz>[,<count>]]);
RotateY(<Object>, <rotation angle>[, <cx>, <cz>[, <count>]]);
RotateZ(<Object>, <rotation angle>[, <cx>, <cy>[, <count>]]);

<Object> Defines the original graphic object

<Rotation angle> Defines the angle of rotation

<cx>, <cy>, <cz> Sets an offset for the rotation axis relative to the X, Y and Z axes (in accordance
with function names). These arguments are optional; however, only all three
arguments can be omitted at once. Default value for each of <cx>, <cy>, <cz> is
zero

<count> Defines the number of created objects, where each subsequent object is created by
transforming the preceding object; this argument is optional, with the default
value of 1

Example of Rotate:

PolyProfile = RotateX(Poly1, 90);

Another Example of Rotate:
//rotate.ppm -- demonstrates the rotate functions

DoubleCAD Parametric Parts Manager

16 For updates and additional information,

c1 = Circle(2, 10, 0); // create a circle
c2 = RotateX(c1, -90, 0, 0); // rotate the circle t o lie in the XZ plane
c3 = Move(c2, 0, -0.05, 0); // move it back half th e thickness
c4 = Thickness(c3, 0.1);
c5 = RotateZ(c4, 30, 0, 0, 11); //duplicate the cir cle by rotating about the
Z axis
c6 = Circle(2, 0, 10);
c7 = Move(c6, 0, 0, -0.05);
c8 = Thickness(c7, 0.1);
c9 = RotateX(c8, -30, 0, 0, 11);
c10 = Circle(2, 0, 0);
c11 = RotateZ(c10, -90, 0, 0);
c12 = Move(c11, 10, 0, -0.05);
c13 = Thickness(c12, 0.1);
c14 = RotateY(c13, 30, 0, 0, 11);
Output(c4, c5, c8, c9, c13, c14);

Functions for Loading External Symbols as Elements
You can load non-parametric external symbols from external files to be a part of a parametric part. The files must be
importable (supported) by the CAD system, such as *.TCW, *.DWG, *.SKP

StaticSymbol
The StaticSymbol function loads non-parametric symbols from external files. When the external symbol's filename is
specified with no path information, the symbol is automatically assumed to reside in a sub-folder named Macro that is
located in the ppm file's home folder.
Format:

StaticSymbol(<FileName>[,BlockName]);

<FileName> Defines the file name with extension. If the extension is not specified, native file
format will be used

<BlockName> This is an optional argument, which indicates that only the block with the given
name should be used as the symbol for loading, and the rest of the contents
should be ignored; if the argument is not defined, the active drawing will be
loaded as a symbol

Example of StaticSymbol:

//staticsym1.ppm -- loads an external file from the Macro sub-folder
S = StaticSymbol("ExternalSymbol.tcw");
Output(S); //static symbol from ExternalSymbol.tcw file is inserted on the
drawing

Set(FolderList(...))
To create a list of files in a folder, Set(FolderList(...)) is typically used as the Parameter restriction.

 Customized Programming

contact us at http://forums.DoubleCAD.com

Format:
<id> = FolderList(<path> <mask> = "*.ppm");

<path> Defines the path to the folder from which the list of files will be created

<mask> Defines the mask of file names and extensions

Example of Set(FolderList(..)):

// staticsym2.ppm -- loads an external symbol from a different folder than
Macro
DrawingName = Parameter("Drawing", "Drawing1",
Set(FolderList("..\..\..\Drawings", "*.tcw")));//qu antity of "..\..\"
(before folder Drawings) is equal to quantity
//of steps over folder tree starting from the Macro sub-folder.
S0 = StaticSymbol("..\..\..\Drawings\"+DrawingName+ ".tcw");
//here a static symbol is loaded from a file with a tcw-extension,
// and a filename picked from the FolderList obtain ed via the DrawingName
parameter.
Output(S0);

When specifying a relative path, you must remember that the path is always assumed to start, not at the folder that contains
the ppm file, but in a folder below that named "Macro". In the example above, assume for the moment that staticsym2.ppm
is located in:

C:\Users\Me\Documents\MyCAD\PPM Documentation Sampl es

The path used in the FolderList path and the StaticSymbol path must then implicitly begin at

C:\Users\Me\Documents\MyCAD\PPM Documentation Sampl es\Macro

The external symbol is being loaded from:

C:\Users\Me\Documents\MyCAD\Drawings

That means the script must navigate up three directories to the MyCAD folder, then back down one level to the Drawings
folder, so the correct relative path is:

..\..\..\Drawings

Another example, which loads a specific .tcw file from the Drawings folder:

//staticsym3.ppm -- loads a specific file from a di fferent folder
S = StaticSymbol("..\..\..\Drawings\3DSliceTest.tcw ");
//only loads the specific file 3DSliceTEst.tcw.
//Remember that the relative path is still rooted i n the Macro subfolder.

DoubleCAD Parametric Parts Manager

18 For updates and additional information,

Output(S);

A parametric part (a file with a *.ppm extension) can loaded by calling the name of the parametric file as if it were a
function, whose arguments are the parameters of the part to be loaded, in the order in which they are described in the file.
Refer to “Creating Custom Functions” below for more details on this process.

Functions for 3D Boolean Operations
Functions of this class are used to perform Boolean operations on 3D geometric objects.

BooleanUnion
The BooleanUnion function creates an object that by adding the specified objects together.
Format:

BooleanUnion(<Object>, <Object>, ...);

<Object> Defines an object to be used in the Boolean operation. There must be at least two
objects

Example of BooleanUnion:

S1 = Sphere(5);
S2 = Sphere(5,5,5);
S3 = Sphere(5,5,-5);
S4 = Sphere(5,-5,5);
S5 = Sphere(5,-5,-5);
S6 = BooleanUnion(S1,S2,S3,S4,S5);
Output(S6);

Another Example:

R = Parameter("Radius", 8, LINEAR, Interval(0.001, 1000));
s = Sphere(R);
c = Circle(R/3);
c1 = Thickness(c, R*2);
c2 = Move(c1, 0, 0, R); //Cylinder
s1 = BooleanUnion(s, c2); //Sphere with cylinder
Output(s1);

BooleanSubtraction
The BooleanSubtract function creates an object by subtracting the secondary objects from the primary object.
Format:

BooleanSubtract(<PrimaryObject>, <SecondaryObject>, ...);

<PrimaryObject> Defines an object to be used in the Boolean operation. There is only one primary
object

 Customized Programming

contact us at http://forums.DoubleCAD.com

<SecondaryObject> Defines a secondary object to be subtracted from the primary object There must
be at least one or more secondary objects

Example of BooleanSubtract:

S1 = Sphere(5);
S2 = Sphere(5,5,5);
S3 = Sphere(5,5,-5);
S4 = Sphere(5,-5,5);
S5 = Sphere(5,-5,-5);
S6 = BooleanSubtract(S1,S2,S3,S4,S5);
Output(S6);

Another Example of BooleanSubtract:
R = Parameter("Radius", 8, LINEAR, Interval(0.001, 1000));
s = Sphere(R);
c = Circle(R/3);
c1 = Thickness(c, R*2);
c2 = Move(c1, 0, 0, -R); //Cylinder
s1 = BooleanSubtract(s, c2); //Sphere with hole
Output(s1);

BooleanIntersect
The BooleanIntersect function creates an object derived from the intersection of the primary and secondary objects.
Format:

BooleanIntersect(<Object>, <Object>)

<Object> Defines an object to be used in the Boolean operation. There must be at least two
and only two objects

Example of BooleanIntersect:

S1 = Sphere(5);
S2 = Sphere(5,5,5);
S3 = Sphere(5,5,-5);
S4 = Sphere(5,-5,5);
S5 = Sphere(5,-5,-5);
S6 = BooleanIntersect(S1,S2);
Output(S6);

Functions for Modifying 3D Objects
Several functions are available to modify the geometry of 3D objects

DoubleCAD Parametric Parts Manager

20 For updates and additional information,

Fillet Edges
The Fillet Edges function allows rounding one or multiple edges of 3D object.
Format:

G3Fillet(<Object>,<Edges>, <Radii>);

<Object> Defines the 3D object whose edges are to be rounded

<Edges> Defines the edge or multiple edges, which are to be filleted. Each edge is defined
by Point(xc,yc,zc) or Array of Points.

Point(xc,yc,zc) is the middle point of an edge to be filleted (for example in the
“Fillet Edges” operation [TurboCAD only?], this point is marked with a blue
square). Array of Points defines a set of edges to be filleted. Multiple edges are
defined with an Array of Points

<Radiuses> Defines the Fillet radiuses. Fillet radiuses are set by Array function. For a single
edge the Array contains pair of values, for multiple edges - multiple pairs of
values.

Fillet Edges Example:

Array(Point(x1,y1,z1), Point(x2,y2,z2), Point(x3,y3 ,z3)); //defines 3 edges
for filleting
//Point(x1,y1,z1), Point(x2,y2,z2), Point(x3,y3,z3) ; – 3 middle points on 3
edges to be filleted

Another Example:

Array(r1, r2)– //array of radius values for roundin g the selected edge. It
defines rounding //radiuses for 2 ends of the selec ted edge.
//r1 – start radius of fillet
//r2 – end radius of fillet.

Example of Filleting 1 Edge:

G3Fillet(PartA,Point(xc,yc,zc), Array(r1, r2)); //w here Point(xc,yc,zc) -
middle of the edge.

Another Example:
Door= G3Fillet(Door0, Point(0, -1, (Height-FHeight- 4-3/4)/2), Array(1, 1));
For example (fillet of 1 edge of the box):
x = Parameter("size", 5, LINEAR, GreaterThan(0));
r1 = Parameter("r1", 1, LINEAR, GreaterThan(0));
b0 = Box(0, 0, 0, x, x, x);
b1 = G3Fillet(b0, Point(x/2, 0, 0), Array(r1, r1*2));

 Customized Programming

contact us at http://forums.DoubleCAD.com

Output(b1);

Example of Filleting 4 Edges of a Box:
L = Parameter("Length", 5, LINEAR);
W = Parameter("Width", 3, LINEAR);
H = Parameter("Height", 1, LINEAR);
R = Parameter("Radius",0.5);
g0 = Box(0,0,0,L,W,H);
g1 = G3Fillet(g0, Array(Point(L/2, 0, 0), Point(0, W/2, 0),
 Point(L/2, W, 0), Point(L, W/2, 0)),
 Array(R, R, R, R, R, R, R, R));
Output(g1);

Chamfer Edges
The Chamfer Edges function allows chamfering any edge or multiple edges of 3D object.
Format:

G3Chamfer(<Object>, <Edges>, <Offsets>);

<Object> Defines the 3D object whose edges are to be chamfered

<Edges> Defines the edge or multiple edges, which are to be filleted. Each edge is defined
by Point(xc,yc,zc) or Array of Points.

Point(xc,yc,zc) is the middle point of an edge to be filleted (for example in the
“ChamferEdges” operation [TurboCAD only?], this point is marked with a blue
square). Array of Points defines a set of edges to be chamfered. Multiple edges
are defined with an Array of Points

<Radiuses> Defines the Chamfer distances. These are set by Array function. For a single edge
the Array contains a pair of distance values, for multiple edges - multiple pairs of
distance values.

A Chamfer Example:

Array(d1, d2)– //array of 2 offset values at the e nds of an edge.

Another Example:
Door= G3Chamfer(Door0, Point(0, -1, (Height-FHeight -4-3/4)/2), Array(1, 1));

//Here Door0 -is the object whose edge is to be cha mfered.
//Point(0, -1, (Height-FHeight-4-3/4)/2) – indicate s this edge.
//Array(1, 1) sets 2 chamfer distances

DoubleCAD Parametric Parts Manager

22 For updates and additional information,

Another Example:
x = Parameter("size", 5, LINEAR, GreaterThan(0));
r1 = Parameter("r1", 1, LINEAR, GreaterThan(0));
b0 = Box(0, 0, 0, x, x, x);
b2 = G3Chamfer(b0, Point(x/2, x, x), Array(r1, r1+r 1));
Output(b2);

G3Offset
The G3Offset function extends a solid face inward or outward.
Format:

G3Offset(<Object>, <Face>, <Offsets>);

<Object> Defines the 3D object whose edges are to be extended

<Face> Defines the face, which is to be extended. The Face is defined by a Point(x,y,z)
belonging to this face

<Offsets> Defines the offset distance. A positive value will offset the face outward, and a
negative value will offset inward

Offset Example:

G3Offset(PartA, Point(xf, yf, zf), dist);

Where:
PartA — is the 3D object whose faces are to be offset
Point(xf, yf, zf) — is a point for selecting the face to be offset
dist — is the value of face offset

Another Example:

x = Parameter("size", 5, LINEAR, GreaterThan(0));
r1 = Parameter("r1", 1, LINEAR, GreaterThan(0));
b0 = Box(0, 0, 0, x, x, x);
b3 = G3Offset(b0, Point(x,x/2,x/2), r1/2);
Output(b3);

G3Shell
The G3Shell function allows shelling the shape of solid object, leaving the selected face open. It creates a shell of a
specified thickness from a single solid object. The new faces are created by offsetting existing faces inside or outside.
Format:

G3Shell(<Object>, <Face>, <Thickness>);

<Object> Defines the 3D object whose edges are to be shelled

 Customized Programming

contact us at http://forums.DoubleCAD.com

<Face> Defines the face that should remain open It is defined by Point(xc,yc,zc) function
which describes a point belonging to this face

<Thickness> Defines the shell thickness. A positive value creates an outward shell, and a
negative value creates an inward shell

Shell Example:

G3Shell(PartA, Point(xf, yf, zf), thickn);

Where:

Part3 — selects the object which is to be shelled
Point(xf, yf, zf) — is the point on the face, which should remain open
thickn — is the shell thickness

Another Example:

L = Parameter("Length", 5, LINEAR);
W = Parameter("Width", 3, LINEAR);
H = Parameter("Height", 1, LINEAR);
T = Parameter("Thickness", 0.2, LINEAR);
g0 = Box(0,0,0,L,W,H);
g1 = G3Shell(g0, Point(L/2, W/2, H), T);
Output(g1);
//After inserting a shelled object in the drawing, shell thickness can be
edited in the Selection Info palette (as well as Le ngth, Width and Height
parameters)

G3Bend
The G3Bend function is used for bending 3D objects.
Format:

G3Bend(<Object>, <Line>, <Angle>, <Radius>, <Depth>);

<Object> Defines the 3D object which is to be bent

<Line> Defines a line about which the solid object will be bent. It is defined by 2 Points:

Point(x1, y1, z1), Point(x2, y2, z2).

The line must lie on the solid face selected for bending.

<Angle> Defines the bending angle. The angle is measured from the plane of the bent face.

DoubleCAD Parametric Parts Manager

24 For updates and additional information,

<Radius> Defines the bending radius

<Depth> Defines the Neutral Depth to set the distance into the depth of material along
which there will be no tension or compression

Bend Example:

G3Bend(Part3, Point(x1, y1, z1), Point(x2, y2, z2), Angle, R, 0);

Another Example:
P1=Thickness(Rectangle(10,20),3);
B0 = G3Bend(P1, Point(3, 3, 0),
 Point(3,8,0), 90, 2, 0);
Output(B0);

Setting and Changing Object Properties
The SetProperties function is used to set the properties of objects.
Format:

SetProperties(<Object>, <PropertyName> = PropertyValue, <PropertyName> =
PropertyValue, ...);

<Object> Defines the object to be used as the base for the new object with set properties

<PropertyName> Defines the name of the property to be set. The name should be surrounded with
quotation marks

<PropertyValue> Defines the value to be assigned to the property

Example of SetProperties:

BlueRect=Rectangle(10,5);
RedRect = SetProperties(BlueRect, "PenColor" = 0xf f, "PenWidth" = 0.2);
Output(RedRect);

Another Example:
Side2M = SetProperties(Side2, "Material" = "Wood\P ine", "PenColor" = 0xff);

Another Example:
PL1 = SetProperties(PL0, "Brush" = "SOLID");

 Customized Programming

contact us at http://forums.DoubleCAD.com

Another Example:
SetPlastic = (“Material” = “Plastics\Plain white”);
BoxMaterial = SetProperties(MyBox,SetPlastic);

In the Parametric Part manager there is a special tool to choose the required value for such properties as Material, Pen Color
and Brush Style. To activate it, right-click on the property name. This will open the Local Menu either for Material table or
PenColor table or BrushStyle table. The appropriate table will appear where the desired value can be chosen.

Nesting Functions
Functions can be nested within a single expression to optimize scripting efficiency.

For Example:

BF = BooleanSubtract(B1,Move(RotateZ(RotateY(Box(-5 ,-5,-5,5,5,5),45),45),-
1,-1,-1));

Example Used in a Small Script:
B1 = Box(0,0,0,10,10,10);
BF = BooleanSubtract(B1,Move(RotateZ(RotateY(Box(-5 ,-5,-5,5,5,5),45),45),-
1,-1,-1));
Output(BF);

DoubleCAD Parametric Parts Manager

26 For updates and additional information,

Functions for Creating Text

Text
The Text function defines the text string itself and its characteristics, including fonts, style, effects, etc. Acceptable font
values are dependent upon those installed on your machine.
Format:

Text(<Text object>, <Text Font>, <Text Style>);

<Text object> Defines the text string. Text string can be specified either directly here (with
quotation marks) or via an identifier of text object

<Text Font> Defines the text font

<Text Style> Defines the text style

Example:

bsb = Text("BS(b)", Tfont, Tstyle);

TextFont
The TextFont function sets the text font, size, and the angle of text line location.
Format:

TextFont(<mode>, <Height>, <Angle>,);

<mode> Defines the mode of the text: Standard (when mode=0) or Scalable (when
mode=1 or any other value different from 0)

<Height> Defines the text font size

<Angle> Defines the angle of text line

 Defines the text font

Example:

Tfont = TextFont(0,2, 45, "Arial");

 Where:

 0 — means that text is Standard

 Customized Programming

contact us at http://forums.DoubleCAD.com

 2 — text height

 45 — text line is located at 45 degrees

 Arial — font

DoubleCAD Parametric Parts Manager

28 For updates and additional information,

TextStyle
The TextStyle function sets the text style including justification, text effects and styles.
Format:

TextStyle(<list of characteristics>);

<list of characteristics> Defines the text characteristics separated with commas.

The following values of characteristics are allowed:

For Justification:

LEFT, CENTER, RIGHT, TOP, MIDDLE, BASELINE, BOTTOM

For Text Effects:

BOX, UNDERLINE, STRIKETHROUGH, AllCAPS

For Style:

BOLD, ITALIC

Example:

Tstyle = TextStyle(LEFT, TOP, UNDERLINE);

Another Example:
//Standard text of Times New Roman font with 5in of font size,
//with Left,Top justification, with TextBox effect, Bold, Italic, at 45
degrees of Angle
ht=5;
font_name = "Times New Roman";
Tfont = TextFont(0, ht, 45, font_name);
Tstyle = TextStyle(LEFT, TOP, BOX,BOLD, ITALIC);
bsb = Text("BS(b)", Tfont, Tstyle);
Output(bsb);

Auxiliary Functions

Extents
The ExtentsX1, ExtentsX2, ExtentsY1, ExtentsY2, ExtentsZ1 and ExtentsZ2 functions are used to calculate the extents of
graphic objects.
Format:

ExtentsX1(<Object>);
ExtentsX2(<Object>);
ExtentsY1(<Object>);

 Customized Programming

contact us at http://forums.DoubleCAD.com

ExtentsY2(<Object>);
ExtentsZ1(<Object>);
ExtentsZ2(<Object>);

<Object> Defines the object to be used

The presence of X, Y or Z characters in the function name determines axis along which the extents will be calculated.
1 or 2 index–indicates whether minimum or maximum value should be calculated.

Example of Extents:

xmin = ExtentsX1(PartA);
xmax = ExtentsX2(PartA);
ymin = ExtentsY1(PartA);
ymax = ExtentsY2(PartA);
zmin = ExtentsZ1(PartA);
zmax = ExtentsZ2(PartA);
P1 = Box(xmin, ymin, zmin, xmax, ymax, zmax);

Another Example of Extents:
A0=Thickness(Rectangle(H-3/4,D), 3/4);
A1=RotateY(A0,90);
xmin = ExtentsX1(A1);
xmax = ExtentsX2(A1);
ymin = ExtentsY1(A1);
ymax = ExtentsY2(A1);
zmin = ExtentsZ1(A1);
zmax = ExtentsZ2(A1);
P1 = Box(xmin, ymin, zmin, xmax, ymin+3, zmin+4);

ParameterPoint
The ParameterPoint function defines a parametric point with number and coordinates.
Format:

ParameterPoint (<N>,<xc>,<yc>,<zc>);

<N> Defines the number of the parametric point

<xc>,<yc>,<zc> Defines the coordinates of parametric point

Example of ParameterPoint:

P0 = ParameterPoint(0, l, -l, 0);
P1 = ParameterPoint(1, 0, 0, 0);

DoubleCAD Parametric Parts Manager

30 For updates and additional information,

PointX, PointY, PointZ functions
The PointX, PointY, PointZ are used to calculates X-coordinate of parametrical point. The PointX function calculates X-
coordinate of parametrical point. The PointY function calculates Y-coordinate of parametrical point. The PointZ function
calculates Z-coordinate of parametrical point.
Format:

PointX (<point>);
PointY(<point>);.
PointZ(<point>);

<point> Defines the parametrical point from which the X or Y or Z coordinate will be
extracted

Examples of Point:

x0 = PointX(P0); // x0=1 for P0 = ParameterPoint(0, l, -l, 0);
y1 = PointY(P1); //y1=0 for P1 = ParameterPoint(1 , 0, 0, 0);
z1 = PointZ(P1); //z1=0 for P1 = ParameterPoint(1 , 0, 0);

Special functions and operators

IF
The IF function allows various actions to be performed depending upon whether the specified condition is fulfilled or not
fulfilled. It plays the role of a conditional operator, and can be used to create branches in the logic of building a parametric
part.
Format:

IF(<Condition>, <ExprOnTRUE>, <ExprOnFALSE>);

<Condition> Defines the condition under test using the following comparison operations:

== (equal)

< (less than)

> (greater than)

<= (not greater than)

>= (not less than)

<ExprOnTRUE> Defines the value of the IF function when the value of <Condition> is TRUE;

<ExprOnFALSE> Defines the value of the IF function when the value of <Condition> is FALSE;

IF Example:

A = IF(L >= H, Rectangle(L, H), Rectangle(H, L));

 Customized Programming

contact us at http://forums.DoubleCAD.com

//Regardless of the specified size of L and H, the created rectangle A will
be positioned //horizontally (the longer side will be along the X axis).

/* In this example “Rectangle(L, H)” is the TRUE re sult and “Rectangle(H, L”
if this FALSE result. */

Another Example:
Tstyle = IF(dir > 0, TextStyle(MIDDLE, RIGHT), Text Style(MIDDLE, LEFT));
//Regardless of the specified size of dir, Text Sty le will be specified with
Right or Left justification.

UNITS
The UNITS function defines the units that will be used in the script. It defines the System, Space Units and Scale of
dimensions while creating object. This function allows loading parts correctly in drawings with different specified units.
Format:

Units(<N>[<units of dimension>]);

<N> Defines object scale

<units of dimension> Defines the units in the English or Metric systems

For Example:
Units(1[in]);// means that default unit of drawing is inches
Units(1[mm]);// means that default unit of drawing is millimeters

Units (1[in]) — this means that the main units of measurement are inches. It is the default unit of the script. All geometrical
values are dimensioned in ‘inches” without any mention of units.
It is possible to use other units for some particular values even when the entire drawing is created with the default unit. In
order to use millimeters for particular values while inches are default units, you can explicity declare the desired unit for
these values.
For example, you can use value M=5[mm]; and Units(1[in]) in the same script. It means that only M value is measured in
mm while all others are measured in inches.

Moreover, this function allows for scaling the created objects down (when N<1) or up (when N>1).

For Example:

Units(2[in]);//created object is scaled up 2 times compared with the case of
Units(1[in]);
Units(0.5[in]);// created object is scaled ½ as lar ge as compared with the
case of Units(1[in]);

RefPoint
The RefPoint function sets the location of the Reference Point for the parametric part. When the Reference Point is one of

DoubleCAD Parametric Parts Manager

32 For updates and additional information,

the output values of a script, it is inserted in the drawing along with the part. This enables precise insertion of the parametric
object into the drawing.
Format:

RefPoint(<Point>);

<Point> Defines the (x,y,z) coordinates for location of Reference Point

 For Example:

xArrow = PointX(P0);
yArrow = PointY(P0);
rf = RefPoint(xArrow, yArrow, 0); //-> RefPoint is placed on the point
(xArrow,yArrow, 0) Output(rf);

Input and Output
The Input and Output functions are used for inputting initial values or objects into the script and outputting result
objects from the script.

Format:
Input(<list of variable identifiers, separated with commas>);
Output(<list of variable identifiers, separated wit h commas>);

<list of variable identifiers, separated
with commas>

Defines the list of variables or objects for input or a list of results for
output

For Example:

Input(H, W, D, A, Dis);
Output(SideA_L,Bottom_B,Back_I, Face1, FalseD1, E1, E2,E3,E4, N1, T1, Door,
FF,
SideA_R);

Example of the Output with Conditional Output:
Sw = Parameter("Switch", 1, CHECKBOX);
P1 = Thickness(Rectangle(5,5), 3);
S1= Thickness(Circle(2.5),4);
Output(IF(Sw,P1,S1));
//Here is either cylinder or box inserted on the dr awing
//depending on checkbox Sw value

min and max
The min and max functions are used for choosing the minimum or maximum values within a set of values.
Format:

min(<set of values>);
max(<set of values>);

 Customized Programming

contact us at http://forums.DoubleCAD.com

<set of values> Defines the set of numerical values, identifiers of variables or Array of variables

For Example:

r=min(2,5,1,7,9);//r=1
R=max(2,5,1,7,9);//R=9

For Example:
A=2; B=5; C=1; D=7; E=9;
A1=2; B1=5; C1=1; D1=7; E1=9;
r=min(A,B,C,D,E);//r=1
R=max(A1,B1,C1,D1,E1);//R=9

Example of using Array of Values:
A=2; B=5; C=1; D=7; E=9;
r=min(Array(A,B,C,D,E));//r=1

Note: A Group of objects cannot be used as argument of these functions, because a Group is a collection of graphic objects,
rather than a collection of numbers.

Mod
The Mod function is used for finding the remainder of the integer division. For example, Mod(5,4) is 1, because 5/4 = 1,
with a remainder of 1. Mod(7,4) is 3, because 7/4 = 1, with a remainder of 3. Mod(7,3) = 1, because 7/3 = 2, remainder 1.

Note: The Mod function is often used to determine if a number is odd or even, because Mod(AnyOddNumber, 2) = 1, while
Mod(AnyEvenNumber, 2) = 0.

Format:
Mod(<value1, value2>);

<value1 > Defines the expression or identifier that represents the dividend

<value2> Defines the expression or identifier that represents the divisor

 For Example:

A = 7;
B = 4;
C = Rectangle(A, Mod(A,B));
Output(C);

DoubleCAD Parametric Parts Manager

34 For updates and additional information,

Div
The Div function is used to perform division.
Format:

Div(<value1>,<value2>);

<value1> Defines the dividend

<value2> Defines the divisor

 For Example:

A=7;
B=3;
result1 = A/B;
result2 = Div(A, B);
rect = Rectangle(result1, result2)
Output(rect);

Array
The Array function defines an array of values, or an array of Points, by directly listing the elements of the array. In other
words the Array function collects geometric objects or values into an Array object.
Format:

Array(<list of objects>)

<list of objects> list of numerical values or geometric objects

An <object> can be represented by either a value, or the <identifier> of a value,
or by a Point(x,y,z) function.

For Example:

Array(Point(L/2, 0, 0), Point(0, W/2, 0), Point(L/2 , W, 0), Point(L, W/2,
0))
// It is the array of points defining the edges for G3Fillet.

Array(R, R, R, R, R, R, R, R)
//It is the array of radius values for filleting th e array of edges.

Another Example: Can
txt = Parameter("text", "Simple text example", TEXT);
a = Array(TextFont(0,10,"Arial"), TextStyle(CENTER, MIDDLE, ITALIC));
//Array of 2 items: TextFont and TextStyle)
s0 = Text(txt, a);

 Customized Programming

contact us at http://forums.DoubleCAD.com

Output(s0);

Group
The Group function collects multiple graphic objects into a group and assigns an identifier name to the result. It allows the
script to work with multiple objects as if they were a single object. Also a Group can be the output value of a script. Groups
of objects can take part in different operations: Move, Rotate, etc.
Format:

Group (<list of objects>);

<list of objects> Defines the list of graphic objects, separated with commas. The <object> may be
any graphic objects

 For Example:

bse = Group(bse_below, bse_above); ;//group of 2 gr aphic objects
Br2 = Group(Br0, Br1);

For Example:

Bx = Group(Move(BxL, -Dis*1.5), Move(BxR, Dis*1.5)) ;
ShelfFBx = BooleanSubtract(ShelfF, Bx);
Output(ShelfFBx, Bx);_

Special Functions without Parameters

PI
The PI function calculates the value of Pi = 3.14159...

Creating custom functions
When scripts of the same type are created, which describe a particular class of parametric parts, it can be convenient to have
the sequence of repeated actions as a separate specialized function. To achieve this, the repeated actions can be put into a
separate <name>.ppm file.
In this case, all input variables should be listed in the Input operator:
Format:

Input(<list of variable identifiers, separated with commas>);

For Example:

Input(x0,y0,z0,x1,y1,z1);

The Output operator should also be defined.

Format:

Output(<list of variable identifiers, separated with commas>);

A custom function created in this manner must be placed in a Macro folder, which is always located inside the folder of the
calling script. When the custom function is used, the script's file name (without the .ppm extension) is used just as if it was a
built-in function.

DoubleCAD Parametric Parts Manager

36 For updates and additional information,

Format:
<file name>(<list of input parameters>)

Below is an example of a custom function. The file box.ppm can be found in the PPM Documentation Samples/Macro
folder:

// box.ppm -- defines a custom Box function.
// The custom function is called in this way:
// B = Box(Xmin, Ymin, Zmin, Xmax, Ymax, Zmax);
// The function creates a 3D box with given min/max values
Input(x0,y0,z0,x1,y1,z1);
R = Rectangle(x1-x0, y1-y0, // Rectangle with X min = x0, Xmax= x1
 (x0+x1)/2, (y0+y1)/2); // Ymin = y0, Ymax = y1
T = Thickness(R, z1-z0); // depth = Zmax - Zmin
Output(Move(T, 0, 0, z0)); // move result along z t o Zmin

The script below is box_ blend.ppm, which calls the custom function box.ppm

//box_blend.ppm uses the custom Box.ppm function in the Macro folder.
x = Parameter("size", 5, LINEAR, GreaterThan(0));
r1 = Parameter("r1", 0.5, LINEAR, GreaterThan(0));
b0 = Box(0, 0, 0, x, x, x);
b1 = G3Fillet(b0, Point(x/2, 0, 0), Array(r1, r1*2));
Output(b1);

File location is crucial when using parametric scripts as custom functions. In the example above, if blend_box.ppm lies in
the folder D:/Symbols, then it can only find the box.ppm script if box.ppm is located in the folder D:/Symbols/Macro.

Parametric Parts Reserved Word List
PI LINEAR TEXT

ANGULAR MATERIAL FONT

COLOR CHECKBOX ITALIC

BOLD UNDERLINE BOX

ALLCAPS STRICKETHROUGH TOP

MIDDLE BOTTOM BASELINE

LEFT CENTER RIGHT

 Customized Programming

contact us at http://forums.DoubleCAD.com

Call Array +

- * Div

Mod / -

sin cos tan

atan min max

** = ==

!= < >

<= >= &

| Solid Extrude

UNIQUE GraphicId VertexId

 Vertex Face

Edge Source Bound

Intersect OperationList BlendArg

BlendParam BlendType BlendRadiusMode

BlendSetback BlendRadiusBlendSmooth BlendRadiusParam

BlendOffsetParam BlendFaceEntity BlendFaceEdge

BlendFaceVertex BlendEdgeEdge BlendEdgeVertex

BlendEdgeVertexM
ain

BlendEdgeVertexAux ShellArg

ShellThickness ShellFace ShellEdge

FaceEditArg Transform ScaleX

DoubleCAD Parametric Parts Manager

38 For updates and additional information,

ScaleY ScaleZ ShearXY

ShearXZ ShearYZ RotateX

RotateY RotateZ TranslateX

TranslateY TranslateZ Path

Profile LateralFace LateralEdge

CapFace CapEdge JointEdge

Profiles HighLight FaceMaterialArg

FaceMaterial FaceOffsetArg FaceHoleArg

FaceHole BendId BendRadius

BendAngle BendNeutral BendFlag

BendPosition BendFlangeHeight BendAxialDistance

BendAzimuthAngle BendEdgeStartPosition BendEdgeEndPosition

Face2FaceLoftArg Face2FaceLoft

AssemblyAxis Input Output

Include Units StaticSymbol

FolderList Macro Parameters

Parameter ParameterPoint PointX

PointY PointZ Set

Interval LessThan GreaterThan

LessOrEquail GreaterOrEqual Circle

Rectangle Polyline Point

 Customized Programming

contact us at http://forums.DoubleCAD.com

Arc0 Arc1 Fillet

IF Move Thickness

Sweep Cone BooleanUnion

BooleanSubtract BooleanIntersect G3Fillet

G3Chamfer G3Shell G3Offset

G3Slice G3Bend ExtentsX1

ExtentsX2 ExtentsY1 ExtentsY2

ExtentsZ1 ExtentsZ2 Text

TextFont TextStyle Group

SetProperties PatternCopy

