
The following is a catalog of the AutoLISP® functions available in AutoCAD®. The functions are listed
alphabetically.

In this chapter, each listing contains a brief description of the function's use and a function syntax statement
showing the order and the type of arguments required by the function.

Note that any functions, variables, or features not described here or in other parts of the documentation are
not officially supported and are subject to change in future releases.

For information on syntax, see AutoLISP Function Syntax in the AutoLISP Developer's Guide.

Note that the value returned by some functions is categorized as unspecified. This indicates you cannot rely
on using the value returned from this function.

Topics in this section:

Operators

A Functions

B Functions

C Functions

D Functions

E Functions

F Functions

G Functions

H Functions

I Functions

L Functions

M Functions

N Functions

O Functions

P Functions

Q Functions

R Functions

S Functions

T Functions

U Functions

V Functions

AutoLISP Functions

Page 1 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

W Functions

X Functions

Z Functions

Topics in this section:

+ (add)

- (subtract)

* (multiply)

/ (divide)

= (equal to)

/= (not equal to)

< (less than)

<= (less than or equal to)

> (greater than)

>= (greater than or equal to)

~ (bitwise NOT)

1+ (increment)

1- (decrement)

AutoLISP Functions

Operators

Returns the sum of all numbers

(+ [number number] ...)

Arguments

number

AutoLISP Functions

+ (add)

Page 2 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A number.

Return Values

The result of the addition. If you supply only one number argument, this function returns the result of adding
it to zero. If you supply no arguments, the function returns 0.

Examples

(+ 1 2) returns 3
(+ 1 2 3 4.5) returns 10.5
(+ 1 2 3 4.0) returns 10.0

Subtracts the second and following numbers from the first and returns the difference

(- [number number] ...)

Arguments

number
A number.

Return Values

The result of the subtraction. If you supply more than two number arguments, this function returns the result
of subtracting the sum of the second through the last numbers from the first number. If you supply only one
number argument, this function subtracts the number from zero, and returns a negative number. Supplying
no arguments returns 0.

Examples

(- 50 40) returns 10
(- 50 40.0) returns 10.0
(- 50 40.0 2.5) returns 7.5
(- 8) returns -8

AutoLISP Functions

- (subtract)

AutoLISP Functions

* (multiply)

Page 3 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns the product of all numbers

(* [number number] ...)

Arguments

number
A number.

Return Values

The result of the multiplication. If you supply only one number argument, this function returns the result of
multiplying it by one; it returns the number. Supplying no arguments returns 0.

Examples

(* 2 3) returns 6
(* 2 3.0) returns 6.0
(* 2 3 4.0) returns 24.0
(* 3 -4.5) returns -13.5
(* 3) returns 3

Divides the first number by the product of the remaining numbers and returns the quotient

(/ [number number] ...)

Arguments

number
A number.

Return Values

The result of the division. If you supply more than two number arguments, this function divides the first
number by the product of the second through the last numbers, and returns the final quotient. If you supply
one number argument, this function returns the result of dividing it by one; it returns the number. Supplying
no arguments returns 0.

Examples

(/ 100 2) returns 50
(/ 100 2.0) returns 50.0
(/ 100 20.0 2) returns 2.5
(/ 100 20 2) returns 2
(/ 4) returns 4

AutoLISP Functions

/ (divide)

Page 4 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Compares arguments for numerical equality

(= numstr [numstr] ...)

Arguments

numstr
A number or a string.

Return Values

T, if all arguments are numerically equal; otherwise nil . If only one argument is supplied, = returns T.

Examples

(= 4 4.0) returns T
(= 20 388) returns nil
(= 2.4 2.4 2.4) returns T
(= 499 499 500) returns nil
(= "me" "me") returns T
(= "me" "you") returns nil

See Also

The eq and equal functions.

AutoLISP Functions

= (equal to)

Compares arguments for numerical inequality

(/= numstr [numstr] ...)

Arguments

numstr
A number or a string.

AutoLISP Functions

/= (not equal to)

Page 5 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Return Values

T, if no two successive arguments are the same in value; otherwise nil. If only one argument is
supplied, /= returns T.

Note that the behavior of /= does not quite conform to other LISP dialects. The standard behavior is to
return T if no two arguments in the list have the same value. In AutoLISP, /= returns T if no successive
arguments have the same value; see the examples that follow.

Examples

(/= 10 20) returns T
(/= "you" "you") returns nil
(/= 5.43 5.44) returns T
(/= 10 20 10 20 20) returns nil
(/= 10 20 10 20) returns T

Note In the last example, although there are two arguments in the list with the same value, they do not
follow one another; thus /= evaluates to T.

Returns T if each argument is numerically less than the argument to its right; otherwise nil

(< numstr [numstr] ...)

Arguments

numstr
A number or a string.

Return Values

T, if each argument is numerically less than the argument to its right; otherwise returns nil . If only one
argument is supplied, < returns T.

Examples

(< 10 20) returns T
(< "b" "c") returns T
(< 357 33.2) returns nil
(< 2 3 88) returns T
(< 2 3 4 4) returns nil

AutoLISP Functions

< (less than)

Page 6 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns T if each argument is numerically less than or equal to the argument to its right; otherwise returns nil

(<= numstr [numstr] ...)

Arguments

numstr
A number or a string.

Return Values

T, if each argument is numerically less than or equal to the argument to its right; otherwise returns nil. If
only one argument is supplied, <= returns T.

Examples

(<= 10 20) returns T
(<= "b" "b") returns T
(<= 357 33.2) returns nil
(<= 2 9 9) returns T
(<= 2 9 4 5) returns nil

AutoLISP Functions

<= (less than or equal to)

Returns T if each argument is numerically greater than the argument to its right; otherwise returns nil

(> numstr [numstr] ...)

Arguments

numstr
A number or a string.

Return Values

T, if each argument is numerically greater than the argument to its right; otherwise nil. If only one argument
is supplied, > returns T.

Examples

AutoLISP Functions

> (greater than)

Page 7 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(> 120 17) returns T
(> "c" "b") returns T
(> 3.5 1792) returns nil
(> 77 4 2) returns T
(> 77 4 4) returns nil

Returns T if each argument is numerically greater than or equal to the argument to its right; otherwise returns nil

(>= numstr [numstr] ...)

Arguments

numstr
A number or a string.

Return Values

T, if each argument is numerically greater than or equal to the argument to its right; otherwise nil. If only
one argument is supplied, >= returns T.

Examples

(>= 120 17) returns T
(>= "c" "c") returns T
(>= 3.5 1792) returns nil
(>= 77 4 4) returns T
(>= 77 4 9) returns nil

AutoLISP Functions

>= (greater than or equal to)

Returns the bitwise NOT (1's complement) of the argument

(~ int)

Arguments

int

AutoLISP Functions

~ (bitwise NOT)

Page 8 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

An integer.

Return Values

The bitwise NOT (1's complement) of the argument.

Examples

(~ 3) returns -4
(~ 100) returns -101
(~ -4) returns 3

Increments a number by 1

(1+ number)

Arguments

number
Any number.

Return Values

The argument, increased by 1.

Examples

(1+ 5) returns 6
(1+ -17.5) returns -16.5

AutoLISP Functions

1+ (increment)

Decrements a number by 1

(1- number)

Arguments

AutoLISP Functions

1- (decrement)

Page 9 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

number
Any number.

Return Values

The argument, reduced by 1.

Examples

(1- 5) returns 4
(1- -17.5) returns -18.5

abs
acad_colordlg
acad_helpdlg
acad-pop-dbmod
acad-push-dbmod
acad_strlsort

acdimenableupdate
acet-layerp-mode
acet-layerp-mark
acet-laytrans
acet-ms-to-ps
acet-ps-to-ms
action_tile
add_list
alert
alloc
and
angle
angtof
angtos
append
apply
arx
arxload
arxunload
ascii
assoc
atan
atof

AutoLISP Functions

A Functions

Page 10 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

atoi
atom
atoms-family
autoarxload
autoload

Topics in this section:

abs

acad_colordlg

acad_helpdlg

acad-pop-dbmod

acad-push-dbmod

acad_strlsort

acad_truecolorcli

acad_truecolordlg

acdimenableupdate

acet-layerp-mode

acet-layerp-mark

acet-laytrans

acet-ms-to-ps

acet-ps-to-ms

action_tile

add_list

alert

alloc

and

angle

angtof

angtos

append

apply

arx

arxload

arxunload

ascii

assoc

Page 11 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

atan

atof

atoi

atom

atoms-family

autoarxload

autoload

Returns the absolute value of a number

(abs number)

Arguments

number
Any number.

Return Values

The absolute value of the argument.

Examples

(abs 100) returns 100
(abs -100) returns 100
(abs -99.25) returns 99.25

AutoLISP Functions

abs

Displays the standard AutoCAD color selection dialog box

(acad_colordlg colornum [flag])

Arguments

AutoLISP Functions

acad_colordlg

Page 12 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

colornum
An integer in the range 0-256 (inclusive), specifying the AutoCAD color number to display as the initial
default.

flag
If set to nil, disables the ByLayer and ByBlock buttons. Omitting the flag argument or setting it to a non-
nil value enables the ByLayer and ByBlock buttons.

A colornum value of 0 defaults to ByBlock, and a value of 256 defaults to ByLayer.

Return Values

The user-selected color number; otherwise nil, if the user cancels the dialog box.

Examples

Prompt the user to select a color, and default to green if none is selected:

(acad_colordlg 3)

Invokes the help facility (obsolete)

(acad_helpdlg helpfile topic)

This externally defined function has been replaced by the built-in function help. It is provided for
compatibility with previous releases of AutoCAD.

See Also

The help function for a complete description of this function.

AutoLISP Functions

acad_helpdlg

Restores the value of the DBMOD system variable to the value that was most recently stored with acad-push-dbmod

(acad-pop-dbmod)

AutoLISP Functions

acad-pop-dbmod

Page 13 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

This function is used with acad-push-dbmod to control the DBMOD system variable. The DBMOD system
variable tracks changes to a drawing and triggers save-drawing queries.

This function is implemented in acapp.arx, which is loaded by default. This function pops the current value of
the DBMOD system variable off an internal stack.

Return Values

Returns T if successful; otherwise, if the stack is empty, returns nil.

Stores the current value of the DBMOD system variable

(acad-push-dbmod)

This function is used with acad-pop-dbmod to control the DBMOD system variable. You can use this
function to change a drawing without changing the DBMOD system variable. The DBMOD system variable
tracks changes to a drawing and triggers save-drawing queries.

This function is implemented in acapp.arx, which is loaded by default. This function pushes the current value
of the DBMOD system variable onto an internal stack. To use acad-push-dbmod and acad-pop-dbmod,
precede operations with acad-push-dbmod and then use acad-pop-dbmod to restore the original value
of the DBMOD system variable.

Return Values

Always returns T.

Examples

The following example shows how to store the modification status of a drawing, change the status, and then
restore the original status.

(acad-push-dbmod)
(setq new_line '((0 . "LINE") (100 . "AcDbEntity") (8 . "0")
 (100 . "AcDbLine") (10 1.0 2.0 0.0) (11 2.0 1.0 0.0)
 (210 0.0 0.0 1.0)))
(entmake new_line) ; Set DBMOD to flag 1
(command "_color" "2") ; Set DBMOD to flag 4
(command "_-vports" "_SI") ; Set DBMOD to flag 8
(command "_vpoint" "0,0,1") ; Set DBMOD to flag 16
(acad-pop-dbmod) ; Set DBMOD to original value

AutoLISP Functions

acad-push-dbmod

Page 14 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Sorts a list of strings in alphabetical order

(acad_strlsort list)

Arguments

list
The list of strings to be sorted.

Return Values

The list in alphabetical order. If the list is invalid or if there is not enough memory to do the sort,
acad_strlsort returns nil.

Examples

Sort a list of abbreviated month names:

Command: (setq mos '("Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug"

"Sep" "Oct" "Nov" "Dec"))

("Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec")

Command: (acad_strlsort mos)

("Apr" "Aug" "Dec" "Feb" "Jan" "Jul" "Jun" "Mar" "May" "Nov" "Oct" "Sep")

AutoLISP Functions

acad_strlsort

Prompts for colors at the command line

(acad_truecolorcli color [allowbylayer] [alternatePrompt])

Arguments

color
A dotted pair that describes the default color. The first element of the dotted pair must be one of the color-
related DXF group codes (62, 420, or 430); for example, (62 . ColorIndex), (420 . TrueColor),
or (430 . "colorbook$colorname").

allowbylayer
Omitting the allowbylayer argument or setting it to a non-nil value enables entering bylayer or byblock to
set the color. If set to nil, an error results if bylayer or byblock is entered.

AutoLISP Functions

acad_truecolorcli

Page 15 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

alternateprompt
An optional prompt string. If this string is omitted, the default value is “New color”.

Return Values

When the operation is successful, the function returns a list of one or more dotted pairs (depending on the
tab on which the color is selected) describing the color selected. The last dotted pair in the list indicates the
color selected. The function returns nil if the user cancels the dialog box.

Color book color
If the last item in the returned list is a 430 pair, then the specified color originates from a color book. This
returned list will also contain a 420 pair that describes the corresponding true color and a 62 pair that
describes the closest matching color index value.

True color
If the returned list contains a 420 pair as the last item, then a true color was specified (as
“Red,Green,Blue”). The list will also contain a 62 pair that indicates the closest matching color index. No
430 pair will be present.

Color index
If the last item in the list is a 62 pair, then a colorindex was chosen. No other dotted pairs will be present in
the returned list.

Examples

Prompt for a color selection at the command line with a purple color index default selection and alternative
text for the command prompt:

Command: (acad_truecolorcli '(62 . 215) 1 "Pick a color")

New Color [Truecolor/COlorbook] <215>:

((62 . 215))

Prompt for a color selection at the command line with a yellow color index default selection, then set the
color by layer:

Command: (acad_truecolorcli '(62 . 2))

New Color [Truecolor/COlorbook] <2 (yellow)>: bylayer

((62 . 256))

Displays the AutoCAD color selection dialog box with tabs for index color, true color, and color books

(acad_truecolordlg color [allowbylayer] [currentlayercolor])

Arguments

color

AutoLISP Functions

acad_truecolordlg

Page 16 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A dotted pair that describes the default color. The first element of the dotted pair must be one of the color-
related DXF group codes (62, 420, or 430); for example, (62 . ColorIndex), (420 . TrueColor),
or (430 . "colorbook$colorname").

allowbylayer
If set to nil, disables the ByLayer and ByBlock buttons. Omitting the allowbylayer argument or setting it
to a non-nil value enables the ByLayer and ByBlock buttons.

currentlayercolor
Optional dotted pair in the same form as color that sets the value of the bylayer/byblock color in the
dialog.

Return Values

When the operation is successful, the function returns a list of one or more dotted pairs (depending on the
tab on which the color is selected) describing the color selected. The last dotted pair in the list indicates the
color selected. The function returns nil if the user cancels the dialog box.

Color book color
If the last item in the returned list is a 430 pair, then the specified color originates from a color book. This
returned list will also contain a 420 pair that describes the corresponding true color and a 62 pair that
describes the closest matching color index value.

True color
If the returned list contains a 420 pair as the last item, then a true color was specified (as
“Red,Green,Blue”). The list will also contain a 62 pair that indicates the closest matching color index. No
430 pair will be present.

Color index
If the last item in the list is a 62 pair, then a color index was chosen. No other dotted pairs will be present
in the returned list.

Examples

Open the color selection dialog to the Color Index tab and accept the purple default selection:

Command: (acad_truecolordlg '(62 . 215))

((62 . 215))

Open the color selection dialog to the True Color tab with a green default selection and with the By Layer
and By Block buttons disabled:

Command: (acad_truecolordlg '(420 . 2686760) nil)

((62 . 80) (420 . 2686760))

Open the color selection dialog to the Color Books tab and accept the mustard default selection:

Command: (acad_truecolordlg '(430 . "RAL CLASSIC$RAL 1003"))

((62 . 40) (420 . 16235019) (430 . "RAL CLASSIC$RAL 1003"))

AutoLISP Functions

acdimenableupdate

Page 17 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Controls the automatic updating of associative dimensions

(acdimenableupdate nil | T)

The acdimenableupdate function is intended for developers who are editing geometry and don't want the
dimension to be updated until after the edits are complete.

Arguments

nil
Associative dimensions will not update (even if the geometry is modified) until the DIMREGEN command
is entered.

T
Enable automatic updating of associative dimensions when the geometry is modified.

Return Values

nil

Examples

Disable the automatic update of associative dimensions in the drawing:

Command: (acdimenableupdate nil)

Enable the automatic update of associative dimensions in the drawing:

Command: (acdimenableupdate T)

Queries and sets the LAYERPMODE setting

(acet-layerp-mode [status])

Arguments

status
Specifying T turns LAYERPMODE on, enabling layer-change tracking. Nil turns LAYERPMODE off.

If this argument is not present, acet-layerp-mode returns the current status of LAYERPMODE.

Return Values

T if current status of LAYERPMODE is on; nil if LAYERPMODE is off.

AutoLISP Functions

acet-layerp-mode

Page 18 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

Check the current status of LAYERPMODE:

Command: (acet-layerp-mode)

T

Turn LAYERPMODE off:

Command: (acet-layerp-mode nil)

nil

Check the current status of LAYERPMODE:

Command: (acet-layerp-mode)

nil

See Also

The LAYERP and LAYERPMODE commands in the Command Reference.

Places beginning and ending marks for Layer Previous recording

(acet-layerp-mark [status])

The acet-layerp-mark function allows you to group multiple layer commands into a single transaction so
that they can be undone by issuing LAYERP a single time. LAYERPMODE must be on in order to set marks.

Arguments

status
Specifying T sets a begin mark. Specifying nil sets an end mark, clearing the begin mark.

If status is omitted, acet-layerp-mark returns the current mark status for layer settings.

Return Values

T if a begin mark is in effect; otherwise nil.

Examples

The following code changes layer 0 to blue, and then makes several additional layer changes between a set
of begin and end marks. If you issue LAYERP after running this code, layer 0 reverts to blue.

AutoLISP Functions

acet-layerp-mark

Page 19 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(defun TestLayerP ()
 ;; Turn LAYERPMODE on, if it isn't already
 (if (not (acet-layerp-mode))
 (acet-layerp-mode T)
)
 ;; Set layer 0 to the color blue
 (command "_.layer" "_color" "blue" "0" "")
 ;; Set a begin mark
 (acet-layerp-mark T)
 ;; Issue a series of layer commands, and then set an end mark
 (command "_.layer" "_color" "green" "0" "")
 (command "_.layer" "_thaw" "*" "")
 (command "_.layer" "_unlock" "*" "")
 (command "_.layer" "_ltype" "hidden" "0" "")
 (command "_.layer" "_color" "red" "0" "")
 ;; Set an end mark
 (acet-layerp-mark nil)
)

See Also

The LAYERP command in the Command Reference.

Translates drawing layers to standards defined in another drawing or standards file

(acet-laytrans “filename” [settings])

Arguments

filename
A string specifying a file containing layer mappings to be used for translation.

settings
A bit-coded integer specifying Layer Translator processing options. The bits can be added together in any
combination to form a value between 0 and 15. If the settings argument is omitted, a value of 15 (all
options selected) is assumed. The bit values are as follows:

0 No options

1 Force entity color to BYLAYER

2 Force entity linetype to BYLAYER

4 Translate objects in blocks

8 Write transaction log

Return Values

AutoLISP Functions

acet-laytrans

Page 20 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

T if translation is successful; otherwise nil.

Examples

The following command translates the current drawing using layer mappings saved in LayMap.dwg. No
transaction log will be produced, but all other processing options will be in effect.

Command: (acet-laytrans "c:/my documents/cad drawings/LayMap.dwg" 7)

T

See Also

The LAYTRANS command in the Command Reference.

Converts a real value from model space units to paper space units

(acet-ms-to-ps [value][viewport])

If both the value and viewport arguments are specified, the value is converted to paper space units using the
specified viewport. No user input is required.

If only the value argument is specified, the current viewport is assumed and no user input is required.
However, if the current space is model space, there is no current viewport and the function will fail (returning
nil). If paper space is the current space, the function will either prompt for a viewport if more than one
viewport exists in the current paper space layout, or use the single existing viewport.

If no arguments are specified, the function prompts for a value and converts it if possible.

Arguments

value
A real value to be converted.

viewport
A viewport entity name (ads_name).

Return Values

The converted real value on success; nil on failure.

AutoLISP Functions

acet-ms-to-ps

Page 21 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Converts a real value from paper space units to model space units

(acet-ps-to-ms [value][viewport])

If both the value and viewport arguments are specified, the value is converted to model space units using
the specified viewport. No user input is required.

If only the value argument is specified, the current viewport is assumed and no user input is required.
However, if the current space is model space, there is no current viewport and the function will fail (returning
nil). If paper space is the current space, the function will either prompt for a viewport if more than one
viewport exists in the layout, or use the single existing viewport.

If no arguments are specified, the function prompts for a value and converts it if possible.

Arguments

value
A real value to be converted.

viewport
A viewport entity name (ads_name).

Return Values

The converted real value on success, nil on failure.

AutoLISP Functions

acet-ps-to-ms

Assigns an action to evaluate when the user selects the specified tile in a dialog box

(action_tile key action-expression)

The action assigned by action_tile supersedes the dialog box's default action (assigned by
new_dialog) or the tile's action attribute, if these are specified. The expression can refer to the tile's
current value as $value, its name as $key, its application-specific data (as set by client_data_tile)
as $data, its callback reason as $reason, and its image coordinates (if the tile is an image button) as $x
and $y.

Arguments

key

AutoLISP Functions

action_tile

Page 22 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A string that names the tile that triggers the action (specified as its key attribute). This argument is case-
sensitive.

action-expression
A string naming the expression evaluated when the tile is selected.

Note You cannot call the AutoLISP command function from the action_tile function.

Return Values

T

Examples

If edit1 is a text box, the action expression in the following action_tile call is evaluated when the user
exits the text box:

(action_tile "edit1" "(setq ns $value)")

See Also

The Default and DCL Actions topic in the AutoLISP Developer's Guide.

Adds or modifies a string in the currently active dialog box list

(add_list string)

Before using add_list, you must open the list and initialize it with a call to start_list. Depending on
the operation specified in start_list, the string is either added to the current list or replaces the current
list item.

Arguments

string
A string.

Return Values

Returns the string added to the list, if successful; otherwise nil.

Examples

Assuming the currently active DCL file has a popup_list or list_box with a key of longlist, the
following code fragment initializes the list and adds to it the text strings in llist.

AutoLISP Functions

add_list

Page 23 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(setq llist '("first line" "second line" "third line"))
(start_list "longlist")
(mapcar 'add_list llist)
(end_list)

After the list has been defined, the following code fragment changes the text in the second line to "2nd
line".

(start_list "longlist" 1 0)
(add_list "2nd line")
(end_list)

See Also

The start_list and end_list functions.

Displays a dialog box containing an error or warning message

(alert string)

Arguments

string
The string to appear in the alert box.

Return Values

nil

Examples

Display a message in an alert box:

(alert "That function is not available.")

Display a multiple line message, by using the newline character in string:

(alert "That function\nis not available.")

Note Line length and the number of lines in an alert box are platform, device, and window dependent.
AutoCAD truncates any string that is too long to fit inside an alert box.

AutoLISP Functions

alert

Page 24 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Sets the size of the segment to be used by the expand function

(alloc n-alloc)

Arguments

n-alloc
An integer indicating the amount of memory to be allocated. The integer represents the number of
symbols, strings, usubrs, reals, and cons cells.

Return Values

The previous setting of n-alloc.

Examples

_$ (alloc 100)
1000

See Also

The expand function.

AutoLISP Functions

alloc

Returns the logical AND of the supplied arguments

(and [expr ...])

Arguments

expr
Any expression.

Return Values

Nil, if any of the expressions evaluate to nil; otherwise T. If and is issued without arguments, it
returns T.

AutoLISP Functions

and

Page 25 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

Command: (setq a 103 b nil c "string")

"string"

Command: (and 1.4 a c)

T

Command: (and 1.4 a b c)

nil

Returns an angle in radians of a line defined by two endpoints

(angle pt1 pt2)

Arguments

pt1
An endpoint.

pt2
An endpoint.

Return Values

An angle, in radians.

The angle is measured from the X axis of the current construction plane, in radians, with angles increasing
in the counterclockwise direction. If 3D points are supplied, they are projected onto the current construction
plane.

Examples

Command: (angle '(1.0 1.0) '(1.0 4.0))

1.5708

Command: (angle '(5.0 1.33) '(2.4 1.33))

3.14159

See Also

The Angular Conversion topic in the AutoLISP Developer's Guide.

AutoLISP Functions

angle

Page 26 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Converts a string representing an angle into a real (floating-point) value in radians

(angtof string [units])

Arguments

string
A string describing an angle based on the format specified by the mode argument. The string must be a
string that angtof can parse correctly to the specified unit. It can be in the same form that angtos
returns, or in a form that AutoCAD allows for keyboard entry.

units
Specifies the units in which the string is formatted. The value should correspond to values allowed for the
AutoCAD system variable AUNITS in the Command Reference. If unit is omitted, angtof uses the current
value of AUNITS. The following units may be specified:

0 Degrees

1 Degrees/minutes/seconds

2 Grads

3 Radians

4 Surveyor's units

Return Values

A real value, if successful; otherwise nil.

The angtof and angtos functions are complementary: if you pass angtof a string created by angtos,
angtof is guaranteed to return a valid value, and vice versa (assuming the unit values match).

Examples

Command: (angtof "45.0000")

0.785398

Command: (angtof "45.0000" 3)

1.0177

See Also

The angtos function.

AutoLISP Functions

angtof

AutoLISP Functions

Page 27 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Converts an angular value in radians into a string

(angtos angle [unit [precision]])

Arguments

angle
A real number, in radians.

unit
An integer that specifies the angular units. If unit is omitted, angtos uses the current value of the
AutoCAD system variable AUNITS. The following units may be specified:

0 Degrees

1 Degrees/minutes/seconds

2 Grads

3 Radians

4 Surveyor's units
precision

An integer specifying the number of decimal places of precision to be returned. If omitted, angtos uses
the current setting of the AutoCAD system variable AUPREC in the Command Reference.

The angtos function takes angle and returns it edited into a string according to the settings of unit,
precision, the AutoCAD UNITMODE system variable, and the DIMZIN dimensioning variable in the
Command Reference.

The angtos function accepts a negative angle argument, but always reduces it to a positive value between
zero and 2 pi radians before performing the specified conversion.

The UNITMODE system variable affects the returned string when surveyor's units are selected (a unit value
of 4). If UNITMODE = 0, spaces are included in the string (for example, “N 45d E”); if UNITMODE = 1, no
spaces are included in the string (for example, “N45dE”).

Return Values

A string, if successful; otherwise nil.

Examples

Command: (angtos 0.785398 0 4)

"45.0000"

Command: (angtos -0.785398 0 4)

"315.0000"

Command: (angtos -0.785398 4)

"S 45d E"

Note Routines that use the angtos function to display arbitrary angles (those not relative to the value of
ANGBASE) should check and consider the value of ANGBASE.

angtos

Page 28 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

See Also

The angtof function, and String Conversions in the AutoLISP Developer's Guide.

Takes any number of lists and appends them together as one list

(append [list ...])

Arguments

list
A list.

Return Values

A list with all arguments appended to the original. If no arguments are supplied, append returns nil.

Examples

Command: (append '(a b) '(c d))

(A B C D)

Command: (append '((a)(b)) '((c)(d)))

((A) (B) (C) (D))

AutoLISP Functions

append

Passes a list of arguments to, and executes, a specified function

(apply 'function list)

Arguments

'function
A function. The function argument can be either a symbol identifying a defun, or a lambda expression.

list

AutoLISP Functions

apply

Page 29 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A list. Can be nil, if the function accepts no arguments.

Return Values

The result of the function call.

Examples

Command: (apply '+ '(1 2 3))

6

Command: (apply 'strcat '("a" "b" "c"))

"abc"

Returns a list of the currently loaded ObjectARX applications

(arx)

Return Values

A list of ObjectARX® application file names; the path is not included in the file name.

Examples

Command: (arx)

("acadapp.arx" "acmted.arx" "oleaprot.arx")

See Also

The arxload and arxunload functions.

AutoLISP Functions

arx

Loads an ObjectARX application

(arxload application [onfailure])

AutoLISP Functions

arxload

Page 30 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

application
A quoted string or a variable that contains the name of an executable file. You can omit the .arx extension
from the file name.

You must supply the full path name of the ObjectARX executable file, unless the file is in a directory that is
in the AutoCAD support file search path.

onfailure
An expression to be executed if the load fails.

Return Values

The application name, if successful. If unsuccessful and the onfailure argument is supplied, arxload
returns the value of this argument; otherwise, failure results in an error message.

If you attempt to load an application that is already loaded, arxload issues an error message. You may
want to check the currently loaded ObjectARX applications with the arx function before using arxload.

Examples

Load the acbrowse.arx file supplied in the AutoCAD installation directory:

Command: (arxload "c:/program files/ <AutoCAD installation directory>/acbrowse.arx")

"c:/program files/ <AutoCAD installation directory>/acbrowse.arx"

See Also

The arxunload function.

Unloads an ObjectARX application

(arxunload application [onfailure])

Arguments

application
A quoted string or a variable that contains the name of a file that was loaded with the arxload function.
You can omit the .arx extension and the path from the file name.

onfailure
An expression to be executed if the unload fails.

Return Values

AutoLISP Functions

arxunload

Page 31 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The application name, if successful. If unsuccessful and the onfailure argument is supplied, arxunload
returns the value of this argument; otherwise, failure results in an error message.

Note that locked ObjectARX applications cannot be unloaded. ObjectARX applications are locked by default.

Examples

Unload the acbrowse application that was loaded in the arxload function example:

Command: (arxunload "acbrowse")

"acbrowse"

See Also

The arxload function.

Returns the conversion of the first character of a string into its ASCII character code (an integer)

(ascii string)

Arguments

string
A string.

Return Values

An integer.

Examples

Command: (ascii "A")

65

Command: (ascii "a")

97

Command: (ascii "BIG")

66

AutoLISP Functions

ascii

Page 32 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Searches an association list for an element and returns that association list entry

(assoc element alist)

Arguments

element
Key of an element in an association list.

alist
An association list to be searched.

Return Values

The alist entry, if successful. If assoc does not find element as a key in alist, it returns nil.

Examples

Command: (setq al '((name box) (width 3) (size 4.7263) (depth 5)))

((NAME BOX) (WIDTH 3) (SIZE 4.7263) (DEPTH 5))

Command: (assoc 'size al)

(SIZE 4.7263)

Command: (assoc 'weight al)

nil

AutoLISP Functions

assoc

Returns the arctangent of a number in radians

(atan num1 [num2])

Arguments

num1
A number.

num2
A number.

Return Values

AutoLISP Functions

atan

Page 33 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The arctangent of num1, in radians, if only num1 is supplied. If you supply both num1 and num2 arguments,
atan returns the arctangent of num1/num2, in radians. If num2 is zero, it returns an angle of plus or minus
1.570796 radians (+90 degrees or -90 degrees), depending on the sign of num1. The range of angles
returned is -pi/2 to +pi/2 radians.

Examples

Command: (atan 1)

0.785398

Command: (atan 1.0)

0.785398

Command: (atan 0.5)

0.463648

Command: (atan 1.0)

0.785398

Command: (atan -1.0)

-0.785398

Command: (atan 2.0 3.0)

0.588003

Command: (atan 2.0 -3.0)

2.55359

Command: (atan 1.0 0.0)

1.5708

Converts a string into a real number

(atof string)

Arguments

string
A string to be converted into a real number.

Return Values

A real number.

Examples

Command: (atof "97.1")

AutoLISP Functions

atof

Page 34 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

97.1

Command: (atof "3")

3.0

Command: (atof "3.9")

3.9

Converts a string into an integer

(atoi string)

Arguments

string
A string to be converted into an integer.

Return Values

An integer.

Examples

Command: (atoi "97")

97

Command: (atoi "3")

3

Command: (atoi "3.9")

3

See Also

The itoa function.

AutoLISP Functions

atoi

AutoLISP Functions

atom

Page 35 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Verifies that an item is an atom

(atom item)

Arguments

item
Any AutoLISP element.

Some versions of LISP differ in their interpretation of atom, so be careful when converting from non-
AutoLISP code.

Return Values

Nil if item is a list; otherwise T. Anything that is not a list is considered an atom.

Examples

Command: (setq a '(x y z))

(X Y Z)

Command: (setq b 'a)

A

Command: (atom 'a)

T

Command: (atom a)

nil

Command: (atom 'b)

T

Command: (atom b)

T

Command: (atom '(a b c))

nil

Returns a list of the currently defined symbols

(atoms-family format [symlist])

Arguments

format
An integer value of 0 or 1 that determines the format in which atoms-family returns the symbol names:

AutoLISP Functions

atoms-family

Page 36 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

0 Return the symbol names as a list

1 Return the symbol names as a list of strings
symlist

A list of strings that specify the symbol names you want atoms-family to search for.

Return Values

A list of symbols. If you specify symlist, then atoms-family returns the specified symbols that are
currently defined, and returns nil for those symbols that are not defined.

Examples

Command: (atoms-family 0)

(BNS_PRE_SEL FITSTR2LEN C:AI_SPHERE ALERT DEFUN C:BEXTEND REM_GROUP

B_RESTORE_SYSVARS BNS_CMD_EXIT LISPED FNSPLITL...

The following code verifies that the symbols CAR, CDR, and XYZ are defined, and returns the list as strings:

Command: (atoms-family 1 '("CAR" "CDR" "XYZ"))

("CAR" "CDR" nil)

The return value shows that the symbol XYZ is not defined.

Predefines command names to load an associated ObjectARX file

(autoarxload filename cmdlist)

The first time a user enters a command specified in cmdlist, AutoCAD loads the ObjectARX application
specified in filename, then continues the command.

If you associate a command with filename and that command is not defined in the specified file, AutoCAD
alerts you with an error message when you enter the command.

Arguments

filename
A string specifying the .arx file to be loaded when one of the commands defined by the cmdlist argument
is entered at the Command prompt. If you omit the path from filename, AutoCAD looks for the file in the
support file search path.

cmdlist
A list of strings.

AutoLISP Functions

autoarxload

Page 37 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Return Values

nil

Examples

The following code defines the C:APP1, C:APP2, and C:APP3 functions to load the bonusapp.arx file:

(autoarxload "BONUSAPP" '("APP1" "APP2" "APP3"))

Predefines command names to load an associated AutoLISP file

(autoload filename cmdlist)

The first time a user enters a command specified in cmdlist, AutoCAD loads the application specified in
filename, then continues the command.

Arguments

filename
A string specifying the .lsp file to be loaded when one of the commands defined by the cmdlist argument is
entered at the Command prompt. If you omit the path from filename, AutoCAD looks for the file in the
Support File Search Path.

cmdlist
A list of strings.

Return Values

nil

If you associate a command with filename and that command is not defined in the specified file, AutoCAD
alerts you with an error message when you enter the command.

Examples

The following causes AutoCAD to load the bonusapp.lsp file the first time the APP1, APP2, or APP3
commands are entered at the Command prompt:

(autoload "BONUSAPP" '("APP1" "APP2" "APP3"))

AutoLISP Functions

autoload

AutoLISP Functions

Page 38 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Boole
boundp

Topics in this section:

Boole

boundp

B Functions

Serves as a general bitwise Boolean function

(Boole operator int1 [int2 ...])

Arguments

operator
An integer between 0 and 15 representing one of the 16 possible Boolean functions in two variables.

int1, int2...
Integers.

Note that Boole will accept a single integer argument, but the result is unpredictable.

Successive integer arguments are bitwise (logically) combined based on this function and on the following
truth table:

Each bit of int1 is paired with the corresponding bit of int2, specifying one horizontal row of the truth table.
The resulting bit is either 0 or 1, depending on the setting of the operator bit that corresponds to this row of
the truth table.

If the appropriate bit is set in operator, the resulting bit is 1; otherwise the resulting bit is 0. Some of the
values for operator are equivalent to the standard Boolean operations AND, OR, XOR, and NOR.

AutoLISP Functions

Boole

Boolean truth table
Int1 Int2 operator bit
0 0 8

0 1 4

1 0 2

1 1 1

Page 39 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Return Values

An integer.

Examples

The following specifies a logical AND of the values 12 and 5:

Command: (Boole 1 12 5)

4

The following specifies a logical XOR of the values 6 and 5:

Command: (Boole 6 6 5)

3

You can use other values of operator to perform other Boolean operations for which there are no standard
names. For example, if operator is 4, the resulting bits are set if the corresponding bits are set in int2 but not
in int1:

Command: (Boole 4 3 14)

12

Boole function bit values
Operator Operation Resulting bit is 1 if
1 AND Both input bits are 1

6 XOR Only one of the two input bits is 1

7 OR Either or both of the input bits are 1

8 NOR Both input bits are 0 (1's complement)

Verifies if a value is bound to a symbol

(boundp sym)

Arguments

sym
A symbol.

Return Values

T if sym has a value bound to it. If no value is bound to sym, or if it has been bound to nil, boundp returns

AutoLISP Functions

boundp

Page 40 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

nil. If sym is an undefined symbol, it is automatically created and is bound to nil.

Examples

Command: (setq a 2 b nil)

nil

Command: (boundp 'a)

T

Command: (boundp 'b)

nil

The atoms-family function provides an alternative method of determining the existence of a symbol
without automatically creating the symbol.

See Also

The atoms-family function.

caddr
cadr
car
cdr
chr
client_data_tile
close
command
cond
cons
cos
cvunit

Topics in this section:

caddr

cadr

car

cdr

chr

AutoLISP Functions

C Functions

Page 41 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

client_data_tile

close

command

cond

cons

cos

cvunit

Returns the third element of a list

(caddr list)

In AutoLISP, caddr is frequently used to obtain the Z coordinate of a 3D point (the third element of a list of
three reals).

Arguments

list
A list.

Return Values

The third element in list; otherwise nil, if the list is empty or contains fewer than three elements.

Examples

Command: (setq pt3 '(5.25 1.0 3.0))

(5.25 1.0 3.0)

Command: (caddr pt3)

3.0

Command: (caddr '(5.25 1.0))

nil

See Also

The Point Lists topic in the AutoLISP Developer's Guide.

AutoLISP Functions

caddr

Page 42 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns the second element of a list

(cadr list)

In AutoLISP, cadr is frequently used to obtain the Y coordinate of a 2D or 3D point (the second element of
a list of two or three reals).

Arguments

list
A list.

Return Values

The second element in list; otherwise nil, if the list is empty or contains only one element.

Examples

Command: (setq pt2 '(5.25 1.0))

(5.25 1.0)

Command: (cadr pt2)

1.0

Command: (cadr '(4.0))

nil

Command: (cadr '(5.25 1.0 3.0))

1.0

See Also

The Point Lists topic in the AutoLISP Developer's Guide.

AutoLISP Functions

cadr

Returns the first element of a list

(car list)

AutoLISP Functions

car

Page 43 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

list
A list.

Return Values

The first element in list; otherwise nil, if the list is empty.

Examples

Command: (car '(a b c))

A

Command: (car '((a b) c))

(A B)

Command: (car '())

nil

See Also

The Point Lists topic in the AutoLISP Developer's Guide.

Returns a list containing all but the first element of the specified list

(cdr list)

Arguments

list
A list.

Return Values

A list containing all the elements of list, except the first element (but see Note below). If the list is empty, cdr
returns nil.

Note When the list argument is a dotted pair, cdr returns the second element without enclosing it in a list.

Examples

Command: (cdr '(a b c))

AutoLISP Functions

cdr

Page 44 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(B C)

Command: (cdr '((a b) c))

(C)

Command: (cdr '())

nil

Command: (cdr '(a . b))

B

Command: (cdr '(1 . "Text"))

"Text"

See Also

The Point Lists topic in the AutoLISP Developer's Guide.

Converts an integer representing an ASCII character code into a single-character string

(chr integer)

Arguments

list
An integer.

Return Values

A string containing the ASCII character code for integer. If the integer is not in the range of 1-255, the return
value is unpredictable.

Examples

Command: (chr 65)

"A"

Command: (chr 66)

"B"

Command: (chr 97)

"a"

AutoLISP Functions

chr

Page 45 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Associates application-managed data with a dialog box tile

(client_data_tile key clientdata)

Arguments

key
A string that specifies a tile. This argument is case-sensitive.

clientdata
A string to be associated with the key tile. An action expression or callback function can refer to the string
as $data.

Return Values

nil

AutoLISP Functions

client_data_tile

Closes an open file

(close file-desc)

Arguments

file-desc
A file descriptor obtained from the open function.

Return Values

Nil if file-desc is valid; otherwise results in an error message.

After a close, the file descriptor is unchanged but is no longer valid. Data added to an open file is not
actually written until the file is closed.

Examples

The following code counts the number of lines in the file somefile.txt and sets the variable ct equal to that
number:

(setq fil "SOMEFILE.TXT")

AutoLISP Functions

close

Page 46 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(setq x (open fil "r") ct 0)
(while (read-line x)
 (setq ct (1+ ct))
)
(close x)

Executes an AutoCAD command

(command [arguments] ...)

Arguments

arguments
AutoCAD commands and their options.

The arguments to the command function can be strings, reals, integers, or points, as expected by the
prompt sequence of the executed command. A null string ("") is equivalent to pressing ENTER on the
keyboard. Invoking command with no argument is equivalent to pressing ESC and cancels most AutoCAD
commands.

The command function evaluates each argument and sends it to AutoCAD in response to successive
prompts. It submits command names and options as strings, 2D points as lists of two reals, and 3D points as
lists of three reals. AutoCAD recognizes command names only when it issues a Command prompt.

Note that if you issue command from Visual LISP, focus does not change to the AutoCAD window. If the
command requires user input, you'll see the return value (nil) in the Console window, but AutoCAD will be
waiting for input. You must manually activate the AutoCAD window and respond to the prompts. Until you do
so, any subsequent commands will fail.

Return Values

nil

Examples

The following example sets two variables pt1 and pt2 equal to two point values 1,1 and 1,5. It then uses
the command function to issue the LINE command in the Command Reference and pass the two point
values.

Command: (setq pt1 '(1 1) pt2 '(1 5))

(1 5)

Command: (command "line" pt1 pt2 "")

line From point:

To point:

AutoLISP Functions

command

Page 47 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

To point:

Command: nil

Restrictions and Notes

The AutoCAD SKETCH command in the Command Reference reads the digitizer directly and therefore
cannot be used with the AutoLISP command function. If the SCRIPT command is used with the command
function, it should be the last function call in the AutoLISP routine.

Also, if you use the command function in an acad.lsp or .mnl file, it should be called only from within a defun
statement. Use the S::STARTUP function to define commands that need to be issued immediately when
you begin a drawing session.

For AutoCAD commands that require the selection of an object (like the BREAK and TRIM commands in the
Command Reference), you can supply a list obtained with entsel instead of a point to select the object.
For examples, see Passing Pick Points to AutoCAD Commands in the AutoLISP Developer's Guide.

Commands executed from the command function are not echoed to the command line if the CMDECHO
system variable (accessible from setvar and getvar) is set to 0.

See Also

The vl-cmdf function. The Command Submission in the AutoLISP Developer's Guide.

Serves as the primary conditional function for AutoLISP

(cond [(test result ...) ...])

The cond function accepts any number of lists as arguments. It evaluates the first item in each list (in the
order supplied) until one of these items returns a value other than nil. It then evaluates those expressions
that follow the test that succeeded.

Return Values

The value of the last expression in the sublist. If there is only one expression in the sublist (that is, if result is
missing), the value of the test expression is returned. If no arguments are supplied, cond returns nil.

Examples

The following example uses cond to perform an absolute value calculation:

(cond
 ((minusp a) (- a))

AutoLISP Functions

cond

Page 48 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

 (t a)
)

If the variable a is set to the value -10, this returns 10.

As shown, cond can be used as a case type function. It is common to use T as the last (default) test
expression. Here's another simple example. Given a user response string in the variable s, this function
tests the response and returns 1 if it is Y or y, 0 if it is N or n; otherwise nil.

(cond
 ((= s "Y") 1)
 ((= s "y") 1)
 ((= s "N") 0)
 ((= s "n") 0)
 (t nil)
)

Adds an element to the beginning of a list, or constructs a dotted list

(cons new-first-element list-or-atom)

Arguments

new-first-element
Element to be added to the beginning of a list. This element can be an atom or a list.

list-or-atom
A list or an atom.

Return Values

The value returned depends on the data type of list-or-atom. If list-or-atom is a list, cons returns that list with
new-first-element added as the first item in the list. If list-or-atom is an atom, cons returns a dotted pair
consisting of new-first-element and list-or-atom.

Examples

Command: (cons 'a '(b c d))

(A B C D)

Command: (cons '(a) '(b c d))

((A) B C D)

Command: (cons 'a 2)

(A . 2)

AutoLISP Functions

cons

Page 49 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

See Also

The List Handling topic in the AutoLISP Developer's Guide.

Returns the cosine of an angle expressed in radians

(cos ang)

Arguments

ang
An angle, in radians.

Return Values

The cosine of ang, in radians.

Examples

Command: (cos 0.0)

1.0

Command: (cos pi)

-1.0

AutoLISP Functions

cos

Converts a value from one unit of measurement to another

(cvunit value from-unit to-unit)

Arguments

value
The numeric value or point list (2D or 3D point) to be converted.

from-unit

AutoLISP Functions

cvunit

Page 50 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The unit that value is being converted from.
to-unit

The unit that value is being converted to.

The from-unit and to-unit arguments can name any unit type found in the acad.unt file.

Return Values

The converted value, if successful; otherwise nil, if either unit name is unknown (not found in the acad.unt
file), or if the two units are incompatible (for example, trying to convert grams into years).

Examples

Command: (cvunit 1 "minute" "second")

60.0

Command: (cvunit 1 "gallon" "furlong")

nil

Command: (cvunit 1.0 "inch" "cm")

2.54

Command: (cvunit 1.0 "acre" "sq yard")

4840.0

Command: (cvunit '(1.0 2.5) "ft" "in")

(12.0 30.0)

Command: (cvunit '(1 2 3) "ft" "in")

(12.0 24.0 36.0)

Note If you have several values to convert in the same manner, it is more efficient to convert the value 1.0
once and then apply the resulting value as a scale factor in your own function or computation. This works for
all predefined units except temperature, where an offset is involved as well.

See Also

The Unit Conversion topic in the AutoLISP Developer's Guide.

defun
defun-q
defun-q-list-ref
defun-q-list-set
dictadd
dictnext

AutoLISP Functions

D Functions

Page 51 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

dictremove
dictrename
dictsearch
dimx_tile
dimy_tile
distance
distof
done_dialog

Topics in this section:

defun

defun-q

defun-q-list-ref

defun-q-list-set

dictadd

dictnext

dictremove

dictrename

dictsearch

dimx_tile

dimy_tile

distance

distof

done_dialog

Defines a function

(defun sym ([arguments] [/ variables...]) expr...)

Arguments

sym
A symbol naming the function.

arguments
The names of arguments expected by the function.

AutoLISP Functions

defun

Page 52 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

/ variables
The names of one or more local variables for the function.

The slash preceding the variable names must be separated from the first local name and from the last
argument, if any, by at least one space.

expr
Any number of AutoLISP expressions to be evaluated when the function executes.

If you do not declare any arguments or local symbols, you must supply an empty set of parentheses after
the function name.

If duplicate argument or symbol names are specified, AutoLISP uses the first occurrence of each name and
ignores the following occurrences.

Return Values

The result of the last expression evaluated.

Warning Never use the name of a built-in function or symbol for the sym argument to defun. This
overwrites the original definition and makes the built-in function or symbol inaccessible. To get a list of built-
in and previously defined functions, use the atoms-family function.

Examples

(defun myfunc (x y) ...) Function takes two arguments
(defun myfunc (/ a b) ...) Function has two local variables
(defun myfunc (x / temp) ...) One argument, one local variable
(defun myfunc () ...) No arguments or local variables

See Also

The Symbol and Function Handling topic in the AutoLISP Developer's Guide.

Defines a function as a list

(defun-q sym ([arguments] [/ variables...]) expr...)

The defun-q function is provided strictly for backward-compatibility with previous versions of AutoLISP,
and should not be used for other purposes. You can use defun-q in situations where you need to access a
function definition as a list structure, which is the way defun was implemented in previous, non-compiled
versions of AutoLISP.

Arguments

AutoLISP Functions

defun-q

Page 53 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

sym
A symbol naming the function.

arguments
The names of arguments expected by the function.

/ variables
The names of one or more local variables for the function.

The slash preceding the variable names must be separated from the first local name and from the last
argument, if any, by at least one space.

expr
Any number of AutoLISP expressions to be evaluated when the function executes.

If you do not declare any arguments or local symbols, you must supply an empty set of parentheses after
the function name.

If duplicate argument or symbol names are specified, AutoLISP uses the first occurrence of each name and
ignores the following occurrences.

Return Values

The result of the last expression evaluated.

Examples

_$ (defun-q my-startup (x) (print (list x)))
MY-STARTUP
_$ (my-startup 5)
(5) (5)

Use defun-q-list-ref to display the list structure of my-startup:

_$ (defun-q-list-ref 'my-startup)
((X) (PRINT (LIST X)))

See Also

The defun-q-list-ref and defun-q-list-set functions.

Displays the list structure of a function defined with defun-q

(defun-q-list-ref 'function)

Arguments

AutoLISP Functions

defun-q-list-ref

Page 54 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

function
A symbol naming the function.

Return Values

The list definition of the function; otherwise nil, if the argument is not a list.

Examples

Define a function using defun-q:

_$ (defun-q my-startup (x) (print (list x)))
MY-STARTUP

Use defun-q-list-ref to display the list structure of my-startup:

_$ (defun-q-list-ref 'my-startup)
((X) (PRINT (LIST X)))

See Also

The defun-q and defun-q-list-set functions.

Sets the value of a symbol to be a function defined by a list

(defun-q-list-set 'sym list)

Arguments

sym
A symbol naming the function

list
A list containing the expressions to be included in the function.

Return Values

The sym defined.

Examples

_$ (defun-q-list-set 'foo '((x) x))
FOO
_$ (foo 3)

AutoLISP Functions

defun-q-list-set

Page 55 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

3

The following example illustrates the use of defun-q-list-set to combine two functions into a single
function. First, from the Visual LISP Console window, define two functions with defun-q:

_$ (defun-q s::startup (x) (print x))
S::STARTUP
_$ (defun-q my-startup (x) (print (list x)))
MY-STARTUP

Use defun-q-list-set to combine the functions into a single function:

_$ (defun-q-list-set 's::startup (append
 (defun-q-list-ref 's::startup)
 (cdr (defun-q-list-ref 'my-startup))))
S::STARTUP

The following illustrates how the functions respond individually, and how the functions work after being
combined using defun-q-list-set:

_$ (defun-q foo (x) (print (list 'foo x)))
FOO
_$ (foo 1)
(FOO 1) (FOO 1)
_$ (defun-q bar (x) (print (list 'bar x)))
BAR
_$ (bar 2)
(BAR 2) (BAR 2)
_$ (defun-q-list-set
 'foo
 (append (defun-q-list-ref 'foo)
 (cdr (defun-q-list-ref 'bar))
))
FOO
_$ (foo 3)
(FOO 3)
(BAR 3) (BAR 3)

See Also

The defun-q and defun-q-list-ref functions.

Adds a nongraphical object to the specified dictionary

AutoLISP Functions

dictadd

Page 56 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(dictadd ename symbol newobj)

Arguments

ename
Name of the dictionary the object is being added to.

symbol
The key name of the object being added to the dictionary; symbol must be a unique name that does not
already exist in the dictionary.

newobj
A nongraphical object to be added to the dictionary.

As a general rule, each object added to a dictionary must be unique to that dictionary. This is specifically a
problem when adding group objects to the group dictionary. Adding the same group object using different
key names results in duplicate group names, which can send the dictnext function into an infinite loop.

Note To access drawing properties such as Title, Subject, Author, and Keywords, the IAcadSummaryInfo
interface, accessible as a property of the Document object in the AutoCAD object model, must be used.

Return Values

The entity name of the object added to the dictionary.

Examples

The examples that follow create objects and add them to the named object dictionary.

Create a dictionary entry list:

Command: (setq dictionary (list '(0 . "DICTIONARY") '(100 . "AcDbDictionary")))

((0 . "DICTIONARY") (100 . "AcDbDictionary"))

Create a dictionary object using the entmakex function:

Command: (setq xname (entmakex dictionary))

<Entity name: 1d98950>

Add the dictionary to the named object dictionary:

Command: (setq newdict (dictadd (namedobjdict) "MY_WAY_COOL_DICTIONARY" xname))

<Entity name: 1d98950>

Create an Xrecord list:

Command: (setq datalist (append (list '(0 . "XRECORD")'(100 . "AcDbXrecord")) '((1 . "This is my data") (10 1.
2. 3.) (70 . 33))))

((0 . "XRECORD") (100 . "AcDbXrecord") (1 . "This is my data") (10 1.0 2.0 3.0) (70 . 33))

Make an Xrecord object:

Command: (setq xname (entmakex datalist))

<Entity name: 1d98958>

Page 57 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Add the Xrecord object to the dictionary:

Command: (dictadd newdict "DATA_RECORD_1" xname)

<Entity name: 1d98958>

See Also

The dictnext, dictremove, dictrename, dictsearch, and namedobjdict functions.

Finds the next item in a dictionary

(dictnext ename [rewind])

Arguments

ename
Name of the dictionary being viewed.

rewind
If this argument is present and is not nil, the dictionary is rewound and the first entry in it is retrieved.

Return Values

The next entry in the specified dictionary; otherwise nil, when the end of the dictionary is reached. Entries
are returned as lists of dotted pairs of DXF-type codes and values. Deleted dictionary entries are not
returned.

The dictsearch function specifies the initial entry retrieved.

Use namedobjdict to obtain the master dictionary entity name.

Note Once you begin stepping through the contents of a dictionary, passing a different dictionary name to
dictnext will cause the place to be lost in the original dictionary. In other words, only one global iterator is
maintained for use in this function.

Examples

Create a dictionary and an entry as shown in the example for dictadd. Then make another Xrecord object:

Command: (setq xname (entmakex datalist))

<Entity name: 1b62d60>

Add this Xrecord object to the dictionary, as the second record in the dictionary:

AutoLISP Functions

dictnext

Page 58 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Command: (dictadd newdict "DATA_RECORD_2" xname)

<Entity name: 1b62d60>

Return the entity name of the next entry in the dictionary:

Command: (cdr (car (dictnext newdict)))

<Entity name: 1bac958>

dictnext returns the name of the first entity added to the dictionary.

Return the entity name of the next entry in the dictionary:

Command: (cdr (car (dictnext newdict)))

<Entity name: 1bac960>

dictnext returns the name of the second entity added to the dictionary.

Return the entity name of the next entry in the dictionary:

Command: (cdr (car (dictnext newdict)))

nil

There are no more entries in the dictionary, so dictnext returns nil.

Rewind to the first entry in the dictionary and return the entity name of that entry:

Command: (cdr (car (dictnext newdict T)))

<Entity name: 1bac958>

Specifying T for the optional rewind argument causes dictnext to return the first entry in the dictionary.

See Also

The dictadd, dictremove, dictrename, dictsearch, and namedobjdict functions.

Removes an entry from the specified dictionary

(dictremove ename symbol)

By default, removing an entry from a dictionary does not delete it from the database. This must be done with
a call to entdel. Currently, the exceptions to this rule are groups and mlinestyles. The code that
implements these features requires that the database and these dictionaries be up to date and, therefore,

AutoLISP Functions

dictremove

Page 59 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

automatically deletes the entity when it is removed (with dictremove) from the dictionary.

Arguments

ename
Name of the dictionary being modified.

symbol
The entry to be removed from ename.

The dictremove function does not allow the removal of an mlinestyle from the mlinestyle dictionary if it is
actively referenced by an mline in the database.

Return Values

The entity name of the removed entry. If ename is invalid or symbol is not found, dictremove returns nil.

Examples

The following example removes the dictionary created in the dictadd example:

Command: (dictremove (namedobjdict) "my_way_cool_dictionary")

<Entity name: 1d98950>

See Also

The dictadd, dictnext, dictrename, dictsearch, and namedobjdict functions.

Renames a dictionary entry

(dictrename ename oldsym newsym)

Arguments

ename
Name of the dictionary being modified.

oldsym
Original key name of the entry.

newsym
New key name of the entry.

Return Values

AutoLISP Functions

dictrename

Page 60 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The newsym value, if the rename is successful. If the oldname is not present in the dictionary, or if ename or
newname is invalid, or if newname is already present in the dictionary, then dictrename returns nil.

Examples

The following example renames the dictionary created in the dictadd sample:

Command: (dictrename (namedobjdict) "my_way_cool_dictionary" "An even cooler dictionary")

"An even cooler dictionary"

See Also

The dictadd, dictnext, dictremove, dictsearch, and namedobjdict functions.

Searches a dictionary for an item

(dictsearch ename symbol [setnext])

Arguments

ename
Name of the dictionary being searched.

symbol
A string that specifies the item to be searched for within the dictionary.

setnext
If present and not nil, the dictnext entry counter is adjusted so the following dictnext call returns
the entry after the one returned by this dictsearch call.

Return Values

The entry for the specified item, if successful; otherwise nil, if no entry is found.

Examples

The following example illustrates the use of dictsearch to obtain the dictionary added in the dictadd
example:

Command: (setq newdictlist (dictsearch (namedobjdict) "my_way_cool_dictionary"))

((-1 . <Entity name: 1d98950>) (0 . "DICTIONARY") (5 . "52") (102 . "{ACAD_REACTORS") (330 . <Entity name:
1d98860>) (102 . "}") (330 . <Entity name: 1d98860>) (100 . "AcDbDictionary") (280 . 0) (281 . 1) (3 .
"DATA_RECORD_1") (350 . <Entity name: 1d98958>))

AutoLISP Functions

dictsearch

Page 61 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

See Also

The dictadd, dictnext, dictremove, and namedobjdict functions.

Retrieves the width of a tile in dialog box units

(dimx_tile key)

Arguments

key
A string specifying the tile to be queried. The key argument is case-sensitive.

Return Values

The width of the tile.

The coordinates returned are the maximum allowed within the tile. Because coordinates are zero based, this
function returns one less than the total X dimension (X-1). The dimx_tile and dimy_tile functions are
provided for use with vector_image, fill_image, and slide_image, which require that you specify
absolute tile coordinates.

Examples

(setq tile_width (dimx_tile "my_tile"))

AutoLISP Functions

dimx_tile

Retrieves the height of a tile in dialog box units

(dimy_tile key)

Arguments

key
A string specifying the tile to be queried. The key argument is case-sensitive.

AutoLISP Functions

dimy_tile

Page 62 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Return Values

The height of the tile.

The coordinates returned are the maximum allowed within the tile. Because coordinates are zero based, this
function returns one less than the total Y dimension (Y-1). The dimx_tile and dimy_tile functions are
provided for use with vector_image, fill_image, and slide_image, which require that you specify
absolute tile coordinates.

Examples

(setq tile_height (dimy_tile "my_tile"))

Returns the 3D distance between two points

(distance pt1 pt2)

Arguments

pt1
A 2D or 3D point list.

pt1
A 2D or 3D point list.

Return Values

The distance.

If one or both of the supplied points is a 2D point, then distance ignores the Z coordinates of any 3D
points supplied and returns the 2D distance between the points as projected into the current construction
plane.

Examples

Command: (distance '(1.0 2.5 3.0) '(7.7 2.5 3.0))

6.7

Command: (distance '(1.0 2.0 0.5) '(3.0 4.0 0.5))

2.82843

See Also

The Geometric Utilities topic in the AutoLISP Developer's Guide.

AutoLISP Functions

distance

Page 63 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Converts a string that represents a real (floating-point) value into a real value

(distof string [mode])

The distof and rtos functions are complementary. If you pass distof a string created by rtos, distof
is guaranteed to return a valid value, and vice versa (assuming the mode values are the same).

Arguments

string
A string to be converted. The argument must be a string that distof can parse correctly according to the
units specified by mode. It can be in the same form that rtos returns, or in a form that AutoCAD allows
for keyboard entry.

mode
The units in which the string is currently formatted. The mode corresponds to the values allowed for the
AutoCAD system variable LUNITS in the Command Reference. Specify one of the following numbers for
mode:

1 Scientific

2 Decimal

3 Engineering (feet and decimal inches)

4 Architectural (feet and fractional inches)

5 Fractional

Return Values

A real number, if successful; otherwise nil.

Note The distof function treats modes 3 and 4 the same. That is, if mode specifies 3 (engineering) or 4
(architectural) units, and string is in either of these formats, distof returns the correct real value.

AutoLISP Functions

distof

Terminates a dialog box

(done_dialog [status])

AutoLISP Functions

done_dialog

Page 64 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

status
A positive integer that start_dialog will return instead of returning 1 for OK or 0 for Cancel. The
meaning of any status value greater than 1 is determined by your application.

You must call done_dialog from within an action expression or callback function (see action_tile).

Return Values

A two-dimensional point list that is the (X,Y) location of the dialog box when the user exited it.

Usage Notes

If you provide a callback for the button whose key is "accept" or "cancel" (usually the OK and Cancel
buttons), the callback must call done_dialog explicitly. If it doesn't, the user can be trapped in the dialog
box. If you don't provide an explicit callback for these buttons and use the standard exit buttons, AutoCAD
handles them automatically. Also, an explicit AutoLISP action for the “accept” button must specify a status
of 1 (or an application-defined value); otherwise, start_dialog returns the default value, 0, which makes
it appear as if the dialog box was canceled.

end_image
end_list
entdel
entget
entlast
entmake
entmakex
entmod
entnext
entsel
entupd
eq
equal
error
eval
exit
exp
expand
expt

Topics in this section:

AutoLISP Functions

E Functions

Page 65 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

end_image

end_list

entdel

entget

entlast

entmake

entmakex

entmod

entnext

entsel

entupd

eq

equal

error

eval

exit

exp

expand

expt

Ends creation of the currently active dialog box image

(end_image)

This function is the complement of start_image.

Return Values

nil

See Also

The start_image function.

AutoLISP Functions

end_image

Page 66 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Ends processing of the currently active dialog box list

(end_list)

This function is the complement of start_list.

Return Values

nil

See Also

The add_list and start_list functions.

AutoLISP Functions

end_list

Deletes objects (entities) or restores previously deleted objects

(entdel ename)

The entity specified by ename is deleted if it is currently in the drawing. The entdel function restores the
entity to the drawing if it has been deleted previously in this editing session. Deleted entities are purged from
the drawing when the drawing is exited. The entdel function can delete both graphical and nongraphical
entities.

Arguments

ename
Name of the entity to be deleted or restored.

Return Values

The entity name.

Usage Notes

AutoLISP Functions

entdel

Page 67 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The entdel function operates only on main entities. Attributes and polyline vertices cannot be deleted
independently of their parent entities. You can use the command function to operate the ATTEDIT or PEDIT
command in the Command Reference to modify subentities.

You cannot delete entities within a block definition. However, you can completely redefine a block definition,
minus the entity you want deleted, with entmake.

Examples

Get the name of the first entity in the drawing and assign it to variable e1:

Command: (setq e1 (entnext))

<Entity name: 2c90520>

Delete the entity named by e1:

Command: (entdel e1)

<Entity name: 2c90520>

Restore the entity named by e1:

Command: (entdel e1)

<Entity name: 2c90520>

See Also

The handent function.

Retrieves an object's (entity's) definition data

(entget ename [applist])

Arguments

ename
Name of the entity being queried. The ename can refer to either a graphical or a nongraphical entity.

applist
A list of registered application names.

Return Values

An association list containing the entity definition of ename. If you specify the optional applist argument,

AutoLISP Functions

entget

Page 68 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

entget also returns the extended data associated with the specified applications. Objects in the list are
assigned AutoCAD DXF™ group codes for each part of the entity data.

Note that the DXF group codes used by AutoLISP differ slightly from the group codes in a DXF file. The
AutoLISP DXF group codes are documented in the DXF Reference.

Examples

Assume that the last object created in the drawing is a line drawn from point (1,2) to point (6,5). The
following example shows code that retrieves the entity name of the last object with the entlast function,
and passes that name to entget:

Command: (entget (entlast))

((-1 . <Entity name: 1bbd1d0>) (0 . "LINE") (330 . <Entity name: 1bbd0c8>) (5 . "6A") (100 . "AcDbEntity") (67 . 0)
(410 . "Model") (8 . "0") (100 . "AcDbLine") (10 1.0 2.0 0.0) (11 6.0 5.0 0.0) (210 0.0 0.0 1.0))

See Also

The entdel, entlast, entmod, entmake, entnext, entupd, and handent functions. The Entity Data Functions in
the AutoLISP Developer's Guide.

Returns the name of the last nondeleted main object (entity) in the drawing

(entlast)

The entlast function is frequently used to obtain the name of a new entity that has just been added with
the command function. To be selected, the entity need not be on the screen or on a thawed layer.

Return Values

An entity name; otherwise nil, if there are no entities in the current drawing.

Examples

Set variable e1 to the name of the last entity added to the drawing:

Command: (setq e1 (entlast))

<Entity name: 2c90538>

If your application requires the name of the last nondeleted entity (main entity or subentity), define a function
such as the following and call it instead of entlast.

(defun lastent (/ a b)

AutoLISP Functions

entlast

Page 69 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

 (if (setq a (entlast)) Gets last main entity
 (while (setq b (entnext a)) If subentities follow, loops
until there are no more
 (setq a b) subentities
)
)
 a Returns last main entity
) or subentity

See Also

The entdel, entget, entmod, entnext, entsel, and handent functions.

Creates a new entity in the drawing

(entmake [elist])

The entmake function can define both graphical and nongraphical entities.

Arguments

elist
A list of entity definition data in a format similar to that returned by the entget function. The elist
argument must contain all of the information necessary to define the entity. If any required definition data
is omitted, entmake returns nil and the entity is rejected. If you omit optional definition data (such as the
layer), entmake uses the default value.

The entity type (for example, CIRCLE or LINE) must be the first or second field of the elist. If entity type is
the second field, it can be preceded only by the entity name. The entmake function ignores the entity
name when creating the new entity. If the elist contains an entity handle, entmake ignores that too.

Return Values

If successful, entmake returns the entity's list of definition data. If entmake is unable to create the entity, it
returns nil.

Completion of a block definition (entmake of an endblk) returns the block's name rather than the entity data
list normally returned.

Examples

The following code creates a red circle (color 62), centered at (4,4) with a radius of 1. The optional layer and
linetype fields have been omitted and therefore assume default values.

AutoLISP Functions

entmake

Page 70 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Command: (entmake '((0 . "CIRCLE") (62 . 1) (10 4.0 4.0 0.0) (40 . 1.0)))

((0 . "CIRCLE") (62 . 1) (10 4.0 4.0 0.0) (40 . 1.0))

Notes on Using entmake

You cannot create viewport objects with entmake.

A group 66 code is honored only for insert objects (meaning attributes follow). For polyline entities, the group
66 code is forced to a value of 1 (meaning vertices follow), and for all other entities it takes a default of 0.
The only entity that can follow a polyline entity is a vertex entity.

The group code 2 (block name) of a dimension entity is optional for the entmake function. If the block name
is omitted from the entity definition list, AutoCAD creates a new one. Otherwise, AutoCAD creates the
dimension using the name provided.

For legacy reasons, entmake ignores DXF group code 100 data for the following entity types:

AcDbText
AcDbAttribute
AcDbAttributeDefinition
AcDbBlockBegin
AcDbBlockEnd
AcDbSequenceEnd
AcDbBlockReference
AcDbMInsertBlock
AcDb2dVertex
AcDb3dPolylineVertex
AcDbPolygonMeshVertex
AcDbPolyFaceMeshVertex
AcDbFaceRecord
AcDb2dPolyline
AcDb3dPolyline
AcDbArc
AcDbCircle
AcDbLine
AcDbPoint
AcDbFace
AcDbPolyFaceMesh
AcDbPolygonMesh
AcDbTrace
AcDbSolid
AcDbShape
AcDbViewport

See Also

The entdel, entget, entmod, and handent functions. In the AutoLISP Developer's Guide, refer to Entity Data
Functions for additional information on creating entities in a drawing, Adding an Entity to a Drawing for
specifics on using entmake, and Creating Complex Entities for information on creating complex entities.

Page 71 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Makes a new object or entity, gives it a handle and entity name (but does not assign an owner), and then returns the new
entity name

(entmakex [elist])

The entmakex function can define both graphical and nongraphical entities.

Arguments

elist
A list of entity definition data in a format similar to that returned by the entget function. The elist
argument must contain all of the information necessary to define the entity. If any required definition data
is omitted, entmakex returns nil and the entity is rejected. If you omit optional definition data (such as
the layer), entmakex uses the default value.

Return Values

If successful, entmakex returns the name of the entity created. If entmakex is unable to create the entity,
the function returns nil.

Examples

_$ (entmakex '((0 . "CIRCLE") (62 . 1) (10 4.0 3.0 0.0) (40 . 1.0)))
<Entity name: 1d45558>

Warning Objects and entities without owners are not written out to DWG or DXF files. Be sure to set an
owner at some point after using entmakex. For example, you can use dictadd to set a dictionary to own
an object.

See Also

The entmake and handent functions.

AutoLISP Functions

entmakex

Modifies the definition data of an object (entity)

(entmod elist)

AutoLISP Functions

entmod

Page 72 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The entmod function updates database information for the entity name specified by the -1 group in elist.
The primary mechanism through which AutoLISP updates the database is by retrieving entities with
entget, modifying the list defining an entity, and updating the entity in the database with entmod. The
entmod function can modify both graphical and nongraphical objects.

Arguments

elist
A list of entity definition data in a format similar to that returned by the entget function.

For entity fields with floating-point values (such as thickness), entmod accepts integer values and
converts them to floating point. Similarly, if you supply a floating-point value for an integer entity field (such
as color number), entmod truncates it and converts it to an integer.

Return Values

If successful, entmod returns the elist supplied to it. If entmod is unable to modify the specified entity, the
function returns nil.

Examples

The following sequence of commands obtains the properties of an entity, and then modifies the entity.

Set the en1 variable to the name of the first entity in the drawing:

Command: (setq en1 (entnext))

<Entity name: 2c90520>

Set a variable named ed to the entity data of entity en1:

Command: (setq ed (entget en1))

((-1 . <Entity name: 2c90520>) (0 . "CIRCLE") (5 . "4C") (100 . "AcDbEntity") (67 . 0) (8 . "0") (100 . "AcDbCircle")
(10 3.45373 6.21635 0.0) (40 . 2.94827) (210 0.0 0.0 1.0))

Changes the layer group in ed from layer 0 to layer 1:

Command: (setq ed (subst (cons 8 "1") (assoc 8 ed) ed))

((-1 . <Entity name: 2c90520>) (0 . "CIRCLE") (5 . "4C") (100 . "AcDbEntity") (67 . 0) (8 . "1") (100 . "AcDbCircle")
(10 3.45373 6.21635 0.0) (40 . 2.94827) (210 0.0 0.0 1.0))

Modify the layer of the en1 entity in the drawing:

Command: (entmod ed)

((-1 . <Entity name: 2c90520>) (0 . "CIRCLE") (5 . "4C") (100 . "AcDbEntity") (67 . 0) (8 . "1") (100 . "AcDbCircle")
(10 3.45373 6.21635 0.0) (40 . 2.94827) (210 0.0 0.0 1.0))

Restrictions on Using entmod

There are restrictions on the changes the entmod function can make:

An entity's type and handle cannot be changed. If you want to do this, use entdel to delete the entity,
and then make a new entity with the command or entmake function.
The entmod function cannot change internal fields, such as the entity name in the -2 group of a seqend

Page 73 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

entity. Attempts to change such fields are ignored.
You cannot use the entmod function to modify a viewport entity.

You can change an entity's space visibility field to 0 or 1 (except for viewport objects). If you use entmod to
modify an entity within a block definition, the modification affects all instances of the block in the drawing.

Before performing an entmod on vertex entities, you should read or write the polyline entity's header. If the
most recently processed polyline entity is different from the one to which the vertex belongs, width
information (the 40 and 41 groups) can be lost.

Warning You can use entmod to modify entities within a block definition, but doing so can create a self-
referencing block, which will cause AutoCAD to stop.

See Also

The entdel, entget, entmake, entnext, and handent functions. In the AutoLISP Developer's Guide, refer to
Modifying an Entity and Entity Data Functions and the Graphics Screen.

Returns the name of the next object (entity) in the drawing

(entnext [ename])

Arguments

ename
The name of an existing entity.

Return Values

If entnext is called with no arguments, it returns the entity name of the first nondeleted entity in the
database. If an ename argument is supplied to entnext, the function returns the entity name of the first
nondeleted entity following ename in the database. If there is no next entity in the database, it returns nil.
The entnext function returns both main entities and subentities.

Examples

(setq e1 (entnext)) ; Sets e1 to the name of the first entity in the drawing
(setq e2 (entnext e1)) ; Sets e2 to the name of the entity following e1

Notes

The entities selected by ssget are main entities, not attributes of blocks or vertices of polylines. You can
access the internal structure of these complex entities by walking through the subentities with entnext.

AutoLISP Functions

entnext

Page 74 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Once you obtain a subentity's name, you can operate on it like any other entity. If you obtain the name of a
subentity with entnext, you can find the parent entity by stepping forward with entnext until a seqend
entity is found, then extracting the -2 group from that entity, which is the main entity's name.

See Also

The entdel, entget, entmake, entnext, and handent functions.

Prompts the user to select a single object (entity) by specifying a point

(entsel [msg])

Arguments

msg
A prompt string to be displayed to users. If omitted, entsel prompts with the message, "Select object."

Return Values

A list whose first element is the entity name of the chosen object and whose second element is the
coordinates (in terms of the current UCS) of the point used to pick the object.

The pick point returned by entsel does not represent a point that lies on the selected object. The point
returned is the location of the crosshairs at the time of selection. The relationship between the pick point and
the object will vary depending on the size of the pickbox and the current zoom scale.

Examples

The following AutoCAD command sequence illustrates the use of the entsel function and the list returned:

Command: line

From point: 1,1

To point: 6,6

To point: ENTER

Command: (setq e (entsel "Please choose an object: "))

Please choose an object: 3,3

(<Entity name: 60000014> (3.0 3.0 0.0))

When operating on objects, you may want to simultaneously select an object and specify the point by which
it was selected. Examples of this in AutoCAD can be found in Object Snap and in the BREAK, TRIM, and
EXTEND commands in the Command Reference. The entsel function allows AutoLISP programs to
perform this operation. It selects a single object, requiring the selection to be a pick point. The current Osnap

AutoLISP Functions

entsel

Page 75 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

setting is ignored by this function unless you specifically request it while you are in the function. The entsel
function honors keywords from a preceding call to initget.

See Also

The entget, entmake, entnext, handent, and initget functions.

Updates the screen image of an object (entity)

(entupd ename)

Arguments

ename
The name of the entity to be updated on the screen.

Return Values

The entity (ename) updated; otherwise nil, if nothing was updated.

Examples

Assuming that the first entity in the drawing is a 3D polyline with several vertices, the following code modifies
and redisplays the polyline:

(setq e1 (entnext)) ; Sets e1 to the polyline's entity name
(setq e2 (entnext e1)) ; Sets e2 to its first vertex
(setq ed (entget e2)) ; Sets ed to the vertex data
(setq ed
 (subst '(10 1.0 2.0)
 (assoc 10 ed) ; Changes the vertex's location in ed
 ed ; to point (1,2)
)
)
(entmod ed) ; Moves the vertex in the drawing
(entupd e1) ; Regenerates the polyline entity e1

Updating Polylines and Blocks

When a 3D (or old-style) polyline vertex or block attribute is modified with entmod, the entire complex entity
is not updated on the screen. The entupd function can be used to cause a modified polyline or block to be
updated on the screen. This function can be called with the entity name of any part of the polyline or block; it
need not be the head entity. While entupd is intended for polylines and blocks with attributes, it can be
called for any entity. It always regenerates the entity on the screen, including all subentities.

AutoLISP Functions

entupd

Page 76 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Note If entupd is used on a nested entity (an entity within a block) or on a block that contains nested
entities, some of the entities might not be regenerated. To ensure complete regeneration, you must invoke
the REGEN command in the Command Reference.

See Also

The entget, entmod, entnext, and handent functions.

Determines whether two expressions are identical

(eq expr1 expr2)

The eq function determines whether expr1 and expr2 are bound to the same object (by setq, for example).

Arguments

expr1
The expression to be compared.

expr2
The expression to compare with expr1.

Return Values

T if the two expressions are identical; otherwise nil.

Examples

Given the following assignments:

(setq f1 '(a b c))
(setq f2 '(a b c))
(setq f3 f2)

Compare f1 and f3:

Command: (eq f1 f3)

nil

eq returns nil because f1 and f3, while containing the same value, do not refer to the same list.

Compare f3 and f2:

Command: (eq f3 f2)

AutoLISP Functions

eq

Page 77 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

T

eq returns T because f3 and f2 refer to the same list.

See Also

The = (equal to) and equal functions.

Determines whether two expressions are equal

(equal expr1 expr2 [fuzz])

Arguments

expr1
The expression to be compared.

expr2
The expression to compare with expr1.

fuzz
A real number defining the maximum amount by which expr1 and expr2 can differ and still be considered
equal.

When comparing two real numbers (or two lists of real numbers, as in points), the two identical numbers can
differ slightly if different methods are used to calculate them. You can specify a fuzz amount to compensate
for the difference that may result from the different methods of calculation.

Return Values

T if the two expressions are equal (evaluate to the same value); otherwise nil.

Examples

Given the following assignments:

(setq f1 '(a b c))
(setq f2 '(a b c))
(setq f3 f2)
(setq a 1.123456)
(setq b 1.123457)

Compare f1 to f3:

Command: (equal f1 f3)

AutoLISP Functions

equal

Page 78 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

T

Compare f3 to f2:

Command: (equal f3 f2)

T

Compare a to b:

Command: (equal a b)

nil

The a and b variables differ by .000001.

Compare a to b:, with fuzz argument of .000001:

Command: (equal a b 0.000001)

T

The a and b variables differ by an amount equal to the specified fuzz factor, so equal considers the
variables equal.

Comparing the eq and equal Functions

If the eq function finds that two lists or atoms are the same, the equal function also finds them to be the
same.

Any atoms that the equal function determines to be the same are also found equivalent by eq. However,
two lists that equal determines to be the same may be found to be different according to the eq function.

See Also

The= (equal to)and eq functions.

A user-definable error-handling function

(*error* string)

If *error* is not nil, it is executed as a function whenever an AutoLISP error condition exists. AutoCAD
passes one argument to *error*, which is a string containing a description of the error.

Your *error* function can include calls to the command function without arguments (for example,

AutoLISP Functions

error

Page 79 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(command)). This will cancel a previous AutoCAD command called with the command function.

Return Values

This function does not return, except when using vl-exit-with-value.

Examples

The following function does the same thing that the AutoLISP standard error handler does. It prints the word
“error,” followed by a description:

(defun *error* (msg)
 (princ "error: ")
 (princ msg)
 (princ)
)

See Also

The vl-exit-with-error, vl-exit-with-value, vl-catch-all-apply, vl-catch-all-error-message, and vl-catch-all-error-p
functions.

Returns the result of evaluating an AutoLISP expression

(eval expr)

Arguments

expr
The expression to be evaluated.

Return Values

The result of the expression, after evaluation.

Examples

First, set some variables:

Command: (setq a 123)

123

Command: (setq b 'a)

A

AutoLISP Functions

eval

Page 80 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Now evaluate some expressions:

Command: (eval 4.0)

4.0

Command: (eval (abs -10))

10

Command: (eval a)

123

Command: (eval b)

123

Forces the current application to quit

(exit)

If exit is called, it returns the error message quit/exit abort and returns to the AutoCAD Command prompt.

See Also

The quit function.

AutoLISP Functions

exit

Returns the constant e (a real number) raised to a specified power (the natural antilog)

(exp num)

Arguments

num
A real number.

Return Values

AutoLISP Functions

exp

Page 81 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A real (num), raised to its natural antilogarithm.

Examples

Command: (exp 1.0)

2.71828

Command: (exp 2.2)

9.02501

Command: (exp -0.4)

0.67032

Allocates additional memory for AutoLISP

(expand n-expand)

Arguments

n-expand
An integer indicating the amount of additional memory to be allocated. Memory is allocated as follows:

n-alloc free symbols
n-alloc free strings
n-alloc free usubrs
n-alloc free reals
n-alloc * n-expand cons cells

where n-alloc is the current segment size.

Return Values

An integer indicating the number of free conses divided by n-alloc.

Examples

Set the segment size to 100:

_$ (alloc 100)
1000

Allocate memory for two additional segments:

_$ (expand 2)
82

AutoLISP Functions

expand

Page 82 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

This ensures that AutoLISP now has memory available for at least 200 additional symbols, strings, usubrs
and reals each, and 8200 free conses.

See Also

The alloc function.

Returns a number raised to a specified power

(expt number power)

Arguments

number
Any number.

power
The power to raise number to.

Return Values

If both arguments are integers, the result is an integer; otherwise, the result is a real.

Examples

Command: (expt 2 4)

16

Command: (expt 3.0 2.0)

9.0

AutoLISP Functions

expt

fill_image
findfile
fix
float

AutoLISP Functions

F Functions

Page 83 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

foreach
function

Topics in this section:

fill_image

findfile

fix

float

foreach

function

Draws a filled rectangle in the currently active dialog box image tile

(fill_image x1 y1 width height color)

The first (upper-left) corner of the rectangle is located at (x1,y1) and the second (lower-right) corner is
located the relative distance (width,height) from the first corner. The origin (0,0) is the upper-left corner of
the image. You can obtain the coordinates of the lower-right corner by calling the dimension functions
dimx_tile and dimy_tile.

The fill_image function must be used between start_image and end_image function calls.

Arguments

x1
X coordinate of the upper-left corner of the rectangle located at (x1,y1). Must be a positive value.

y1
Y coordinate of upper-left corner. Must be a positive value.

width
Width of the fill area (in pixels), relative to x1.

height
Width of the fill area (in pixels), relative to y1.

color
An AutoCAD color number, or one of the logical color numbers shown in the following table:

AutoLISP Functions

fill_image

Symbolic names for color attribute
Color number ADI mnemonic Description
-2 BGLCOLOR Current background of the AutoCAD drawing area

-15 DBGLCOLOR Current dialog box background color

Page 84 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Return Values

An integer representing the fill color.

Examples

(setq color -2) ;; color of AutoCAD drawing area
(fill_image
 0
 0
 (dimx_tile "slide_tile")
 (dimy_tile "slide_tile")
 color
)
(end_image)

-16 DFGLCOLOR Current dialog box foreground color (text)

-18 LINELCOLOR Current dialog box line color

Searches the AutoCAD library path for the specified file or directory

(findfile filename)

The findfile function makes no assumption about the file type or extension of filename. If filename does
not specify a drive/directory prefix, findfile searches the AutoCAD library path. If a drive/directory prefix
is supplied, findfile looks only in that directory.

Arguments

filename
Name of the file or directory to be searched for.

Return Values

A string containing the fully qualified file name; otherwise nil, if the specified file or directory is not found.

The file name returned by findfile is suitable for use with the open function.

Examples

If the current directory is / AutoCAD 2005 and it contains the file abc.lsp, the following function call retrieves
the path name:

AutoLISP Functions

findfile

Page 85 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Command: (findfile "abc.lsp")

"C:\\Program Files\\ AutoCAD 2005\\abc.lsp"

If you are editing a drawing in the / AutoCAD 2005/drawings directory, and the ACAD environment variable
is set to / AutoCAD 2005/support, and the file xyz.txt exists only in the / AutoCAD 2005/support directory,
then the following command retrieves the path name:

Command: (findfile "xyz.txt")

"C:\\Program Files\\ AutoCAD 2005\\support\\xyz.txt"

If the file nosuch is not present in any of the directories on the library search path, findfile returns nil:

Command: (findfile "nosuch")

nil

Returns the conversion of a real number into the nearest smaller integer

(fix number)

The fix function truncates number to the nearest integer by discarding the fractional portion.

Arguments

number
A real number.

Return Values

The integer derived from number.

If number is larger than the largest possible integer (+2,147,483,647 or -2,147,483,648 on a 32-bit platform),
fix returns a truncated real (although integers transferred between AutoLISP and AutoCAD are restricted
to 16-bit values).

Examples

Command: (fix 3)

3

Command: (fix 3.7)

3

AutoLISP Functions

fix

Page 86 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns the conversion of a number into a real number

(float number)

Arguments

number
Any number.

Return Values

The real number derived from number.

Examples

Command: (float 3)

3.0

Command: (float 3.75)

3.75

AutoLISP Functions

float

Evaluates expressions for all members of a list

(foreach name list [expr...])

The foreach function steps through a list, assigning each element in the list to a variable, and evaluates
each expression for every element in the list. Any number of expressions can be specified.

Arguments

name
Variable that each element in the list will be assigned to.

list
List to be stepped through and evaluated.

expr
Expression to be evaluated for each element in list.

Return Values

AutoLISP Functions

foreach

Page 87 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The result of the last expr evaluated. If no expr is specified, foreach returns nil.

Examples

Print each element in a list:

Command: (foreach n '(a b c) (print n))

A

B

C C

foreach prints each element in the list and returns C, the last element. This command is equivalent to the
following sequence of commands, except that foreach returns the result of only the last expression
evaluated:

(print a)
(print b)
(print c)

Tells the Visual LISP compiler to link and optimize an argument as if it were a built-in function

(function symbol | lambda-expr)

The function function is identical to the quote function, except it tells the Visual LISP compiler to link and
optimize the argument as if it were a built-in function or defun.

Compiled lambda expressions that are quoted by function will contain debugging information when
loaded into the Visual LISP IDE.

Arguments

symbol
A symbol naming a function.

lambda-expr
An expression of the following form:

(LAMBDA arguments {S-expression}*)

Return Values

The result of the evaluated expression.

Examples

AutoLISP Functions

function

Page 88 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The Visual LISP compiler cannot optimize the quoted lambda expression in the following code:

(mapcar
 '(lambda (x) (* x x))
 '(1 2 3))

After adding the function function to the expression, the compiler can optimize the lambda expression.
For example:

(mapcar
 (function (lambda (x) (* x x)))
 '(1 2 3))

gc
gcd
get_attr
get_tile
getangle
getcfg
getcname
getcorner
getdist
getenv
getfiled
getint
getkword
getorient
getpoint
getreal
getstring
getvar
graphscr
grclear
grdraw
grread
grtext
grvecs

Topics in this section:

gc

gcd

AutoLISP Functions

G Functions

Page 89 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

get_attr

get_tile

getangle

getcfg

getcname

getcorner

getdist

getenv

getfiled

getint

getkword

getorient

getpoint

getreal

getstring

getvar

graphscr

grclear

grdraw

grread

grtext

grvecs

Forces a garbage collection, which frees up unused memory

(gc)

See Also

The Memory Management Functions topic in the AutoLISP Developer's Guide.

AutoLISP Functions

gc

Page 90 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns the greatest common denominator of two integers

(gcd int1 int2)

Arguments

int1
An integer; must be greater than 0.

int2
An integer; must be greater than 0.

Return Values

An integer representing the greatest common denominator between int1 and int2.

Examples

Command: (gcd 81 57)

3

Command: (gcd 12 20)

4

AutoLISP Functions

gcd

Retrieves the DCL value of a dialog box attribute

(get_attr key attribute)

Arguments

key
A string that specifies the tile. This parameter is case-sensitive.

attribute
A string naming the attribute as it appears in the tile's DCL description.

Return Values

A string containing the attribute's initial value as specified in its DCL description.

AutoLISP Functions

get_attr

Page 91 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Retrieves the current runtime value of a dialog box tile

(get_tile key)

Arguments

key
A string that specifies the tile. This parameter is case-sensitive.

Return Values

A string containing the tile's value.

AutoLISP Functions

get_tile

Pauses for user input of an angle, and returns that angle in radians

(getangle [pt] [msg])

Arguments

pt
A 2D base point in the current UCS.

The pt argument, if specified, is assumed to be the first of two points, so the user can show AutoLISP the
angle by pointing to one other point. You can supply a 3D base point, but the angle is always measured in
the current construction plane.

msg
A string to be displayed to prompt the user.

Return Values

The angle specified by the user, in radians.

The getangle function measures angles with the zero-radian direction (set by the ANGBASE system
variable in the Command Reference) with angles increasing in the counterclockwise direction. The returned
angle is expressed in radians with respect to the current construction plane (the XY plane of the current

AutoLISP Functions

getangle

Page 92 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

UCS, at the current elevation).

Examples

The following code examples show how different arguments can be used with getangle:

Command: (setq ang (getangle))

Command: (setq ang (getangle '(1.0 3.5)))

Command: (setq ang (getangle "Which way? "))

Command: (setq ang (getangle '(1.0 3.5) "Which way? "))

Usage Notes

Users can specify an angle by entering a number in the AutoCAD current angle units format. Although the
current angle units format might be in degrees, grads, or some other unit, this function always returns the
angle in radians. The user can also show AutoLISP the angle by pointing to two 2D locations in the drawing
area. AutoCAD draws a rubber-band line from the first point to the current crosshairs position to help you
visualize the angle.

It is important to understand the difference between the input angle and the angle returned by getangle.
Angles that are passed to getangle are based on the current settings of ANGDIR and ANGBASE in the
Command Reference. However, once an angle is provided, it is measured in a counterclockwise direction
(ignoring ANGDIR) with zero radians as the current setting of ANGBASE.

The user cannot enter another AutoLISP expression as the response to a getangle request.

See Also

The illustration and comparison to the getorient function, the initget function, and The getxxx Functions in the
AutoLISP Developer's Guide.

Retrieves application data from the AppData section of the acad2006.cfg file

(getcfg cfgname)

Arguments

cfgname
A string (maximum length of 496 characters) naming the section and parameter value to retrieve.

The cfgname argument must be a string of the following form:

"AppData/application_name/section_name/.../param_name"

AutoLISP Functions

getcfg

Page 93 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Return Values

Application data, if successful. If cfgname is not valid, getcfg returns nil.

Examples

Assuming the WallThk parameter in the AppData/ArchStuff section has a value of 8, the following command
retrieves that value:

Command: (getcfg "AppData/ArchStuff/WallThk")

"8"

See Also

The setcfg function.

Retrieves the localized or English name of an AutoCAD command

(getcname cname)

Arguments

cname
The localized or underscored English command name; must be 64 characters or less in length.

Return Values

If cname is not preceded by an underscore (assumed to be the localized command name), getcname
returns the underscored English command name. If cname is preceded by an underscore, getcname
returns the localized command name. This function returns nil if cname is not a valid command name.

Examples

In a French version of AutoCAD, the following is true.

(getcname "ETIRER")returns "_STRETCH"
(getcname "_STRETCH")returns "ETIRER"

AutoLISP Functions

getcname

AutoLISP Functions

Page 94 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Pauses for user input of a rectangle's second corner

(getcorner pt [msg])

The getcorner function takes a base point argument, based on the current UCS, and draws a rectangle
from that point as the user moves the crosshairs on the screen.

The user cannot enter another AutoLISP expression in response to a getcorner request.

Arguments

pt
A point to be used as the base point.

msg
A string to be displayed to prompt the user.

Return Values

The getcorner function returns a point in the current UCS, similar to getpoint. If the user supplies a 3D
point, its Z coordinate is ignored. The current elevation is used as the Z coordinate.

Examples

Command: (getcorner '(7.64935 6.02964 0.0))

(17.2066 1.47628 0.0)

Command: (getcorner '(7.64935 6.02964 0.0) "Pick a corner")

Pick a corner(15.9584 2.40119 0.0)

See Also

The initget function. The getxxx Functions in the AutoLISP Developer's Guide.

getcorner

Pauses for user input of a distance

(getdist [pt] [msg])

The user can specify the distance by selecting two points, or by specifying just the second point, if a base
point is provided. The user can also specify a distance by entering a number in the AutoCAD current
distance units format. Although the current distance units format might be in feet and inches (architectural),

AutoLISP Functions

getdist

Page 95 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

the getdist function always returns the distance as a real.

The getdist function draws a rubber-band line from the first point to the current crosshairs position to help
the user visualize the distance.

The user cannot enter another AutoLISP expression in response to a getdist request.

Arguments

pt
A 2D or 3D point to be used as the base point in the current UCS. If pt is provided, the user is prompted
for the second point.

msg
A string to be displayed to prompt the user. If no string is supplied, AutoCAD does not display a message.

Return Values

A real number. If a 3D point is provided, the returned value is a 3D distance. However, setting the 64 bit of
the initget function instructs getdist to ignore the Z component of 3D points and to return a 2D
distance.

Examples

(setq dist (getdist))
(setq dist (getdist '(1.0 3.5)))
(setq dist (getdist "How far "))
(setq dist (getdist '(1.0 3.5) "How far? "))

See Also

The initget function. The getxxx Functions in the AutoLISP Developer's Guide.

Returns the string value assigned to a system environment variable

(getenv variable-name)

Arguments

variable-name
A string specifying the name of the variable to be read. Environment variable names must be spelled and
cased exactly as they are stored in the system registry.

Return Values

AutoLISP Functions

getenv

Page 96 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A string representing the value assigned to the specified system variable. If the variable does not exist,
getenv returns nil.

Examples

Assume the system environment variable ACAD is set to /acad/support and there is no variable named
NOSUCH.

Command: (getenv "ACAD")

"/acad/support"

Command: (getenv "NOSUCH")

nil

Assume that the MaxArray environment variable is set to 10000:

Command: (getenv "MaxArray")

"10000"

See Also

The setenvfunction.

Prompts the user for a file name with the standard AutoCAD file dialog box, and returns that file name

(getfiled title default ext flags)

The getfiled function displays a dialog box containing a list of available files of a specified extension type.
You can use this dialog box to browse through different drives and directories, select an existing file, or
specify the name of a new file.

Arguments

title
A string specifying the dialog box label.

default
A default file name to use; can be a null string ("").

ext
The default file name extension. If ext is passed as a null string (""), it defaults to * (all file types).

If the file type dwg is included in the ext argument, the getfiled function displays an image preview in
the dialog box.

flags

AutoLISP Functions

getfiled

Page 97 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

An integer value (a bit-coded field) that controls the behavior of the dialog box. To set more than one
condition at a time, add the values together to create a flags value between 0 and 15. The following flags
arguments are recognized by getfiled:

1 (bit 0) Prompt for the name of a new file to create. Do not set this bit when you prompt for the name of
an existing file to open. In the latter case, if the user enters the name of a file that doesn't exist, the dialog
box displays an error message at the bottom of the box.

If this bit is set and the user chooses a file that already exists, AutoCAD displays an alert box and offers
the choice of proceeding with or canceling the operation.

4 (bit 2) Let the user enter an arbitrary file name extension, or no extension at all.

If this bit is not set, getfiled accepts only the extension specified in the ext argument and appends this
extension to the file name if the user doesn't enter it in the File text box.

8 (bit 3) If this bit is set and bit 0 is not set, getfiled performs a library search for the file name entered.
If it finds the file and its directory in the library search path, it strips the path and returns only the file name.
(It does not strip the path name if it finds that a file of the same name is in a different directory.)

If this bit is not set, getfiled returns the entire file name, including the path name.

Set this bit if you use the dialog box to open an existing file whose name you want to save in the drawing
(or other database).

16 (bit 4) If this bit is set, or if the default argument ends with a path delimiter, the argument is interpreted
as a path name only. The getfiled function assumes that there is no default file name. It displays the
path in the Look in: line and leaves the File name box blank.

32 (bit 5) If this bit is set and bit 0 is set (indicating that a new file is being specified), users will not be
warned if they are about to overwrite an existing file. The alert box to warn users that a file of the same
name already exists will not be displayed; the old file will just be replaced.

64 (bit 6) Do not transfer the remote file if the user specifies a URL.

128 (bit 7) Do not allow URLs at all.

Return Values

If the dialog box obtains a file name from the user, getfiled returns a string that specifies the file name;
otherwise, it returns nil.

Examples

The following call to getfiled displays the Select a Lisp File dialog box:

(getfiled "Select a Lisp File" "c:/program files/ <AutoCAD installation directory>

AutoCAD displays the following dialog box as a result:

Page 98 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Pauses for user input of an integer, and returns that integer

(getint [msg])

Values passed to getint can range from -32,768 to +32,767. If the user enters something other than an
integer, getint displays the message, “Requires an integer value,” and allows the user to try again. The
user cannot enter another AutoLISP expression as the response to a getint request.

Arguments

msg
A string to be displayed to prompt the user; if omitted, no message is displayed.

Return Values

The integer specified by the user; otherwise nil, if the user presses ENTER without entering an integer.

Examples

Command: (setq num (getint))

15

15

Command: (setq num (getint "Enter a number:"))

Enter a number: 25

AutoLISP Functions

getint

Page 99 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

25

Command: (setq num (getint))

15.0

Requires an integer value.

15

15

See Also

The initget function. The getxxx Functions in the AutoLISP Developer's Guide.

Pauses for user input of a keyword, and returns that keyword

(getkword [msg])

Valid keywords are set prior to the getkword call with the initget function. The user cannot enter another
AutoLISP expression as the response to a getkword request.

Arguments

msg
A string to be displayed to prompt the user; if omitted, getkword does not display a prompting message.

Return Values

A string representing the keyword entered by the user; otherwise nil, if the user presses ENTER without
typing a keyword. The function also returns nil if it was not preceded by a call to initget to establish one
or more keywords.

If the user enters a value that is not a valid keyword, getkword displays a warning message and prompts
the user to try again.

Examples

The following example shows an initial call to initget that sets up a list of keywords (Yes and No) and
disallows null input (bits value equal to 1) to the getkword call that follows:

Command: (initget 1 "Yes No")

nil

Command: (setq x (getkword "Are you sure? (Yes or No) "))

Are you sure? (Yes or No) yes

AutoLISP Functions

getkword

Page 100 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

"Yes"

The following sequence illustrates what happens if the user enters invalid data in response to getkword:

Command: (initget 1 "Yes No")

nil

Command: (setq x (getkword "Are you sure? (Yes or No) "))

Are you sure? (Yes or No) Maybe

Invalid option keyword.

Are you sure? (Yes or No) yes

"Yes"

The user's response was not one of the keywords defined by the preceding initget, so getkword issued
an error message and then prompted the user again with the string supplied in the msg argument.

See Also

The initget function. The getxxx Functions in the AutoLISP Developer's Guide.

Pauses for user input of an angle, and returns that angle in radians

(getorient [pt] [msg])

The getorient function measures angles with the zero-radian direction to the right (east) and angles that
are increasing in the counterclockwise direction. The angle input by the user is based on the current settings
of ANGDIR and ANGBASE, but once an angle is provided, it is measured in a counterclockwise direction,
with zero radians being to the right (ignoring ANGDIR and ANGBASE). Therefore, some conversion must
take place if you select a different zero-degree base or a different direction for increasing angles by using
the UNITS command or the ANGBASE and ANGDIR system variables in the Command Reference.

Use getangle when you need a rotation amount (a relative angle). Use getorient to obtain an
orientation (an absolute angle).

The user cannot enter another AutoLISP expression as the response to a getorient request.

Arguments

pt
A 2D base point in the current UCS.

The pt argument, if specified, is assumed to be the first of two points, so that the user can show AutoLISP
the angle by pointing to one other point. You can supply a 3D base point, but the angle is always
measured in the current construction plane.

AutoLISP Functions

getorient

Page 101 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

msg
A string to be displayed to prompt the user.

Return Values

The angle specified by the user, in radians, with respect to the current construction plane.

Examples

Command: (setq pt1 (getpoint "Pick point: "))

(4.55028 5.84722 0.0)

Command: (getorient pt1 "Pick point: ")

5.61582

See Also

The getangle and initget functions. The getxxx Functions in the AutoLISP Developer's Guide.

Pauses for user input of a point, and returns that point

(getpoint [pt] [msg])

The user can specify a point by pointing or by entering a coordinate in the current units format. If the pt
argument is present, AutoCAD draws a rubber-band line from that point to the current crosshairs position.

The user cannot enter another AutoLISP expression in response to a getpoint request.

Arguments

pt
A 2D or 3D base point in the current UCS.

Note that getpoint will accept a single integer or real number as the pt argument, and use the AutoCAD
direct distance entry mechanism to determine a point. This mechanism uses the value of the LASTPOINT
system variable in the Command Reference as the starting point, the pt input as the distance, and the
current cursor location as the direction from LASTPOINT. The result is a point that is the specified number
of units away from LASTPOINT in the direction of the current cursor location.

msg
A string to be displayed to prompt the user.

Return Values

A 3D point, expressed in terms of the current UCS.

AutoLISP Functions

getpoint

Page 102 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

(setq p (getpoint))
(setq p (getpoint "Where? "))
(setq p (getpoint '(1.5 2.0) "Second point: "))

See Also

The getcorner and initget functions. The getxxx Functions in the AutoLISP Developer's Guide.

Pauses for user input of a real number, and returns that real number

(getreal [msg])

The user cannot enter another AutoLISP expression as the response to a getreal request.

Arguments

msg
A string to be displayed to prompt the user.

Return Values

The real number entered by the user.

Examples

(setq val (getreal))
(setq val (getreal "Scale factor: "))

See Also

The initget function. The getxxx Functions in the AutoLISP Developer's Guide.

AutoLISP Functions

getreal

AutoLISP Functions

getstring

Page 103 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Pauses for user input of a string, and returns that string

(getstring [cr][msg])

The user cannot enter another AutoLISP expression as the response to a getstring request.

Arguments

cr
If supplied and not nil, this argument indicates that users can include blanks in their input string (and
must terminate the string by pressing ENTER). Otherwise, the input string is terminated by entering a
space or pressing ENTER.

msg
A string to be displayed to prompt the user.

Return Values

The string entered by the user; otherwise nil, if the user pressed ENTER without typing a string.

If the string is longer than 132 characters, getstring returns only the first 132 characters of the string. If
the input string contains the backslash character (\), getstring converts it to two backslash characters
(\\). This allows you to use returned values containing file name paths in other functions.

Examples

Command: (setq s (getstring "What's your first name? "))

What's your first name? Gary

"Gary"

Command: (setq s (getstring T "What's your full name? "))

What's your full name? Gary Indiana Jones

"Gary Indiana Jones"

Command: (setq s (getstring T "Enter filename: "))

Enter filename: c:\my documents\vlisp\secrets

"c:\\my documents\\vlisp\\secrets"

See Also

The initget function. The getxxx Functions in the AutoLISP Developer's Guide.

Retrieves the value of an AutoCAD system variable

AutoLISP Functions

getvar

Page 104 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(getvar varname)

Arguments

varname
A string or symbol that names a system variable. See the Command Reference for a list of current
AutoCAD system variables.

Return Values

The value of the system variable; otherwise nil, if varname is not a valid system variable.

Examples

Get the current value of the fillet radius:

Command: (getvar 'FILLETRAD)

0.25

See Also

The setvar function.

Displays the AutoCAD graphics screen

(graphscr)

This function is equivalent to the GRAPHSCR command in the Command Reference or pressing the Flip
Screen function key. The textscr function is the complement of graphscr.

Returns

nil

See Also

The textscr function.

AutoLISP Functions

graphscr

Page 105 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Clears the current viewport (obsolete function)

(grclear)

Returns

nil

AutoLISP Functions

grclear

Draws a vector between two points, in the current viewport

(grdraw from to color [highlight])

Arguments

from
2D or 3D points (lists of two or three reals) specifying one endpoint of the vector in terms of the current
UCS. AutoCAD clips the vector to fit the screen.

to
2D or 3D points (lists of two or three reals) specifying the other endpoint of the vector in terms of the
current UCS. AutoCAD clips the vector to fit the screen.

color
An integer identifying the color used to draw the vector. A -1 signifies XOR ink, which complements
anything it draws over and which erases itself when overdrawn.

highlight
An integer, other than zero, indicating that the vector is to be drawn using the default highlighting method
of the display device (usually dashed).

If highlight is omitted or is zero, grdraw uses the normal display mode.

Return Values

nil

See Also

The grvecs function for a routine that draws multiple vectors.

AutoLISP Functions

grdraw

Page 106 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Reads values from any of the AutoCAD input devices

(grread [track] [allkeys [curtype]])

Only specialized AutoLISP routines need this function. Most input to AutoLISP should be obtained through
the various getxxx functions.

Arguments

track
If supplied and not nil, this argument enables the return of coordinates from a pointing device as it is
moved.

allkeys
An integer representing a code that tells grread what functions to perform. The allkeys bit code values
can be added together for combined functionality. The following values can be specified:

1 (bit 0) Return drag mode coordinates. If this bit is set and the user moves the pointing device instead of
selecting a button or pressing a key, grread returns a list where the first member is a type 5 and the
second member is the (X,Y) coordinates of the current pointing device (mouse or digitizer) location. This is
how AutoCAD implements dragging.

2 (bit 1) Return all key values, including function and cursor key codes, and don't move the cursor when
the user presses a cursor key.

4 (bit 2) Use the value passed in the curtype argument to control the cursor display.

8 (bit 3) Don't display the error: console break message when the user presses ESC.
curtype

An integer indicating the type of cursor to be displayed. The allkeys value for bit 2 must be set for the
curtype values to take effect. The curtype argument affects only the cursor type during the current grread
function call. You can specify one of the following values for curtype:

0 Display the normal crosshairs.

1 Do not display a cursor (no crosshairs).

2 Display the object-selection “target” cursor.

Return Values

The grread function returns a list whose first element is a code specifying the type of input. The second
element of the list is either an integer or a point, depending on the type of input. The return values are listed
in the following table:

AutoLISP Functions

grread

grread return values
First element Second element
Value Type of input Value Description
2 Keyboard input varies Character code

Page 107 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Handling User Input with grread

Entering ESC while a grread is active aborts the AutoLISP program with a keyboard break (unless the
allkeys argument has disallowed this). Any other input is passed directly to grread, giving the application
complete control over the input devices.

If the user presses the pointer button within a screen menu or pull-down menu box, grread returns a type 6
or type 11 code, but in a subsequent call, it does not return a type 12 code: the type 12 code follows type 6
or type 11 only when the pointer button is pressed while it is in the drawing area.

It is important to clear the code 12 data from the buffer before attempting another operation with a pointer
button or an auxiliary button. To accomplish this, perform a nested grread like this:

(setq code_12 (grread (setq code (grread))))

This sequence captures the value of the code 12 list as streaming input from the device.

3 Selected point 3D point Point coordinates

4 Screen/pull-down menu
item (from pointing
device)

0 to 999
1001 to 1999
2001 to 2999
3001 to 3999
… and so on, to
16001 to 16999

Screen menu box no.
POP1 menu box no.
POP2 menu box no.
POP3 menu box no.
... and so on, to
POP16 menu box no.

5 Pointing device (returned only if tracking is enabled) 3D point Drag mode coordinate

6 BUTTONS menu item 0 to 999
1000 to 1999
2000 to 2999
3000 to 3999

BUTTONS1 menu button no.
BUTTONS2 menu button no.
BUTTONS3 menu button no.
BUTTONS4 menu button no.

7 TABLET1 menu item 0 to 32767 Digitized box no.

8 TABLET2 menu item 0 to 32767 Digitized box no.

9 TABLET3 menu item 0 to 32767 Digitized box no.

10 TABLET4 menu item 0 to 32767 Digitized box no.

11 AUX menu item 0 to 999
1000 to 1999
2000 to 2999
3000 to 3999

AUX1 menu button no.
AUX2 menu button no.
AUX3 menu button no.
AUX4 menu button no.

12 Pointer button (follows a
type 6 or type 11 return)

3D point Point coordinates

AutoLISP Functions

grtext

Page 108 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Writes text to the status line or to screen menu areas

(grtext [box text [highlight]])

This function displays the supplied text in the menu area; it does not change the underlying menu item. The
grtext function can be called with no arguments to restore all text areas to their standard values.

Arguments

box
An integer specifying the location in which to write the text.

text
A string that specifies the text to be written to the screen menu or status line location. The text argument is
truncated if it is too long to fit in the available area.

highlight
An integer that selects or deselects a screen menu location.

If called without arguments, grtext restores all text areas to their standard values. If called with only one
argument, grtext results in an error.

Return Values

The string passed in the text argument, if successful, and nil if unsuccessful or no arguments are supplied.

Screen Menu Area

Setting box to a positive or zero value specifies a screen menu location. Valid box values range from 0 to
the highest-numbered screen menu box minus 1. The SCREENBOXES system variable in the Command
Reference reports the maximum number of screen menu boxes. If the highlight argument is supplied as a
positive integer, grtext highlights the text in the designated box. Highlighting a box automatically
dehighlights any other box already highlighted. If highlight is zero, the menu item is dehighlighted. If highlight
is a negative number, it is ignored. On some platforms, the text must first be written without the highlight
argument and then must be highlighted. Highlighting of a screen menu location works only when the cursor
is not in that area.

Status Line Area

If grtext is called with a box value of -1, it writes the text into the mode status line area. The length of the
mode status line differs from display to display (most allow at least 40 characters). The following code uses
the $(linelen) DIESEL expression to report the length of the mode status area.

(setq modelen (menucmd "M=$(linelen)"))

If a box value of -2 is used, grtext writes the text into the coordinate status line area. If coordinate tracking
is turned on, values written into this field are overwritten as soon as the pointer sends another set of
coordinates. For both -1 and -2 box values, the highlight argument is ignored.

AutoLISP Functions

Page 109 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Draws multiple vectors in the drawing area

(grvecs vlist [trans])

Arguments

vlist
A vector list is comprosed of a series of optional color integers and two point lists. See below for details on
how to format vlist.

trans
A transformation matrix used to change the location or proportion of the vectors defined in your vector list.
This matrix is a list of four lists of four real numbers.

Return Values

nil

Vector List Format

The format for vlist is as follows:

([color1] from1 to1 [color2] from2 to2 ...)

The color value applies to all succeeding vectors until vlist specifies another color. AutoCAD colors are in
the range 0-255. If the color value is greater than 255, succeeding vectors are drawn in XOR ink, which
complements anything it draws over and which erases itself when overdrawn. If the color value is less than
zero, the vector is highlighted. Highlighting depends on the display device. Most display devices indicate
highlighting by a dashed line, but some indicate it by using a distinctive color.

A pair of point lists, from and to, specify the endpoints of the vectors, expressed in the current UCS. These
can be 2D or 3D points. You must pass these points as pairs—two successive point lists—or the grvecs
call will fail.

AutoCAD clips the vectors as required to fit on the screen.

Examples

The following code draws five vertical lines in the drawing area, each a different color:

(grvecs '(1 (1 2)(1 5) Draws a red line from (1,2) to (1,5)
 2 (2 2)(2 5) Draws a yellow line from (2,2) to (2,5)
 3 (3 2)(3 5) Draws a green line from (3,2) to (3,5)
 4 (4 2)(4 5) Draws a cyan line from (4,2) to (4,5)
 5 (5 2)(5 5) Draws a blue line from (5,2) to (5,5)
))

The following matrix represents a uniform scale of 1.0 and a translation of 5.0,5.0,0.0. If this matrix is applied
to the preceding list of vectors, they will be offset by 5.0,5.0,0.0.

'((1.0 0.0 0.0 5.0)
 (0.0 1.0 0.0 5.0)

grvecs

Page 110 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

 (0.0 0.0 1.0 0.0)
 (0.0 0.0 0.0 1.0)
)

See Also

The nentselp function for more information on transformation matrixes and the grdraw function for a routine
that draws a vector between two points.

handent
help

Topics in this section:

handent

help

AutoLISP Functions

H Functions

Returns an object (entity) name based on its handle

(handent handle)

The handent function returns the entity name of both graphic and nongraphic entities.

Arguments

handle
A string identifying an entity handle.

Return Values

If successful, handent returns the entity name associated with handle in the current editing session. If
handent is passed an invalid handle or a handle not used by any entity in the current drawing, it returns
nil.

AutoLISP Functions

handent

Page 111 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The handent function returns entities that have been deleted during the current editing session. You can
undelete them with the entdel function.

An entity's name can change from one editing session to the next, but an entity's handle remains constant.

Examples

Command: (handent "5A2")

<Entity name: 60004722>

Used with the same drawing but in another editing session, the same call might return a different entity
name. Once the entity name is obtained, you can use it to manipulate the entity with any of the entity-related
functions.

See Also

The entdel, entget, entlast, entmake, entmakex, entmod, entnext, entsel, and entupd functions.

Invokes the Help facility

(help [helpfile [topic [command]]])

Arguments

helpfile
A string naming the Help file. The file extension is not required with the helpfile argument. If a file
extension is provided, AutoCAD looks only for a file with the exact name specified.

If no file extension is provided, AutoCAD looks for helpfile with an extension of .chm. If no file of that name
is found, AutoCAD looks for a file with an extension of .hlp.

topic
A string identifying a Help topic ID. If you are calling a topic within a CHM file, provide the file name
without the extension; AutoCAD adds an .htm extension.

command
A string that specifies the initial state of the Help window. The command argument is a string used by the
uCommand (in HTML Help) or the fuCommand (in WinHelp) argument of the HtmlHelp() and WinHelp()
functions as defined in the Microsoft Windows SDK.

For HTML Help files, the command parameter can be HH_ALINK_LOOKUP or HH_DISPLAY_TOPIC. For
Windows Help files, the command parameter can be HELP_CONTENTS, HELP_HELPONHELP, or
HELP_PARTIALKEY.

Return Values

The helpfile string, if successful; otherwise nil. If you use help without any arguments, it returns an empty

AutoLISP Functions

help

Page 112 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

string ("") if successful, and nil if it fails.

The only error condition that the help function returns to the application is the existence of the file specified
by helpfile. All other error conditions are reported to the user through a dialog box.

Examples

The following code calls help to display the information on MYCOMMAND in the Help file achelp.chm:

(help "achelp.chm" "mycommand")

See Also

The setfunhelp function associates context-sensitive Help (when the user presses F1) with a user-defined
command.

if
initdia
initget
inters
itoa

Topics in this section:

if

initdia

initget

inters

itoa

AutoLISP Functions

I Functions

Conditionally evaluates expressions

AutoLISP Functions

if

Page 113 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(if testexpr thenexpr [elseexpr])

Arguments

testexpr
Expression to be tested.

thenexpr
Expression evaluated if testexpr is not nil.

elseexpr
Expression evaluated if testexpr is nil.

Return Values

The if function returns the value of the selected expression. If elseexpr is missing and testexpr is nil, then
it returns nil.

Examples

Command: (if (= 1 3) "YES!!" "no.")

"no."

Command: (if (= 2 (+ 1 1)) "YES!!")

"YES!!"

Command: (if (= 2 (+ 3 4)) "YES!!")

nil

See Also

The progn function.

Forces the display of the next command's dialog box

(initdia [dialogflag])

Currently, the following commands make use of the initdia function: ATTDEF, ATTEXT, BHATCH,
BLOCK, COLOR, IMAGE, IMAGEADJUST, INSERT, LAYER, LINETYPE, MTEXT, PLOT, RENAME,
STYLE, TOOLBAR, and VIEW.

Arguments

dialogflag
An integer. If this argument is not present or is present and nonzero, the next use (and next use only) of a

AutoLISP Functions

initdia

Page 114 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

command will display that command's dialog box rather than its command line prompts.

If dialogflag is zero, any previous call to this function is cleared, restoring the default behavior of
presenting the command line interface.

Return Values

nil

Examples

Issue the PLOT command without calling initdia first:

Command: (command "_.PLOT")

plot

Enter a layout name <Model>: nil

Enter a layout name <Model>:

AutoCAD prompts for user input in the command window.

Use the following sequence of function calls to make AutoCAD display the Plot dialog box:

(initdia)
(command "_.PLOT")

Establishes keywords for use by the next user-input function call

(initget [bits] [string])

The functions that honor keywords are getint, getreal, getdist, getangle, getorient, getpoint,
getcorner, getkword, entsel, nentsel, and nentselp. The getstring function is the only user-
input function that does not honor keywords.

The keywords are checked by the next user-input function call when the user does not enter the expected
type of input (for example, a point to getpoint). If the user input matches a keyword from the list,
thefunction returns that keyword as a string result. The application can test for the keywords and perform the
action associated with each one. If the user input is not an expected type and does not match a keyword,
AutoCAD asks the user to try again. The initget bit values and keywords apply only to the next user-input
function call.

If initget sets a control bit and the application calls a user-input function for which the bit has no meaning,
the bit is ignored.

If the user input fails one or more of the specified conditions (as in a zero value when zero values are not

AutoLISP Functions

initget

Page 115 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

allowed), AutoCAD displays a message and asks the user to try again.

Arguments

bits
A bit-coded integer that allows or disallows certain types of user input. The bits can be added together in
any combination to form a value between 0 and 255. If no bits argument is supplied, zero (no conditions)
is assumed. The bit values are as follows:

1 (bit 0) Prevents the user from responding to the request by entering only ENTER.

2 (bit 1) Prevents the user from responding to the request by entering zero.

4 (bit 2) Prevents the user from responding to the request by entering a negative value.

8 (bit 3) Allows the user to enter a point outside the current drawing limits. This condition applies to the
next user-input function even if the AutoCAD system variable LIMCHECK is currently set.

16 (bit 4) (Not currently used.)

32 (bit 5) Uses dashed lines when drawing a rubber-band line or box. For those functions with which the
user can specify a point by selecting a location in the drawing area, this bit value causes the rubber-band
line or box to be dashed instead of solid. (Some display drivers use a distinctive color instead of dashed
lines.) If the system variable POPUPS is 0, AutoCAD ignores this bit.

64 (bit 6) Prohibits input of a Z coordinate to the getdist function; lets an application ensure that this
function returns a 2D distance.

128 (bit 7) Allows arbitrary input as if it is a keyword, first honoring any other control bits and listed
keywords. This bit takes precedence over bit 0; if bits 7 and 0 are set and the user presses ENTER, a null
string is returned.

256 (bit 8) Give direct distance input precedence over arbitrary input. For external applications, arbitrary
input is given precedence over direct distance input by default. Set this bit if you wish to force AutoCAD to
evaluate user input as direct distance input. Note that legal point input from the keyboard always takes
precedence over either direct distance or arbitrary input.

512 (bit 9) If set before a call to getpoint or getcorner, a temporary UCS will be established when the
cursor crosses over the edge of a planar face of a solid. The temporary UCS is reset when the cursor
moves off of a face. It is dynamically re-established when the cursor moves over a different face. After the
point is acquired, the dynamic UCS is reset to the current UCS. This functionality is not enabled for non-
planar faces such as the side of a cylinder.

1024 (bit 10) When calling getdist, getangle, getorient, getpoint, or getcorner, you may not
want the distance, angle, orient, point, or corner to be influenced by ortho, polar, or otracking in the Z
direction. Setting this bit before calls to any of these functions will temporarily disable ortho, polar, and
otracking in the Z direction. This is useful when you create 2D entities such as PLINE, ARC, or CIRCLE,
or when you use the ARRAY command, which creates only a 2D array. In 2D-only commands it can be
confusing and error-prone to allow 3D points to be entered using ortho Z, polar Z, or otrack Z.

Note Future versions of AutoLISP may use additional initget control bits, so avoid setting bits that are not
listed here.
string

A string representing a series of keywords. See “Keyword Specifications” for information on defining
keywords.

Return Values

nil

Function Applicable Control Bits

The special control values are honored only by those getxxx functions for which they make sense, as

Page 116 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

indicated in the following table:

Keyword Specifications

The string argument is interpreted according to the following rules:

User-input functions and applicable control bits
Control bits values

Function Honors

key

words

No

null

(1)

No

zero

(2)

No

negative

(4)

No

limits

(8)

Uses

dashes

(32)
getint X X X X

getreal X X X X

getdist X X X X X

getangle X X X X

getorient X X X X

getpoint X X X X

getcorner X X X X

getkword X X

entsel X

nentsel X

nentselp X

User-input functions and applicable control bits (continued)
Control bits values

Function 2D

distance

(64)

Arbitrary

input

(128)

Direct

distance

(256)

UCS face

tracking

(512)

Disable

Z-tracking

(1024)
getint X

getreal X

getdist X X X X

getangle X X X

getorient X X X

getpoint X X X X

getcorner X X X X

getkword X

entsel

nentsel

nentselp

Page 117 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

1. Each keyword is separated from the following keyword by one or more spaces. For example, "Width
Height Depth" defines three keywords.

2. Each keyword can contain only letters, numbers, and hyphens (-).

There are two methods for abbreviating keywords:

The required portion of the keyword is specified in uppercase characters, and the remainder of the
keyword is specified in lowercase characters. The uppercase abbreviation can be anywhere in the
keyword (for example, "LType", "eXit", or "toP").
The entire keyword is specified in uppercase characters, and it is followed immediately by a comma,
which is followed by the required characters (for example, "LTYPE,LT"). The keyword characters in this
case must include the first letter of the keyword, which means that "EXIT,X" is not valid.

The two brief examples, "LType" and "LTYPE,LT", are equivalent: if the user types LT (in either
uppercase or lowercase letters), this is sufficient to identify the keyword. The user can enter characters that
follow the required portion of the keyword, provided they don't conflict with the specification. In the example,
the user could also enter LTY or LTYP, but L would not be sufficient.

If string shows the keyword entirely in uppercase or lowercase characters with no comma followed by a
required part, AutoCAD recognizes the keyword only if the user enters all of it.

The initget function provides support for localized keywords. The following syntax for the keyword string
allows input of the localized keyword while it returns the language independent keyword:

"local1local2localn_indep1indep2indepn"

where local1 through localn are the localized keywords, and indep1 through indepn are the language-
independent keywords.

There must always be the same number of localized keywords as language-independent keywords, and the
first language-independent keyword is prefixed by an underscore as shown in the following example:

(initget "Abc Def _Ghi Jkl")
(getkword "\nEnter an option (Abc/Def): ")

Entering A returns Ghi and entering _J returns Jkl.

See Also

The entsel, getangle, getcorner, getdist, getint, getkword, getorient, getpoint, getreal, getstring, nentsel, and
nentselp functions. The Control of User-Input Function Conditions topic in the AutoLISP Developer's Guide.

Finds the intersection of two lines

AutoLISP Functions

inters

Page 118 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(inters pt1 pt2 pt3 pt4 [onseg])

All points are expressed in terms of the current UCS. If all four point arguments are 3D, inters checks for
3D intersection. If any of the points are 2D, inters projects the lines onto the current construction plane
and checks only for 2D intersection.

Arguments

pt1
One endpoint of the first line.

pt2
The other endpoint of the first line.

pt3
One endpoint of the second line.

pt4
The other endpoint of the second line.

onseg
If specified as nil, the lines defined by the four pt arguments are considered infinite in length. If the
onseg argument is omitted or is not nil, the intersection point must lie on both lines or inters returns
nil.

Return Values

If the onseg argument is present and is nil, inters returns the point where the lines intersect, even if that
point is off the end of one or both of the lines. If the onseg argument is omitted or is not nil, the intersection
point must lie on both lines or inters returns nil. The inters function returns nil if the two lines do not
intersect.

Examples

(setq a '(1.0 1.0) b '(9.0 9.0))
(setq c '(4.0 1.0) d '(4.0 2.0))

Command: (inters a b c d)

nil

Command: (inters a b c d T)

nil

Command: (inters a b c d nil)

(4.0 4.0)

Returns the conversion of an integer into a string

(itoa int)

AutoLISP Functions

itoa

Page 119 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

int
An integer.

Return Values

A string derived from int.

Examples

Command: (itoa 33)

"33"

Command: (itoa -17)

"-17"

See Also

The atoi function.

lambda
last
layoutlist
length
list
listp
load
load_dialog
log
logand
logior
lsh

Topics in this section:

lambda

last

layoutlist

length

AutoLISP Functions

L Functions

Page 120 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

list

listp

load

load_dialog

log

logand

logior

lsh

Defines an anonymous function

(lambda arguments expr...)

Use the lambda function when the overhead of defining a new function is not justified. It also makes the
programmer's intention more apparent by laying out the function at the spot where it is to be used. This
function returns the value of its last expr, and is often used in conjunction with apply and/or mapcar to
perform a function on a list.

Arguments

arguments
Arguments passed to an expression.

expr
An AutoLISP expression.

Return Values

The value of the last expr.

Examples

The following examples demonstrate the lambda function from the Visual LISP Console window:

_$ (apply '(lambda (x y z)
 (* x (- y z))
)
 '(5 20 14)
)
30
_$ (setq counter 0)

AutoLISP Functions

lambda

Page 121 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(mapcar '(lambda (x)
 (setq counter (1+ counter))
 (* x 5)
)
 '(2 4 -6 10.2)
)
0
(10 20 -30 51.0)

Returns the last element in a list

(last lst)

Arguments

lst
A list.

Return Values

An atom or a list.

Examples

Command: (last '(a b c d e))

E

Command: (last '(a b c (d e)))

(D E)

AutoLISP Functions

last

Returns a list of all paper space layouts in the current drawing

(layoutlist)

Return Values

AutoLISP Functions

layoutlist

Page 122 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A list of strings.

Examples

Command: (layoutlist)

("Layout1" "Layout2")

Returns an integer indicating the number of elements in a list

(length lst)

Arguments

lst
A list.

Return Values

An integer.

Examples

Command: (length '(a b c d))

4

Command: (length '(a b (c d)))

3

Command: (length '())

0

See Also

The vl-list-length function.

AutoLISP Functions

length

AutoLISP Functions

list

Page 123 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Takes any number of expressions, and combines them into one list

(list [expr...])

This function is frequently used to define a 2D or 3D point variable (a list of two or three reals).

Arguments

expr
An AutoLISP expression.

Return Values

A list, unless no expressions are supplied, in which case list returns nil.

Examples

_$ (list 'a 'b 'c)
(A B C)
_$ (list 'a '(b c) 'd)
(A (B C) D)
_$ (list 3.9 6.7)
(3.9 6.7)

As an alternative to using the list function, you can explicitly quote a list with the quote function if there
are no variables or undefined items in the list. The single quote character (') is defined as the quote
function.

_$ '(3.9 6.7)means the same as (list 3.9 6.7)

This can be useful for creating association lists and defining points.

See Also

The quote, vl-list*, and vl-list-length functions.

Verifies that an item is a list

(listp item)

Arguments

item

AutoLISP Functions

listp

Page 124 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Any atom, list, or expression.

Return Values

T if item is a list; otherwise nil. Because nil is both an atom and a list, the listp function returns T when
passed nil.

Examples

Command: (listp '(a b c))

T

Command: (listp 'a)

nil

Command: (listp 4.343)

nil

Command: (listp nil)

T

Command: (listp (setq v1 '(1 2 43)))

T

See Also

The vl-list* and vl-list-length functions.

Evaluates the AutoLISP expressions in a file

(load filename [onfailure])

The load function can be used from within another AutoLISP function, or even recursively (in the file being
loaded).

Arguments

filename
A string that represents the file name. If the filename argument does not specify a file extension, load
adds an extension to the name when searching for a file to load. The function will try several extensions, if
necessary, in the following order:

.vlx

.fas

.lsp

AutoLISP Functions

load

Page 125 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

As soon as load finds a match, it stops searching and loads the file.

The filename can include a directory prefix, as in “c:/function/test1”. A forward slash (/) or two
backslashes (\\) are valid directory delimiters. If you don't include a directory prefix in the filename string,
load searches the AutoCAD library path for the specified file. If the file is found anywhere on this path,
load then loads the file.

onfailure
A value returned if load fails.

If the onfailure argument is a valid AutoLISP function, it is evaluated. In most cases, the onfailure
argument should be a string or an atom. This allows an AutoLISP application calling load to take
alternative action upon failure.

Return Values

Unspecified, if successful. If load fails, it returns the value of onfailure; if onfailure is not defined, failure
results in an error message.

Examples

For the following examples, assume that file /fred/test1.lsp contains the expressions

(defun MY-FUNC1 (x)
 ...function body...
)
(defun MY-FUNC2 (x)
 ...function body...

and that no file named test2 with a .lsp, .fas, or .vlx extension exists:

Command: (load "/fred/test1")

MY-FUNC2

Command: (load "\\fred\\test1")

MY-FUNC2

Command: (load "/fred/test1" "bad")

MY-FUNC2

Command: (load "test2" "bad")

"bad"

Command: (load "test2") causes an AutoLISP error

See Also

The defun and vl-load-all functions. The Symbol and Function Handling topic in the AutoLISP Developer's
Guide.

AutoLISP Functions

load_dialog

Page 126 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Loads a DCL file

(load_dialog dclfile)

The load_dialog function searches for files according to the AutoCAD library search path.

This function is the complement of unload_dialog. An application can load multiple DCL files with multiple
load_dialog calls.

Arguments

dclfile
A string that specifies the DCL file to load. If the dclfile argument does not specify a file extension, .dcl is
assumed.

Return Values

A positive integer value (dcl_id) if successful, or a negative integer if load_dialog can't open the file.
The dcl_id is used as a handle in subsequent new_dialog and unload_dialog calls.

Returns the natural log of a number as a real number

(log num)

Arguments

num
A positive number.

Return Values

A real number.

Examples

Command: (log 4.5)

1.50408

Command: (log 1.22)

0.198851

AutoLISP Functions

log

Page 127 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns the result of the logical bitwise AND of a list of integers

(logand [int int...])

Arguments

int
An integer.

Return Values

An integer (0, if no arguments are supplied).

Examples

Command: (logand 7 15 3)

3

Command: (logand 2 3 15)

2

Command: (logand 8 3 4)

0

AutoLISP Functions

logand

Returns the result of the logical bitwise inclusive OR of a list of integers

(logior [intint...])

Arguments

int
An integer.

Return Values

An integer (0, if no arguments are supplied).

Examples

AutoLISP Functions

logior

Page 128 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Command: (logior 1 2 4)

7

Command: (logior 9 3)

11

Returns the logical bitwise shift of an integer by a specified number of bits

(lsh intnumbits)

Arguments

int
An integer.

numbits
Number of bits to shift int.

If numbits is positive, int is shifted to the left; if numbits is negative, int is shifted to the right. In either case,
zero bits are shifted in, and the bits shifted out are discarded.

If numbits is not specified, no shift occurs.

Return Values

The value of int after the bitwise shift. The returned value is positive if the significant bit (bit number 31)
contains a 0 after the shift operation; otherwise it is negative. If no arguments are supplied, lsh returns 0.

The behavior is different from other languages (>> & << of C, C++, or Java) where more than 32 left shifts
(of a 32 bit integer) results in 0. In right shift, the integer appears again on every 32 shifts.

Examples

Command: (lsh 2 1)

4

Command: (lsh 2 -1)

1

Command: (lsh 40 2)

160

AutoLISP Functions

lsh

AutoLISP Functions

Page 129 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

mapcar
max
mem
member
menucmd
menugroup
min
minusp
mode_tile

Topics in this section:

mapcar

max

mem

member

menucmd

menugroup

min

minusp

mode_tile

M Functions

Returns a list that is the result of executing a function with a list (or lists) supplied as arguments to the function

(mapcar functionlist1... listn)

Arguments

function
A function.

list1... listn
One or more lists. The number of lists must match the number of arguments required by function.

Return Values

AutoLISP Functions

mapcar

Page 130 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A list.

Examples

Command: (setq a 10 b 20 c 30)

30

Command: (mapcar '1+ (list a b c))

(11 21 31)

This is equivalent to the following series of expressions, except that mapcar returns a list of the results:

(1+ a)
(1+ b)
(1+ c)

The lambda function can specify an anonymous function to be performed by mapcar. This is useful when
some of the function arguments are constant or are supplied by some other means. The following example,
entered from the Visual LISP Console window, demonstrates the use of lambda with mapcar:

_$ (mapcar '(lambda (x)
 (+ x 3)
)
 '(10 20 30)
)
(13 23 33)

Returns the largest of the numbers given

(max [number number...])

Arguments

number
A number.

Return Values

A number. If any of the arguments are real numbers, a real is returned; otherwise an integer is returned. If
no argument is supplied, max returns 0.

Examples

Command: (max 4.07 -144)

AutoLISP Functions

max

Page 131 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

4.07

Command: (max -88 19 5 2)

19

Command: (max 2.1 4 8)

8.0

Displays the current state of the AutoLISP memory

(mem)

The mem function displays statistics on AutoLISP memory usage. The first line of this statistics report
contains the following information:

GC calls
Number of garbage collection calls since AutoLISP started.

GC run time
Total time spent collecting garbage (in milliseconds).

LISP objects are allocated in dynamic (heap) memory that is organized in segments and divided into pages.
Memory is described under the heading, “Dynamic Memory Segments Statistics”:

PgSz
Dynamic memory page size (in KB).

Used
Number of pages used.

Free
Number of free (empty) pages.

FMCL
Largest contiguous area of free pages.

Segs
Number of segments allocated.

Type
Internal description of the types of objects allocated in this segment. These include

lisp stacks—LISP internal stacks

bytecode area—compiled code function modules

CONS memory—CONS objects

::new—untyped memory requests served using this segment

DM Str—dynamic string bodies

DMxx memory—all other LISP nodes

bstack body—internal structure used for IO operations

AutoLISP Functions

mem

Page 132 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The final line in the report lists the minimal segment size and the number of allocated segments. AutoLISP
keeps a list of no more than three free segments in order to save system calls for memory requests.

All heap memory is global; that is, all AutoCAD documents share the same heap. This could change in
future releases of AutoCAD.

Note that mem does not list all memory requested from the operating system; it lists only those requests
served by the AutoLISP Dynamic Memory (DM) subsystem. Some AutoLISP classes do not use DM for
memory allocation.

Return Values

nil

Examples

Command: (mem)

; GC calls: 23; GC run time: 298 ms
Dynamic memory segments statistic:
PgSz Used Free FMCL Segs Type
 512 79 48 48 1 lisp stacks
 256 3706 423 142 16 bytecode area
4096 320 10 10 22 CONS memory
 32 769 1213 1089 1 ::new
4096 168 12 10 12 DM Str
4096 222 4 4 15 DMxx memory
 128 4 507 507 1 bstack body
Segment size: 65536, total used: 68, free: 0
nil

Searches a list for an occurrence of an expression and returns the remainder of the list, starting with the first occurrence of
the expression

(member expr lst)

Arguments

expr
The expression to be searched for.

lst
The list in which to search for expr.

Return Values

AutoLISP Functions

member

Page 133 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A list; otherwise nil, if there is no occurrence of expr in lst.

Examples

Command: (member 'c '(a b c d e))

(C D E)

Command: (member 'q '(a b c d e))

nil

Issues menu commands, or sets and retrieves menu item status

(menucmd string)

The menucmd function can switch between subpages in an AutoCAD menu. This function can also force the
display of menus. This allows AutoLISP programs to use image tile menus and to display other menus from
which the user can make selections. AutoLISP programs can also enable, disable, and place marks in menu
items.

Arguments

string
A string that specifies a menu area and the value to assign to that menu area. The string argument has
the following parameters:

"menu_area=value"

The allowed values of menu_area, shown in the following list, are the same as they are in menu file
submenu references. For more information, see “Overview of Pull-Down and Shortcut Menus” in the
Customization Guide.

B1-B4 BUTTONS menus 1 through 4.

A1-A4 AUX menus 1 through 4.

P0-P16 Pull-down (POP) menus 0 through 16.

I Image tile menus.

S SCREEN menu.

T1-T4 TABLET menus 1 through 4.

M DIESEL string expressions.

Gmenugroup.nametag A menugroup and name tag.

Return Values

nil

AutoLISP Functions

menucmd

Page 134 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

The following code displays the image tile menu MOREICONS:

(menucmd "I=moreicons") Loads the MOREICONS image tile menu
(menucmd "I=*") Displays the menu

The following code checks the status of the third menu item in the pull-down menu POP11. If the menu item
is currently enabled, the menucmd function disables it.

(setq s (menucmd "P11.3=?")) Gets the status of the menu item
(if (= s "") If the status is an empty string,
 (menucmd "P11.3=~") disable the menu item
)

The previous code is not foolproof. In addition to being enabled or disabled, menu items can also receive
marks. The code (menucmd "P11.3=?") could return "!.", indicating that the menu item is currently
checked. This code would assume that the menu item is disabled and continue without disabling it. If the
code included a call to the wcmatch function, it could check the status for an occurrence of the tilde (~)
character and then take appropriate action.

The menucmd function also allows AutoLISP programs to take advantage of the DIESEL string expression
language. Some things can be done more easily with DIESEL than with the equivalent AutoLISP code. The
following code returns a string containing the current day and date:

(menucmd "M=$(edtime,$(getvar,date),DDDD\",\" D MONTH YYYY)")
 returns "Sunday, 16 July 1995"

See Also

The Customization Guide for more information on using AutoLISP to access menu label status, and for
information on using DIESEL.

Verifies that a menugroup is loaded

(menugroup groupname)

Arguments

groupname
A string that specifies the menugroup name.

Return Values

AutoLISP Functions

menugroup

Page 135 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

If groupname matches a loaded menugroup, the function returns the groupname string; otherwise, it returns
nil.

Returns the smallest of the numbers given

(min [number number...])

Arguments

number
A number.

Return Values

A number. If any number argument is a real, a real is returned; otherwise, an integer is returned. If no
argument is supplied, min returns 0.

Examples

Command: (min 683 -10.0)

-10.0

Command: (min 73 2 48 5)

2

Command: (min 73.0 2 48 5)

2.0

Command: (min 2 4 6.7)

2.0

AutoLISP Functions

min

Verifies that a number is negative

(minusp num)

Arguments

AutoLISP Functions

minusp

Page 136 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

num
A number.

Return Values

T if number is negative; otherwise nil.

Examples

Command: (minusp -1)

T

Command: (minusp -4.293)

T

Command: (minusp 830.2)

nil

Sets the mode of a dialog box tile

(mode_tile key mode)

Arguments

key
A string that specifies the tile. The key argument is case-sensitive.

mode
An integer that can be one of the following:

0 Enable tile

1 Disable tile

2 Set focus to tile

3 Select edit box contents

4 Flip image highlighting on or off

Return Values

nil

AutoLISP Functions

mode_tile

AutoLISP Functions

Page 137 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

namedobjdict
nentsel
nentselp
new_dialog
not
nth
null
numberp

Topics in this section:

namedobjdict

nentsel

nentselp

new_dialog

not

nth

null

numberp

N Functions

Returns the entity name of the current drawing's named object dictionary, which is the root of all nongraphical objects in the
drawing

(namedobjdict)

Using the name returned by this function and the dictionary access functions, an application can access the
nongraphical objects in the drawing.

AutoLISP Functions

namedobjdict

AutoLISP Functions

nentsel

Page 138 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Prompts the user to select an object (entity) by specifying a point, and provides access to the definition data contained within
a complex object

(nentsel [msg])

The nentsel function prompts the user to select an object. The current Object Snap mode is ignored
unless the user specifically requests it. To provide additional support at the Command prompt, nentsel
honors keywords defined by a previous call to initget.

Arguments

msg
A string to be displayed as a prompt. If the msg argument is omitted, the Select Object prompt is issued.

Return Values

When the selected object is not complex (that is, not a 3D polyline or block), nentsel returns the same
information as entsel. However, if the selected object is a 3D polyline, nentsel returns a list containing
the name of the subentity (vertex) and the pick point. This is similar to the list returned by entsel, except
that the name of the selected vertex is returned instead of the polyline header. The nentsel function
always returns the starting vertex of the selected 3D polyline segment. Picking the third segment of the
polyline, for example, returns the third vertex. The Seqend subentity is never returned by nentsel for a 3D
polyline.

Note A lightweight polyline (lwpolyline entity) is defined in the drawing database as a single entity; it does
not contain subentities.

Selecting an attribute within a block reference returns the name of the attribute and the pick point. When the
selected object is a component of a block reference other than an attribute, nentsel returns a list
containing four elements.

The first element of the list returned from picking an object within a block is the selected entity's name.

The second element is a list containing the coordinates of the point used to pick the object.

The third element is called the Model to World Transformation Matrix. It is a list consisting of four sublists,
each of which contains a set of coordinates. This matrix can be used to transform the entity definition data
points from an internal coordinate system called the Model Coordinate System (MCS), to the World
Coordinate System (WCS). The insertion point of the block that contains the selected entity defines the
origin of the MCS. The orientation of the UCS when the block is created determines the direction of the MCS
axes.

Note nentsel is the only AutoLISP function that uses a matrix of this type; the nentselp function returns
a matrix similar to those used by other AutoLISP and ObjectARX functions.

The fourth element is a list containing the entity name of the block that contains the selected object. If the
selected object is in a nested block (a block within a block), the list also contains the entity names of all
blocks in which the selected object is nested, starting with the innermost block and continuing outward until
the name of the block that was inserted in the drawing is reported.

For information about converting MCS coordinates to WCS, see the Entity Context and Coordinate Transform
Data topic in Using AutoLISP to Manipulate AutoCAD Objects in the AutoLISP Developer's Guide.

Examples

Page 139 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Draw a 3D polyline with multiple line segments; then load and run the following function and select different
segments of the line. Pick off the line and then pick the same segments again to see the subentity handle.
Try it with a lightweight polyline to see the difference.

(defun c:subent ()
 (while
 (setq Ent (entsel "\nPick an entity: "))
 (print (strcat "Entity handle is: "
 (cdr (assoc 5 (entget (car Ent))))))
)
 (while
 (setq Ent (nentsel "\nPick an entity or subEntity: "))
 (print (strcat "Entity or subEntity handle is: "
 (cdr (assoc 5 (entget (car Ent))))))
)
 (prompt "\nDone.")
 (princ)
)

See Also

The entsel, initget,and nentselp functions. The Entity Name Functions in the AutoLISP Developer's Guide.

Provides similar functionality to that of the nentsel function without the need for user input

(nentselp [msg] [pt])

Arguments

msg
A string to be displayed as a prompt. If the msg argument is omitted, the Select object prompt is issued.

pt
A selection point. This allows object selection without user input.

Return Values

The nentselp function returns a 4×4 transformation matrix, defined as follows:

The first three columns of the matrix specify scaling and rotation. The fourth column is a translation vector.

The functions that use a matrix of this type treat a point as a column vector of dimension 4. The point is
expressed in homogeneous coordinates, where the fourth element of the point vector is a scale factor that is
normally set to 1.0. The final row of the matrix, the vector [M30M31M32M33], has the nominal value of [0 0 0
1]; it is currently ignored by the functions that use this matrix format. In this convention, applying a

AutoLISP Functions

nentselp

Page 140 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

transformation to a point is a matrix multiplication that appears as follows:

This multiplication gives us the individual coordinates of the point as follows:

As these equations show, the scale factor and the last row of the matrix have no effect and are ignored.

See Also

The initget and nentsel functions.

Begins a new dialog box and displays it, and can also specify a default action

(new_dialog dlgname dcl_id [action [screen-pt]])

Arguments

dlgname
A string that specifies the dialog box.

dcl_id
The DCL file identifier obtained by load_dialog.

action
A string that contains an AutoLISP expression to use as the default action. If you don't want to define a
default action, specify an empty string (""). The action argument is required if you specify screen-pt.

The default action is evaluated when the user picks an active tile that doesn't have an action or callback
explicitly assigned to it by action_tile or in DCL.

screen-pt
A 2D point list that specifies the X,Y location of the dialog box on the screen. The point specifies the
upper-left corner of the dialog box. If you pass the point as'(-1 -1), the dialog box is opened in the
default position (the center of the AutoCAD drawing area).

Return Values

T, if successful; otherwise nil.

See Also

The Managing Dialog Boxes chapter of the AutoLISP Developer's Guide.

AutoLISP Functions

new_dialog

Page 141 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Verifies that an item evaluates to nil

(not item)

Typically, the null function is used for lists, and not is used for other data types along with some types of
control functions.

Arguments

item
An AutoLISP expression.

Return Values

T if item evaluates to nil; otherwise nil.

Examples

Command: (setq a 123 b "string" c nil)

nil

Command: (not a)

nil

Command: (not b)

nil

Command: (not c)

T

Command: (not '())

T

See Also

The null function.

AutoLISP Functions

not

Returns the nth element of a list

AutoLISP Functions

nth

Page 142 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(nth n lst)

Arguments

n
The number of the element to return from the list (zero is the first element).

lst
The list.

Return Values

The nth element of lst. If n is greater than the highest element number of lst, nth returns nil.

Examples

Command: (nth 3 '(a b c d e))

D

Command: (nth 0 '(a b c d e))

A

Command: (nth 5 '(a b c d e))

nil

Verifies that an item is bound to nil

(null item)

Arguments

item
An AutoLISP expression.

Return Values

T if item evaluates to nil; otherwise nil.

Examples

Command: (setq a 123 b "string" c nil)

nil

Command: (null a)

nil

Command: (null b)

AutoLISP Functions

null

Page 143 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

nil

Command: (null c)

T

Command: (null '())

T

See Also

The not function.

Verifies that an item is a real number or an integer

(numberp item)

Arguments

item
An AutoLISP expression.

Return Values

T if item evaluates to a real or an integer; otherwise nil.

Examples

Command: (setq a 123 b 'a)

A

Command: (numberp 4)

T

Command: (numberp 3.8348)

T

Command: (numberp "Howdy")

nil

Command: (numberp a)

T

Command: (numberp b)

nil

Command: (numberp (eval b))

T

AutoLISP Functions

numberp

Page 144 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

open
or
osnap

Topics in this section:

open

or

osnap

AutoLISP Functions

O Functions

Opens a file for access by the AutoLISP I/O functions

(open filename mode)

Arguments

filename
A string that specifies the name and extension of the file to be opened. If you do not specify the full path
name of the file, open assumes you are referring to the AutoCAD default drawing directory.

mode
Indicates whether the file is open for reading, writing, or appending. Specify a string containing one of the
following letters:

r Open for reading.

w Open for writing. If filename does not exist, a new file is created and opened. If filename already exists,
its existing data is overwritten. Data passed to an open file is not actually written until the file is closed with
the close function.

a Open for appending. If filename does not exist, a new file is created and opened. If filename already
exists, it is opened and the pointer is positioned at the end of the existing data, so new data you write to
the file is appended to the existing data.

The mode argument can be uppercase or lowercase. Note that in releases prior to AutoCAD 2000, mode
had to be specified in lowercase.

AutoLISP Functions

open

Page 145 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Return Values

If successful, open returns a file descriptor that can be used by the other I/O functions. If mode "r" is
specified and filename does not exist, open returns nil.

Note On DOS systems, some programs and text editors write text files with an end-of-file marker (CTRL+Z,
decimal ASCII code 26) at the end of the text. When reading a text file, DOS returns an end-of-file status if a
CTRL+Z marker is encountered, even if that marker is followed by more data. If you intend to use open"a"
mode to append data to files produced by another program, be certain the other program does not insert
CTRL+Z markers at the end of its text files.

Examples

Open an existing file:

Command: (setq a (open "c:/program files/ <AutoCAD installation directory>/help/filelist.txt" "r"))

#<file "c:/program files/ <AutoCAD installation directory>/help/filelist.txt">

The following examples issue open against files that do not exist:

Command: (setq f (open "c:\\my documents\\new.tst" "w"))

#<file "c:\\my documents\\new.tst">

Command: (setq f (open "nosuch.fil" "r"))

nil

Command: (setq f (open "logfile" "a"))

#<file "logfile">

Returns the logical OR of a list of expressions

(or [expr...])

The or function evaluates the expressions from left to right, looking for a non-nil expression.

Arguments

expr
The expressions to be evaluated.

Return Values

T, if a non-nil expression is found; otherwise nil, if all of the expressions are nil or no arguments are
supplied.

AutoLISP Functions

or

Page 146 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Note that or accepts an atom as an argument and returns T if one is supplied.

Examples

Command: (or nil 45 '())

T

Command: (or nil '())

nil

Returns a 3D point that is the result of applying an Object Snap mode to a specified point

(osnap pt mode)

Arguments

pt
A point.

mode
A string that consists of one or more valid Object Snap identifiers, such as mid, cen, and so on,
separated by commas.

Return Values

A point; otherwise nil, if the pick did not return an object (for example, if there is no geometry under the
pick aperture, or if the geometry is not applicable to the selected object snap mode). The point returned by
osnap depends on the current 3D view, the AutoCAD entity around pt, and the setting of the APERTURE
system variable in the Command Reference.

Examples

Command: (setq pt1 (getpoint))

(11.8637 3.28269 0.0)

Command: (setq pt2 (osnap pt1 "_end,_int"))

(12.1424 3.42181 0.0)

AutoLISP Functions

osnap

AutoLISP Functions

P Functions

Page 147 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

polar
prin1
princ
print
progn
prompt

Topics in this section:

polar

prin1

princ

print

progn

prompt

Returns the UCS 3D point at a specified angle and distance from a point

(polar pt ang dist)

Arguments

pt
A 2D or 3D point.

ang
An angle expressed in radians relative to the world X axis. Angles increase in the counterclockwise
direction, independent of the current construction plane.

dist
Distance from the specified pt.

Return Values

A 2D or 3D point, depending on the type of point specified by pt.

Examples

Supplying a 3D point to polar:

Command: (polar '(1 1 3.5) 0.785398 1.414214)

(2.0 2.0 3.5)

AutoLISP Functions

polar

Page 148 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Supplying a 2D point to polar:

Command: (polar '(1 1) 0.785398 1.414214)

(2.0 2.0)

Prints an expression to the command line or writes an expression to an open file

(prin1 [expr [file-desc]])

Arguments

expr
A string or AutoLISP expression. Only the specified expr is printed; no newline or space is included.

file-desc
A file descriptor for a file opened for writing.

Return Values

The value of the evaluated expr. If called with no arguments, prin1 returns a null symbol.

Used as the last expression in a function, prin1 without arguments prints a blank line when the function
completes, allowing the function to exit “quietly.”

Examples

Command: (setq a 123 b '(a))

(A)

Command: (prin1 'a)

AA

The previous command printed A and returned A.

Command: (prin1 a)

123123

The previous command printed 123 and returned 123.

Command: (prin1 b)

(A)(A)

The previous command printed (A) and returned (A).

AutoLISP Functions

prin1

Page 149 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Each preceding example is displayed on the screen because no file-desc was specified. Assuming that f is
a valid file descriptor for a file opened for writing, the following function call writes a string to that file and
returns the string:

Command: (prin1 "Hello" f)

"Hello"

If expr is a string containing control characters, prin1 expands these characters with a leading \, as shown
in the following table:

The following example shows how to use control characters:

Command: (prin1 (chr 2))

"\002""\002"

See Also

Displaying Messages in the AutoLISP Developer's Guide.

Control codes
Code Description
\\ \ character

\" " character

\e Escape character

\n Newline character

\r Return character

\t TAB character

\nnn Character whose octal code is nnn

Prints an expression to the command line, or writes an expression to an open file

(princ [expr [file-desc]])

This function is the same as prin1, except control characters in expr are printed without expansion. In
general, prin1 is designed to print expressions in a way that is compatible with load, while princ prints
them in a way that is readable by functions such as read-line.

Arguments

expr

AutoLISP Functions

princ

Page 150 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A string or AutoLISP expression. Only the specified expr is printed; no newline or space is included.
file-desc

A file descriptor for a file opened for writing.

Return Values

The value of the evaluated expr. If called with no arguments, princ returns a null symbol.

See Also

The Displaying Messages topic in the AutoLISP Developer's Guide.

Prints an expression to the command line, or writes an expression to an open file

(print [expr [file-desc]])

This function is the same as prin1, except it prints a newline character before expr, and prints a space
following expr.

Arguments

expr
A string or AutoLISP expression. Only the specified expr is printed; no newline or space is included.

file-desc
A file descriptor for a file opened for writing.

Return Values

The value of the evaluated expr. If called with no arguments, print returns a null symbol.

See Also

The Displaying Messages topic in the AutoLISP Developer's Guide.

AutoLISP Functions

print

AutoLISP Functions

progn

Page 151 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Evaluates each expression sequentially and returns the value of the last expression

(progn [expr]...)

You can use progn to evaluate several expressions where only one expression is expected.

Arguments

expr
One or more AutoLISP expressions.

Return Values

The result of the last evaluated expression.

Examples

The if function normally evaluates one then expression if the test expression evaluates to anything but
nil. The following example uses progn to evaluate two expressions following if:

(if (= a b)
 (progn
 (princ "\nA = B ")
 (setq a (+ a 10) b (- b 10))
)
)

See Also

The if function.

Displays a string on your screen's prompt area

(prompt msg)

On dual-screen AutoCAD configurations, prompt displays msg on both screens and is, therefore, preferable
to princ.

Arguments

msg
A string.

AutoLISP Functions

prompt

Page 152 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Return Values

nil

Examples

Command: (prompt "New value: ")

New value: nil

See Also

The Displaying Messages topic in the AutoLISP Developer's Guide.

quit
quote

Topics in this section:

quit

quote

AutoLISP Functions

Q Functions

Forces the current application to quit

(quit)

If quit is called, it returns the error message quit/exit abort and returns to the AutoCAD Command prompt.

See Also

The exit function.

AutoLISP Functions

quit

Page 153 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns an expression without evaluating it

(quote expr)

Arguments

expr
An AutoLISP expression.

Return Values

The expr argument.

Examples

Command: (quote a)

A

The previous expression can also be written as 'a. For example:

Command: !'a

A

Command: (quote (a b))

(A B)

See Also

The function function.

AutoLISP Functions

quote

read
read-char
read-line

AutoLISP Functions

R Functions

Page 154 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

redraw
regapp
rem
repeat
reverse
rtos

Topics in this section:

read

read-char

read-line

redraw

regapp

rem

repeat

reverse

rtos

Returns the first list or atom obtained from a string

(read [string])

The read function parses the string representation of any LISP data and returns the first expression in the
string, converting it to a corresponding data type.

Arguments

string
A string. The string argument should not contain blanks, except within a list or string.

Return Values

A list or atom. The read function returns its argument converted into the corresponding data type. If no
argument is specified, read returns nil.

If the string contains multiple LISP expressions separated by LISP symbol delimiters such as blanks,
newline, tabs, or parentheses, only the first expression is returned.

AutoLISP Functions

read

Page 155 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

Command: (read "hello")

HELLO

Command: (read "hello there")

HELLO

Command: (read "\"Hi Y'all\"")

"Hi Y'all"

Command: (read "(a b c)")

(A B C)

Command: (read "(a b c) (d)")

(A B C)

Command: (read "1.2300")

1.23

Command: (read "87")

87

Command: (read "87 3.2")

87

Returns the decimal ASCII code representing the character read from the keyboard input buffer or from an open file

(read-char [file-desc])

Arguments

file-desc
A file descriptor (obtained from open) referring to an open file. If no file-desc is specified, read-char
obtains input from the keyboard input buffer.

Return Values

An integer representing the ASCII code for a character. The read-char function returns a single newline
character (ASCII code 10) whenever it detects an end-of-line character or character sequence.

Examples

The following example omits file-desc, so read-char looks for data in the keyboard buffer:

Command: (read-char)

AutoLISP Functions

read-char

Page 156 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The keyboard buffer is empty, so read-char waits for user input:

ABC
65

The user entered ABC; read-char returned the ASCII code representing the first character entered (A).
The next three calls to read-char return the data remaining in the keyboard input buffer. This data
translates to 66 (the ASCII code for the letter B), 67 (C), and 10 (newline), respectively:

Command: (read-char)

66

Command: (read-char)

67

Command: (read-char)

10

With the keyboard input buffer now empty, read-char waits for user input the next time it is called:

Command: (read-char)

Reads a string from the keyboard or from an open file, until an end-of-line marker is encountered

(read-line [file-desc])

Arguments

file-desc
A file descriptor (obtained from open) referring to an open file. If no file-desc is specified, read-line
obtains input from the keyboard input buffer.

Return Values

The string read by read-line, without the end-of-line marker. If read-line encounters the end of the file,
it returns nil.

Examples

Open a file for reading:

Command: (setq f (open "c:\\my documents\\new.tst" "r"))

#<file "c:\\my documents\\new.tst">

Use read-line to read a line from the file:

AutoLISP Functions

read-line

Page 157 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Command: (read-line f)

"To boldly go where nomad has gone before."

Obtain a line of input from the user:

Command: (read-line)

To boldly go

"To boldly go"

Redraws the current viewport or a specified object (entity) in the current viewport

(redraw [ename [mode]])

If redraw is called with no arguments, the function redraws the current viewport. If called with an entity
name argument, redraw redraws the specified entity.

The redraw function has no effect on highlighted or hidden entities; however, a REGEN command forces
the entities to redisplay in their normal manner.

Arguments

ename
The name of the entity name to be redrawn.

mode
An integer value that controls the visibility and highlighting of the entity. The mode can be one of the
following values:

1 Show entity

2 Hide entity (blank it out)

3 Highlight entity

4 Unhighlight entity

The use of entity highlighting (mode 3) must be balanced with entity unhighlighting (mode 4).

If ename is the header of a complex entity (a polyline or a block reference with attributes), redraw
processes the main entity and all its subentities if the mode argument is positive. If the mode argument is
negative, redraw operates on only the header entity.

Return Values

The redraw function always returns nil.

AutoLISP Functions

redraw

Page 158 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Registers an application name with the current AutoCAD drawing in preparation for using extended object data

(regapp application)

Arguments

application
A string naming the application. The name must be a valid symbol table name. See the description of
snvalid for the rules AutoLISP uses to determine if a symbol name is valid.

Return Values

If an application of the same name has already been registered, this function returns nil; otherwise it
returns the name of the application.

If registered successfully, the application name is entered into the APPID symbol table. This table maintains
a list of the applications that are using extended data in the drawing.

Examples

(regapp "ADESK_4153322344")
(regapp "DESIGNER-v2.1-124753")

Note It is recommended that you pick a unique application name. One way of ensuring this is to adopt a
naming scheme that uses the company or product name and a unique number (like your telephone number
or the current date/time). The product version number can be included in the application name or stored by
the application in a separate integer or real-number field; for example, (1040 2.1).

AutoLISP Functions

regapp

Divides the first number by the second, and returns the remainder

(rem [number number...])

Arguments

number
Any number.

If you provide more than two numbers, rem divides the result of dividing the first number by the second
with the third, and so on.

AutoLISP Functions

rem

Page 159 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

If you provide more than two numbers, rem evaluates the arguments from left to right. For example, if you
supply three numbers, rem divides the first number by the second, then takes the result and divides it by
the third number, returning the remainder of that operation.

Return Values

A number. If any number argument is a real, rem returns a real; otherwise, rem returns an integer. If no
arguments are supplied, rem returns 0. If a single number argument is supplied, rem returns number.

Examples

Command: (rem 42 12)

6

Command: (rem 12.0 16)

12.0

Command: (rem 26 7 2)

1

Evaluates each expression a specified number of times, and returns the value of the last expression

(repeat int [expr...])

Arguments

int
An integer. Must be a positive number.

expr
One or more atoms or expressions.

Return Values

The value of the last expression or atom evaluated. If expr is not supplied, repeat returns nil.

Examples

Command: (setq a 10 b 100)

100

Command: (repeat 4 (setq a (+ a 10)) (setq b (+ b 100)))

500

After evaluation, a is 50, b is 500, and repeat returns 500.

AutoLISP Functions

repeat

Page 160 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

If strings are supplied as arguments, repeat returns the last string:

Command: (repeat 100 "Me" "You")

"You"

Returns a copy of a list with its elements reversed

(reverse lst)

Arguments

lst
A list.

Return Values

A list.

Examples

Command: (reverse '((a) b c))

(C B (A))

AutoLISP Functions

reverse

Converts a number into a string

(rtos number [mode [precision]])

The rtos function returns a string that is the representation of number according to the settings of mode,
precision, and the system variables UNITMODE, DIMZIN, LUNITS, and LUPREC.

Arguments

number
A number.

mode

AutoLISP Functions

rtos

Page 161 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

An integer specifying the linear units mode. The mode corresponds to the values allowed for the LUNITS
AutoCAD system variable. The mode can be one of the following numbers:

1 Scientific

2 Decimal

3 Engineering (feet and decimal inches)

4 Architectural (feet and fractional inches)

5 Fractional
precision

An integer specifying the precision.

The mode and precision arguments correspond to the system variables LUNITS and LUPREC. If you omit
the arguments, rtos uses the current settings of LUNITS and LUPREC.

Return Values

A string. The UNITMODE system variable affects the returned string when engineering, architectural, or
fractional units are selected (mode values 3, 4, or 5).

Examples

Set variable x:

Command: (setq x 17.5)

17.5

Convert the value of x to a string in scientific format, with a precision of 4:

Command: (setq fmtval (rtos x 1 4))

"1.7500E+01"

Convert the value of x to a string in decimal format, with 2 decimal places:

Command: (setq fmtval (rtos x 2 2))

"17.50"

Convert the value of x to a string in engineering format, with a precision of 2:

Command: (setq fmtval (rtos x 3 2))

"1'-5.50\""

Convert the value of x to a string in architectural format:

Command: (setq fmtval (rtos x 4 2))

"1'-5 1/2\""

Convert the value of x to a string in fractional format:

Command: (setq fmtval (rtos x 5 2))

"17 1/2"

Page 162 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Setting UNITMODE to 1 causes units to be displayed as entered. This affects the values returned by rtos
for engineering, architectural, and fractional formats, as shown in the following examples:

Command: (setvar "unitmode" 1)

1

Command: (setq fmtval (rtos x 3 2))

"1'5.50\""

Command: (setq fmtval (rtos x 4 2))

"1'5-1/2\""

Command: (setq fmtval (rtos x 5 2))

"17-1/2"

See Also

The String Conversions topic in the AutoLISP Developer's Guide .

set
set_tile
setcfg
setenv
setfunhelp
setq
setvar
setview
sin
slide_image
snvalid
sqrt
ssadd
ssdel
ssget
ssgetfirst
sslength
ssmemb
ssname
ssnamex
sssetfirst
startapp
start_dialog
start_image

AutoLISP Functions

S Functions

Page 163 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

start_list
strcase
strcat
strlen
subst
substr

Topics in this section:

set

set_tile

setcfg

setenv

setfunhelp

setq

setvar

setview

sin

slide_image

snvalid

sqrt

ssadd

ssdel

ssget

ssgetfirst

sslength

ssmemb

ssname

ssnamex

sssetfirst

startapp

start_dialog

start_image

start_list

strcase

strcat

strlen

subst

Page 164 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

substr

Sets the value of a quoted symbol name to an expression

(set sym expr)

The set function is similar to setq except that set evaluates both of its arguments whereas setq only
evaluates its second argument.

Arguments

sym
A symbol.

expr
An AutoLISP expression.

Return Values

The value of the expression.

Examples

Each of the following commands sets symbol a to 5.0:

(set 'a 5.0)
(set (read "a") 5.0)
(setq a 5.0)

Both set and setq expect a symbol as their first argument, but set accepts an expression that returns a
symbol, whereas setq does not, as the following shows:

Command: (set (read "a") 5.0)

5.0

Command: (setq (read "a") 5.0)

; *** ERROR: syntax error

See Also

The setq function.

AutoLISP Functions

set

Page 165 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Sets the value of a dialog box tile

(set_tile key value)

Arguments

key
A string that specifies the tile.

value
A string that names the new value to assign (initially set by the value attribute).

Return Values

The value the tile was set to.

AutoLISP Functions

set_tile

Writes application data to the AppData section of the acad2006.cfg file

(setcfg cfgname cfgval)

Arguments

cfgname
A string that specifies the section and parameter to set with the value of cfgval. The cfgname argument
must be a string of the following form:

AppData/application_name/section_name/.../param_name

The string can be up to 496 characters long.
cfgval

A string. The string can be up to 512 characters in length. Larger strings are accepted by setcfg, but
cannot be returned by getcfg.

Return Values

If successful, setcfg returns cfgval. If cfgname is not valid, setcfg returns nil.

Examples

AutoLISP Functions

setcfg

Page 166 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The following code sets the WallThk parameter in the AppData/ArchStuff section to 8, and returns the string
“8”:

Command: (setcfg "AppData/ArchStuff/WallThk" "8")

"8"

See Also

The getcfg function.

Sets a system environment variable to a specified value

(setenv varname value)

Arguments

varname
A string specifying the name of the environment variable to be set. Environment variable names must be
spelled and cased exactly as they are stored in the system registry.

value
A string specifying the value to set varname to.

Return Values

value

Examples

The following command sets the value of the MaxArray environment variable to 10000:

Command: (setenv "MaxArray" "10000")

"10000"

Note that changes to settings might not take effect until the next time AutoCAD is started.

See Also

The getenv function.

AutoLISP Functions

setenv

Page 167 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Registers a user-defined command with the Help facility so the appropriate Help file and topic are called when the user
requests help on that command

(setfunhelp c:fname [helpfile [topic [command]]])

Arguments

c:fname
A string specifying the user-defined command (the C:XXX function). You must include the c: prefix.

helpfile
A string naming the Help file. The file extension is not required with the helpfile argument. If a file
extension is provided, AutoCAD looks only for a file with the exact name specified.

If no file extension is provided, AutoCAD looks for helpfile with an extension of .chm. If no file of that name
is found, AutoCAD looks for a file with an extension of .hlp.

topic
A string identifying a Help topic ID. If you are calling a topic within a CHM file, provide the file name
without the extension; AutoCAD adds an .htm extension.

command
A string that specifies the initial state of the Help window. The command argument is a string used by the
uCommand (in HTML Help) or the fuCommand (in WinHelp) argument of the HtmlHelp() and WinHelp()
functions as defined in the Microsoft Windows SDK.

For HTML Help files, the command parameter can be HH_ALINK_LOOKUP or HH_DISPLAY_TOPIC. For
Windows Help files, the command parameter can be HELP_CONTENTS, HELP_HELPONHELP, or
HELP_PARTIALKEY.

Return Values

The string passed as c:fname, if successful; otherwise, nil.

This function verifies only that the c:fname argument has the c: prefix. It does not verify that the c:fname
function exists, nor does it verify the correctness of the other arguments supplied.

Examples

The following example illustrates the use of setfunhelp by defining a simple function and issuing
setfunhelp to associate the function with the circle topic in the AutoCAD Help file (acad.chm):

(defun c:foo ()
 (getstring "Press F1 for help on the foo command:")
)
(setfunhelp "c:foo" "acad.chm" "circle")

After this code is loaded, issuing the foo command and then pressing F1 displays the circle topic.

This example works, but serves no real purpose. In the real world, you would create your own Help file and
associate that Help file and topic with your function.

AutoLISP Functions

setfunhelp

Page 168 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Define a function named test:

Command: (defun c:test()(getstring "\nTEST: ")(princ))

C:TEST

Associate the function with a call to Help with the string “line”:

Command: (setfunhelp "c:test" "acad.chm" "line")

"c:test"

Run the test command and at the prompt, press F1; you should see the Help topic for the AutoCAD LINE
command.

Note When you use the defun function to define a C:XXX function, it removes that function's name from
those registered by setfunhelp (if one exists). Therefore, setfunhelp should be called only after the
defun call, which defines the user-defined command.

See Also

The defun and help functions.

Sets the value of a symbol or symbols to associated expressions

(setq sym expr [sym expr]...)

This is the basic assignment function in AutoLISP. The setq function can assign multiple symbols in one
call to the function.

Arguments

sym
A symbol. This argument is not evaluated.

expr
An expression.

Return Values

The result of the last expr evaluated.

Examples

The following function call sets variable a to 5.0:

AutoLISP Functions

setq

Page 169 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Command: (setq a 5.0)

5.0

Whenever a is evaluated, it returns the real number 5.0.

The following command sets two variables, b and c:

Command: (setq b 123 c 4.7)

4.7

setq returns the value of the last variable set.

In the following example, s is set to a string:

Command: (setq s "it")

"it"

The following example assigns a list to x:

Command: (setq x '(a b))

(A B)

See Also

The AutoLISP Variables topic in the AutoLISP Developer's Guide .

Sets an AutoCAD system variable to a specified value

(setvar varname value)

Arguments

varname
A string or symbol naming a variable.

value
An atom or expression whose evaluated result is to be assigned to varname. For system variables with
integer values, the supplied value must be between -32,768 and +32,767.

Return Values

If successful, setvar returns value.

AutoLISP Functions

setvar

Page 170 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

Set the AutoCAD fillet radius to 0.5 units:

Command: (setvar "FILLETRAD" 0.50)

0.5

Notes on Using setvar

Some AutoCAD commands obtain the values of system variables before issuing any prompts. If you use
setvar to set a new value while a command is in progress, the new value might not take effect until the
next AutoCAD command.

When using the setvar function to change the AutoCAD system variable ANGBASE, the value argument is
interpreted as radians. This differs from the AutoCAD SETVAR command in the Command Reference,
which interprets this argument as degrees. When using the setvar function to change the AutoCAD system
variable SNAPANG, the value argument is interpreted as radians relative to the AutoCAD default direction
for angle 0, which is east or 3 o'clock. This also differs from the SETVAR command, which interprets this
argument as degrees relative to the ANGBASE setting.

Note The UNDO command does not undo changes made to the CVPORT system variable by the setvar
function.

You can find a list of the current AutoCAD system variables in the Command Reference.

See Also

The getvar function.

Establishes a view for a specified viewport

(setview view_descriptor [vport_id])

Arguments

view_descriptor
An entity definition list similar to that returned by tblsearch when applied to the VIEW symbol table.

vport_id
An integer identifying the viewport to receive the new view. If vport_id is 0, the current viewport receives
the new view.

You can obtain the vport_id number from the CVPORT system variable.

Return Values

AutoLISP Functions

setview

Page 171 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

If successful, the setview function returns the view_descriptor.

Returns the sine of an angle as a real number expressed in radians

(sin ang)

Arguments

ang
An angle, in radians.

Return Values

A real number representing the sine of ang, in radians.

Examples

Command: (sin 1.0)

0.841471

Command: (sin 0.0)

0.0

AutoLISP Functions

sin

Displays an AutoCAD slide in the currently active dialog box image tile

(slide_image x1 y1 width height sldname)

Arguments

x1
X-offset from the upper-left corner of the tile, in pixels. Must be a positive value.

y1
Y-offset from the upper-left corner of the tile, in pixels. Must be a positive value.

width

AutoLISP Functions

slide_image

Page 172 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Width of the image, in pixels.
height

Height of the image, in pixels.
sldname

Identifies the slide. This argument can be a slide file (.sld) or a slide in a slide library file (.slb). Specify
sldname the same way you would specify it for the VSLIDE command or for a menu file (see the Creating
Images topic in the AutoLISP Developer's Guide). Use one of the following formats for sldname:

sldnameorlibname(sldname)

The first (upper-left) corner of the slide—its insertion point—is located at (x1,y1), and the second (lower-
right) corner is located at the relative distance (wid,hgt) from the first (wid and hgt must be positive values).
The origin (0,0) is the upper-left corner of the image. You obtain the coordinates of the lower-right corner by
calling the dimension functions (dimx_tile and dimy_tile).

Return Values

A string containing sldname.

Examples

(slide_image
 0
 0
 (dimx_tile "slide_tile")
 (dimy_tile "slide_tile")
 "myslide"
)
(end_image)

Checks the symbol table name for valid characters

(snvalid sym_name [flag])

The snvalid function inspects the system variable EXTNAMES to determine the rules to enforce for the
active drawing. If EXTNAMES is 0, snvalid validates using the symbol name rules in effect prior to
AutoCAD 2000. If EXTNAMES is 1 (the default value), snvalid validates using the rules for extended
symbol names introduced with AutoCAD 2000. The following are not allowed in symbol names, regardless
of the setting of EXTNAMES:

Control and graphic characters
Null strings
Vertical bars as the first or last character of the name

AutoLISP does not enforce restrictions on the length of symbol table names if EXTNAMES is 1.

AutoLISP Functions

snvalid

Page 173 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

sym_name
A string that specifies a symbol table name.

flag
An integer that specifies whether the vertical bar character is allowed within sym_name. The flag
argument can be one of the following:

0 Do not allow vertical bar characters anywhere in sym_name. This is the default.

1 Allow vertical bar characters in sym_name, as long as they are not the first or last characters in the
name.

Return Values

T, if sym_name is a valid symbol table name; otherwise nil.

If EXTNAMES is 1, all characters are allowed except control and graphic characters and the following:

A symbol table name may contain spaces.

If EXTNAMES is 0, symbol table names can consist of uppercase and lowercase alphabetic letters (e.g., A-
Z), numeric digits (e.g., 0-9), and the dollar sign ($), underscore (_), and hyphen (-) characters.

Examples

The following examples assume EXTNAMES is set to 1:

Command: (snvalid "hocus-pocus")

T

Command: (snvalid "hocus pocus")

T

Command: (snvalid "hocus%pocus")

T

The following examples assume EXTNAMES is set to 0:

Characters disallowed in symbol table names
< > less-than and greater-than symbol

/ \ forward slash and backslash

" quotation mark

: colon

? question mark

* asterisk

| vertical bar

, comma

= equal sign

` backquote

; semicolon (ASCII 59)

Page 174 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Command: (snvalid "hocus-pocus")

T

Command: (snvalid "hocus pocus")

nil

Command: (snvalid "hocus%pocus")

nil

The following example includes a vertical bar in the symbol table name:

Command: (snvalid "hocus|pocus")

nil

By default, the vertical bar character is considered invalid in all symbol table names.

In the following example, the flag argument is set to 1, so snvalid considers the vertical bar character to
be valid in sym_name, as long as it is not the first or last character in the name:

Command: (snvalid "hocus|pocus" 1)

T

Returns the square root of a number as a real number

(sqrt num)

Arguments

num
A number (integer or real).

Return Values

A real number.

Examples

Command: (sqrt 4)

2.0

Command: (sqrt 2.0)

1.41421

AutoLISP Functions

sqrt

Page 175 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Adds an object (entity) to a selection set, or creates a new selection set

(ssadd [ename [ss]])

Arguments

ename
An entity name.

ss
A selection set.

If called with no arguments, ssadd constructs a new selection set with no members. If called with the single
entity name argument ename, ssadd constructs a new selection set containing that single entity. If called
with an entity name and the selection set ss, ssadd adds the named entity to the selection set.

Return Values

The modified selection set passed as the second argument, if successful; otherwise nil.

Examples

When adding an entity to a set, the new entity is added to the existing set, and the set passed as ss is
returned as the result. Thus, if the set is assigned to other variables, they also reflect the addition. If the
named entity is already in the set, the ssadd operation is ignored and no error is reported.

Set e1 to the name of the first entity in drawing:

Command: (setq e1 (entnext))

<Entity name: 1d62d60>

Set ss to a null selection set:

Command: (setq ss (ssadd))

<Selection set: 2>

The following command adds the e1 entity to the selection set referenced by ss:

Command: (ssadd e1 ss)

<Selection set: 2>

Get the entity following e1:

Command: (setq e2 (entnext e1))

<Entity name: 1d62d68>

Add e2 to the ss entity:

AutoLISP Functions

ssadd

Page 176 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Command: (ssadd e2 ss)

<Selection set: 2>

Deletes an object (entity) from a selection set

(ssdel enamess)

Arguments

ename
An entity name.

ss
A selection set.

Return Values

The name of the selection set; otherwise nil, if the specified entity is not in the set.

Note that the entity is actually deleted from the existing selection set, as opposed to a new set being
returned with the element deleted.

Examples

In the following examples, entity name e1 is a member of selection set ss, while entity name e3 is not a
member of ss:

Command: (ssdel e1 ss)

<Selection set: 2>

Selection set ss is returned with entity e1 removed.

Command: (ssdel e3 ss)

nil

The function returns nil because e3 is not a member of selection set ss.

AutoLISP Functions

ssdel

AutoLISP Functions

ssget

Page 177 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Creates a selection set from the selected object

(ssget [sel-method] [pt1 [pt2]] [pt-list] [filter-list])

Selection sets can contain objects from both paper and model space, but when the selection set is used in
an operation, ssget filters out objects from the space not currently in effect. Selection sets returned by
ssget contain main entities only (no attributes or polyline vertices).

Arguments

sel-method
A string that specifies the object selection method. Valid selection methods are

C Crossing selection.

CP Cpolygon selection (all objects crossing and inside of the specified polygon).

F Fence selection.

I Implied selection (objects selected while PICKFIRST is in effect).

L Last visible object added to the database.

P Last selection set created.

W Window selection.

WP WPolygon (all objects within the specified polygon).

X Entire database. If you specify the X selection method and do not provide a filter-list, ssget selects all
entities in the database, including entities on layers that are off, frozen, and out of the visible screen.

:E Everything within the cursor's object selection pickbox.

:N Call ssnamex for additional information on container blocks and transformation matrices for any
entities selected during the ssget operation. This additional information is available only for entities
selected via graphical selection methods such as Window, Crossing, and point picks.

Unlike the other object selection methods, :N may return multiple entities with the same entity name in the
selection set. For example, if the user selects a subentity of a complex entity such as a BlockReference,
PolygonMesh, or old style polyline, ssget looks at the subentity that is selected when determining if it has
already been selected. However, ssget actually adds the main entity (BlockReference, PolygonMesh,
and so on) to the selection set. The result could be multiple entries with the same entity name in the
selection set (each will have different subentity information for ssnamex to report).

:S Allow single selection only.

:U Enables subentity selection. Cannot be combined with the duplicate (":D") or nested (":N") selection
modes. In this mode, top-level entities are selected by default, but the user can attempt to select
subentities by pressing the CTRL key while making the selection. This option is supported only with
interactive selections, such as window, crossing, and polygon. It is not supported for all, filtered, or group
selections.

:V Forces subentity selection. Treats all interactive, graphic selections performed by the user as subentity
selections. The returned selection set contains subentities only. This option cannot be combined with the
duplicate (":D") or nested (":N") selection modes. This option is supported only with interactive selections,
such as window and crossing. It is not supported for all, filtered, or group selections.

pt1
A point relative to the selection.

pt2
A point relative to the selection.

pt-list

Page 178 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A list of points.
filter-list

An association list that specifies object properties. Objects that match the filter-list are added to the
selection set.

If you omit all arguments, ssget prompts the user with the Select Objects prompt, allowing interactive
construction of a selection set.

If you supply a point but do not specify an object selection method, AutoCAD assumes the user is selecting
an object by picking a single point.

Return Values

The name of the created selection set if successful; otherwise nil if no objects were selected.

Notes on the Object Selection Methods

When using the :N selection method, if the user selects a subentity of a complex entity such as a
BlockReference, PolygonMesh, or old style polyline, ssget looks at the subentity that is selected when
determining if it has already been selected. However, ssget actually adds the main entity
(BlockReference, PolygonMesh, etc.) to the selection set. It is therefore possible to have multiple entries
with the same entity name in the selection set (each will have different subentity information for ssnamex
to report). Because the :N method does not guarantee that each entry will be unique, code that relies on
uniqueness should not use selection sets created using this option.
When using the L selection method in an MDI environment, you cannot always count on the last object
drawn to remain visible. For example, if your application draws a line, and the user subsequently
minimizes or cascades the AutoCAD drawing window, the line may no longer be visible. If this occurs,
ssget with the "L" option will return nil.

Examples

Prompt the user to select the objects to be placed in a selection set:

Command: (ssget)

<Selection set: 2>

Create a selection set of the object passing through (2,2):

Command: (ssget '(2 2))

nil

Create a selection set of the most recently selected objects:

Command: (ssget "_P")

<Selection set: 4>

Create a selection set of the objects crossing the box from (0,0) to (1,1):

Command: (ssget "_C" '(0 0) '(1 1))

<Selection set: b>

Create a selection set of the objects inside the window from (0,0):

Page 179 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Command: (ssget "_W" '(0 0) '(5 5))

<Selection set: d>

By specifying filters, you can obtain a selection set that includes all objects of a given type, on a given layer,
or of a given color. The following example returns a selection set that consists only of blue lines that are part
of the implied selection set (those objects selected while PICKFIRST is in effect):

Command: (ssget "_I" '((0 . "LINE") (62 . 5)))

<Selection set: 4>

The following examples of ssget require that a list of points be passed to the function. The pt_list
variable cannot contain points that define zero-length segments.

Create a list of points:

Command: (setq pt_list '((1 1)(3 1)(5 2)(2 4)))

((1 1) (3 1) (5 2) (2 4))

Create a selection set of all objects crossing and inside the polygon defined by pt_list:

Command: (ssget "_CP" pt_list)

<Selection set: 13>

Create a selection set of all blue lines inside the polygon defined by pt_list:

Command: (ssget "_WP" pt_list '((0 . "LINE") (62 . 5)))

<Selection set: 8>

The selected objects are highlighted only when ssget is used with no arguments. Selection sets consume
AutoCAD temporary file slots, so AutoLISP is not permitted to have more than 128 open at one time. If this
limit is reached, AutoCAD cannot create any more selection sets and returns nil to all ssget calls. To
close an unnecessary selection set variable, set it to nil.

A selection set variable can be passed to AutoCAD in response to any Select objects prompt at which
selection by Last is valid. AutoCAD then selects all the objects in the selection set variable.

The current setting of Object Snap mode is ignored by ssget unless you specifically request it while you are
in the function.

See Also

Selection Set Handling and Selection Set Filter Lists in the AutoLISP Developer's Guide .

AutoLISP Functions

ssgetfirst

Page 180 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Determines which objects are selected and gripped

(ssgetfirst)

Returns a list of two selection sets similar to those passed to sssetfirst. The first element in the list is
always nil because AutoCAD no longer supports grips on unselected objects. The second element is a
selection set of entities that are selected and gripped. Both elements of the list can be nil.

Note Only entities from the current drawing's model space and paper space, not nongraphical objects or
entities in other block definitions, can be analyzed by this function.

See Also

The ssget and sssetfirst functions.

Returns an integer containing the number of objects (entities) in a selection set

(sslength ss)

Arguments

ss
A selection set.

Return Values

An integer.

Examples

Add the last object to a new selection set:

Command: (setq sset (ssget "L"))

<Selection set: 8>

Use sslength to determine the number of objects in the new selection set:

Command: (sslength sset)

1

AutoLISP Functions

sslength

Page 181 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Tests whether an object (entity) is a member of a selection set

(ssmemb enamess)

Arguments

ename
An entity name.

ss
A selection set.

Return Values

If ename is a member of ss, ssmemb returns the entity name. If ename is not a member, ssmemb returns
nil.

Examples

In the following examples, entity name e2 is a member of selection set ss, while entity name e1 is not a
member of ss:

Command: (ssmemb e2 ss)

<Entity name: 1d62d68>

Command: (ssmemb e1 ss)

nil

AutoLISP Functions

ssmemb

Returns the object (entity) name of the indexed element of a selection set

(ssname ssindex)

Entity names in selection sets obtained with ssget are always names of main entities. Subentities
(attributes and polyline vertices) are not returned. (The entnext function allows access to them.)

Arguments

ss
A selection set.

AutoLISP Functions

ssname

Page 182 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

index
An integer (or real) indicating an element in a selection set. The first element in the set has an index of
zero. To access entities beyond number 32,767 in a selection set, you must supply the index argument as
a real.

Return Values

An entity name, if successful. If index is negative or greater than the highest-numbered entity in the selection
set, ssname returns nil.

Examples

Get the name of the first entity in a selection set:

Command: (setq ent1 (ssname ss 0))

<Entity name: 1d62d68>

Get the name of the fourth entity in a selection set:

Command: (setq ent4 (ssname ss 3))

<Entity name: 1d62d90>

To access entities beyond the number 32,767 in a selection set, you must supply the index argument as a
real, as in the following example:

(setq entx (ssname sset 50843.0))

See Also

The entnext function.

Retrieves information about how a selection set was created

(ssnamex ss [index])

Only selection sets with entities from the current drawing's model space and paper space—not nongraphical
objects or entities in other block definitions—can be retrieved by this function.

Arguments

ss
A selection set.

index

AutoLISP Functions

ssnamex

Page 183 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

An integer (or real) indicating an element in a selection set. The first element in the set has an index of
zero.

Return Values

If successful, ssnamex returns the name of the entity at index, along with data describing how the entity was
selected. If the index argument is not supplied, this function returns a list containing the entity names of the
elements in the selection set, along with data that describes how each entity was selected. If index is
negative or greater than the highest-numbered entity in the selection set, ssnamex returns nil.

The data returned by ssnamex takes the form of a list of lists containing information that describes either an
entity and its selection method or a polygon used to select one or more entities. Each sublist that describes
the selection of a particular entity comprises three parts: the selection method ID (an integer >= 0), the entity
name of the selected entity, and selection method specific data that describes how the entity was selected.

((sel_id1 ename1 (data))(sel_id2ename2 (data)) ...)

The following table lists the selection method IDs:

Each sublist that both describes a polygon and is used during entity selection takes the form of a polygon ID
(an integer < 0), followed by point descriptions.

(polygon_idpoint_description_1point_description_n...)

Polygon ID numbering starts at -1 and each additional polygon ID is incremented by -1. Depending on the
viewing location, a point is represented as one of the following: an infinite line, a ray, or a line segment. A
point descriptor comprises three parts: a point descriptor ID (the type of item being described), the start point
of the item, and an optional unit vector that describes either the direction in which the infinite line travels or a
vector that describes the offset to the other side of the line segment.

(point_descriptor_idbase_point[unit_or_offset_vector])

The following table lists the valid point descriptor IDs:

The unit_or_offset_vector is returned when the view point is something other than 0,0,1.

Examples

Selection method IDs
ID Description
0 Nonspecific (i.e., Last All)

1 Pick

2 Window or WPolygon

3 Crossing or CPolygon

4 Fence

Point descriptor IDs
ID Description
0 Infinite line

1 Ray

2 Line segment

Page 184 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The data associated with Pick (type 1) entity selections is a single point description. For example, the
following record is returned for the selection of an entity picked at 1,1 in plan view of the WCS:

Command: (ssnamex ss3 0)

((1 <Entity name: 1d62da0> 0 (0 (1.0 1.0 0.0))))

The data associated with an entity selected with the Window, WPolygon, Crossing, or CPolygon method is
the integer ID of the polygon that selected the entity. It is up to the application to associate the polygon
identifiers and make the connection between the polygon and the entities it selected. For example, the
following returns an entity selected by Crossing (note that the polygon ID is -1):

Command: (ssnamex ss4 0)

((3 <Entity name: 1d62d60> 0 -1) (-1 (0 (-1.80879 8.85536 0.0)) (0 (13.4004 8.85536 0.0)) (0 (13.4004 1.80024
0.0)) (0 (-1.80879 1.80024 0.0))))

The data associated with fence selections is a list of points and descriptions for the points where the fence
and entity visually intersect. For example, the following command returns information for a nearly vertical
line intersected three times by a Z-shaped fence:

Command: (ssnamex ss5 0)

((4 <Entity name: 1d62d88> 0 (0 (5.28135 6.25219 0.0)) (0 (5.61868 2.81961 0.0)) (0 (5.52688 3.75381 0.0))))

Sets which objects are selected and gripped

(sssetfirst gripset[pickset])

The gripset argument is ignored; the selection set of objects specified by pickset are selected and gripped.

You are responsible for creating a valid selection set. For example, you may need to verify that a
background paper space viewport (DXF group code 69) is not included in the selection set. You may also
need to ensure that selected objects belong to the current layout, as in the following code:

(setq ss (ssget (list (cons 410 (getvar "ctab")))))

Arguments

gripset
AutoCAD no longer supports grips on unselected objects, so this argument is ignored. However, if gripset
is nil and no pickset is specified, sssetfirst turns off the grip handles and selections it previously
turned on.

pickset
A selection set to be selected.

Return Values

AutoLISP Functions

sssetfirst

Page 185 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The selection set or sets specified.

Examples

First, draw a square and build three selection sets. Begin by drawing side 1 and creating a selection set to
include the line drawn:

Command: (entmake (list (cons 0 "line") '(10 0.0 0.0 0.0)'(11 0.0 10.0 0.0)))

((0 . "line") (10 0.0 0.0 0.0) (11 0.0 10.0 0.0))

Command: (setq pickset1 (ssget "_l"))

<Selection set: a5>

Variable pickset1 points to the selection set created.

Draw side 2 and add it to the pickset1 selection set:

Command: (entmake (list (cons 0 "line") '(10 0.0 10.0 0.0)'(11 10.0 10.0 0.0)))

((0 . "line") (10 0.0 10.0 0.0) (11 10.0 10.0 0.0))

Command: (ssadd (entlast) pickset1)

<Selection set: a5>

Create another selection set to include only side 2:

Command: (setq 2onlyset (ssget "_l"))

<Selection set: a8>

Draw side 3 and add it to the pickset1 selection set:

Command: (entmake (list (cons 0 "line") '(10 10.0 10.0 0.0)'(11 10.0 0.0 0.0)))

((0 . "line") (10 10.0 10.0 0.0) (11 10.0 0.0 0.0))

Command: (ssadd (entlast) pickset1)

<Selection set: a5>

Create another selection and include side 3 in the selection set:

Command: (setq pickset2 (ssget "_l"))

<Selection set: ab>

Variable pickset2 points to the new selection set.

Draw side 4 and add it to the pickset1 and pickset2 selection sets:

Command: (entmake (list (cons 0 "line") '(10 10.0 0.0 0.0)'(11 0.0 0.0 0.0)))

((0 . "line") (10 10.0 0.0 0.0) (11 0.0 0.0 0.0))

Command: (ssadd (entlast) pickset1)

<Selection set: a5>

Command: (ssadd (entlast) pickset2)

<Selection set: ab>

Page 186 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

At this point, pickset1 contains sides 1-4, pickset2 contains sides 3 and 4, and 2onlyset contains only
side 2.

Turn grip handles on and select all objects in pickset1:

Command: (sssetfirst nil pickset1)

(nil <Selection set: a5>)

Turn grip handles on and select all objects in pickset2:

Command: (sssetfirst nil pickset2)

(nil <Selection set: ab>)

Turn grip handles on and select all objects in 2onlyset:

Command: (sssetfirst nil 2onlyset)

(nil <Selection set: a8>)

Each sssetfirst call replaces the gripped and selected selection set from the previous sssetfirst call.

Note Do not call sssetfirst when AutoCAD is in the middle of executing a command.

See Also

The ssget and ssgetfirst functions.

Starts a Windows application

(startapp appcmd[file])

Arguments

appcmd
A string that specifies the application to execute. If appcmd does not include a full path name, startapp
searches the directories in the PATH environment variable for the application.

file
A string that specifies the file name to be opened.

Return Values

An integer greater than 0, if successful; otherwise nil.

AutoLISP Functions

startapp

Page 187 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

The following code starts Windows Notepad and opens the acad.lsp file.

Command: (startapp "notepad" "acad.lsp")

33

If an argument has embedded spaces, it must be surrounded by literal double quotes. For example, to edit
the file my stuff.txt with Notepad, use the following syntax:

Command: (startapp "notepad.exe" "\"my stuff.txt\"")

33

Displays a dialog box and begins accepting user input

(start_dialog)

You must first initialize the dialog box by a previous new_dialog call. The dialog box remains active until
an action expression or callback function calls done_dialog. Usually done_dialog is associated with the
tile whose key is "accept" (typically the OK button) and the tile whose key is "cancel" (typically the
Cancel button).

The start_dialog function has no arguments.

Return Values

The start_dialog function returns the optional status passed to done_dialog. The default value is 1 if
the user presses OK, 0 if the user presses Cancel, or -1 if all dialog boxes are terminated with
term_dialog. If done_dialog is passed an integer status greater than 1, start_dialog returns this
value, whose meaning is determined by the application.

AutoLISP Functions

start_dialog

Starts the creation of an image in the dialog box tile

(start_image key)

AutoLISP Functions

start_image

Page 188 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Subsequent calls to fill_image, slide_image, and vector_image affect the created image until the
application calls end_image.

Arguments

key
A string that specifies the dialog box tile. The key argument is case-sensitive.

Return Values

The key argument, if successful; otherwise nil.

Note Do not use the set_tile function between start_image and end_image function calls.

Starts the processing of a list in the list box or in the pop-up list dialog box tile

(start_list key [operation [index]])

Subsequent calls to add_list affect the list started by start_list until the application calls end_list.

Arguments

key
A string that specifies the dialog box tile. The key argument is case-sensitive.

operation
An integer indicating the type of list operation to perform. You can specify one of the following:

1 Change selected list contents

2 Append new list entry

3 Delete old list and create new list (the default)
index

A number indicating the list item to change by the subsequent add_list call. The first item in the list is
index 0. If not specified, index defaults to 0.

The index argument is ignored if start_list is not performing a change operation.

Return Values

The name of the list that was started.

Note Do not use the set_tile function between start_list and end_list function calls.

AutoLISP Functions

start_list

Page 189 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns a string where all alphabetic characters have been converted to uppercase or lowercase

(strcase string [which])

Arguments

string
A string.

which
If specified as T, all alphabetic characters in string are converted to lowercase. Otherwise, characters are
converted to uppercase.

Return Values

A string.

Examples

Command: (strcase "Sample")

"SAMPLE"

Command: (strcase "Sample" T)

"sample"

The strcase function will correctly handle case mapping of the currently configured character set.

AutoLISP Functions

strcase

Returns a string that is the concatenation of multiple strings

(strcat [string[string]...])

Arguments

string
A string.

Return Values

AutoLISP Functions

strcat

Page 190 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A string. If no arguments are supplied, strcat returns a zero-length string.

Examples

Command: (strcat "a" "bout")

"about"

Command: (strcat "a" "b" "c")

"abc"

Command: (strcat "a" "" "c")

"ac"

Command: (strcat)

""

Returns an integer that is the number of characters in a string

(strlen [string]...)

Arguments

string
A string.

Return Values

An integer. If multiple string arguments are provided, strlen returns the sum of the lengths of all
arguments. If you omit the arguments or enter an empty string, strlen returns 0.

Examples

Command: (strlen "abcd")

4

Command: (strlen "ab")

2

Command: (strlen "one" "two" "four")

10

Command: (strlen)

0

Command: (strlen "")

0

AutoLISP Functions

strlen

Page 191 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Searches a list for an old item and returns a copy of the list with a new item substituted in place of every occurrence of the
old item

(subst newitem olditem lst)

Arguments

newitem
An atom or list.

olditem
An atom or list.

lst
A list.

Return Values

A list, with newitem replacing all occurrences of olditem. If olditem is not found in lst, subst returns lst
unchanged.

Examples

Command: (setq sample '(a b (c d) b))

(A B (C D) B)

Command: (subst 'qq 'b sample)

(A QQ (C D) QQ)

Command: (subst 'qq 'z sample)

(A B (C D) B)

Command: (subst 'qq '(c d) sample)

(A B QQ B)

Command: (subst '(qq rr) '(c d) sample)

(A B (QQ RR) B)

Command: (subst '(qq rr) 'z sample)

(A B (C D) B)

When used in conjunction with assoc, subst provides a convenient means of replacing the value
associated with one key in an association list, as demonstrated by the following function calls.

Set variable who to an association list:

Command: (setq who '((first john) (mid q) (last public)))

((FIRST JOHN) (MID Q) (LAST PUBLIC))

AutoLISP Functions

subst

Page 192 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The following sets old to (FIRST JOHN) and new to (FIRST J):

Command: (setq old (assoc 'first who) new '(first j))

(FIRST J)

Finally, replace the value of the first item in the association list:

Command: (subst new old who)

((FIRST J) (MID Q) (LAST PUBLIC))

Returns a substring of a string

(substr string start [length])

The substr function starts at the start character position of string and continues for length characters.

Arguments

string
A string.

start
A positive integer indicating the starting position in string. The first character in the string is position 1.

length
A positive integer specifying the number of characters to search through in string. If length is not specified,
the substring continues to the end of string.

Note The first character of string is character number 1. This differs from other functions that process
elements of a list (like nth and ssname) that count the first element as 0.

Return Values

A string.

Examples

Command: (substr "abcde" 2)

"bcde"

Command: (substr "abcde" 2 1)

"b"

Command: (substr "abcde" 3 2)

"cd"

AutoLISP Functions

substr

Page 193 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

tablet
tblnext
tblobjname
tblsearch
term_dialog
terpri
textbox
textpage
textscr
trace
trans
type

Topics in this section:

tablet

tblnext

tblobjname

tblsearch

term_dialog

terpri

textbox

textpage

textscr

trace

trans

type

AutoLISP Functions

T Functions

Retrieves and sets digitizer (tablet) calibrations

(tablet code [row1 row2 row3 direction])

AutoLISP Functions

tablet

Page 194 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

code
An integer that can be one of the following:

0 Return the current digitizer calibration. In this case, the remaining arguments must be omitted.

1 Set the calibration according to the arguments that follow. In this case, you must provide the new
calibration settings (row1,row2,row3, and direction).

row1, row2, row3
Three 3D points. These three arguments specify the three rows of the tablet's transformation matrix.

The third element in row3 (Z) should always equal 1: tablet returns it as 1 even if you specify a different
value in row3.

direction
One 3D point. This is the vector (expressed in the world coordinate system, or WCS) that is normal to the
plane that represents the surface of the tablet.

If the specified direction isn't normalized, tablet corrects it, so the direction it returns when you set the
calibration may differ from the value you passed.

Return Values

If tablet fails, it returns nil and sets the ERRNO system variable to a value that indicates the reason for
the failure (see AutoLISP Error Codes in theAutoLISP Developer's Guide). This can happen if the digitizer is
not a tablet.

Examples

A very simple transformation that can be established with tablet is the identity transformation:

(tablet 1 '(1 0 0) '(0 1 0) '(0 0 1) '(0 0 1))

With this transformation in effect, AutoCAD will receive, effectively, raw digitizer coordinates from the tablet.
For example, if you pick the point with digitizer coordinates (5000,15000), AutoCAD will see it as the point in
your drawing with those same coordinates.

The TABMODE system variable allows AutoLISP routines to toggle the tablet on and off.

See Also

The Calibrating Tablets topic in the AutoLISP Developer's Guide .

Finds the next item in a symbol table

(tblnext table-name [rewind])

AutoLISP Functions

tblnext

Page 195 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

When tblnext is used repeatedly, it normally returns the next entry in the specified table each time. The
tblsearch function can set the next entry to be retrieved. If the rewind argument is present and is not nil,
the symbol table is rewound and the first entry in it is retrieved.

Arguments

table-name
A string that identifies a symbol table. Valid table-name values are "LAYER", "LTYPE", "VIEW",
"STYLE", "BLOCK", "UCS", "APPID", "DIMSTYLE", and "VPORT". The argument is not case
sensitive.

rewind
If this argument is present and is not nil, the symbol table is rewound and the first entry in it is retrieved.

Return Values

If a symbol table entry is found, the entry is returned as a list of dotted pairs of DXF-type codes and values.
If there are no more entries in the table, nil is returned. Deleted table entries are never returned.

Examples

Retrieve the first layer in the symbol table:

Command: (tblnext "layer" T)

((0 . "LAYER") (2 . "0") (70 . 0) (62 . 7) (6 . "CONTINUOUS"))

The return values represent the following:

(0 . "LAYER") Symbol type
(2 . "0") Symbol name
(70 . 0) Flags
(62 . 7) Color number, negative if off
(6 . "CONTINUOUS") Linetype name

Note that there is no -1 group. The last entry returned from each table is stored, and the next one is returned
each time tblnext is called for that table. When you begin scanning a table, be sure to supply a non-nil
second argument to rewind the table and to return the first entry.

Entries retrieved from the block table include a -2 group with the entity name of the first entity in the block
definition (if any). For example, the following command obtains information about a block called BOX:

Command: (tblnext "block")

((0 . "BLOCK") (2 . "BOX") (70 . 0) (10 9.0 2.0 0.0) (-2 . <Entity name: 1dca370>))

The return values represent the following:

(0 . "BLOCK") Symbol type
(2 . "BOX") Symbol name
(70 . 0) Flags
(10 9.0 2.0 0.0) Origin X,Y,Z
(-2 . <Entity name: 1dca370>) First entity

The entity name in the -2 group is accepted by entget and entnext, but not by other entity access
functions. For example, you cannot use ssadd to put it in a selection set. By providing the -2 group entity

Page 196 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

name to entnext, you can scan the entities comprising a block definition; entnext returns nil after the
last entity in the block definition.

If a block contains no entities, the -2 group returned by tblnext is the entity name of its endblk entity.

Note The vports function returns current VPORT table information; therefore, it may be easier to use
vports as opposed to tblnext to retrieve this information.

Returns the entity name of a specified symbol table entry

(tblobjname table-name symbol)

Arguments

table-name
A string that identifies the symbol table to be searched. The argument is not case-sensitive.

symbol
A string identifying the symbol to be searched for.

Return Values

The entity name of the symbol table entry, if found.

The entity name returned by tblobjname can be used in entget and entmod operations.

Examples

The following command searches for the entity name of the block entry “ESC-01”:

Command: (tblobjname "block" "ESC-01")

<Entity name: 1dca368>

AutoLISP Functions

tblobjname

Searches a symbol table for a symbol name

(tblsearch table-name symbol [setnext])

AutoLISP Functions

tblsearch

Page 197 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

table-name
A string that identifies the symbol table to be searched. This argument is not case-sensitive.

symbol
A string identifying the symbol name to be searched for. This argument is not case-sensitive.

setnext
If this argument is supplied and is not nil, the tblnext entry counter is adjusted so the following
tblnext call returns the entry after the one returned by this tblsearch call. Otherwise, tblsearch has
no effect on the order of entries retrieved by tblnext.

Return Values

If tblsearch finds an entry for the given symbol name, it returns that entry in the format described for
tblnext. If no entry is found, tblsearch returns nil.

Examples

The following command searches for a text style named “standard”:

Command: (tblsearch "style" "standard")

((0 . "STYLE") (2 . "STANDARD") (70 . 0) (40 . 0.0) (41 . 1.0) (50 . 0.0) (71 . 0) (42 . 0.3) (3 . "txt") (4 . ""))

Terminates all current dialog boxes as if the user had canceled each of them

(term_dialog)

If an application is terminated while any DCL files are open, AutoCAD automatically calls term_dialog.
This function is used mainly for aborting nested dialog boxes.

Return Values

The term_dialog function always returns nil.

AutoLISP Functions

term_dialog

AutoLISP Functions

terpri

Page 198 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Prints a newline to the command line

(terpri)

The terpri function is not used for file I/O. To write a newline to a file, use prin1, princ, or print.

Return Values

nil

Measures a specified text object, and returns the diagonal coordinates of a box that encloses the text

(textbox elist)

Arguments

elist
An entity definition list defining a text object, in the format returned by entget.

If fields that define text parameters other than the text itself are omitted from elist, the current (or default)
settings are used.

The minimum list accepted by textbox is that of the text itself.

Return Values

A list of two points, if successful; otherwise nil.

The points returned by textbox describe the bounding box of the text object as if its insertion point is
located at (0,0,0) and its rotation angle is 0. The first list returned is generally the point (0.0 0.0 0.0) unless
the text object is oblique or vertical, or it contains letters with descenders (such as g and p). The value of the
first point list specifies the offset from the text insertion point to the lower-left corner of the smallest rectangle
enclosing the text. The second point list specifies the upper-right corner of that box. Regardless of the
orientation of the text being measured, the point list returned always describes the lower-left and upper-right
corners of this bounding box.

Examples

The following command supplies the text and accepts the current defaults for the remaining parameters:

Command: (textbox '((1 . "Hello world.")))

((0.000124126 -0.00823364 0.0) (3.03623 0.310345 0.0))

AutoLISP Functions

textbox

Page 199 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Switches focus from the drawing area to the text screen

(textpage)

The textpage function is equivalent to textscr.

Return Values

nil

AutoLISP Functions

textpage

Switches focus from the drawing area to the text screen (like the AutoCAD F2 function key)

(textscr)

Return Values

The textscr function always returns nil.

See Also

The graphscr function.

AutoLISP Functions

textscr

Aids in AutoLISP debugging

(trace [function...])

The trace function sets the trace flag for the specified functions. Each time a specified function is

AutoLISP Functions

trace

Page 200 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

evaluated, a trace display appears showing the entry of the function (indented to the level of calling depth)
and prints the result of the function.

If Visual LISP is active, trace output is sent to the Visual LISP Trace window. If Visual LISP is not active,
trace output goes to the AutoCAD command window.

Note Once you start Visual LISP during an AutoCAD session, it remains active until you exit AutoCAD.
Therefore, all trace output prints in the Visual LISP Trace window for the remainder of that AutoCAD
session. Exiting or closing Visual LISP while AutoCAD is running only closes the IDE windows and places
Visual LISP in a quiescent state; it does not result in a true shutdown. You must reopen Visual LISP to view
the output in the Trace window.

Use untrace to turn off the trace flag.

Arguments

function
A symbol that names a function. If no argument is supplied, trace has no effect.

Return Values

The last function name passed to trace. If no argument is supplied, trace returns nil.

Examples

Define a function named foo and set the trace flag for the function:

Command: (defun foo (x) (if (> x 0) (foo (1- x))))

FOO

Command: (trace foo)

FOO

Invoke foo and observe the results:

Command: (foo 3)

Entering (FOO 3)

Entering (FOO 2)

Entering (FOO 1)

Entering (FOO 0)

Result: nil

Result: nil

Result: nil

Result: nil

Clear the trace flag by invoking untrace:

Command: (untrace foo)

FOO

See Also

Page 201 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The untrace function.

Translates a point (or a displacement) from one coordinate system to another

(trans pt from to [disp])

Arguments

pt
A list of three reals that can be interpreted as either a 3D point or a 3D displacement (vector).

from
An integer code, entity name, or 3D extrusion vector identifying the coordinate system in which pt is
expressed. The integer code can be one of the following:

0 World (WCS)

1 User (current UCS)

2 If used with code 0 or 1, this indicates the Display Coordinate System (DCS) of the current viewport.
When used with code 3, it indicates the DCS of the current model space viewport.

3 Paper space DCS (used only with code 2)
to

An integer code, entity name, or 3D extrusion vector identifying the coordinate system of the returned
point. See the from argument for a list of valid integer codes.

disp
If present and is not nil, this argument specifies that pt is to be treated as a 3D displacement rather than
as a point.

If you use an entity name for the from or to argument, it must be passed in the format returned by the
entnext, entlast, entsel, nentsel, and ssname functions. This format lets you translate a point to and
from the Object Coordinate System (OCS) of a particular object. (For some objects, the OCS is equivalent to
the WCS; for these objects, conversion between OCS and WCS is a null operation.) A 3D extrusion vector
(a list of three reals) is another method of converting to and from an object's OCS. However, this does not
work for those objects whose OCS is equivalent to the WCS.

Return Values

A 3D point (or displacement) in the requested to coordinate system.

Examples

In the following examples, the UCS is rotated 90 degrees counterclockwise around the WCS Z axis:

Command: (trans '(1.0 2.0 3.0) 0 1)

(2.0 -1.0 3.0)

AutoLISP Functions

trans

Page 202 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Command: (trans '(1.0 2.0 3.0) 1 0)

(-2.0 1.0 3.0)

The coordinate systems are discussed in greater detail in Coordinate System Transformations in the
AutoLISP Developer's Guide.

For example, to draw a line from the insertion point of a piece of text (without using Osnap), you convert the
text object's insertion point from the text object's OCS to the UCS.

(trans text-insert-pointtext-ename 1)

You can then pass the result to the From Point prompt.

Conversely, you must convert point (or displacement) values to their destination OCS before feeding them to
entmod. For example, if you want to move a circle (without using the MOVE command) by the UCS-relative
offset (1,2,3), you need to convert the displacement from the UCS to the circle's OCS:

(trans '(1 2 3) 1 circle-ename)

Then you add the resulting displacement to the circle's center point.

For example, if you have a point entered by the user and want to find out which end of a line it looks closer
to, you convert the user's point from the UCS to the DCS.

(trans user-point 1 2)

Then you convert each of the line's endpoints from the OCS to the DCS.

(trans endpoint line-ename 2)

From there you can compute the distance between the user's point and each endpoint of the line (ignoring
the Z coordinates) to determine which end looks closer.

The trans function can also transform 2D points. It does this by setting the Z coordinate to an appropriate
value. The Z component used depends on the from coordinate system that was specified and on whether
the value is to be converted as a point or as a displacement. If the value is to be converted as a
displacement, the Z value is always 0.0; if the value is to be converted as a point, the filled-in Z value is
determined as shown in the following table:

Converted 2D point Z values
From Filled-in Z value
WCS 0.0

UCS Current elevation

OCS 0.0

DCS Projected to the current construction plane (UCS XY plane + current elevation)

PSDCS Projected to the current construction plane (UCS XY plane + current elevation)

AutoLISP Functions

Page 203 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns the type of a specified item

(type item)

Arguments

item
A symbol.

Return Values

The data type of item. Items that evaluate to nil (such as unassigned symbols) return nil. The data type is
returned as one of the atoms listed in the following table:

Examples

For example, given the following assignments:

(setq a 123 r 3.45 s "Hello!" x '(a b c))
(setq f (open "name" "r"))

then

(type 'a) returns SYM

type

Data types returned by the type function
Data type Description
ENAME Entity names

EXRXSUBR External ObjectARX applications

FILE File descriptors

INT Integers

LIST Lists

PAGETB Function paging table

PICKSET Selection sets

REAL Floating-point numbers

SAFEARRAY Safearray

STR Strings

SUBR Internal AutoLISP functions or functions loaded from compiled
(FAS or VLX) files
Functions in LISP source files loaded from the AutoCAD Command prompt may also appear as
SUBR

SYM Symbols

VARIANT Variant

USUBR User-defined functions loaded from LISP source files

VLA-object ActiveX objects

Page 204 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(type a) returns INT
(type f) returns FILE
(type r) returns REAL
(type s) returns STR
(type x) returns LIST
(type +) returns SUBR
(type nil) returns nil

The following code example uses the type function on the argument passed to it:

(defun isint (a)
 (if (= (type a) 'INT) is TYPE integer?
 T yes, return T
 nil no, return nil
)
)

unload_dialog
untrace

Topics in this section:

unload_dialog

untrace

AutoLISP Functions

U Functions

Unloads a DCL file

(unload_dialog dcl_id)

Unloads the DCL file associated with dcl_id (obtained from a previous new_dialog call) from memory.

It is generally not necessary to unload a DCL definition from memory, unless you are running low on
memory or need to update the DCL dialog definition from a new file.

AutoLISP Functions

unload_dialog

Page 205 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

dcl_id
A DCL file identifier obtained from a previous load_dialog call.

Return Values

The unload_dialog function always returns nil.

See Also

The load_dialog and new_dialog functions.

Clears the trace flag for the specified functions

(untrace [function...])

Arguments

function
A symbol that names a function. If function is not specified, untrace has no effect.

Return Values

The last function name passed to untrace. If function was not specified, untrace returns nil.

Examples

The following command clears the trace flag for function foo:

Command: (untrace foo)

FOO

AutoLISP Functions

untrace

AutoLISP Functions

V Functions

Page 206 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

vector_image
ver
vl-acad-defun
vl-acad-undefun
vl-arx-import
vl-bb-ref
vl-bb-set
vl-catch-all-apply
vl-catch-all-error-message
vl-catch-all-error-p
vl-cmdf
vl-consp
vl-directory-files
vl-doc-export
vl-doc-import
vl-doc-ref
vl-doc-set
vl-every
vl-exit-with-error
vl-exit-with-value
vl-file-copy
vl-file-delete
vl-file-directory-p
vl-file-rename
vl-file-size
vl-file-systime
vl-filename-base
vl-filename-directory
vl-filename-extension
vl-filename-mktemp
vl-get-resource
vl-list*
vl-list->string
vl-list-exported-functions
vl-list-length
vl-list-loaded-vlx
vl-load-all
vl-load-com
vl-load-reactors
vl-mkdir
vl-member-if
vl-member-if-not
vl-position
vl-prin1-to-string
vl-princ-to-string
vl-propagate
vl-registry-delete
vl-registry-descendents
vl-registry-read
vl-registry-write

Page 207 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

vl-remove
vl-remove-if
vl-remove-if-not
vl-some
vl-sort
vl-sort-i
vl-string->list
vl-string-elt
vl-string-left-trim
vl-string-mismatch
vl-string-position
vl-string-right-trim
vl-string-search
vl-string-subst
vl-string-translate
vl-string-trim
vl-symbol-name
vl-symbol-value
vl-symbolp
vl-unload-vlx
vl-vbaload
vl-vbarun
vl-vlx-loaded-p
vlax-3D-point
vlax-add-cmd
vlax-create-object
vlax-curve-getArea
vlax-curve-getClosestPointTo
vlax-curve-getClosestPointToProjection
vlax-curve-getDistAtParam
vlax-curve-getDistAtPoint
vlax-curve-getEndParam
vlax-curve-getEndPoint
vlax-curve-getFirstDeriv
vlax-curve-getParamAtDist
vlax-curve-getParamAtPoint
vlax-curve-getPointAtDist
vlax-curve-getPointAtParam
vlax-curve-getSecondDeriv
vlax-curve-getStartParam
vlax-curve-getStartPoint
vlax-curve-isClosed
vlax-curve-isPeriodic
vlax-curve-isPlanar
vlax-dump-object
vlax-ename->vla-object
vlax-erased-p
vlax-for
vlax-get-acad-object
vlax-get-object

Page 208 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

vlax-get-or-create-object
vlax-get-property
vlax-import-type-library
vlax-invoke-method
vlax-ldata-delete
vlax-ldata-get
vlax-ldata-list
vlax-ldata-put
vlax-ldata-test
vlax-make-safearray
vlax-make-variant
vlax-map-collection
vlax-method-applicable-p
vlax-object-released-p
vlax-product-key
vlax-property-available-p
vlax-put-property
vlax-read-enabled-p
vlax-release-object
vlax-remove-cmd
vlax-safearray-fill
vlax-safearray-get-dim
vlax-safearray-get-element
vlax-safearray-get-l-bound
vlax-safearray-get-u-bound
vlax-safearray-put-element
vlax-safearray-type
vlax-safearray->list
vlax-tmatrix
vlax-typeinfo-available-p
vlax-variant-change-type
vlax-variant-type
vlax-variant-value
vlax-vla-object->ename
vlax-write-enabled-p
vlisp-compile
vlr-acdb-reactor
vlr-add
vlr-added-p
vlr-beep-reaction
vlr-command-reactor
vlr-current-reaction-name
vlr-data
vlr-data-set
vlr-deepclone-reactor
vlr-docmanager-reactor
vlr-dwg-reactor
vlr-dxf-reactor
vlr-editor-reactor
vlr-insert-reactor

Page 209 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

vlr-linker-reactor
vlr-lisp-reactor
vlr-miscellaneous-reactor
vlr-mouse-reactor
vlr-notification
vlr-object-reactor
vlr-owner-add
vlr-owner-remove
vlr-owners
vlr-pers
vlr-pers-list
vlr-pers-p
vlr-pers-release
vlr-reaction-name
vlr-reaction-set
vlr-reactions
vlr-reactors
vlr-remove
vlr-remove-all
vlr-set-notification
vlr-sysvar-reactor
vlr-toolbar-reactor
vlr-trace-reaction
vlr-type
vlr-types
vlr-undo-reactor
vlr-wblock-reactor
vlr-window-reactor
vlr-xref-reactor
vports

Topics in this section:

vector_image

ver

vl-acad-defun

vl-acad-undefun

vl-arx-import

vl-bb-ref

vl-bb-set

vl-catch-all-apply

vl-catch-all-error-message

vl-catch-all-error-p

vl-cmdf

vl-consp

Page 210 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

vl-directory-files

vl-doc-export

vl-doc-import

vl-doc-ref

vl-doc-set

vl-every

vl-exit-with-error

vl-exit-with-value

vl-file-copy

vl-file-delete

vl-file-directory-p

vl-file-rename

vl-file-size

vl-file-systime

vl-filename-base

vl-filename-directory

vl-filename-extension

vl-filename-mktemp

vl-get-resource

vl-list*

vl-list->string

vl-list-exported-functions

vl-list-length

vl-list-loaded-vlx

vl-load-all

vl-load-com

vl-load-reactors

vl-mkdir

vl-member-if

vl-member-if-not

vl-position

vl-prin1-to-string

vl-princ-to-string

vl-propagate

vl-registry-delete

Page 211 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

vl-registry-descendents

vl-registry-read

vl-registry-write

vl-remove

vl-remove-if

vl-remove-if-not

vl-some

vl-sort

vl-sort-i

vl-string->list

vl-string-elt

vl-string-left-trim

vl-string-mismatch

vl-string-position

vl-string-right-trim

vl-string-search

vl-string-subst

vl-string-translate

vl-string-trim

vl-symbol-name

vl-symbol-value

vl-symbolp

vl-unload-vlx

vl-vbaload

vl-vbarun

vl-vlx-loaded-p

vlax-3D-point

vlax-add-cmd

vlax-create-object

vlax-curve-getArea

vlax-curve-getClosestPointTo

vlax-curve-getClosestPointToProjection

vlax-curve-getDistAtParam

vlax-curve-getDistAtPoint

vlax-curve-getEndParam

Page 212 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

vlax-curve-getEndPoint

vlax-curve-getFirstDeriv

vlax-curve-getParamAtDist

vlax-curve-getParamAtPoint

vlax-curve-getPointAtDist

vlax-curve-getPointAtParam

vlax-curve-getSecondDeriv

vlax-curve-getStartParam

vlax-curve-getStartPoint

vlax-curve-isClosed

vlax-curve-isPeriodic

vlax-curve-isPlanar

vlax-dump-object

vlax-ename->vla-object

vlax-erased-p

vlax-for

vlax-get-acad-object

vlax-get-object

vlax-get-or-create-object

vlax-get-property

vlax-import-type-library

vlax-invoke-method

vlax-ldata-delete

vlax-ldata-get

vlax-ldata-list

vlax-ldata-put

vlax-ldata-test

vlax-make-safearray

vlax-make-variant

vlax-map-collection

vlax-method-applicable-p

vlax-object-released-p

vlax-product-key

vlax-property-available-p

vlax-put-property

Page 213 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

vlax-read-enabled-p

vlax-release-object

vlax-remove-cmd

vlax-safearray-fill

vlax-safearray-get-dim

vlax-safearray-get-element

vlax-safearray-get-l-bound

vlax-safearray-get-u-bound

vlax-safearray-put-element

vlax-safearray-type

vlax-safearray->list

vlax-tmatrix

vlax-typeinfo-available-p

vlax-variant-change-type

vlax-variant-type

vlax-variant-value

vlax-vla-object->ename

vlax-write-enabled-p

vlisp-compile

vlr-acdb-reactor

vlr-add

vlr-added-p

vlr-beep-reaction

vlr-command-reactor

vlr-current-reaction-name

vlr-data

vlr-data-set

vlr-deepclone-reactor

vlr-docmanager-reactor

vlr-dwg-reactor

vlr-dxf-reactor

vlr-editor-reactor

vlr-insert-reactor

vlr-linker-reactor

vlr-lisp-reactor

Page 214 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

vlr-miscellaneous-reactor

vlr-mouse-reactor

vlr-notification

vlr-object-reactor

vlr-owner-add

vlr-owner-remove

vlr-owners

vlr-pers

vlr-pers-list

vlr-pers-p

vlr-pers-release

vlr-reaction-name

vlr-reaction-set

vlr-reactions

vlr-reactors

vlr-remove

vlr-remove-all

vlr-set-notification

vlr-sysvar-reactor

vlr-toolbar-reactor

vlr-trace-reaction

vlr-type

vlr-types

vlr-undo-reactor

vlr-wblock-reactor

vlr-window-reactor

vlr-xref-reactor

vports

Draws a vector in the currently active dialog box image

AutoLISP Functions

vector_image

Page 215 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(vector_image x1 y1 x2 y2 color)

This function draws a vector in the currently active dialog box image (opened by start_image) from the
point (x1,y1) to (x2,y2). The origin (0,0) is the upper-left corner of the image. You can obtain the coordinates
of the lower-right corner by calling the dimension functions (dimx_tile and dimy_tile).

Arguments

x1
X coordinate of the first point.

y1
Y coordinate of the first point.

x2
X coordinate of the second point.

y2
Y coordinate of the second point.

color
An AutoCAD color number, or one of the logical color numbers shown in the following table:

Return Values

An integer representing the color of the vector.

Examples

(setq color -2) ;; color of AutoCAD drawing area
(vector_image
 0
 0
 (dimx_tile "slide_tile")
 (dimy_tile "slide_tile")
 color
)
(end_image)

Symbolic names for color attribute
Color number ADI mnemonic Description
-2 BGLCOLOR Current background of the AutoCAD drawing area

-15 DBGLCOLOR Current dialog box background color

-16 DFGLCOLOR Current dialog box foreground color (text)

-18 LINELCOLOR Current dialog box line color

Returns a string that contains the current AutoLISP version number

AutoLISP Functions

ver

Page 216 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(ver)

The ver function can be used to check the compatibility of programs.

Return Values

The string returned takes the following form:

"Visual LISP version (nn)"

where version is the current version number and nn is a two-letter language description.

Examples of the two-letter language descriptions are as follows:

(de) German

(en) US/UK

(es) Spanish

(fr) French

(it) Italian

Examples

Command: (ver)

"Visual LISP 2006 (en)"

Defines an AutoLISP function symbol as an external subroutine

(vl-acad-defun 'symbol)

Arguments

symbol
A symbol identifying a function.

If a function does not have the c: prefix, and you want to be able to invoke this function from an external
ObjectARX application, you can use vl-acad-defun to make the function accessible.

Return Values

Unspecified.

AutoLISP Functions

vl-acad-defun

Page 217 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Undefines an AutoLISP function symbol so it is no longer available to ObjectARX applications

(vl-acad-undefun 'symbol)

Arguments

symbol
A symbol identifying a function.

You can use vl-acad-undefun to undefine a c: function or a function that was exposed via vl-acad-
defun.

Return Values

T if successful; nil if unsuccessful (for example, the function was not defined in AutoLISP).

AutoLISP Functions

vl-acad-undefun

Imports ObjectARX/ADSRX functions into a separate-namespace VLX

(vl-arx-import ['function | "application"])

By default, separate-namespace VLX applications do not import any functions from ObjectARX/ADSRX
applications. Use vl-arx-import to explicitly import functions from ObjectARX/ADSRX applications.

Arguments

function
A symbol naming the function to import.

application
A string naming the application whose functions are to be imported.

If no argument (or nil) is specified, vl-arx-import imports all function names from the current document
namespace.

Return Values

AutoLISP Functions

vl-arx-import

Page 218 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Unspecified.

If executed from a document VLX, this function does nothing and returns nil, as all ADS-DEFUN function
names are automatically imported to document VLX applications.

Examples

To see how vl-arx-import works, try the following:

1. Copy the following code into the VLISP editor and save the file:
(vl-doc-export 'testarx)
(defun testarx ()
 (princ "This function tests an ObjectARX application ")
 (vl-arx-import 'c:cal)
 (c:cal)
)

2. Use Make Application to build a VLX with this code. Select Separate- Namespace Application Options.
3. Load geomcal.arx, if it is not already loaded.
4. Load and run the application.

To verify the effect of vl-arx-import, comment out the vl-arx-import call in the code, save the
change, then rebuild and run the application. Without the vl-arx-import call, the c:cal function
will not be found.

In the example above, you could have replaced the vl-arx-import call with the following:

(vl-arx-import "geomcal.arx")

This would import all functions defined in geomcal.arx, including c:cal.

Returns the value of a variable from the blackboard namespace

(vl-bb-ref 'variable)

Arguments

'variable
A symbol identifying the variable to be retrieved.

Return Values

The value of the variable named by symbol.

AutoLISP Functions

vl-bb-ref

Page 219 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

Set a variable in the blackboard:

Command: (vl-bb-set 'foobar "Root toot toot")

"Root toot toot"

Use vl-bb-ref to retrieve the value of foobar from the blackboard:

Command: (vl-bb-ref 'foobar)

"Root toot toot"

See Also

The vl-bb-set function. Sharing Data Between Namespaces in the AutoLISP Developer's Guide for a
description of the blackboard namespace.

Sets a variable in the blackboard namespace

(vl-bb-set 'symbol value)

Arguments

'symbol
A symbol naming the variable to be set.

value
Any value, except a function.

Return Values

The value you assigned to symbol.

Examples

Command: (vl-bb-set 'foobar "Root toot toot")

"Root toot toot"

Command: (vl-bb-ref 'foobar)

"Root toot toot"

See Also

AutoLISP Functions

vl-bb-set

Page 220 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The vl-bb-ref function. Sharing Data Between Namespaces in the AutoLISP Developer's Guide for a
description of the blackboard namespace.

Passes a list of arguments to a specified function and traps any exceptions

(vl-catch-all-apply 'function list)

Arguments

'function
A function. The function argument can be either a symbol identifying a defun, or a lambda expression.

list
A list containing arguments to be passed to the function.

Return Values

The result of the function call, if successful. If an error occurs, vl-catch-all-apply returns an error
object.

Examples

If the function invoked by vl-catch-all-apply completes successfully, it is the same as using apply, as
the following examples show:

_$ (setq catchit (apply '/ '(50 5)))
10
_$ (setq catchit (vl-catch-all-apply '/ '(50 5)))
10

The benefit of using vl-catch-all-apply is that it allows you to intercept errors and continue
processing. See what happens when you try to divide by zero using apply:

_$ (setq catchit (apply '/ '(50 0)))
; error: divide by zero

When you use apply, an exception occurs and an error message displays.

Here is the same operation using vl-catch-all-apply:

_$ (setq catchit (vl-catch-all-apply '/ '(50 0)))
#<%catch-all-apply-error%>

The vl-catch-all-apply function traps the error and returns an error object. Use vl-catch-all-

AutoLISP Functions

vl-catch-all-apply

Page 221 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

error-message to see the error message contained in the error object:

_$ (vl-catch-all-error-message catchit)

"divide by zero"

See Also

The *error*, vl-catch-all-error-p, and vl-catch-all-error-message functions. The Error Handling in AutoLISP topic
in the AutoLISP Developer's Guide.

Returns a string from an error object

(vl-catch-all-error-message error-obj)

Arguments

error-obj
An error object returned by vl-catch-all-apply.

Return Values

A string containing an error message.

Examples

Divide by zero using vl-catch-all-apply:

_$ (setq catchit (vl-catch-all-apply '/ '(50 0)))
#<%catch-all-apply-error%>

The vl-catch-all-apply function traps the error and returns an error object. Use vl-catch-all-
error-message to see the error message contained in the error object:

_$ (vl-catch-all-error-message catchit)
"divide by zero"

See Also

The *error*, vl-catch-all-apply, and vl-catch-all-error-p functions. The Error Handling in AutoLISP topic in the
AutoLISP Developer's Guide.

AutoLISP Functions

vl-catch-all-error-message

Page 222 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Determines whether an argument is an error object returned from vl-catch-all-apply

(vl-catch-all-error-p arg)

Arguments

arg
Any argument.

Return Values

T, if the supplied argument is an error object returned from vl-catch-all-apply; otherwise nil.

Examples

Divide by zero using vl-catch-all-apply:

_$ (setq catchit (vl-catch-all-apply '/ '(50 0)))
#<%catch-all-apply-error%>

Use vl-catch-all-error-p to determine if the value returned by vl-catch-all-apply is an error
object:

_$ (vl-catch-all-error-p
catchit)
T

See Also

The *error*, vl-catch-all-apply, and vl-catch-all-error-message functions. The Error Handling in AutoLISP topic
in the AutoLISP Developer's Guide.

AutoLISP Functions

vl-catch-all-error-p

Executes an AutoCAD command

Arguments

(vl-cmdf [arguments] ...)

AutoLISP Functions

vl-cmdf

Page 223 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The vl-cmdf function is similar to the command function, but differs from command in the way it evaluates
the arguments passed to it. The vl-cmdf function evaluates all the supplied arguments before executing
the AutoCAD command, and will not execute the AutoCAD command if it detects an error during argument
evaluation. In contrast, the command function passes each argument in turn to AutoCAD, so the command
may be partially executed before an error is detected.

If your command call includes a call to another function, vl-cmdf executes the call before it executes your
command, while command executes the call after it begins executing your command.

Some AutoCAD commands may work correctly when invoked through vl-cmdf, while failing when invoked
through command. The vl-cmdf function mainly overcomes the limitation of not being able to use get.xxx
functions inside command.

Arguments

arguments
AutoCAD commands and their options.

The arguments to the vl-cmdf function can be strings, reals, integers, or points, as expected by the
prompt sequence of the executed command. A null string ("") is equivalent to pressing ENTER on the
keyboard. Invoking vl-cmdf with no argument is equivalent to pressing ESC and cancels most AutoCAD
commands.

Return Values

T

Note that if you issue vl-cmdf from Visual LISP, focus does not change to the AutoCAD window. If the
command requires user input, you'll see the return value (T) in the Console window, but AutoCAD will be
waiting for input. You must manually activate the AutoCAD window and respond to the prompts. Until you do
so, any subsequent commands will fail.

Examples

The differences between command and vl-cmdf are easier to see if you enter the following calls at the
AutoCAD Command prompt, rather than the VLISP Console prompt:

Command: (command "line" (getpoint "point?") '(0 0) "")

line Specify first point: point?

Specify next point or [Undo]:

Command: nil

Using command, the LINE command executes first; then the getpoint function is called.

Command: (VL-CMDF "line" (getpoint "point?") '(0 0) "")

point?line Specify first point:

Specify next point or [Undo]:

Command: T

Using vl-cmdf, the getpoint function is called first (notice the “point?” prompt from getpoint); then the
LINE command executes.

The following examples show the same commands, but pass an invalid point list argument to the LINE

Page 224 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

command. Notice how the results differ:

Command: (command "line" (getpoint "point?") '(0) "")

line Specify first point: point?

Specify next point or [Undo]:

Command: ERASE nil

Select objects: Specify opposite corner: *Cancel*

0 found

The command function passes each argument in turn to AutoCAD, without evaluating the argument, so the
invalid point list is undetected.

Command: (VL-CMDF "line" (getpoint "point?") '(0) "")

point?Application ERROR: Invalid entity/point list.

nil

Because vl-cmdf evaluates each argument before passing the command to AutoCAD, the invalid point list
is detected and the command is not executed.

See Also

The command function.

Determines whether or not a list is nil

(vl-consp list-variable)

The vl-consp function determines whether a variable contains a valid list definition.

Arguments

list-variable
A list.

Return Values

T, if list-variable is a list and is not nil; otherwise nil.

Examples

_$ (vl-consp nil)

AutoLISP Functions

vl-consp

Page 225 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

nil
_$ (vl-consp t)
nil
_$ (vl-consp (cons 0 "LINE"))
T

Lists all files in a given directory

(vl-directory-files [directory pattern directories])

Arguments

directory
A string naming the directory to collect files for; if nil or absent, vl-directory-files uses the current
directory.

pattern
A string containing a DOS pattern for the file name; if nil or absent, vl-directory-files assumes
“*.*”

directories
An integer that indicates whether the returned list should include directory names. Specify one of the
following:

-1 List directories only.

0 List files and directories (the default).

1 List files only.

Return Values

A list of file and path names; otherwise nil if no files match the specified pattern.

Examples

_$ (vl-directory-files "c:/acadwin" "acad*.exe")
("ACAD.EXE" "ACADAPP.EXE" "ACADL.EXE" "ACADPS.EXE")
_$ (vl-directory-files "e:/acadwin" nil -1)
("." ".." "SUPPORT" "SAMPLE" "ADS" "FONTS" "IGESFONT" "SOURCE" "ASE")
_$ (vl-directory-files "E:/acad13c4" nil -1)
("." ".." "WIN" "COM" "DOS")

AutoLISP Functions

vl-directory-files

AutoLISP Functions

Page 226 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Makes a function available to the current document

(vl-doc-export 'function)

When issued from a VLX that runs in its own namespace, vl-doc-export exposes the specified function
to any document namespace that loads the VLX.

The vl-doc-export function should be used only at the top level in a file, and never inside other forms
(for example, not within a defun).

Arguments

'function
A symbol naming the function to be exported.

Return Values

Unspecified.

Examples

The following code shows the contents of a file named kertrats.lsp. This file is compiled into a VLX that runs
in its own namespace. The VLX file is named kertrats.vlx. The vl-doc-export call makes the kertrats
function visible to any document that loads kertrats.vlx:

(vl-doc-export 'kertrats)
(defun kertrats ()
 (princ "This function goes nowhere")
)

vl-doc-export

Imports a previously exported function into a VLX namespace

(vl-doc-import application ['function...])

This function can be used in a separate-namespace VLX to import a function that was previously exported
from another VLX loaded from the same document.

The vl-doc-import function should be used only at the top level in a file, and never inside other forms
(for example, not within a defun).

Arguments

AutoLISP Functions

vl-doc-import

Page 227 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

application
A string naming the VLX application whose functions are to be imported. Do not include the .vlx extension
in the name.

function
One or more symbols naming functions to be imported. If no functions are specified, all functions exported
by application will be imported.

Return Values

Unspecified.

Examples

Import function ldataget from the ldatatest application:

(vl-doc-import "ldatatest" 'ldataget)
nil

Retrieves the value of a variable from the current document's namespace

This function can be used by a separate-namespace VLX application to retrieve the value of a variable from
the current document's namespace.

(vl-doc-ref 'symbol)

Arguments

'symbol
A symbol naming a variable.

Return Values

The value of the variable identified by symbol.

Examples

Command: (vl-doc-ref 'foobar)

"Rinky dinky stinky"

See Also

The vl-doc-set function.

AutoLISP Functions

vl-doc-ref

Page 228 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Sets the value of a variable in the current document's namespace

(vl-doc-set 'symbol value)

This function can be used by a VLX application to set the value of a variable that resides in the current
document's namespace.

If executed within a document namespace, vl-doc-set is equivalent to set.

Arguments

'symbol
A symbol naming a variable.

value
Any value.

Return Values

The value set.

Examples

Command: (vl-doc-set 'foobar "Rinky dinky stinky")

"Rinky dinky stinky"

See Also

The vl-doc-ref function.

AutoLISP Functions

vl-doc-set

Checks whether the predicate is true for every element combination

(vl-every predicate-function list [list]...)

AutoLISP Functions

vl-every

Page 229 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The vl-every function passes the first element of each supplied list as an argument to the test function,
followed by the next element from each list, and so on. Evaluation stops as soon as one of the lists runs out.

Arguments

predicate-function
The test function. This can be any function that accepts as many arguments as there are lists provided
with vl-every, and returns T on any user-specified condition. The predicate-function value can take one
of the following forms:

A symbol (function name)
'(LAMBDA (A1 A2) ...)
(FUNCTION (LAMBDA (A1 A2) ...))

list
A list to be tested.

Return Values

T, if predicate-function returns a non-nil value for every element combination; otherwise nil.

Examples

Check whether there are any empty files in the current directory:

_$ (vl-every
'(lambda (fnm) (> (vl-file-size fnm) 0))
 (vl-directory-files nil nil 1))
T

Check whether the list of numbers in NLST is ordered by '<=:

_$ (setq nlst (list 0 2 pi pi 4))
(0 2 3.14159 3.14159 4)
_$ (vl-every '<= nlst (cdr nlst))
T

Compare the results of the following expressions:

_$ (vl-every '= '(1 2) '(1 3))
nil
_$ (vl-every '= '(1 2) '(1 2 3))
T

The first expression returned nil because vl-every compared the second element in each list and they
were not numerically equal. The second expression returned T because vl-every stopped comparing
elements after it had processed all the elements in the shorter list (1 2), at which point the lists were
numerically equal. If the end of a list is reached, vl-every returns a non-nil value.

The following example demonstrates the result when vl-every evaluates one list that contains integer
elements and another list that is nil:

_$ (setq alist (list 1 2 3 4))
(1 2 3 4)
_$ (setq junk nil)

Page 230 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

nil
_$ (vl-every '= junk alist)
T

The return value is T because vl-every responds to the nil list as if it has reached the end of the list
(even though the predicate hasn't yet been applied to any elements). And since the end of a list has been
reached, vl-every returns a non-nil value.

Passes control from a VLX error handler to the *error* function of the calling namespace

(vl-exit-with-error msg)

This function is used by VLX applications that run in their own namespace. When vl-exit-with-error
executes, it calls the *error* function, the stack is unwound, and control returns to a command prompt.

Arguments

msg
A string.

Return Values

None.

Examples

The following code illustrates the use of vl-exit-with-error to pass a string to the *error* function of
the calling namespace:

(defun *error* (msg)
 ... ; processing in VLX namespace/execution context
(vl-exit-with-error (strcat "My application bombed! " msg)))

See Also

The *error* and vl-exit-with-value functions. The Handling Errors in an MDI Environment topic in the AutoLISP
Developer's Guide.

AutoLISP Functions

vl-exit-with-error

AutoLISP Functions

Page 231 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns a value to the function that invoked the VLX from another namespace

(vl-exit-with-value value)

A VLX *error* handler can use the vl-exit-with-value function to return a value to the program that
called the VLX.

Arguments

value
Any value.

Return Values

value

Examples

The following example uses vl-exit-with-value to return the integer value 3 to the function that
invoked the VLX:

(defun *error* (msg)
 ... ; processing in VLX-T namespace/execution context
 (vl-exit-with-value 3))

See Also

The *error* and vl-exit-with-error functions. The Handling Errors in an MDI Environment topic in the AutoLISP
Developer's Guide.

vl-exit-with-value

Copies or appends the contents of one file to another file

(vl-file-copy source-file destination-file [append])

Copy or append the contents of one file to another file. The vl-file-copy function will not overwrite an
existing file; it will only append to it.

Arguments

source-file

AutoLISP Functions

vl-file-copy

Page 232 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A string naming the file to be copied. If you do not specify a full path name, vl-file-copy looks in the
AutoCAD default drawing directory.

destination-file
A string naming the destination file. If you do not specify a path name, vl-file-copy writes to the
AutoCAD default drawing directory.

append
If specified and not nil, source-file is appended to destination-file (that is, copied to the end of the
destination file).

Return Values

An integer, if the copy was successful; otherwise nil.

Some typical reasons for returning nil are

source-file is not readable
source-file is a directory
append? is absent or nil and destination-file exists
destination-file cannot be opened for output (that is, it is an illegal file name or a write-protected file)
source-file is the same as destination-file

Examples

Copy autoexec.bat to newauto.bat:

_$ (vl-file-copy "c:/autoexec.bat" "c:/newauto.bat")
1417

Copy test.bat to newauto.bat:

_$ (vl-file-copy "c:/test.bat" "c:/newauto.bat")
nil

The copy fails because newauto.bat already exists, and the append argument was not specified.

Repeat the previous command, but specify append:

_$ (vl-file-copy "c:/test.bat" "c:/newauto.bat" T)
185

The copy is successful because T was specified for the append argument.

Deletes a file

AutoLISP Functions

vl-file-delete

Page 233 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(vl-file-delete filename)

Arguments

filename
A string containing the name of the file to be deleted. If you do not specify a full path name, vl-file-
delete searches the AutoCAD default drawing directory.

Return Values

T if successful; nil if delete failed.

Examples

Delete newauto.bat:

_$ (vl-file-delete "newauto.bat")
nil

Nothing was deleted because there is no newauto.bat file in the AutoCAD default drawing directory.

Delete the newauto.bat file in the c:\ directory:

_$ (vl-file-delete "c:/newauto.bat")
T

The delete was successful because the full path name identified an existing file.

Determines if a file name refers to a directory

(vl-file-directory-p filename)

Arguments

filename
A string containing a file name. If you do not specify a full path name, vl-file-directory-p searches
only the AutoCAD default drawing directory.

Return Values

T, if filename is the name of a directory; nil if it is not.

Examples

AutoLISP Functions

vl-file-directory-p

Page 234 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

_$ (vl-file-directory-p "sample")
T
_$ (vl-file-directory-p "yinyang")
nil
_$ (vl-file-directory-p "c:/My Documents")
T
_$ (vl-file-directory-p "c:/My Documents/visuallisp/yinyang.lsp")
nil

Renames a file

(vl-file-rename old-filename new-filename)

Arguments

old-filename
A string containing the name of the file you want to rename. If you do not specify a full path name, vl-
file-rename looks in the AutoCAD default drawing directory.

new-filename
A string containing the new name to be assigned to the file.

Note If you do not specify a path name, vl-file-rename writes the renamed file to the AutoCAD default
drawing directory.

Return Values

T, if renaming completed successfully; nil if renaming failed.

Examples

_$ (vl-file-rename "c:/newauto.bat" "c:/myauto.bat")
T

AutoLISP Functions

vl-file-rename

Determines the size of a file, in bytes

AutoLISP Functions

vl-file-size

Page 235 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(vl-file-size filename)

Arguments

filename
A string naming the file to be sized. If you do not specify a full path name, vl-file-size searches the
AutoCAD default drawing directory for the file.

Return Values

If successful, vl-file-size returns an integer showing the size of filename. If the file is not readable, vl-
file-size returns nil. If filename is a directory or an empty file, vl-file-size returns 0.

Examples

_$ (vl-file-size "c:/autoexec.bat")
1417
_$ (vl-file-size "c:/")
0

In the preceding example, vl-file-size returned 0 because c:/ names a directory.

Returns last modification time of the specified file

(vl-file-systime filename)

Arguments

filename
A string containing the name of the file to be checked.

Return Values

A list containing the modification date and time; otherwise nil, if the file is not found.

The list returned contains the following elements:

year
month
day of week
day of month
hours
minutes

AutoLISP Functions

vl-file-systime

Page 236 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

seconds

Note that Monday is day 1 of day of week, Tuesday is day 2, and so on.

Examples

_$ (vl-file-systime
"c:/program files/<AutoCAD installation directory>/sample/visuallisp/yinyang.lsp")
(1998 4 3 8 10 6 52)

The returned value shows that the file was last modified in 1998, in the 4th month of the year (April), the 3rd
day of the week (Wednesday), on the 8th day of the month, at 10:6:52.

Returns the name of a file, after stripping out the directory path and extension

(vl-filename-base filename)

Arguments

filename
A string containing a file name. The vl-filename-base function does not check to see if the file exists.

Return Values

A string containing filename in uppercase, with any directory and extension stripped from the name.

Examples

_$ (vl-filename-base "c:\\acadwin\\acad.exe")
"ACAD"
_$ (vl-filename-base "c:\\acadwin")
"ACADWIN"

AutoLISP Functions

vl-filename-base

Returns the directory path of a file, after stripping out the name and extension

AutoLISP Functions

vl-filename-directory

Page 237 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(vl-filename-directory filename)

Arguments

filename
A string containing a complete file name, including the path. The vl-filename-directory function
does not check to see if the specified file exists. Slashes (/) and backslashes (\) are accepted as directory
delimiters.

Return Values

A string containing the directory portion of filename, in uppercase.

Examples

_$ (vl-filename-directory "c:\\acadwin\\acad.exe")
"C:\\ACADWIN"
_$ (vl-filename-directory "acad.exe")
""

Returns the extension from a file name, after stripping out the rest of the name

(vl-filename-extension filename)

Arguments

filename
A string containing a file name, including the extension. The vl-filename-extension function does
not check to see if the specified file exists.

Return Values

A string containing the extension of filename. The returned string starts with a period (.) and is in uppercase.
If filename does not contain an extension, vl-filename-extension returns nil.

Examples

_$ (vl-filename-extension "c:\\acadwin\\acad.exe")
".EXE"
_$ (vl-filename-extension "c:\\acadwin\\acad")
nil

AutoLISP Functions

vl-filename-extension

Page 238 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Calculates a unique file name to be used for a temporary file

(vl-filename-mktemp [pattern directory extension])

Arguments

pattern
A string containing a file name pattern; if nil or absent, vl-filename-mktemp uses “$VL~~”.

directory
A string naming the directory for temporary files; if nil or absent, vl-filename-mktemp chooses a
directory in the following order:

The directory specified in pattern, if any.
The directory specified in the TMP environment variable.
The directory specified in the TEMP environment variable.
The current directory.

extension
A string naming the extension to be assigned to the file; if nil or absent, vl-filename-mktemp uses
the extension part of pattern (which may be an empty string).

Return Values

A string containing a file name, in the following format:

directory\base<XXX><.extension>

where:

base is up to 5 characters, taken from pattern

XXX is a 3-character unique combination

All file names generated by vl-filename-mktemp during a VLISP session are deleted when you exit
VLISP.

Examples

_$ (vl-filename-mktemp)
"C:\\TMP\\$VL~~004"
_$ (vl-filename-mktemp "myapp.del")
"C:\\TMP\\MYAPP005.DEL"
_$ (vl-filename-mktemp "c:\\acadwin\\myapp.del")
"C:\\ACADWIN\\MYAPP006.DEL"
_$ (vl-filename-mktemp "c:\\acadwin\\myapp.del")
"C:\\ACADWIN\\MYAPP007.DEL"
_$ (vl-filename-mktemp "myapp" "c:\\acadwin")
"C:\\ACADWIN\\MYAPP008"

AutoLISP Functions

vl-filename-mktemp

Page 239 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

_$ (vl-filename-mktemp "myapp" "c:\\acadwin" ".del")
"C:\\ACADWIN\\MYAPP00A.DEL"

Returns the text stored in a .txt file packaged in a VLX

(vl-get-resource text-file)

Arguments

text-file
A string naming a .txt file packaged with the VLX. Do not include the .txt extension when specifying the file
name.

Return Values

A string containing the text in text-file.

Examples

Assume the getres.vlx file contains a LISP program defining a function named print-readme, and a text
file named readme.txt. The print-readme function is defined as follows:

(defun print-readme ()
 (princ (vl-get-resource "readme"))
 (princ)
)

After loading getres.vlx, invoke print-readme:

_$ (print-readme)
Product Readme text
Product Readme text 2

AutoLISP Functions

vl-get-resource

Constructs and returns a list

AutoLISP Functions

vl-list*

Page 240 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(vl-list* object[object]...)

Arguments

object
Any LISP object.

Return Values

The vl-list* function is similar to list, but it will place the last object in the final cdr of the result list. If
the last argument to vl-list* is an atom, the result is a dotted list. If the last argument is a list, its
elements are appended to all previous arguments added to the constructed list. The possible return values
from vl-list* are

An atom, if a single atom object is specified.
A dotted pair, if all object arguments are atoms.
A dotted list, if the last argument is an atom and neither of the previous conditions is true.
A list, if none of the previous statements is true.

Examples

_$ (vl-list* 1)
1
_$ (vl-list* 0 "text")
(0 . "TEXT")
_$ (vl-list* 1 2 3)
(1 2 . 3)
_$ (vl-list* 1 2 '(3 4))
(1 2 3 4)

See Also

The list function.

Combines the characters associated with a list of integers into a string

(vl-list->string char-codes-list)

Arguments

char-codes-list
A list of non-negative integers. Each integer must be less than 256.

AutoLISP Functions

vl-list->string

Page 241 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Return Values

A string of characters, with each character based on one of the integers supplied in char-codes-list.

Examples

_$ (vl-list->string nil)
""
_$ (vl-list->string '(49 50))
"12"

See Also

The vl-string->list function.

Lists exported functions

(vl-list-exported-functions [appname])

Arguments

appname
A string naming a loaded VLX application. Do not include the .vlx extension.

Return Values

A list of strings naming exported functions; otherwise nil, if there are no functions exported from the
specified VLX. If appname is omitted or is nil, vl-list-exported-functions returns a list of all
exported functions (for example, c: functions) except those exported from VLX namespaces.

Examples

_$ (vl-list-exported-functions "whichexpns")
("WHICHNAMESPACE")

See Also

The vl-list-loaded-vlx function.

AutoLISP Functions

vl-list-exported-functions

Page 242 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Calculates list length of a true list

(vl-list-length list-or-cons-object)

Arguments

list-or-cons-object
A true or dotted list.

Return Values

An integer containing the list length if the argument is a true list; otherwise nil if list-or-cons-object is a
dotted list.

Compatibility note: The vl-list-length function returns nil for a dotted list, while the corresponding
Common LISP function issues an error message if the argument is a dotted list.

Examples

_$ (vl-list-length nil)
0
_$ (vl-list-length '(1 2))
2
_$ (vl-list-length '(1 2 . 3))
nil

See Also

The listp function.

AutoLISP Functions

vl-list-length

Returns a list of all separate-namespace VLX files associated with the current document

(vl-list-loaded-vlx)

Return Values

A list of symbols identifying separate-namespace VLX applications associated with the current AutoCAD
document; otherwise nil, if there are no VLX applications associated with the current document.

AutoLISP Functions

vl-list-loaded-vlx

Page 243 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The vl-list-loaded-vlx function does not identify VLX applications that are loaded in the current
document's namespace.

Examples

Test for loaded VLX files associated with the current AutoCAD document:

_$ (vl-list-loaded-vlx)
nil

No VLX files are associated with the current document.

Load two VLX files; both VLX applications have been compiled to run in their own namespace:

_$ (load "c:/my documents/visual lisp/examples/foo1.vlx")
nil
_$ (load "c:/my documents/visual lisp/examples/foo2.vlx")
nil

Test for loaded VLX files associated with the current AutoCAD document:

_$ (vl-list-loaded-vlx)
(FOO1 FOO2)

The two VLX files just loaded are identified by vl-list-loaded-vlx.

Load a VLX that was compiled to run in a document's namespace:

_$ (load "c:/my documents/visual lisp/examples/foolocal.vlx")
nil

Test for loaded VLX files:

_$ (vl-list-loaded-vlx)
(FOO1 FOO2))

The last VLX loaded (foolocal.vlx) is not returned by vl-list-loaded-vlx because the application was
loaded into the document's namespace; the VLX does not have its own namespace.

Loads a file into all open AutoCAD documents, and into any document subsequently opened during the current AutoCAD
session

(vl-load-all filename)

AutoLISP Functions

vl-load-all

Page 244 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

filename
A string naming the file to be loaded. If the file is in the AutoCAD support file search path, you can omit
the path name, but you must always specify the file extension; vl-load-all does not assume a file
type.

Return Values

Unspecified. If filename is not found, vl-load-all issues an error message.

Examples

_$ (vl-load-all "c:/my documents/visual lisp/examples/whichns.lsp")
nil
_$ (vl-load-all "yinyang.lsp")
nil

Loads Visual LISP extensions to AutoLISP

(vl-load-com)

This function loads the extended AutoLISP functions provided with Visual LISP. The Visual LISP extensions
implement ActiveX and AutoCAD reactor support through AutoLISP, and also provide ActiveX utility and
data conversion functions, dictionary handling functions, and curve measurement functions.

If the extensions are already loaded, vl-load-com does nothing.

Return Values

Unspecified.

See Also

The load function. The Using Extended AutoLISP Functions topic in the AutoLISP Developer's Guide.

AutoLISP Functions

vl-load-com

AutoLISP Functions

vl-load-reactors

Page 245 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Loads reactor support functions

(vl-load-reactors)

This function is identical to vl-load-com and is maintained for backward compatibility.

See Also

The vl-load-com function.

Creates a directory

(vl-mkdir directoryname)

Arguments

directoryname
The name of the directory you want to create.

Return Values

T if successful, nil if the directory exists or if unsuccessful.

Examples

Create a directory named mydirectory:

_$ (vl-mkdir "c:\\mydirectory”)
T

AutoLISP Functions

vl-mkdir

Determines if the predicate is true for one of the list members

(vl-member-if predicate-functionlist)

AutoLISP Functions

vl-member-if

Page 246 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The vl-member-if function passes each element in list to the function specified in predicate-function. If
predicate-function returns a non-nil value, vl-member-if returns the rest of the list in the same manner
as the member function.

Arguments

predicate-function
The test function. This can be any function that accepts a single argument and returns T for any user-
specified condition. The predicate-function value can take one of the following forms:

A symbol (function name)
'(LAMBDA (A1 A2) ...)
(FUNCTION (LAMBDA (A1 A2) ...))

list
A list to be tested.

Return Values

A list, starting with the first element that passes the test and containing all elements following this in the
original argument. If none of the elements passes the test condition, vl-member-if returns nil.

Examples

The following command draws a line:

$ (COMMAND ".LINE" '(0 10) '(30 50) nil)
nil

The following command uses vl-member-if to return association lists describing an entity, if the entity is a
line:

_$ (vl-member-if
'(lambda (x) (= (cdr x) "AcDbLine"))
 (entget (entlast)))
((100 . "AcDbLine") (10 0.0 10.0 0.0) (11 30.0 50.0 0.0) (210 0.0 0.0 1.0))

See Also

The vl-member-if-not function.

Determines if the predicate is nil for one of the list members

(vl-member-if-not predicate-function list)

AutoLISP Functions

vl-member-if-not

Page 247 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The vl-member-if-not function passes each element in list to the function specified in predicate-
function. If the function returns nil, vl-member-if-not returns the rest of the list in the same manner as
the member function.

Arguments

predicate-function
The test function. This can be any function that accepts a single argument and returns T for any user-
specified condition. The predicate-function value can take one of the following forms:

A symbol (function name)
'(LAMBDA (A1 A2) ...)
(FUNCTION (LAMBDA (A1 A2) ...))

list
A list to be tested.

Return Values

A list, starting with the first element that fails the test and containing all elements following this in the original
argument. If none of the elements fails the test condition, vl-member-if-not returns nil.

Examples

_$ (vl-member-if-not 'atom '(1 "Str" (0 . "line") nil t))
((0 . "line") nil T)

See Also

The vl-member-if function.

Returns the index of the specified list item

(vl-position symbol list)

Arguments

symbol
Any AutoLISP symbol.

list
A true list.

Return Values

AutoLISP Functions

vl-position

Page 248 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

An integer containing the index position of symbol in list; otherwise nil if symbol does not exist in the list.

Note that the first list element is index 0, the second element is index 1, and so on.

Examples

_$ (setq stuff (list "a" "b" "c" "d" "e"))
("a" "b" "c" "d" "e")
_$ (vl-position "c" stuff)
2

Returns the string representation of LISP data as if it were output by the prin1 function

(vl-prin1-to-string data)

Arguments

data
Any AutoLISP data.

Return Values

A string containing the printed representation of data as if displayed by prin1.

Examples

_$ (vl-prin1-to-string "abc")
"\"abc\""
_$ (vl-prin1-to-string "c:\\acadwin")
"\"C:\\\\ACADWIN\""
_$ (vl-prin1-to-string 'my-var)
"MY-VAR"

See Also

The vl-princ-to-string function.

AutoLISP Functions

vl-prin1-to-string

AutoLISP Functions

Page 249 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns the string representation of LISP data as if it were output by the princ function

(vl-princ-to-string data)

Arguments

data
Any AutoLISP data.

Return Values

A string containing the printed representation of data as if displayed by princ.

Examples

_$ (vl-princ-to-string "abc")
"abc"
_$ (vl-princ-to-string "c:\\acadwin")
"C:\\ACADWIN"
_$ (vl-princ-to-string 'my-var)
"MY-VAR"

See Also

The vl-prin1-to-string function.

vl-princ-to-string

Copies the value of a variable into all open document namespaces (and sets its value in any subsequent drawings opened
during the current AutoCAD session)

(vl-propagate 'symbol)

Arguments

symbol
A symbol naming an AutoLISP variable.

Return Values

Unspecified.

AutoLISP Functions

vl-propagate

Page 250 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

Command: (vl-propagate 'radius)

nil

Deletes the specified key or value from the Windows registry

(vl-registry-delete reg-key [val-name])

Arguments

reg-key
A string specifying a Windows registry key.

val-name
A string containing the value of the reg-key entry.

If val-name is supplied and is not nil, the specified value will be purged from the registry. If val-name is
absent or nil, the function deletes the specified key and all of its values.

Return Values

T if successful; otherwise nil.

Examples

_$ (vl-registry-write "HKEY_CURRENT_USER\\Test" "" "test data")
"test data"
_$ (vl-registry-read "HKEY_CURRENT_USER\\Test")
"test data"
_$ (vl-registry-delete "HKEY_CURRENT_USER\\Test")
T

Note This function cannot delete a key that has subkeys. To delete a subkey you must use vl-registry-
descendents to enumerate all subkeys and delete all of them.

See Also

The vl-registry-descendents, vl-registry-read, and vl-registry-write functions.

AutoLISP Functions

vl-registry-delete

AutoLISP Functions

Page 251 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns a list of subkeys or value names for the specified registry key

(vl-registry-descendents reg-key [val-names])

Arguments

reg-key
A string specifying a Windows registry key.

val-names
A string containing the values for the reg-key entry.

If val-names is supplied and is not nil, the specified value names will be listed from the registry. If val-name
is absent or nil, the function displays all subkeys of reg-key.

Return Values

A list of strings, if successful; otherwise nil.

Examples

_$ (vl-registry-descendents "HKEY_LOCAL_MACHINE\\SOFTWARE")
("Description" "Program Groups" "ORACLE" "ODBC" "Netscape" "Microsoft")

See Also

The vl-registry-delete, vl-registry-read, and vl-registry-write functions.

vl-registry-descendents

Returns data stored in the Windows registry for the specified key/value pair

(vl-registry-read reg-key [val-name])

Arguments

reg-key
A string specifying a Windows registry key.

val-name
A string containing the value of a registry entry.

AutoLISP Functions

vl-registry-read

Page 252 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

If val-name is supplied and is not nil, the specified value will be read from the registry. If val-name is
absent or nil,the function reads the specified key and all of its values.

Return Values

A string containing registry data, if successful; otherwise nil.

Examples

_$ (vl-registry-read "HKEY_CURRENT_USER\\Test")
nil
_$ (vl-registry-write "HKEY_CURRENT_USER\\Test" "" "test data")
"test data"
_$ (vl-registry-read "HKEY_CURRENT_USER\\Test")
"test data"

See Also

The vl-registry-delete, vl-registry-descendents, and vl-registry-write functions.

Creates a key in the Windows registry

(vl-registry-write reg-key [val-name val-data])

Arguments

reg-key
A string specifying a Windows registry key.

Note You cannot use vl-registry-write for HKEY_USERS or KEY_LOCAL_MACHINE.
val-name

A string containing the value of a registry entry.
val-data

A string containing registry data.

If val-name is not supplied or is nil,a default value for the key is written. If val-name is supplied and val-
data is not specified, an empty string is stored.

Return Values

vl-registry-write returns val-data, if successful; otherwise nil.

Examples

AutoLISP Functions

vl-registry-write

Page 253 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

_$ (vl-registry-write "HKEY_CURRENT_USER\\Test" "" "test data")
"test data"
_$ (vl-registry-read "HKEY_CURRENT_USER\\Test")
"test data"

See Also

The vl-registry-delete, vl-registry-descendents, and vl-registry-read functions.

Removes elements from a list

(vl-remove element-to-remove list)

Arguments

element-to-remove
The value of the element to be removed; may be any LISP data type.

list
Any list.

Return Values

The list with all elements except those equal to element-to-remove.

Examples

_$ (vl-remove pi (list pi t 0 "abc"))
(T 0 "abc")

AutoLISP Functions

vl-remove

Returns all elements of the supplied list that fail the test function

(vl-remove-if predicate-function list)

Arguments

AutoLISP Functions

vl-remove-if

Page 254 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

predicate-function
The test function. This can be any function that accepts a single argument and returns T for any user-
specified condition. The predicate-function value can take one of the following forms:

A symbol (function name)
'(LAMBDA (A1 A2) ...)
(FUNCTION (LAMBDA (A1 A2) ...))

list
A list to be tested.

Return Values

A list containing all elements of list for which predicate-function returns nil.

Examples

_$ (vl-remove-if 'vl-symbolp (list pi t 0 "abc"))
(3.14159 0 "abc")

Returns all elements of the supplied list that pass the test function

(vl-remove-if-not predicate-function list)

Arguments

predicate-function
The test function. This can be any function that accepts a single argument and returns T for any user-
specified condition. The predicate-function value can take one of the following forms:

A symbol (function name)
'(LAMBDA (A1 A2) ...)
(FUNCTION (LAMBDA (A1 A2) ...))

list
A list to be tested.

Return Values

A list containing all elements of list for which predicate-function returns a non-nil value

Examples

_$ (vl-remove-if-not 'vl-symbolp (list pi t 0 "abc"))
(T)

AutoLISP Functions

vl-remove-if-not

Page 255 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Checks whether the predicate is not nil for one element combination

(vl-some predicate-functionlist [list]...)

Arguments

predicate-function
The test function. This can be any function that accepts as many arguments as there are lists provided
with vl-some, and returns T on a user-specified condition. The predicate-function value can take one of
the following forms:

A symbol (function name)
'(LAMBDA (A1 A2) ...)
(FUNCTION (LAMBDA (A1 A2) ...))

list
A list to be tested.

The vl-some function passes the first element of each supplied list as an argument to the test function,
then the next element from each list, and so on. Evaluation stops as soon as the predicate function returns a
non-nil value for an argument combination, or until all elements have been processed in one of the lists.

Return Values

The predicate value, if predicate-function returned a value other than nil; otherwise nil.

Examples

The following example checks whether nlst (a number list) has equal elements in sequence:

_$ (setq nlst (list 0 2 pi pi 4))
(0 2 3.14159 3.14159 4)
_$ (vl-some '= nlst (cdr nlst))
T

AutoLISP Functions

vl-some

Sorts the elements in a list according to a given compare function

AutoLISP Functions

vl-sort

Page 256 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(vl-sort list comparison-function)

Arguments

list
Any list.

comparison-function
A comparison function. This can be any function that accepts two arguments and returns T (or any non-
nil value) if the first argument precedes the second in the sort order. The comparison-function value can
take one of the following forms:

A symbol (function name)
'(LAMBDA (A1 A2) ...)
(FUNCTION (LAMBDA (A1 A2) ...))

Return Values

A list containing the elements of list in the order specified by comparison-function. Duplicate elements may
be eliminated from the list.

Examples

Sort a list of numbers:

_$ (vl-sort '(3 2 1 3) '<)
(1 2 3) ;

Note that the result list contains only one 3.

Sort a list of 2D points by Y coordinate:

_$ (vl-sort '((1 3) (2 2) (3 1))
 (function (lambda (e1 e2)
 (< (cadr e1) (cadr e2)))))
((3 1) (2 2) (1 3))

Sort a list of symbols:

_$ (vl-sort
 '(a d c b a)
 '(lambda (s1 s2)
 (< (vl-symbol-name s1) (vl-symbol-name s2))))
(A B C D) ; Note that only one A remains in the result list

Sorts the elements in a list according to a given compare function, and returns the element index numbers

AutoLISP Functions

vl-sort-i

Page 257 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(vl-sort-i list comparison-function)

Arguments

list
Any list.

comparison-function
A comparison function. This can be any function that accepts two arguments and returns T (or any non-
nil value) if the first argument precedes the second in the sort order. The comparison-function value can
take one of the following forms:

A symbol (function name)
'(LAMBDA (A1 A2) ...)
(FUNCTION (LAMBDA (A1 A2) ...))

Return Values

A list containing the index values of the elements of list, sorted in the order specified by comparison-
function. Duplicate elements will be retained in the result.

Examples

Sort a list of characters in descending order:

_$ (vl-sort-i '("a" "d" "f" "c") '>)
(2 1 3 0)

The sorted list order is “f” “d” “c” “a”; “f” is the 3rd element (index 2) in the original list, “d” is the 2nd element
(index 1) in the list, and so on.

Sort a list of numbers in ascending order:

_$ (vl-sort-i '(3 2 1 3) '<)
(2 1 3 0)

Note that both occurrences of 3 are accounted for in the result list.

Sort a list of 2D points by Y coordinate:

_$ (vl-sort-i '((1 3) (2 2) (3 1))
 (function (lambda (e1 e2)
 (< (cadr e1) (cadr e2)))))
(2 1 0)

Sort a list of symbols:

_$ (vl-sort-i
 '(a d c b a)
 '(lambda (s1 s2)
 (< (vl-symbol-name s1) (vl-symbol-name s2))))
(4 0 3 2 1)

Note that both a's are accounted for in the result list.

Page 258 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Converts a string into a list of character codes

(vl-string->list string)

Arguments

string
A string.

Return Values

A list, each element of which is an integer representing the character code of the corresponding character in
string.

Examples

_$ (vl-string->list "")
nil
_$ (vl-string->list "12")
(49 50)

See Also

The vl-list->string function.

AutoLISP Functions

vl-string->list

Returns the ASCII representation of the character at a specified position in a string

(vl-string-elt string position)

Arguments

string
A string to be inspected.

position

AutoLISP Functions

vl-string-elt

Page 259 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A displacement in the string; the first character is displacement 0. Note that an error occurs if position is
outside the range of the string.

Return Values

An integer denoting the ASCII representation of the character at the specified position.

Examples

_$ (vl-string-elt "May the Force be with you" 8)
70

Removes the specified characters from the beginning of a string

(vl-string-left-trim character-set string)

Arguments

character-set
A string listing the characters to be removed.

string
The string to be stripped of character-set.

Return Values

A string containing a substring of string with all leading characters in character-set removed

Examples

_$ (vl-string-left-trim " \t\n" "\n\t STR ")
"STR "
_$ (vl-string-left-trim "12456789" "12463CPO is not R2D2")
"3CPO is not R2D2"
_$ (vl-string-left-trim " " " There are too many spaces here")
"There are too many spaces here"

AutoLISP Functions

vl-string-left-trim

AutoLISP Functions

vl-string-mismatch

Page 260 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns the length of the longest common prefix for two strings, starting at specified positions

(vl-string-mismatch str1 str2 [pos1 pos2 ignore-case-p])

Arguments

str1
The first string to be matched.

str2
The second string to be matched.

pos1
An integer identifying the position to search from in the first string; 0 if omitted.

pos2
An integer identifying the position to search from in the second string; 0 if omitted.

ignore-case-p
If T is specified for this argument, case is ignored; otherwise, case is considered.

Return Values

An integer.

Examples

_$ (vl-string-mismatch "VL-FUN" "VL-VAR")
3
_$ (vl-string-mismatch "vl-fun" "avl-var")
0
_$ (vl-string-mismatch "vl-fun" "avl-var" 0 1)
3
_$ (vl-string-mismatch "VL-FUN" "Vl-vAR")
1
_$ (vl-string-mismatch "VL-FUN" "Vl-vAR" 0 0 T)
3

Looks for a character with the specified ASCII code in a string

(vl-string-position char-codestr [start-pos [from-end-p]])

Arguments

char-code
The integer representation of the character to be searched.

str

AutoLISP Functions

vl-string-position

Page 261 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The string to be searched.
start-pos

The position to begin searching from in the string (first character is 0); 0 if omitted.
from-end-p

If T is specified for this argument, the search begins at the end of the string and continues backward to
pos.

Return Values

An integer representing the displacement at which char-code was found from the beginning of the string;
nil if the character was not found.

Examples

_$ (vl-string-position (ascii "z") "azbdc")
1
_$ (vl-string-position 122 "azbzc")
1
_$ (vl-string-position (ascii "x") "azbzc")
nil

The search string used in the following example contains two “z” characters. Reading from left to right, with
the first character being displacement 0, there is one z at displacement 1 and another z at displacement 3:

_$ (vl-string-position (ascii "z") "azbzlmnqc")
1

Searching from left to right (the default), the “z” in position 1 is the first one vl-string-position
encounters. But when searching from right to left, as in the following example, the “z” in position 3 is the first
one encountered:

_$ (vl-string-position (ascii "z") "azbzlmnqc" nil t)
3

Removes the specified characters from the end of a string

(vl-string-right-trim character-set string)

Arguments

character-set
A string listing the characters to be removed.

string
The string to be stripped of character-set.

AutoLISP Functions

vl-string-right-trim

Page 262 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Return Values

A string containing a substring of string with all trailing characters in character-set removed.

Examples

_$ (vl-string-right-trim " \t\n" " STR \n\t ")
" STR"
_$ (vl-string-right-trim "1356789" "3CPO is not R2D267891")
"3CPO is not R2D2"
_$ (vl-string-right-trim " " "There are too many spaces here ")
"There are too many spaces here"

Searches for the specified pattern in a string

(vl-string-search pattern string [start-pos])

Arguments

pattern
A string containing the pattern to be searched for.

string
The string to be searched for pattern.

start-pos
An integer identifying the starting position of the search; 0 if omitted.

Return Values

An integer representing the position in the string where the specified pattern was found; otherwise nil if the
pattern is not found; the first character of the string is position 0.

Examples

_$ (vl-string-search "foo" "pfooyey on you")
1
_$ (vl-string-search "who" "pfooyey on you")
nil
_$ (vl-string-search "foo" "fooey-more-fooey" 1)
11

AutoLISP Functions

vl-string-search

AutoLISP Functions

Page 263 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Substitutes one string for another, within a string

(vl-string-subst new-str pattern string [start-pos])

Arguments

new-str
The string to be substituted for pattern.

pattern
A string containing the pattern to be replaced.

string
The string to be searched for pattern.

start-pos
An integer identifying the starting position of the search; 0 if omitted.

Note that the search is case-sensitive, and that vl-string-subst substitutes only the first occurrence it
finds of the string.

Return Values

The value of string after any substitutions have been made.

Examples

Replace the string “Ben” with “Obi-wan”:

_$ (vl-string-subst "Obi-wan" "Ben" "Ben Kenobi")
"Obi-wan Kenobi"

Replace “Ben” with “Obi-wan”:

_$ (vl-string-subst "Obi-wan" "Ben" "ben Kenobi")
"ben Kenobi"

Nothing was substituted because vl-string-subst did not find a match for “Ben”; the “ben” in the string
that was searched begins with a lowercase “b”.

Replace “Ben” with “Obi-wan”:

_$ (vl-string-subst "Obi-wan" "Ben" "Ben Kenobi Ben")
"Obi-wan Kenobi Ben"

Note that there are two occurrences of “Ben” in the string that was searched, but vl-string-subst
replaces only the first occurrence.

Replace “Ben” with “Obi-wan,” but start the search at the fourth character in the string:

_$ (vl-string-subst "Obi-wan" "Ben" "Ben \"Ben\" Kenobi" 3)

vl-string-subst

Page 264 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

"Ben \"Obi-wan\" Kenobi"

There are two occurrences of “Ben” in the string that was searched, but because vl-string-subst was
instructed to begin searching at the fourth character, it found and replaced the second occurrence, not the
first.

Replaces characters in a string with a specified set of characters

(vl-string-translate source-set dest-set str)

Arguments

source-set
A string of characters to be matched.

dest-set
A string of characters to be substituted for those in source-set.

str
A string to be searched and translated.

Return Values

The value of str after any substitutions have been made

Examples

_$ (vl-string-translate "abcABC" "123123" "A is a, B is b, C is C")
"1 is 1, 2 is 2, 3 is 3"
_$ (vl-string-translate "abc" "123" "A is a, B is b, C is C")
"A is 1, B is 2, C is 3"

AutoLISP Functions

vl-string-translate

Removes the specified characters from the beginning and end of a string

(vl-string-trim char-set str)

AutoLISP Functions

vl-string-trim

Page 265 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

char-set
A string listing the characters to be removed.

str
The string to be trimmed of char-set.

Return Values

The value of str, after any characters have been trimmed.

Examples

_$ (vl-string-trim " \t\n" " \t\n STR \n\t ")
"STR"
_$ (vl-string-trim "this is junk" "this is junk Don't call this junk! this is junk
"Don't call this junk!"
_$ (vl-string-trim " " " Leave me alone ")
"Leave me alone"

Returns a string containing the name of a symbol

(vl-symbol-name symbol)

Arguments

symbol
Any LISP symbol.

Return Values

A string containing the name of the supplied symbol argument, in uppercase.

Examples

_$ (vl-symbol-name 'S::STARTUP)
"S::STARTUP"
_$ (progn (setq sym 'my-var) (vl-symbol-name sym))
"MY-VAR"
_$ (vl-symbol-name 1)
; *** ERROR: bad argument type: symbolp 1

AutoLISP Functions

vl-symbol-name

Page 266 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns the current value bound to a symbol

(vl-symbol-value symbol)

This function is equivalent to the eval function, but does not call the LISP evaluator.

Arguments

symbol
Any LISP symbol.

Return Values

The value of symbol, after evaluation.

Examples

_$ (vl-symbol-value 't)
T
_$ (vl-symbol-value 'PI)
3.14159
_$ (progn (setq sym 'PAUSE) (vl-symbol-value sym))
"\\"

AutoLISP Functions

vl-symbol-value

Identifies whether or not a specified object is a symbol

Arguments

(vl-symbolp object)

object
Any LISP object.

Return Values

T if object is a symbol; otherwise nil.

Examples

AutoLISP Functions

vl-symbolp

Page 267 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

_$ (vl-symbolp t)
T
_$ (vl-symbolp nil)
nil
_$ (vl-symbolp 1)
nil
_$ (vl-symbolp (list 1))
nil

Unload a VLX application that is loaded in its own namespace

(vl-unload-vlx appname)

Arguments

appname
A string naming a VLX application that is loaded in its own namespace. Do not include the .vlx extension.

The vl-unload-vlx function does not unload VLX applications that are loaded in the current document's
namespace.

Return Values

T if successful; otherwise vl-unload-vlx results in an error.

Examples

Assuming that vlxns is an application that is loaded in its own namespace, the following command unloads
vlxns:

Command: (vl-unload-vlx "vlxns")

T

Try unloading vlxns again:

Command: (vl-unload-vlx "vlxns")

; *** ERROR: LISP Application is not found VLXNS

The vl-unload-vlx command fails this time, because the application was not loaded.

See Also

The load and vl-vlx-loaded-p functions.

AutoLISP Functions

vl-unload-vlx

Page 268 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Loads a VBA project

Arguments

(vl-vbaload filename)

filename
A string naming the VBA project file to be loaded.

Return Values

Unspecified, if successful.

Examples

_$ (vl-vbaload "c:/program files/<AutoCAD installation directory>/sample/vba/drawl
"c:\\program files\\<AutoCAD installation directory>\\sample\\vba\\drawline.dvb"

See Also

The vl-vbarun function.

AutoLISP Functions

vl-vbaload

Runs a VBA macro

Arguments

(vl-vbarun macroname)

macroname
A string naming a loaded VBA macro.

Return Values

macroname

AutoLISP Functions

vl-vbarun

Page 269 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

Load a VBA project file:

_$ (vl-vbaload "c:/program files/<AutoCAD installation directory>/sample/vba/drawl
"c:\\program files\\<AutoCAD installation directory>\\sample\\vba\\drawline.dvb"

Run a macro from the loaded project:

_$ (vl-vbarun "drawline")
"drawline"

See Also

The vl-vbaload function.

Determines whether a separate-namespace VLX is currently loaded

(vl-vlx-loaded-p appname)

Arguments

appname
A string naming a VLX application.

Return Values

T if the application is loaded, nil if it is not loaded.

Examples

Check to see if the vlxns application is loaded in its own namespace:

Command: (vl-vlx-loaded-p "vlxns")

nil

The application is not loaded in its own namespace.

Now load vlxns:

Command: (load "vlxns.vlx")

nil

AutoLISP Functions

vl-vlx-loaded-p

Page 270 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Check to see if the vlxns application loaded successfully:

Command: (vl-vlx-loaded-p "vlxns")

T

This example assumes vlxns was defined to run in its own namespace. If the application was not defined
to run in its own namespace, it would load into the current document's namespace and vl-vlx-loaded-p
would return nil.

See Also

The load and vl-unload-vlx functions.

Creates ActiveX-compatible (variant) 3D point structure

(vlax-3D-point list) or (vlax-3D-point x y [z])

Arguments

list
A list of 2 or 3 numbers, representing points.

x, y
Numbers representing X and Y coordinates of a point.

z
A number representing the Z coordinate of a point.

Return Values

A variant containing a three-element array of doubles.

Examples

_$ (vlax-3D-point 5 20)
#<variant 8197 ...>
_$ (vlax-3D-point '(33.6 44.0 90.0))
<variant 8197 ...>

See Also

The vlax-make-safearray, vlax-make-variant, vlax-safearray-fill, and vlax-safearray-put-element functions.

AutoLISP Functions

vlax-3D-point

Page 271 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Adds commands to the AutoCAD built-in command set

(vlax-add-cmd global-name func-sym [local-name cmd-flags])

With vlax-add-cmd you can define a function as an AutoCAD command, without using the c: prefix in the
function name. You can also define a transparent AutoLISP command, which is not possible with a c:
function.

Warning You cannot use the command function call in a transparently defined vlax-add-cmd function.
Doing so can cause AutoCAD to close unexpectedly.

The vlax-add-cmd function makes an AutoLISP function visible as an ObjectARX-style command at the
AutoCAD Command prompt during the current AutoCAD session. The function provides access to the
ObjectARX acedRegCmds macro, which provides a pointer to the ObjectARX system AcEdCommandStack
object.

The vlax-add-cmd function automatically assigns commands to command groups. When issued from a
document namespace, vlax-add-cmd adds the command to a group named doc-ID; doc-ID is a
hexadecimal value identifying the document. If issued from a separate-namespace VLX, vlax-add-cmd
adds the command to a group named VLC-Ddoc-ID:VLX-name, where VLX-name is the name of the
application that issued vlax-add-cmd.

It is recommended that you use the vlax-add-cmd function from a separate-namespace VLX. You should
then explicitly load the VLX using the APPLOAD command, rather than by placing it in one of the startup
LISP files.

Note You cannot use vlax-add-cmd to expose functions that create reactor objects or serve as reactor
callbacks.

Arguments

global-name
A string.

func-sym
A symbol naming an AutoLISP function with zero arguments.

local-name
A string (defaults to global-name).

cmd-flags
An integer (defaults to ACRX_CMD_MODAL + ACRX_CMD_REDRAW)

The primary flags are

ACRX_CMD_MODAL (0) Command cannot be invoked while another command is active.

ACRX_CMD_TRANSPARENT (1) Command can be invoked while another command is active.

The secondary flags are

AutoLISP Functions

vlax-add-cmd

Page 272 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

ACRX_CMD_USEPICKSET (2) When the pickfirst set is retrieved it is cleared within AutoCAD. Command
will be able to retrieve the pickfirst set. Command cannot retrieve or set grips.

ACRX_CMD_REDRAW (4) When the pickfirst set or grip set is retrieved, neither will be cleared within
AutoCAD. Command can retrieve the pickfirst set and the grip set.

If both ACRX_CMD_USEPICKSET and ACRX_CMD_REDRAW are set, the effect is the same as if just
ACRX_CMD_REDRAW is set. For more information about the flags, see the “Command Stack” in the
ObjectARX Reference.

Return Values

The global-name argument, if successful. The function returns nil if acedRegCmds->addCommand(...)
returns an error condition.

Examples

The hello-autocad function in the following example has no c: prefix, but vlax-add-cmd makes it
visible as an ObjectARX-style command at the AutoCAD Command prompt:

_$ (defun hello-autocad () (princ "hello Visual LISP"))
HELLO-AUTOCAD
_$ (vlax-add-cmd "hello-autocad" 'hello-autocad)
"hello-autocad"

See Also

The vlax-remove-cmd function.

Creates a new instance of an application object

(vlax-create-object prog-id)

Use vlax-create-object when you want a new instance of an application to be started, and an object of
the type specified by <Component> (see the argument description) to be created. To use the current
instance, use vlax-get-object. However, if an application object has registered itself as a single-
instance object, only one instance of the object is created, no matter how many times you call vlax-
create-object.

Arguments

prog-id
A string containing the programmatic identifier of the desired ActiveX object. The format of prog-id is

<Vendor>.<Component>.<Version>

AutoLISP Functions

vlax-create-object

Page 273 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

For example:

AutoCAD.Drawing.15

Return Values

The application object (VLA-object).

Examples

Create an instance of a Microsoft Excel application:

_$ (vlax-create-object "Excel.Application")
#<VLA-OBJECT _Application 0017b894>

Returns the area inside the curve

(vlax-curve-getArea curve-obj)

Arguments

curve-obj
The VLA-object to be measured.

Return Values

A real number representing the area of the curve, if successful; otherwise nil.

Examples

Assume the curve being measured is the ellipse in the following drawing:

AutoLISP Functions

vlax-curve-getArea

Page 274 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Sample curve (ellipse) for vlax-curve-getarea

The ellipseObj variable points to the ellipse VLA-object.

The following command obtains the area of the curve:

_$ (vlax-curve-getArea ellipseObj)
4.712393

Returns the point (in WCS) on a curve that is nearest to the specified point

(vlax-curve-getClosestPointTo curve-obj givenPnt [extend])

Arguments

curve-obj
The VLA-object to be measured.

givenPnt
A point (in WCS) for which to find the nearest point on the curve.

extend
If specified and not nil, vlax-curve-getClosestPointTo extends the curve when searching for the
nearest point.

Return Values

A 3D point list representing a point on the curve, if successful; otherwise nil.

AutoLISP Functions

vlax-curve-getClosestPointTo

Page 275 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

Assume that the curve being measured is the arc in the following drawing:

Return the closest point on the arc to the coordinates 6.0, 0.5:

_$ (vlax-curve-getClosestPointTo arcObj '(6.0 0.5 0.0))
(6.0 1.5 0.0)

Return the closest point on the arc to the coordinates 6.0, 0.5, after extending the arc:

_$ (vlax-curve-getClosestPointTo arcObj '(6.0 0.5 0.0) T)
(5.7092 0.681753 0.0)

Returns the closest point (in WCS) on a curve after projecting the curve onto a plane

(vlax-curve-getClosestPointToProjection curve-obj givenPnt normal[extend])

Arguments

curve-obj
The VLA-object to be measured.

givenPnt
A point (in WCS) for which to find the nearest point on the curve.

normal
A normal vector (in WCS) for the plane to project onto.

extend
If specified and not nil, vlax-curve-getClosestPointToProjection extends the curve when
searching for the nearest point.

vlax-curve-getClosestPointToProjection projects the curve onto the plane defined by the
givenPnt and normal, and then calculates the nearest point on that projected curve to givenPnt. The

AutoLISP Functions

vlax-curve-getClosestPointToProjection

Page 276 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

resulting point is then projected back onto the original curve, and vlax-curve-
getClosestPointToProjection returns that projected point.

Return Values

A 3D point list representing a point on the curve, if successful; otherwise nil.

Returns the length of the curve's segment from the curve's beginning to the specified parameter

(vlax-curve-getDistAtParam curve-objparam)

Arguments

curve-obj
The VLA-object to be measured.

param
A number specifying a parameter on the curve.

Return Values

A real number that is the length up to the specified parameter, if successful; otherwise nil.

Examples

Assume that splineObj points to the spline in the following drawing:

AutoLISP Functions

vlax-curve-getDistAtParam

Page 277 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Sample curve (spline) for vlax-curve-getDistAtParam

Obtain the start parameter of the curve:

_$ (setq startSpline (vlax-curve-getStartParam splineObj))
0.0

The curve starts at parameter 0.

Obtain the end parameter of the curve:

_$ (setq endSpline (vlax-curve-getEndParam splineObj))
17.1546

The curve's end parameter is 17.1546.

Determine the distance to the parameter midway along the curve:

_$ (vlax-curve-getDistAtParam splineObj
 (/ (- endspline startspline) 2))
8.99417

The distance from the start to the middle of the curve is 8.99417.

AutoLISP Functions

vlax-curve-getDistAtPoint

Page 278 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns the length of the curve's segment between the curve's start point and the specified point

(vlax-curve-getDistAtPoint curve-obj point)

Arguments

curve-obj
The VLA-object to be measured.

point
A 3D point list (in WCS) on curve-obj.

Return Values

A real number if successful; otherwise nil.

Examples

For the following example, assume that splineObj points to the spline shown in the example for vlax-
curve-getDistAtParam.

Set OSNAP to tangent and select the point where the line is tangent to the curve:

_$ (setq selPt (getpoint))
(4.91438 6.04738 0.0)

Determine the distance from the start of the curve to the selected point:

_$ (vlax-curve-getDistAtPoint splineObj selpt)
5.17769

Returns the parameter of the endpoint of the curve

(vlax-curve-getEndParam curve-obj)

Arguments

curve-obj
The VLA-object to be measured.

Return Values

A real number representing an end parameter, if successful; otherwise nil.

Examples

AutoLISP Functions

vlax-curve-getEndParam

Page 279 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Assuming that ellipseObj points to the ellipse shown in the example for vlax-curve-getArea, the following
function call returns the end parameter of the curve:

_$ (vlax-curve-getendparam ellipseObj)
6.28319

The end parameter is 6.28319 (twice pi).

See Also

The vlax-curve-getStartParam function.

Returns the endpoint (in WCS) of the curve

(vlax-curve-getEndPoint curve-obj)

Arguments

curve-obj
The VLA-object to be measured.

Return Values

A 3D point list representing an endpoint, if successful; otherwise nil.

Examples

Get the endpoint of the ellipse used to demonstrate vlax-curve-getArea:

_$ (vlax-curve-getEndPoint ellipseObj)
(2.0 2.0 0.0)

AutoLISP Functions

vlax-curve-getEndPoint

Returns the first derivative (in WCS) of a curve at the specified location

AutoLISP Functions

vlax-curve-getFirstDeriv

Page 280 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(vlax-curve-getFirstDeriv curve-obj param)

Arguments

curve-obj
The VLA-object to be measured.

param
A number specifying a parameter on the curve.

Return Values

A 3D vector list, if successful; otherwise nil.

Examples

For the following example, assume that splineObj points to the spline shown in the example of the vlax-
curve-getDistAtParam function.

Obtain the start parameter of the curve:

_$ (setq startSpline (vlax-curve-getStartParam splineObj))
0.0

Obtain the end parameter of the curve:

_$ (setq endSpline (vlax-curve-getEndParam splineObj))
17.1546

Determine the first derivative at the parameter midway along the curve:

_$ (vlax-curve-getFirstDeriv splineObj
 (/ (- endspline startspline) 2))
(0.422631 -1.0951 0.0)

Returns the parameter of a curve at the specified distance from the beginning of the curve

(vlax-curve-getParamAtDist curve-obj dist)

Arguments

curve-obj
The VLA-object to be measured.

dist
A number specifying the distance from the beginning of the curve.

AutoLISP Functions

vlax-curve-getParamAtDist

Page 281 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Return Values

A real number representing a parameter, if successful; otherwise nil.

Examples

Assuming that splineObj points to the spline shown in the example for vlax-curve-getDistAtParam,
determine the parameter at a distance of 1.0 from the beginning of the spline:

_$ (vlax-curve-getParamAtDist splineObj 1.0)
0.685049

Returns the parameter of the curve at the point

(vlax-curve-getParamAtPoint curve-obj point)

Arguments

curve-obj
The VLA-object to be measured.

point
A 3D point list (in WCS) on curve-obj.

Return Values

A real number representing a parameter, if successful; otherwise nil.

Examples

Assuming that ellipseObj points to the ellipse shown in the example for vlax-curve-getArea, set OSNAP
to tangent and select the point where the line is tangent to the ellipse:

_$ (setq selPt (getpoint))
(7.55765 5.55066 0.0)

Get the parameter value at the selected point:

_$ (vlax-curve-getParamAtPoint ellipseObj selPt)
4.58296

AutoLISP Functions

vlax-curve-getParamAtPoint

Page 282 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns the point (in WCS) along a curve at the distance specified by the user

(vlax-curve-getPointAtDist curve-objdist)

Arguments

curve-obj
The VLA-object to be measured.

dist
The distance along the curve from the beginning of the curve to the location of the specified point.

Return Values

A 3D point list representing a point on the curve, if successful; otherwise nil.

Examples

Assuming that splineObj points to the spline shown in the example for vlax-curve-getDistAtParam,
determine the point at a distance of 1.0 from the beginning of the spline:

_$ (vlax-curve-getPointAtDist splineObj 1.0)
(2.24236 2.99005 0.0)

AutoLISP Functions

vlax-curve-getPointAtDist

Returns the point at the specified parameter value along a curve

(vlax-curve-getPointAtParam curve-obj param)

Arguments

curve-obj
The VLA-object to be measured.

param
A number specifying a parameter on the curve.

Return Values

A 3D point list representing a point on the curve, if successful; otherwise nil.

AutoLISP Functions

vlax-curve-getPointAtParam

Page 283 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

For the following example, assume that splineObj points to the spline shown in the example for vlax-
curve-getDistAtParam.

Obtain the start parameter of the curve:

_$ (setq startSpline (vlax-curve-getStartParam splineObj))
0.0

Obtain the end parameter of the curve:

_$ (setq endSpline (vlax-curve-getEndParam splineObj))
17.1546

Determine the point at the parameter midway along the curve:

_$ (vlax-curve-getPointAtParam splineObj
 (/ (- endspline startspline) 2))
(6.71386 2.82748 0.0)

Returns the second derivative (in WCS) of a curve at the specified location

(vlax-curve-getSecondDeriv curve-obj param)

Arguments

curve-obj
The VLA-object to be measured.

param
A number specifying a parameter on the curve.

Return Values

A 3D vector list, if successful; otherwise nil.

Examples

For the following example, assume that splineObj points to the spline shown in the example of the vlax-
curve-getDistAtParam function.

Obtain the start parameter of the curve:

_$ (setq startSpline (vlax-curve-getStartParam splineObj))

AutoLISP Functions

vlax-curve-getSecondDeriv

Page 284 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

0.0

Obtain the end parameter of the curve:

_$ (setq endSpline (vlax-curve-getEndParam splineObj))
17.1546

Determine the second derivative at the parameter midway along the curve:

_$ (vlax-curve-getSecondDeriv splineObj
 (/ (- endspline startspline) 2))
(0.0165967 0.150848 0.0)

Returns the start parameter on the curve

(vlax-curve-getStartParam curve-obj)

Arguments

curve-obj
The VLA-object to be measured.

Return Values

A real number representing the start parameter, if successful; otherwise nil.

Examples

Assuming that ellipseObj points to the ellipse shown in the example for vlax-curve-getArea, determine the
start parameter of the curve:

_$ (vlax-curve-getstartparam ellipseObj)
0.0

See Also

The vlax-curve-getEndParam function.

AutoLISP Functions

vlax-curve-getStartParam

AutoLISP Functions

Page 285 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns the start point (in WCS) of the curve

(vlax-curve-getStartPoint curve-obj)

Arguments

curve-obj
The VLA-object to be measured.

Return Values

A 3D point list representing the start point, if successful; otherwise nil.

Examples

Get the start point of the ellipse used to demonstrate vlax-curve-getArea:

_$ (vlax-curve-getStartPoint ellipseObj)
(2.0 2.0 0.0)

For an ellipse, the start points and endpoints are the same.

Obtain the start point of the spline used to demonstrate vlax-curve-getDistAtParam:

_$ (vlax-curve-getStartPoint splineObj)
(1.73962 2.12561 0.0)

vlax-curve-getStartPoint

Determines if the specified curve is closed (that is, the start point is the same as the endpoint)

(vlax-curve-isClosed curve-obj)

Arguments

curve-obj
The VLA-object to be tested.

Return Values

T if the curve is closed; otherwise nil.

AutoLISP Functions

vlax-curve-isClosed

Page 286 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

Determine if the ellipse used to demonstrate vlax-curve-getArea is closed:

_$ (vlax-curve-isClosed ellipseObj)
T

Determine if the spline used to demonstrate vlax-curve-getDistAtParam is closed:

_$ (vlax-curve-isClosed splineObj)
nil

Determines if the specified curve has an infinite range in both directions and there is a period value dT, such that a point on
the curve at (u + dT) = point on curve (u), for any parameter u

(vlax-curve-isPeriodic curve-obj)

Arguments

curve-obj
The VLA-object to be tested.

Return Values

T if the curve is periodic; otherwise nil.

Examples

Determine if the ellipse used to demonstrate vlax-curve-getArea is periodic:

_$ (vlax-curve-isPeriodic ellipseObj)
T

Determine if the spline used to demonstrate vlax-curve-getDistAtParam is periodic:

_$ (vlax-curve-isPeriodic splineObj)
nil

AutoLISP Functions

vlax-curve-isPeriodic

AutoLISP Functions

vlax-curve-isPlanar

Page 287 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Determines if there is a plane that contains the curve

(vlax-curve-isPlanar curve-obj)

Arguments

curve-obj
The VLA-object to be tested.

Return Values

T if there is a plane that contains the curve; otherwise nil.

Examples

Determine if there is a plane containing the ellipse used to demonstrate vlax-curve-getArea:

_$ (vlax-curve-isPlanar ellipseObj)
T

Determine if there is a plane containing the spline used to demonstrate vlax-curve-getDistAtParam:

_$ (vlax-curve-isPeriodic splineObj)
nil

Lists an object's properties, and optionally, the methods that apply to the object

(vlax-dump-object obj [T])

Arguments

obj
A VLA-object.

T
If specified, vlax-dump-object also lists all methods that apply to obj.

Return Values

T, if successful. If an invalid object name is supplied, vlax-dump-object displays an error message.

Examples

AutoLISP Functions

vlax-dump-object

Page 288 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

_$ (setq aa (vlax-get-acad-object))
#<VLA-OBJECT IAcadApplication 00b3b91c>
_$ (vlax-dump-object aa)
; IAcadApplication: AutoCAD Application Interface
; Property values:
; ActiveDocument (RO) = #<VLA-OBJECT IAcadDocument 01b52fac>
; Application (RO) = #<VLA-OBJECT IAcadApplication 00b3b91c>
; Caption (RO) = "AutoCAD - [Drawing.dwg]"
.
.
.
T

List an object's properties and the methods that apply to the object:

_$ (vlax-dump-object aa T)
; IAcadApplication: AutoCAD Application Interface
; Property values:
; ActiveDocument (RO) = #<VLA-OBJECT IAcadDocument 01b52fac>
; Application (RO) = #<VLA-OBJECT IAcadApplication 00b3b91c>
; Caption (RO) = "AutoCAD - [Drawing.dwg]"
.
.
.
; Methods supported:
; EndUndoMark ()
; Eval (1)
; GetInterfaceObject (1)
; ListAds ()
; ListArx ()
.
.
.
T

Transforms an entity to a VLA-object

(vlax-ename->vla-object entname)

Arguments

entname
An entity name (ename data type).

Return Values

AutoLISP Functions

vlax-ename->vla-object

Page 289 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A VLA-object.

Examples

_$ (setq e (car (entsel)))
<Entity name: 27e0540>
_$ (vlax-ename->vla-object e)
#<VLA-OBJECT IAcadLWPolyline 03f713a0>

See Also

The vlax-vla-object->ename function.

Determines whether an object was erased

(vlax-erased-p obj)

Arguments

obj
A VLA-object.

Return Values

T if the object was erased; otherwise nil.

AutoLISP Functions

vlax-erased-p

Iterates through a collection of objects, evaluating each expression

(vlax-for symbol collection [expression1 [expression2 ...]])

Arguments

symbol

AutoLISP Functions

vlax-for

Page 290 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A symbol to be assigned to each VLA-object in a collection.
collection

A VLA-object representing a collection object.
expression1, expression2...

The expressions to be evaluated.

Return Values

The value of the last expression evaluated for the last object in the collection.

Examples

The following code issues vlax-dump-object on every drawing object in the model space:

(vl-load-com) ; load ActiveX support
(vlax-for for-item
 (vla-get-modelspace
 (vla-get-activedocument (vlax-get-acad-object))
)
 (vlax-dump-object for-item) ; list object properties
)

Retrieves the top level AutoCAD application object for the current AutoCAD session

(vlax-get-acad-object)

Return Values

A VLA-object.

Examples

_$ (setq aa (vlax-get-acad-object))
#<VLA-OBJECT IAcadApplication 00b3b91c>

AutoLISP Functions

vlax-get-acad-object

AutoLISP Functions

vlax-get-object

Page 291 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns a running instance of an application object

(vlax-get-object prog-id)

Arguments

prog-id
A string that identifies the desired application object. The format of prog-id is:

appname.objecttype

where appname is the name of the application and objecttype is the application object. The objecttype
may be followed by a version number.

Note You can usually find the prog-id for an application in that application's Help. For example, Microsoft
Office applications document this information in the VBA Reference.

Return Values

The application object; otherwise nil, if there is no instance of the specified object currently running.

Examples

Obtain the application object for the Excel program:

_$ (vlax-get-object "Excel.Application")
#<VLA-OBJECT _Application 0017bb5c>

Returns a running instance of an application object, or creates a new instance if the application is not currently running

(vlax-get-or-create-object prog-id)

Arguments

prog-id
A string containing the programmatic identifier of the desired ActiveX object. The format of prog-id is

<Vendor>.<Component>.<Version>

For example:

AutoCAD.Drawing.15

Return Values

The object.

Examples

AutoLISP Functions

vlax-get-or-create-object

Page 292 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

_$ (vlax-get-or-create-object "Excel.Application")
#<VLA-OBJECT _Application 0017bb5c>

Retrieves a VLA-object's property

(vlax-get-property object property)

This function was formerly known as vlax-get.

Arguments

object
A VLA-object.

property
A symbol or string naming the property to be retrieved.

Return Values

The value of the object's property.

Examples

Begin by retrieving a pointer to the root AutoCAD object:

_$ (setq acadObject (vlax-get-acad-object))
#<VLA-OBJECT IAcadApplication 00a4b2b4>

Get the AutoCAD ActiveDocument property:

_$ (setq acadDocument (vlax-get-property acadObject 'ActiveDocument))
#<VLA-OBJECT IAcadDocument 00302a18>

The function returns the current document object.

Get the ModelSpace property of the ActiveDocument object:

_$ (setq mSpace (vlax-get-property acadDocument 'Modelspace))
#<VLA-OBJECT IAcadModelSpace 00c14b44>

The model space object of the current document is returned.

Convert a drawing entity to a VLA-object:

_$ (setq vlaobj (vlax-ename->vla-object e))

AutoLISP Functions

vlax-get-property

Page 293 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

#<VLA-OBJECT IAcadLWPolyline 0467114c>

Get the color property of the object:

_$ (vlax-get-property vlaobj 'Color)
256

See Also

The vlax-property-available-p and vlax-put-property functions.

Imports information from a type library

(vlax-import-type-library :tlb-filename filename [:methods-prefix mprefix :proper

Arguments

filename
A string naming the type library. A file can be one of the following types:

A type library (TLB) or object library (OLB) file
An executable (EXE) file
A library (DLL) file containing a type library resource
A compound document holding a type library
Any other file format that can be understood by the LoadTypeLib API

If you omit the path from tlb-filename, AutoCAD looks for the file in the support file search path.
mprefix

Prefix to be used for method wrapper functions. For example, if the type library contains a Calculate
method and the mprefix parameter is set to “cc-”, Visual LISP generates a wrapper function named cc-
Calculate. This parameter defaults to “”.

pprefix
Prefix to be used for property wrapper functions. For example, if the type library contains a Width property
with both read and write permissions, and pprefix is set to “cc-”, then Visual LISP generates wrapper
functions named cc-get-Width and cc-put-Width. This parameter defaults to “”.

cprefix
Prefix to be used for constants contained in the type library. For example, if the type library contains a
ccMaxCountOfRecords property with both read and write permissions, and cprefix is set to “cc-”, Visual
LISP generates a constant named cc-ccMaxCountOfRecords. This parameter defaults to “”.

Note the required use of keywords when passing arguments to vlax-import-type-library.

Return Values

AutoLISP Functions

vlax-import-type-library

Page 294 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

T, if successful.

Examples

Import a Microsoft Word type library, assigning the prefix “msw-” to methods and properties, and “mswc-” to
constants:

_$ (vlax-import-type-library
 :tlb-filename "c:/program files/microsoft office/msword8.olb"
 :methods-prefix "msw-"
 :properties-prefix "msw-"
 :constants-prefix "mswc-")
T

Remarks

Function wrappers created by vlax-import-type-library are available only in the context of the
document vlax-import-type-library was issued from.

In the current release of Visual LISP, vlax-import-type-library is executed at runtime, rather than at
compile time. In future releases of Visual LISP, this may change. The following practices are recommended
when using vlax-import-type-library:

If you want your code to run on different machines, avoid specifying an absolute path in the tlb-file-name
parameter.
If possible, avoid using vlax-import-type-library from inside any AutoLISP expression (that is,
always call it from a top-level position).
In your AutoLISP source file, code the vlax-import-type-library call before any code that uses
method or property wrappers or constants defined in the type library.

See Also

The vlax-typeinfo-available-p function.

Calls the specified ActiveX method

(vlax-invoke-method obj method arg [arg...])

This function was known as vlax-invoke prior to AutoCAD 2000.

Arguments

obj

AutoLISP Functions

vlax-invoke-method

Page 295 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A VLA-object.
method

A symbol or string naming the method to be called.
arg

Argument to be passed to the method called. No argument type checking is performed.

Return Values

Depends on the method invoked.

Examples

The following example uses the AddCircle method to draw a circle in the current AutoCAD drawing.

The first argument to AddCircle specifies the location of the center of the circle. The method requires the
center to be specified as a variant containing a three-element array of doubles. You can use vlax-3d-
point to convert an AutoLISP point list to the required variant data type:

_$ (setq circCenter (vlax-3d-point '(3.0 3.0 0.0)))
#<variant 8197 ...>

Now use vlax-invoke-method to draw a circle with the AddCircle method:

_$ (setq mycircle (vlax-invoke-method mspace 'AddCircle circCenter 3.0))
#<VLA-OBJECT IAcadCircle 00bfd6e4>

See Also

The vlax-get-property, vlax-method-applicable-p, vlax-property-available-p, and vlax-put-property functions.

Erases LISP data from a drawing dictionary

(vlax-ldata-delete dict key [private])

Arguments

dict
A VLA-object, AutoCAD drawing entity object, or a string naming a global dictionary.

key
A string specifying the dictionary key.

private
If a non-nil value is specified for private and vlax-ldata-delete is called from a separate-

AutoLISP Functions

vlax-ldata-delete

Page 296 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

namespace VLX, vlax-ldata-delete deletes private LISP data from dict. (See vlax-ldata-get for
examples using this argument.)

Return Values

T, if successful; otherwise nil (for example, the data did not exist).

Examples

Add LISP data to a dictionary:

_$ (vlax-ldata-put "dict" "key" '(1))
(1)

Use vlax-ldata-delete to delete the LISP data:

_$ (vlax-ldata-delete "dict" "key")
T

If vlax-ldata-delete is called again to remove the same data, it returns nil because the data does not
exist in the dictionary:

_$ (vlax-ldata-delete "dict" "key")
nil

See Also

The vlax-ldata-get, vlax-ldata-list, and vlax-ldata-put functions.

Retrieves LISP data from a drawing dictionary or an object

(vlax-ldata-get dict key [default-data] [private])

Arguments

dict
A VLA-object, an AutoCAD drawing entity object, or a string naming a global dictionary.

key
A string specifying the dictionary key.

default-data
LISP data to be returned if no matching key exists in the dictionary.

private

AutoLISP Functions

vlax-ldata-get

Page 297 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

If a non-nil value is specified for private and vlax-ldata-get is called from a separate-namespace
VLX, vlax-ldata-get retrieves private LISP data from dict.

If you specify private, you must also specify default-data; you can use nil for default-data.

Note that a separate-namespace VLX can store both private and non-private data using the same dict and
key. The private data can be accessed only by the same VLX, but any application can retrieve the non-
private data.

Return Values

The value of the key item.

Examples

Enter the following commands at the Visual LISP Console window:

_$ (vlax-ldata-put "mydict" "mykey" "Mumbo Dumbo")
"Mumbo Dumbo"
_$ (vlax-ldata-get "mydict" "mykey")
"Mumbo Dumbo"

To test the use of private data from a VLX
1. Enter the following commands at the Visual LISP Console window:

_$ (vlax-ldata-put "mydict" "mykey" "Mumbo Dumbo")
"Mumbo Dumbo"
_$ (vlax-ldata-get "mydict" "mykey")
"Mumbo Dumbo"

2. Enter the following code in a file and use Make Application to build a VLX from the file. Use the Expert
mode of the Make Application wizard, and select the Separate Namespace option on the Compile
Options tab.
(vl-doc-export 'ldataput)
(vl-doc-export 'ldataget)
(vl-doc-export 'ldataget-nilt)
(defun ldataput ()
 (princ "This is a test of putting private ldata ")
 (vlax-ldata-put "mydict" "mykey" "Mine! Mine! " T)
)
(defun ldataget ()
 (vlax-ldata-get "mydict" "mykey")
)
(defun ldataget-nilt ()
 (vlax-ldata-get "mydict" "mykey" nil T)
)

3. Load the VLX file.
4. Run ldataput to save private data:

_$ (ldataput)
This is a test of putting private ldata

Refer to the code defining ldataput: this function stores a string containing “Mine! Mine!”

5. Run ldataget to retrieve LISP data:
_$ (ldataget)
"Mumbo Dumbo"

Page 298 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Notice that the data returned by ldataget is not the data stored by ldataput. This is because
ldataget does not specify the private argument in its call to vlax-ldata-get. So the data
retrieved by ldataget is the data set by issuing vlax-ldata-put from the Visual LISP Console in
step 1.
_$ (ldataget-nilt)
"Mine! Mine! "

6. Run ldataget-nilt to retrieve LISP data:
_$ (ldataget-nilt)
"Mine! Mine! "

This time the private data saved by ldataput is returned, because ldataget-nilt specifies the
private argument in its call to vlax-ldata-get.

7. From the Visual LISP Console prompt, issue the same call that ldataget-nilt uses to retrieve
private data:
_$ (vlax-ldata-get "mydict" "mykey" nil T)
"Mumbo Dumbo"

The private argument is ignored when vlax-ldata-get is issued outside a separate-namespace
VLX. If non-private data exists for the specified dict and key (as in this instance), that data will be
retrieved.

Lists LISP data in a drawing dictionary

(vlax-ldata-list dict [private])

Arguments

dict
A VLA-object, an AutoCAD drawing entity object, or a string naming a global dictionary.

private
If vlax-ldata-list is called from a separate-namespace VLX and a non-nil value is specified for
private, vlax-ldata-list retrieves only private data stored by the same VLX. (See vlax-ldata-get for
examples using this argument.)

Return Values

An associative list consisting of pairs (key . value).

Examples

Use vlax-ldata-put to store LISP data in a dictionary:

_$ (vlax-ldata-put "dict" "cay" "Mumbo Jumbo ")
"Mumbo Jumbo "

AutoLISP Functions

vlax-ldata-list

Page 299 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

_$ (vlax-ldata-put "dict" "say" "Floobar ")
"Floobar "

Use vlax-ldata-list to display the LISP data stored in “dict”:

_$ (vlax-ldata-list "dict")
(("say" . "Floobar ") ("cay" . "Mumbo Jumbo "))

See Also

The vlax-ldata-get, vlax-ldata-delete, and vlax-ldata-put functions.

Stores LISP data in a drawing dictionary or an object

(vlax-ldata-put dict key data [private])

Arguments

dict
A VLA-object, an AutoCAD drawing entity object, or a string naming a global dictionary.

key
A string specifying the dictionary key.

data
LISP data to be stored in the dictionary.

private
If vlax-ldata-put is called from a separate-namespace VLX and a non-nil value is specified for
private, vlax-ldata-put marks the data as retrievable only by the same VLX.

Return Values

The value of data.

Examples

_$ (vlax-ldata-put "dict" "key" '(1))
(1)
_$ (vlax-ldata-put "dict" "cay" "Gumbo jumbo")
"Gumbo jumbo"

See Also

The vlax-ldata-get, vlax-ldata-delete, and vlax-ldata-list functions.

AutoLISP Functions

vlax-ldata-put

Page 300 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Determines if data can be saved over a session boundary

(vlax-ldata-test data)

Arguments

data
Any LISP data to be tested.

Return Values

T, if the data can be saved and restored over the session boundary; otherwise nil.

Examples

Determine if a string can be saved as ldata over a session boundary:

_$ (vlax-ldata-test "Gumbo jumbo")
T

Determine if a function can be saved as ldata over a session boundary:

_$ (vlax-ldata-test yinyang)
nil

See Also

The vlax-ldata-get, vlax-ldata-delete, and vlax-ldata-list, and vlax-ldata-put functions.

AutoLISP Functions

vlax-ldata-test

Creates a safearray

(vlax-make-safearray type '(l-bound . u-bound) ['(l-bound . u-bound)...)]

AutoLISP Functions

vlax-make-safearray

Page 301 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A maximum of 16 dimensions can be defined for an array. The elements in the array are initialized as
follows:

Numbers
0

Strings
Zero-length string.

Booleans
:vlax-false

Object
nil

Variant
Uninitialized (vlax-vbEmpty)

Arguments

type
The type of safearray. Specify one of the following constants:

vlax-vbInteger (2) Integer

vlax-vbLong (3) Long integer

vlax-vbSingle (4) Single-precision floating-point number

vlax-vbDouble (5) Double-precision floating-point number

vlax-vbString (8) String

vlax-vbObject (9) Object

vlax-vbBoolean (11) Boolean

vlax-vbVariant (12) Variant

The integer shown in parentheses indicates the value to which the constant evaluates. It is recommended
that you specify the constant in your argument, not the integer value, in case the value changes in later
releases of AutoCAD.

'(l-bound . u-bound)
Lower and upper index boundaries of a dimension.

Return Values

The safearray created.

Examples

Create a single-dimension safearray consisting of doubles, beginning with index 0:

_$ (setq point (vlax-make-safearray vlax-vbDouble '(0 . 3)))
#<safearray...>

Use the vlax-safearray->list function to display the contents of the safearray as a list:

_$ (vlax-safearray->list point)
(0.0 0.0 0.0 0.0)

The result shows each element of the array was initialized to zero.

Page 302 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Create a two-dimension array of strings, with each dimension starting at index 1:

_$ (setq matrix (vlax-make-safearray vlax-vbString '(1 . 2) '(1 . 2)))
#<safearray...>

See Also

The vlax-make-variant, vlax-safearray-fill, vlax-safearray-get-dim, vlax-safearray-get-element, vlax-safearray-
get-l-bound, vlax-safearray-get-u-bound, vlax-safearray-put-element, vlax-safearray-type, vlax-safearray->list,
and vlax-variant-value functions. For more information on using these functions, see Working with Safearrays
in the AutoLISP Developer's Guide.

Creates a variant data type

(vlax-make-variant [value] [type])

Arguments

value
The value to be assigned to the variant. If omitted, the variant is created with the vlax-vbEmpty type
(uninitialized).

type
The type of variant. This can be represented by one of the following constants:

vlax-vbEmpty (0) Uninitialized (default value)

vlax-vbNull (1) Contains no valid data

vlax-vbInteger (2) Integer

vlax-vbLong (3) Long integer

vlax-vbSingle (4) Single-precision floating-point number

vlax-vbDouble (5) Double-precision floating-point number

vlax-vbString (8) String

vlax-vbObject (9) Object

vlax-vbBoolean (11) Boolean

vlax-vbArray (8192) Array

The integer shown in parentheses indicates the value to which the constant evaluates. It is recommended
that you specify the constant in your argument, not the integer value, because the value may change in
later releases of AutoCAD.

If you do not specify a type, vlax-make-variant assigns a default data type based on the data type of
the value it receives. The following list identifies the default variant data type assigned to each LISP data
type:

AutoLISP Functions

vlax-make-variant

Page 303 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

nilvlax-vbEmpty

:vlax-nullvlax-vbNull

integervlax-vbLong

realvlax-vbDouble

stringvlax-vbString

VLA-objectvlax-vbObject

:vlax-true, :vlax-falsevlax-vbBoolean

variant Same as the type of initial value

vlax-make-safearrayvlax-vbArray

Return Values

The variant created.

Examples

Create a variant using the defaults for vlax-make-variant:

_$ (setq varnil (vlax-make-variant))
#<variant 0 >

The function creates an uninitialized (vlax-vbEmpty) variant by default. You can accomplish the same thing
explicitly with the following call:

_$ (setq varnil (vlax-make-variant nil))
#<variant 0 >

Create an integer variant and set its value to 5:

_$ (setq varint (vlax-make-variant 5 vlax-vbInteger))
#<variant 2 5>

Repeat the previous command, but omit the type argument and see what happens:

_$ (setq varint (vlax-make-variant 5))
#<variant 3 5>

By default, vlax-make-variant assigned the specified integer value to a Long integer data type, not
Integer, as you might expect. This highlights the importance of explicitly stating the type of variant you want
when working with numbers.

Omitting the type argument for a string produces predictable results:

_$ (setq varstr (vlax-make-variant "ghost"))
#<variant 8 ghost>

To create a variant containing arrays, you must specify type vlax-vbArray, along with the type of data in
the array. For example, to create a variant containing an array of doubles, first set a variable's value to an
array of doubles:

Page 304 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

_$ (setq 4dubs (vlax-make-safearray vlax-vbDouble '(0 . 3)))
#<safearray...>

Then take the array of doubles and assign it to a variant:

_$ (vlax-make-variant 4dubs)
#<variant 8197 ...>

See Also

The vlax-make-safearray, vlax-variant-change-type, vlax-variant-type, and vlax-variant-value functions. For
more information on using variants, see Working with Variants in the AutoLISP Developer's Guide.

Applies a function to all objects in a collection

(vlax-map-collection objfunction)

Arguments

obj
A VLA-object representing a collection.

function
A symbol or lambda expression to be applied to obj.

Return Values

The obj first argument.

Examples

(vlax-map-collection (vla-get-ModelSpace acadDocument) 'vlax-dump-object)
; IAcadLWPolyline: AutoCAD Lightweight Polyline Interface
; Property values:
; Application (RO) = #<VLA-OBJECT IAcadApplication 00a4ae24>
; Area (RO) = 2.46556
; Closed = 0
; Color = 256
; ConstantWidth = 0.0
; Coordinate = ...Indexed contents not shown...
; Coordinates = (8.49917 7.00155 11.2996 3.73137 14.8 5.74379 ...)
; Database (RO) = #<VLA-OBJECT IAcadDatabase 01e3da44>
; Elevation = 0.0
; Handle (RO) = "53"
; HasExtensionDictionary (RO) = 0

AutoLISP Functions

vlax-map-collection

Page 305 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

; Hyperlinks (RO) = #<VLA-OBJECT IAcadHyperlinks 01e3d7d4>
; Layer = "0"
; Linetype = "BYLAYER"
; LinetypeGeneration = 0
; LinetypeScale = 1.0
; Lineweight = -1
; Normal = (0.0 0.0 1.0)
; ObjectID (RO) = 28895576
; ObjectName (RO) = "AcDbPolyline"
; PlotStyleName = "ByLayer"
; Thickness = 0.0
; Visible = -1
T

Determines if an object supports a particular method

(vlax-method-applicable-p objmethod)

Arguments

obj
A VLA-object.

method
A symbol or string containing the name of the method to be checked.

Return Values

T, if the object supports the method; otherwise nil.

Examples

The following commands are issued against a LightweightPolyline object:

_$ (vlax-method-applicable-p WhatsMyLine 'copy)
T
_$ (vlax-method-applicable-p WhatsMyLine 'AddBox)
nil

See Also

The vlax-property-available-p function.

AutoLISP Functions

vlax-method-applicable-p

Page 306 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Determines if an object has been released

(vlax-object-released-p obj)

Note Erasing a VLA-object (using command ERASE or vla-erase) does not release the object. A VLA-
object is not released until you invoke vlax-release-object on the object, or normal AutoLISP garbage
collection occurs, or the drawing database is destroyed at the end of the drawing session.

Arguments

obj
A VLA-object.

Return Values

T, if the object is released (no AutoCAD drawing object is attached to obj); nil if the object has not been
released.

Examples

Attach a Microsoft Excel application to the current AutoCAD drawing:

_$ (setq excelobj (vlax-get-object "Excel.Application"))
#<VLA-OBJECT _Application 00168a54>

Release the Excel object:

_$ (vlax-release-object excelobj)
1

Issue vlax-object-released-p to verify the object was released:

_$ (vlax-object-released-p excelobj)
T

AutoLISP Functions

vlax-object-released-p

Returns the AutoCAD Windows registry path

(vlax-product-key)

AutoLISP Functions

vlax-product-key

Page 307 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The AutoCAD registry path can be used to register an application for demand loading.

Return Values

A string containing the AutoCAD registry path.

Examples

_$ (vlax-product-key)
"Software\\Autodesk\\AutoCAD\\R15.0\\ACAD-1:409"

Determines if an object has a specified property

(vlax-property-available-p obj prop [check-modify])

Arguments

obj
A VLA-object.

property
A symbol or string naming the property to be checked.

check-modify
If T is specified for this argument, vlax-property-available-p also checks that the property can be
modified.

Return Values

T, if the object has the specified property; otherwise nil. If T is specified for the check-modify argument,
vlax-property-available-p returns nil if either the property is not available or the property cannot be
modified.

Examples

The following examples apply to a LightweightPolyline object:

_$ (vlax-property-available-p WhatsMyLine 'Color)
T
_$ (vlax-property-available-p WhatsMyLine 'center)
nil

The following examples apply to a Circle object:

_$ (vlax-property-available-p myCircle 'area)
T

AutoLISP Functions

vlax-property-available-p

Page 308 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Note how supplying the optional third argument changes the result:

_$ (vlax-property-available-p myCircle 'area T)
nil

The function returns nil because, although the circle has an “area” property, that property cannot be
modified.

See Also

The vlax-method-applicable-p and vlax-put-property functions.

Sets the property of an ActiveX object

(vlax-put-property obj property arg)

This function was formerly known as vlax-put.

Arguments

obj
A VLA-object.

property
A symbol or string naming the property to be set.

arg
The value to be set.

Return Values

Nil, if successful.

Examples

Color an object red:

_$ (vlax-put-property vlaobj 'Color 1)
nil

See Also

The vlax-get-property and vlax-property-available-p functions.

AutoLISP Functions

vlax-put-property

Page 309 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Determines if an object can be read

(vlax-read-enabled-p obj)

Arguments

obj
A VLA-object.

Return Values

T, if the object is readable; otherwise nil.

AutoLISP Functions

vlax-read-enabled-p

Releases a drawing object

(vlax-release-object obj)

When an AutoLISP routine no longer uses an object outside AutoCAD, such as a Microsoft Excel object, call
the (vlax-release-object) function to make sure that the associated application closes properly.
Objects released with (vlax-release-object...) may not be released immediately. The actual release
may not happen until the next automatic garbage collection occurs. You can call (gc) directly to force the
garbage collection to occur at a specific location within your code. However, calling (gc) may degrade
performance, and it is recommended that you avoid placing calls to (gc) in locations where it is likely to be
called many times in a row, such as within loops.

If an object-associated application does not close after calling the (gc) function, the (vlax-release-
object) function was not called for all objects outside AutoCAD.

Arguments

obj
A VLA-object.

After release, the drawing object is no longer accessible through obj.

AutoLISP Functions

vlax-release-object

Page 310 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Return Values

Unspecified.

Removes a single command or a command group

(vlax-remove-cmd global-name)

Removes a single command or the whole command group for the current AutoCAD session.

Arguments

global-name
Either a string naming the command, or T. If global-name is T, the whole command group VLC-AppName
(for example, VLC-VLIDE) is deleted.

Return Values

T, if successful; otherwise nil (for example, the command is not defined).

Examples

Remove a command defined with vlax-add-cmd:

_$ (vlax-remove-cmd "hello-autocad")
T

Repeat the vlax-remove-cmd:

_$ (vlax-remove-cmd "hello-autocad")
nil

This time vlax-remove-cmd returns nil, because the specified command does not exist anymore.

See Also

The vlax-add-cmd function.

AutoLISP Functions

vlax-remove-cmd

AutoLISP Functions

Page 311 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Stores data in the elements of a safearray

(vlax-safearray-fill var 'element-values)

Arguments

var
A variable whose data type is a safearray.

'element-values
A list of values to be stored in the array. You can specify as many values as there are elements in the
array. If you specify fewer values than there are elements, the remaining elements retain their current
value.

For multi-dimension arrays, element-values must be a list of lists, with each list corresponding to a
dimension of the array.

Return Values

var

Examples

Create a single-dimension array of doubles:

_$ (setq sa (vlax-make-safearray vlax-vbdouble '(0 . 2)))
#<safearray...>

Use vlax-safearray-fill to populate the array:

_$ (vlax-safearray-fill sa '(1 2 3))
#<safearray...>

List the contents of the array:

_$ (vlax-safearray->list sa)
(1.0 2.0 3.0)

Use vlax-safearray-fill to set the first element in the array:

_$ (vlax-safearray-fill sa '(-66))
#<safearray...>

List the contents of the array:

_$ (vlax-safearray->list sa)
(-66.0 2.0 3.0)

Notice that only the first element in the array has been changed; the remaining elements are unaffected and
retain the value you previously set them to. If you need to change the second or third element and leave the
first element unaffected, use vlax-put-element.

vlax-safearray-fill

Page 312 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Instruct vlax-safearray-fill to set four elements in an array that contains only three elements:

_$ (vlax-safearray-fill sa '(1 2 3 4))
Error: Assertion failed: safearray-fill failed. Too many elements.

The vlax-safearray-fill function returns an error if you specify more elements than the array
contains.

To assign values to a multi-dimensional array, specify a list of lists to vlax-safearray-fill, with each
list corresponding to a dimension. The following command creates a two-dimension array of strings
containing three elements in each dimension:

_$ (setq mat2 (vlax-make-safearray vlax-vbString '(0 . 1) '(1 . 3)))
#<safearray...>

Use vlax-safearray-fill to populate the array:

_$ (vlax-safearray-fill mat2 '(("a" "b" "c") ("d" "e" "f")))
#<safearray...>

Call the vlax-safearray->list function to confirm the contents of mat2:

_$ (vlax-safearray->list mat2)
(("a" "b" "c") ("d" "e" "f"))

See Also

The vlax-make-safearray, vlax-safearray-get-dim, vlax-safearray-get-element, vlax-safearray-get-l-bound, vlax-
safearray-get-u-bound, vlax-safearray-put-element, vlax-safearray-type, vlax-safearray->list, and vlax-variant-
value functions.

Returns the number of dimensions in a safearray object

(vlax-safearray-get-dim var)

Arguments

var
A variable whose data type is a safearray.

Return Values

An integer identifying the number of dimensions in var. An error occurs if var is not a safearray.

AutoLISP Functions

vlax-safearray-get-dim

Page 313 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

Set sa-int to a single-dimension safearray with one dimension:

_$ (setq sa-int (vlax-make-safearray vlax-vbinteger '(1 . 4)))
#<safearray...>

Use vlax-safearray-get-dim to return the number of dimensions in sa-int:

_$ (vlax-safearray-get-dim sa-int)
1

See Also

The vlax-make-safearray, vlax-safearray-get-l-bound, and vlax-safearray-get-u-bound functions.

Returns an element from an array

(vlax-safearray-get-element var element...)

Arguments

var
A variable whose data type is a safearray.

element...
Integers specifying the indexes of the element to be retrieved. For an array with one dimension, specify a
single integer. For multi-dimension arrays, specify as many indexes as there are dimensions.

Return Values

The value of the element.

Examples

Create an array with two dimensions, each dimension starting at index 1:

_$ (setq matrix (vlax-make-safearray vlax-vbString '(1 . 2) '(1 . 2)))
#<safearray...>

Use vlax-safearray-put-element to populate the array:

_$ (vlax-safearray-put-element matrix 1 1 "a")
"a"

AutoLISP Functions

vlax-safearray-get-element

Page 314 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

_$ (vlax-safearray-put-element matrix 1 2 "b")
"b"
_$ (vlax-safearray-put-element matrix 2 1 "c")
"c"
_$ (vlax-safearray-put-element matrix 2 2 "d")
"d"

Use vlax-safearray-get-element to retrieve the second element in the first dimension of the array:

_$ (vlax-safearray-get-element matrix 1 2)
"b"

See Also

The vlax-make-safearray, vlax-safearray-get-dim, vlax-safearray-get-l-bound, vlax-safearray-get-u-bound, and
vlax-safearray-put-element functions.

Returns the lower boundary (starting index) of a dimension of an array

(vlax-safearray-get-l-bound var dim)

Arguments

var
A variable whose data type is a safearray.

dim
A dimension of the array. The first dimension is dimension 1.

Return Values

An integer representing the lower boundary (starting index) of the dimension. If var is not an array, or dim is
invalid (for example, 0, or a number greater than the number of dimensions in the array), an error results.

Examples

The following examples evaluate a safearray defined as follows:

(vlax-make-safearray vlax-vbString '(1 . 2) '(0 . 1)))

Get the starting index value of the array's first dimension:

_$ (vlax-safearray-get-l-bound tmatrix 1)
1

AutoLISP Functions

vlax-safearray-get-l-bound

Page 315 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The first dimension starts with index 1.

Get the starting index value of the second dimension of the array:

_$ (vlax-safearray-get-l-bound tmatrix 2)
0

The second dimension starts with index 0.

See Also

The vlax-make-safearray, vlax-safearray-get-dim, and vlax-safearray-get-u-bound functions.

Returns the upper boundary (end index) of a dimension of an array

(vlax-safearray-get-u-bound var dim)

Arguments

var
A variable whose data type is a safearray.

dim
A dimension of the array. The first dimension is dimension 1.

Return Values

An integer representing the upper boundary (end index) of the dimension. If var is not an array, or dim is
invalid (for example, 0, or a number greater than the number of dimensions in the array), an error results.

Examples

The following examples evaluate a safearray defined as follows:

(vlax-make-safearray vlax-vbString '(1 . 2) '(0 . 1)))

Get the end index value of the array's first dimension:

_$ (vlax-safearray-get-u-bound tmatrix 1)
2

The first dimension ends with index 2.

Get the end index value of the second dimension of the array:

AutoLISP Functions

vlax-safearray-get-u-bound

Page 316 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

_$ (vlax-safearray-get-u-bound tmatrix 2)
1

The second dimension starts with index 1.

See Also

The vlax-make-safearray, vlax-safearray-get-dim, and vlax-safearray-get-l-bound functions.

Adds an element to an array

(vlax-safearray-put-element var index... value)

Arguments

var
A variable whose data type is a safearray.

index...
A set of index values pointing to the element you are assigning a value to. For a single-dimension array,
specify one index value; for a two-dimension array, specify two index values, and so on.

value
The value to assign the safearray element.

Return Values

The value assigned to the element.

Examples

Create a single-dimension array consisting of doubles:

_$ (setq point (vlax-make-safearray vlax-vbDouble '(0 . 2)))
#<safearray...>

Use vlax-safearray-put-element to populate the array:

_$ (vlax-safearray-put-element point 0 100)
100
_$ (vlax-safearray-put-element point 1 100)
100
_$ (vlax-safearray-put-element point 2 0)
0

AutoLISP Functions

vlax-safearray-put-element

Page 317 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Create a two-dimension array consisting of strings:

_$ (setq matrix (vlax-make-safearray vlax-vbString '(1 . 2) '(1 . 2)))
#<safearray...>

Use vlax-safearray-put-element to populate the array:

_$ (vlax-safearray-put-element matrix 1 1 "a")
"a"
_$ (vlax-safearray-put-element matrix 1 2 "b")
"b"
_$ (vlax-safearray-put-element matrix 2 1 "c")
"c"
_$ (vlax-safearray-put-element matrix 2 2 "d")
"d"

Note that you can also populate arrays using the vlax-safearray-fill function. The following function
call accomplishes the same task as three vlax-safearray-put-element calls:

(vlax-safearray-fill matrix '(("a" "b") ("c" "d")))

See Also

The vlax-safearray-get-element, vlax-safearray-fill, and vlax-safearray-type functions.

Returns the data type of a safearray

(vlax-safearray-type var)

Arguments

var
A variable containing a safearray.

Return Values

If var contains a safearray, one of the following integers is returned:

2 Integer (vlax-vbInteger)

3 Long integer (vlax-vbLong)

4 Single-precision floating-point number (vlax-vbSingle)

AutoLISP Functions

vlax-safearray-type

Page 318 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

5 Double-precision floating-point number (vlax-vbDouble)

8 String (vlax-vbString)

9 Object (vlax-vbObject)

11 Boolean (vlax-vbBoolean)

12 Variant (vlax-vbVariant)

If var does not contain a safearray, an error results.

Examples

Create a single-dimension array of doubles and a two-dimension array of strings:

_$ (setq point (vlax-make-safearray vlax-vbDouble '(0 . 2)))
#<safearray...>
_$ (setq matrix (vlax-make-safearray vlax-vbString '(1 . 2) '(1 . 2)))
#<safearray...>

Use vlax-safearray-type to verify the data type of the safearrays:

_$ (vlax-safearray-type point)
5
_$ (vlax-safearray-type matrix)
8

See Also

The vlax-make-safearray function.

Returns the elements of a safearray in list form

(vlax-safearray->list var)

Arguments

var
A variable containing a safearray.

Return Values

AutoLISP Functions

vlax-safearray->list

Page 319 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A list.

Examples

Create a single-dimension array of doubles:

_$ (setq point (vlax-make-safearray vlax-vbDouble '(0 . 2)))
#<safearray...>

Use vlax-safearray-put-element to populate the array:

_$ (vlax-safearray-put-element point 0 100)
100
_$ (vlax-safearray-put-element point 1 100)
100
_$ (vlax-safearray-put-element point 2 0)
0

Convert the array to a list:

_$ (setq pointlist (vlax-safearray->list point))
(100.0 100.0 0.0)

The following example demonstrates how a two-dimension array of strings is displayed by vlax-
safearray->list:

_$ (vlax-safearray->list matrix)
(("a" "b") ("c" "d"))

See Also

The vlax-make-safearray, vlax-safearray-fill, and vlax-safearray-put-element functions.

Returns a suitable representation for a 4 x 4 transformation matrix to be used in VLA methods

(vlax-tmatrix list)

Arguments

list
A list of four lists, each containing four numbers, representing transformation matrix elements.

Return Values

AutoLISP Functions

vlax-tmatrix

Page 320 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

A variant of type safearray, representing the 4×4 transformation matrix.

Examples

Define a transformation matrix and assign its value to variable tmatrix:

_$ (setq tmatrix (vlax-tmatrix '((1 1 1 0) (1 2 3 0) (2 3 4 5) (2 9 8 3))))
#<variant 8197 ...>

Use vlax-safearray->list to view the value of tmatrix in list form:

_$ (vlax-safearray->list (vlax-variant-value tmatrix))
((1.0 1.0 1.0 0.0) (1.0 2.0 3.0 0.0) (2.0 3.0 4.0 5.0) (2.0 9.0 8.0 3.0))

The following code example creates a line and rotates it 90 degrees using a transformation matrix:

(defun Example_TransformBy () ; / lineObj startPt endPt matList transMat)
(vl-load-com) ; Load ActiveX support
(setq acadObject (vlax-get-acad-object))
(setq acadDocument (vla-get-ActiveDocument acadObject))
(setq mSpace (vla-get-ModelSpace acadDocument))
;; Create a line
 (setq startPt (getpoint "Pick the start point"))
 (setq endPt (vlax-3d-point (getpoint startPt "Pick the end point")))
 (setq lineObj (vla-addline mSpace (vlax-3d-point startPt) endPt))
;;; Initialize the transMat variable with a transformation matrix
;;; that will rotate an object by 90 degrees about the point(0,0,0).
;;; Begin by Creating a list of four lists, each containing four
;;; numbers, representing transformation matrix elements.
 (setq matList (list '(0 -1 0 0) '(1 0 0 0) '(0 0 1 0) '(0 0 0 1)))
;;; Use vlax-tmatrix to convert the list to a variant.
 (setq transmat (vlax-tmatrix matlist))
;;; Transform the line using the defined transformation matrix
 (vla-transformby lineObj transMat)
 (vla-zoomall acadObject)
 (princ "The line is transformed ")
 (princ)
)

Determines whether TypeLib information is present for the specified type of object

Visual LISP requires TypeLib information to determine whether a method or property is available for an
object. Some objects may not have TypeLib information (for example, AcadDocument).

(vlax-typeinfo-available-p obj)

AutoLISP Functions

vlax-typeinfo-available-p

Page 321 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

obj
A VLA-object.

Return Values

T, if TypeLib information is available; otherwise nil.

See Also

The vlax-import-type-library function.

Returns the value of a variant after changing it from one data type to another

(vlax-variant-change-type var type)

The vlax-variant-change-type function returns the value of the specified variable after converting that
value to the specified variant type.

Arguments

var
A variable whose value is a variant.

type
The type of variant to return, using the value of var (the value of var is unchanged). The type value can be
represented by one of the following constants:

vlax-vbEmpty (0) Uninitialized

vlax-vbNull (1) Contains no valid data

vlax-vbInteger (2) Integer

vlax-vbLong (3) Long integer

vlax-vbSingle (4) Single-precision floating-point number

vlax-vbDouble (5) Double-precision floating-point number

vlax-vbString (8) String

vlax-vbObject (9) Object

vlax-vbBoolean (11) Boolean

vlax-vbArray (8192) Array

The integer shown in parentheses indicates the value to which the constant evaluates. It is recommended
that you specify the constant in your argument, not the integer value, in case the value changes in later

AutoLISP Functions

vlax-variant-change-type

Page 322 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

releases of AutoCAD.

Return Values

The value of var, after converting it to the specified variant type; otherwise nil, if var could not be converted
to the specified type.

Examples

Set a variable named varint to a variant value:

_$ (setq varint (vlax-make-variant 5))
#<variant 3 5>

Set a variable named varintstr to the value contained in varint, but convert that value to a string:

_$ (setq varintStr (vlax-variant-change-type varint vlax-vbstring))
#<variant 8 5>

Check the value of varintstr:

_$ (vlax-variant-value varintStr)
"5"

This confirms that varintstr contains a string.

See Also

The vlax-variant-type and vlax-variant-value functions.

Determines the data type of a variant

(vlax-variant-type var)

Arguments

var
A variable whose value is a variant.

Return Values

If var contains a variant, one of the following integers is returned:

AutoLISP Functions

vlax-variant-type

Page 323 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

0 Uninitialized (vlax-vbEmpty)

1 Contains no valid data (vlax-vbNull)

2 Integer (vlax-vbInteger)

3 Long integer (vlax-vbLong)

4 Single-precision floating-point number (vlax-vbSingle)

5 Double-precision floating-point number (vlax-vbDouble)

8 String (vlax-vbString)

9 Object (vlax-vbObject)

11 Boolean (vlax-vbBoolean)

8192 + n Safearray (vlax-vbArray) of some data type. For example, an array of doubles (vlax-
vbDouble) returns 8197 (8192 + 5).

If var does not contain a variant, an error results.

Examples

Set a variant to nil and display the variant's data type:

_$ (setq varnil (vlax-make-variant nil))
#<variant 0 >
_$ (vlax-variant-type varnil)
0

Set a variant to an integer value and explicitly define the variant as an integer data type:

_$ (setq varint (vlax-make-variant 5 vlax-vbInteger))
#<variant 2 5>
_$ (vlax-variant-type varint)
2

Set a variant to an integer value and display the variant's data type:

_$ (setq varint (vlax-make-variant 5))
#<variant 3 5>
_$ (vlax-variant-type varint)
3

Notice that without explicitly defining the data type to vlax-variant-variant, an integer assignment results in
a Long integer data type.

Set a variant to a string and display the variant's data type:

_$ (setq varstr (vlax-make-variant "ghost"))
#<variant 8 ghost>

Page 324 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

_$ (vlax-variant-type varstr)
8

Create a safearray of doubles, assign the safearray to a variant, and display the variant's data type:

_$ (setq 4dubs (vlax-make-safearray vlax-vbDouble '(0 . 3)))
#<safearray...>
_$ (setq var4dubs (vlax-make-variant 4dubs))
#<variant 8197 ...>
_$ (vlax-variant-type var4dubs)
8197

A variant type value greater than 8192 indicates that the variant contains some type of safearray. Subtract
8192 from the return value to determine the data type of the safearray. In this example, 8197-8192=5
(vlax-vbDouble).

Assign a real value to a variable, then issue vlax-variant-type to check the variable's data type:

_$ (setq notvar 6.0)
6.0
_$ (vlax-variant-type notvar)
; *** ERROR: bad argument type: variantp 6.0

This last example results in an error, because the variable passed to vlax-variant-type does not
contain a variant.

See Also

The vlax-make-safearray, vlax-make-variant, vlax-variant-change-type, and vlax-variant-value functions.

Returns the value of a variant

(vlax-variant-value var)

Arguments

var
A variable whose value is a variant.

Return Values

The value of the variable. If the variable does not contain a variant, an error occurs.

AutoLISP Functions

vlax-variant-value

Page 325 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

_$ (vlax-variant-value varstr)
"ghost"
_$ (vlax-variant-value varint)
5
_$ (vlax-variant-value notvar)
; *** ERROR: bad argument type: variantp 6.0

The last example results in an error, because notvar does not contain a variant.

See Also

The vlax-make-safearray and vlax-make-variant functions.

Transforms a VLA-object to an AutoLISP entity

(vlax-vla-object->ename obj)

Arguments

obj
A VLA-object.

Return Values

An AutoLISP entity name (ename data type).

Examples

_$ (vlax-vla-object->ename vlaobj)
<Entity name: 27e0540>

See Also

The vlax-ename->vla-object function.

AutoLISP Functions

vlax-vla-object->ename

AutoLISP Functions

Page 326 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Determines if an AutoCAD drawing object can be modified

(vlax-write-enabled-p obj)

Arguments

obj
A VLA-object or AutoLISP entity object (ename).

Return Values

T, if the AutoCAD drawing object can be modified, nil if the object cannot be modified.

vlax-write-enabled-p

Compiles AutoLISP source code into a FAS file

(vlisp-compile 'mode filename [out-filename])

Note The Visual LISP IDE must be open in order for vlisp-compile to work.

Arguments

mode
The compiler mode, which can be one of the following symbols:

st Standard build mode

lsm Optimize and link indirectly

lsa Optimize and link directly
filename

A string identifying the AutoLISP source file. If the source file is in the AutoCAD support file search path,
you can omit the path when specifying the file name. If you omit the file extension, .lspis assumed.

out-filename
A string identifying the compiled output file. If you do not specify an output file, vlisp-compile names
the output with the same name as the input file, but replaces the extension with .fas.

Note that if you specify an output file name but do not specify a path name for either the input or the
output file, vlisp-compile places the output file in the AutoCAD installation directory.

Return Values

T, if compilation is successful; otherwise nil.

AutoLISP Functions

vlisp-compile

Page 327 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

Assuming that yinyang.lsp resides in a directory that is in the AutoCAD support file search path, the
following command compiles this program:

_$ (vlisp-compile
'st "yinyang.lsp")
T

The output file is named yinyang.fas and resides in the same directory as the source file.

The following command compiles yinyang.lsp and names the output file GoodKarma.fas:

(vlisp-compile 'st "yinyang.lsp" "GoodKarma.fas")

Note that the output file from the previous command resides in the AutoCAD installation directory, not the
directory where yinyang.lsp resides. The following command compiles yinyang.lsp and directs the output file
to the c:\my documents directory:

(vlisp-compile
'st "yinyang.lsp" "c:/my documents/GoodKarma")

This last example identifies the full path of the file to be compiled:

(vlisp-compile
'st "c:/program files/<AutoCAD installation directory>/Sample/yinyang.lsp")

The output file from this command is named yinyang.fas and resides in the same directory as the input file.

See Also

The Compiling a Program from a File topic in the AutoLISP Developer's Guide.

Constructs a reactor object that notifies when an object is added to, modified in, or erased from a drawing database

The vlr-acdb-reactor function constructs a database reactor object.

(vlr-acdb-reactor data callbacks)

Arguments

data
Any AutoLISP data to be associated with a reactor object; otherwise nil, if no data.

AutoLISP Functions

vlr-acdb-reactor

Page 328 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “Database reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function

obj The database object (AutoLISP entity) associated with the event

Database reactor events
Name Event
:vlr-objectAppended An object has been appended to the drawing database.

:vlr-objectUnAppended An object has been detached from the drawing database, e.g., by using UNDO.

:vlr-objectReAppended A detached object has been restored in the drawing database, e.g., by using REDO.

:vlr-objectOpenedForModify An object is about to be changed.

:vlr-objectModified An object has been changed.

:vlr-objectErased An object has been flagged as being erased.

:vlr-objectUnErased An object's erased-flag has been removed.

Enables a disabled reactor object

(vlr-add obj)

Arguments

obj
A VLR object representing the reactor to be enabled.

Return Values

The obj argument.

See Also

The vlr-added-p and vlr-remove functions.

AutoLISP Functions

vlr-add

AutoLISP Functions

Page 329 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Tests to determine if a reactor object is enabled

(vlr-added-p obj)

Arguments

obj
A VLR object representing the reactor to be tested.

Return Values

T if the specified reactor is enabled; otherwise nil if the reactor is disabled.

See Also

The vlr-add function.

vlr-added-p

Produces a beep sound

(vlr-beep-reaction [args])

Arguments

This is a predefined callback function that accepts a variable number of arguments, depending on the
reactor type. The function can be assigned to an event handler for debugging.

AutoLISP Functions

vlr-beep-reaction

Constructs an editor reactor that notifies of a command event

(vlr-command-reactor data callbacks)

AutoLISP Functions

vlr-command-reactor

Page 330 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data is to be associated
with the reactor.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “Command reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list containing a single element, the string identifying the command.

Return Values

The reactor_object argument.

Command reactor events
Event name Description
:vlr-unknownCommand A command not known to AutoCAD was issued.

:vlr-commandWillStart An AutoCAD command has been called.

:vlr-commandEnded An AutoCAD command has completed.

:vlr-commandCancelled An AutoCAD command has been canceled.

:vlr-commandFailed An AutoCAD command failed to complete.

Returns the name (symbol) of the current event, if called from within a reactor's callback

(vlr-current-reaction-name)

Return Values

A symbol indicating the event that triggered the reactor.

AutoLISP Functions

vlr-current-reaction-name

AutoLISP Functions

Page 331 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns application-specific data associated with a reactor

(vlr-data obj)

Arguments

obj
A VLR object representing the reactor object from which to extract data.

Return Values

The application-specific data obtained from the reactor object.

Examples

The following example obtains a string associated with the circleReactor VLR object:

_$ (vlr-data circleReactor)
"Circle Reactor"

vlr-data

Overwrites application-specific data associated with a reactor

(vlr-data-set objdata)

Note The vlr-data-set function should be used with care to avoid creation of circular structures.

Arguments

obj
A VLR object representing the reactor object whose data is to be overwritten.

data
Any AutoLISP data.

Return Values

The data argument.

Examples

Return the application-specific data value attached to a reactor:

AutoLISP Functions

vlr-data-set

Page 332 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

_$ (vlr-data circleReactor)
"Circle Reactor"

Replace the text string used to identify the reactor:

_$ (vlr-data-set circleReactor "Circle Area Reactor")
"Circle Area Reactor"

Verify the change:

_$ (vlr-data circleReactor)
"Circle Area Reactor"

Constructs an editor reactor object that notifies of a deep clone event

(vlr-deepclone-reactor datacallbacks)

Arguments

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “DeepClone reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the “DeepClone reactor callback data” table.

Return Values

The reactor_object argument.

AutoLISP Functions

vlr-deepclone-reactor

DeepClone reactor events
Event name Description
:vlr-beginDeepClone A deep clone operation is beginning.

:vlr-
beginDeepCloneXlation

A deep clone operation has two stages. First, each object and any owned objects are
cloned. Second, any object ID references are translated to their cloned IDs. This
callback occurs between these two stages.

:vlr-abortDeepClone A deep clone operation is aborting.

Page 333 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

:vlr-endDeepClone A deep clone operation is ending.

DeepClone reactor callback data
Name List

length
Parameters

:vlr-beginDeepClone
:vlr-abortDeepClone
:vlr-endDeepClone

0

:vlr-
beginDeepCloneXlation

1 An integer containing the return error status; if this value indicates an error,
the deep clone operation is terminated

Constructs a reactor object that notifies of events relating to drawing documents

(vlr-docmanager-reactor data callbacks)

Arguments

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “DocManager reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the “DocManager reactor callback data” table.

Return Values

The reactor_object argument.

AutoLISP Functions

vlr-docmanager-reactor

DocManager reactor events
Event name Description
:vlr-documentCreated A new document was created for a drawing (new or open).

Useful for updating your per-document structures.

:vlr-documentToBeDestroyed A document will be destroyed.

:vlr-documentLockModeWillChange A command is about to start or finish modifying elements in the document,
and is obtaining or releasing a lock on the document.

Page 334 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

:vlr-
documentLockModeChangeVetoed

A reactor invoked veto on itself from a :vlr-documentLockModeChanged
callback.

:vlr-documentLockModeChanged The lock on the document has been obtained or released.

:vlr-documentBecameCurrent The current document has been changed.
This does not necessarily imply that the document has been activated,
because changing the current document is necessary for some operations.
To obtain user input, the document must be activated as well.

:vlr-documentToBeActivated A currently inactive document has just received the activate signal, implying
that it is about to become the current document.

:vlr-documentToBeDeactivated Another window (inside or outside of AutoCAD) has been activated.

DocManager reactor callback data
Name List

length
Parameters

:vlr-documentCreated
:vlr-documentToBeDestroyed
:vlr-documentBecameCurrent
:vlr-documentToBeActivated
:vlr-documentToBeDeactivated

1 The affected document object (VLA-object).

:vlr-
documentLockModeChangeVetoed

2 First parameter is the affected document object (VLA-object).
Second parameter is the global command string passed in for the
lock request. If the callback is being made on behalf of an unlock
request, the string will be prefixed with “#”.

:vlr-documentLockModeWillChange
:vlr-documentLockModeChanged

5 First parameter is the affected document object (VLA-object).
Second parameter is an integer indicating the lock currently in
effect for the document object.
Third parameter is an integer indicating the lock mode that will be
in effect after the lock is applied.
Fourth parameter is the strongest lock mode from all other
execution contexts.
Fifth parameter is the global command string passed in for the lock
request. If the callback is being made on behalf of an unlock
request, the string will be prefixed with “#”.
Lock modes may be any of the following:
1—Auto Write Lock
2—Not Locked
4—Shared Write
8—Read
10—Exclusive Write

Constructs an editor reactor object that notifies of a drawing event (for example, opening or closing a drawing file)

(vlr-dwg-reactor data callbacks)

AutoLISP Functions

vlr-dwg-reactor

Page 335 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “DWG reactor events” table below, and
callback_function is a symbol representing a function to be called when the event occurs. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the “DWG reactor callback data” table.

Return Values

The reactor_object argument.

DWG reactor events
Event name Description
:vlr-beginClose The drawing database is to be closed.

:vlr-databaseConstructed A drawing database has been constructed.

:vlr-databaseToBeDestroyed The contents of the drawing database are about to be deleted from memory.

vlr-beginDwgOpen AutoCAD is about to open a drawing file.

:vlr-endDwgOpen AutoCAD has ended the open operation.

:vlr-dwgFileOpened A new drawing has been loaded into the AutoCAD window.

vlr-beginSave AutoCAD is about to save the drawing file.

vlr-saveComplete AutoCAD has saved the current drawing to disk.

DWG reactor callback data
Name List

length
Parameters

:vlr-beginClose
:vlr-databaseConstructed
:vlr-
databaseToBeDestroyed

0

:vlr-beginDwgOpen
:vlr-endDwgOpen
:vlr-dwgFileOpened

1 A string identifying the file to open.

:vlr-beginSave 1 A string containing the default file name for save; may be changed by the
user.

:vlr-saveComplete 1 A string containing the actual file name used for the save.

AutoLISP Functions

Page 336 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Constructs an editor reactor object that notifies of an event related to reading or writing a DXF file

(vlr-dxf-reactor datacallbacks)

Arguments

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “DXF reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the “DXF reactor callback data” table.

Return Values

The reactor_object argument.

vlr-dxf-reactor

DXF reactor events
Event name Description
:vlr-beginDxfIn The contents of a DXF file are to be appended to the drawing database.

:vlr-abortDxfIn The DXF import was not successful.

:vlr-dxfInComplete The DXF import was successful.

:vlr-beginDxfOut AutoCAD is about to export the drawing database into a DXF file.

:vlr-abortDxfOut The DXF export operation failed.

:vlr-dxfOutComplete The DXF export operation was successful.

DXF reactor callback data
Name List length
:vlr-beginDxfIn
:vlr-abortDxfIn
:vlr-dxfInComplete,
:vlr-beginDxfOut
:vlr-abortDxfOut
:vlr-dxfOutComplete

0

AutoLISP Functions

Page 337 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Constructs an editor reactor object

(vlr-editor-reactor data callbacks)

Arguments

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “Editor reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the “Editor reactor callback data” table.

Return Values

The reactor_object argument.

vlr-editor-reactor

Editor reactor events
Event name Description
:vlr-beginClose The drawing database is to be closed.

:vlr-beginDxfIn The contents of a DXF file are to be appended to the drawing database.

:vlr-abortDxfIn The DXF import was not successful.

:vlr-dxfInComplete The DXF import completed successfully.

:vlr-beginDxfOut AutoCAD is about to export the drawing database into a DXF file.

:vlr-abortDxfOut DXF export operation failed.

:vlr-dxfOutComplete DXF export operation completed successfully.

:vlr-databaseToBeDestroyed The contents of the drawing database are about to be deleted from memory.

:vlr-unknownCommand A command not known to AutoCAD was issued.

:vlr-commandWillStart An AutoCAD command has been called.

vlr-commandEnded An AutoCAD command has completed.

:vlr-commandCancelled An AutoCAD command has been canceled.

:vlr-commandFailed An AutoCAD command failed to complete.

:vlr-lispWillStart An AutoLISP expression is to be evaluated.

:vlr-lispEnded Evaluation of an AutoLISP expression has completed.

:vlr-lispCancelled Evaluation of an AutoLISP expression has been canceled.

:vlr-beginDwgOpen AutoCAD is about to open a drawing file.

:vlr-endDwgOpen AutoCAD has ended the open operation.

Page 338 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

:vlr-dwgFileOpened A new drawing has been loaded into the AutoCAD window.

:vlr-beginSave AutoCAD is about to save the drawing file.

:vlr-saveComplete AutoCAD has saved the current drawing to disk.

:vlr-sysVarWillChange AutoCAD is about to change the value of a system variable.

:vlr-sysVarChanged The value of a system variable has changed.

Editor reactor callback data
Name List

length
Parameters

:vlr-lispEnded
:vlr-lispCancelled
:vlr-beginClose
:vlr-beginDxfIn
:vlr-abortDxfIn
:vlr-dxfInComplete
:vlr-beginDxfOut
:vlr-abortDxfOut
:vlr-dxfOutComplete
:vlr-
databaseToBeDestroyed

0

:vlr-unknownCommand
:vlr-commandWillStart
:vlr-commandEnded
:vlr-commandCancelled
:vlr-commandFailed

1 A string containing the command name.

:vlr-lispWillStart 1 A string containing the first line of the AutoLISP expression to evaluate.

:vlr-beginDwgOpen
:vlr-endDwgOpen
:vlr-dwgFileOpened

1 A string identifying the file to open.

:vlr-beginSave 1 A string containing the default file name for save; this may be changed by
the user.

:vlr-saveComplete 1 A string identifying the actual file name used for the save.

:vlr-sysVarWillChange 1 A string naming the system variable.

:vlr-sysVarChanged 2 First parameter is a string naming the system variable.
Second parameter is an integer indicating whether the change was
successful (1 = success, 0 = failed).

Constructs an editor reactor object that notifies of an event related to block insertion

(vlr-insert-reactor data callbacks)

AutoLISP Functions

vlr-insert-reactor

Page 339 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “Insert reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events is shown in the “Insert reactor callback data” table.

Return Values

The reactor_object argument.

Insert reactor events
Event name Description
:vlr-
beginInsert

A block is about to be inserted into the drawing database.

:vlr-
beginInsertM

A 3D transformation matrix is about to be inserted into the drawing database.

:vlr-
otherInsert

A block or matrix has been added to the drawing database. This notification is sent after the insert
process completes copying the object into the database, but before ID translation or entity
transformation occurs.

:vlr-endInsert Usually indicates an insert operation on the drawing database is complete. However, in some
cases, the transform has not yet happened, or the block that was created has not yet been
appended. This means the objects copied are not yet graphical, and you cannot use them in
selection sets until the :vlr-commandEnded notification is received.

:vlr-
abortInsert

Insert operation was terminated and did not complete, leaving the database in an unstable state.

Insert reactor callback data
Name List

length
Parameters

:vlr-beginInsert 3 First parameter is a VLA-object pointing to the database in which the block is being
inserted.
Second parameter is a string naming the block to be inserted.
Third parameter is a VLA-object identifying the source database of the block.

:vlr-
beginInsertM

3 First parameter is a VLA-object pointing to the database in which the 3D
transformation matrix is being inserted.
Second parameter is the 3D transformation matrix to be inserted.
Third parameter is a VLA-object identifying the source database of the matrix.

:vlr-otherInsert 2 First parameter is a VLA-object pointing to the database in which the block or matrix is
being inserted.
Second parameter is a VLA-object identifying the source database of the block or
matrix.

:vlr-endInsert
:vlr-abortInsert

1 VLA-object pointing to target database.

Page 340 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Constructs a reactor object that notifies your application every time an ObjectARX application is loaded or unloaded

(vlr-linker-reactor data callbacks)

Arguments

data
Any AutoLISP data to be associated with the reactor object.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “Linker reactor events” table, and callback_function
is a symbol representing a function to be called when the event fires. Each callback function accepts two
arguments:

reactor_object The VLR object that called the callback function.

list A list containing the name of the ObjectARX program that was loaded or unloaded (a string).

Return Values

The reactor_object argument.

Examples

_$ (vlr-linker-reactor nil
 '((:vlr-rxAppLoaded . my-vlr-trace-reaction)))
#<VLR-Linker-Reactor>

AutoLISP Functions

vlr-linker-reactor

Linker reactor events
Name Event
:vlr-rxAppLoaded The dynamic linker has loaded a new ObjectARX program. The program has finished its

initialization.

:vlr-
rxAppUnLoaded

The dynamic linker has unloaded an ObjectARX program. The program already has done its
clean-up.

AutoLISP Functions

vlr-lisp-reactor

Page 341 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Constructs an editor reactor object that notifies of a LISP event

(vlr-lisp-reactor data callbacks)

Arguments

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “Lisp reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the table Lisp reactor callback data” table.

Return Values

The reactor_object argument.

Lisp reactor events
Event name Description
:vlr-lispWillStart An AutoLISP expression is to be evaluated.

:vlr-lispEnded Evaluation of an AutoLISP expression has been completed.

:vlr-lispCancelled Evaluation of an AutoLISP expression has been canceled.

Lisp reactor callback data
Name List length Parameters
:vlr-lispEnded
:vlr-lispCancelled

0

:vlr-lispWillStart 1 A string containing the first line of the AutoLISP expression to evaluate.

Constructs an editor reactor object that does not fall under any other editor reactor types

(vlr-miscellaneous-reactor data callbacks)

Arguments

AutoLISP Functions

vlr-miscellaneous-reactor

Page 342 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “Miscellaneous reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the “Miscellaneous reactor callback data” table.

Return Values

The reactor_object argument.

Miscellaneous reactor events
Event name Description
:vlr-pickfirstModified The pickfirst selection set of the current document has been modified.

:vlr-layoutSwitched The layout was switched.

Miscellaneous reactor callback data
Name List length Parameters
:vlr-pickfirstModified 0

:vlr-layoutSwitched 1 A string naming the layout switched to.

Constructs an editor reactor object that notifies of a mouse event (for example, a double-click)

(vlr-mouse-reactor data callbacks)

Arguments

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “Mouse reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

AutoLISP Functions

vlr-mouse-reactor

Page 343 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the “Mouse reactor callback data” table.

Return Values

The reactor_object argument.

Mouse reactor events
Event name Description
:vlr-beginDoubleClick The user has double-clicked.

:vlr-beginRightClick The user has right-clicked.

Mouse reactor callback data
Name List length Parameters
:vlr-beginDoubleClick
:vlr-beginRightClick

1 A 3D point list (list of 3 reals) showing the point clicked on, in WCS.

Determines whether or not a reactor will fire if its associated namespace is not active

(vlr-notification reactor)

Arguments

reactor
A VLR object.

Return Values

A symbol, which can be either 'all-documents (the reactor fires whether or not its associated document
is active), or 'active-document-only (the reactor fires only if its associated document is active).

AutoLISP Functions

vlr-notification

Constructs a drawing object reactor object

(vlr-object-reactor owners data callbacks)

AutoLISP Functions

vlr-object-reactor

Page 344 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The reactor object is added to the drawing database, but does not become persistent.

Arguments

owners
An AutoLISP list of VLA-objects identifying the drawing objects to be watched.

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “Object Events” table and callback_function is a
symbol representing a function to be called when the event fires. Each callback function accepts three
arguments:

owner The owner of the VLA-object the event applies to.

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the “Object Events Callback Data” table.

Return Values

The reactor_object argument.

Object events
Name Event
:vlr-cancelled The modification of the object has been canceled.

:vlr-copied The object has been copied.

:vlr-erased Erase-flag of the object has been set.

:vlr-unerased Erase-flag of the object has been reset.

:vlr-goodbye The object is about to be deleted from memory.

:vlr-
openedForModify

The object is about to be modified.

:vlr-modified The object has been modified. If the modification was canceled, also :vlr-cancelled and :vlr-
modifyUndone will be fired.

:vlr-subObjModified A sub-entity of the object has been modified. This event is triggered for modifications to
vertices of polylines or meshes, and for attributes owned by blockReferences.

:vlr-modifyUndone The object's modification was undone.

:vlr-modifiedXData The object's extended entity data has been modified.

:vlr-unappended The object has been detached from the drawing database.

:vlr-reappended The object has been re-attached to the drawing database.

:vlr-objectClosed The object's modification has been finished.

Object events callback data
Name List length Parameters
:vlr-cancelled
:vlr-erased,
:vlr-unerased

0

Page 345 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

The following code attaches an object reactor to the myCircle object. It defines the reactor to respond
whenever the object is modified (:vlr-modified) and to call the print-radius function in response to
the modification event:

(setq circleReactor (vlr-object-reactor (list myCircle)
 "Circle Reactor" '((:vlr-modified . print-radius))))

:vlr-goodbye
:vlr-openedForModify
:vlr-modified
:vlr-modifyUndone
:vlr-modifiedXData
:vlr-unappended
:vlr-reappended
:vlr-objectClosed

:vlr-copied 1 The object created by the copy operation (ename).

:vlr-subObjModified 1 The sub-object (ename) that has been modified

Adds an object to the list of owners of an object reactor

(vlr-owner-add reactor owner)

This function adds a new source of reactor events; the reactor will receive events from the specified object.

Arguments

reactor
A VLR object.

owner
A VLA-object to be added to the list of notifiers for this reactor.

Return Values

The VLA-object to which the reactor has been added.

Examples

In the following example, an arc object named “archie” is added to the owner list of reactor
circleReactor:

_$ (vlr-owner-add circleReactor archie)

AutoLISP Functions

vlr-owner-add

Page 346 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

#<VLA-OBJECT IAcadArc 03ad0bcc>

See Also

The vlr-owner-remove function.

Removes an object from the list of owners of an object reactor

(vlr-owner-remove reactor owner)

Arguments

reactor
A VLR object.

owner
A VLA-object to be removed from the list of notifiers for this reactor.

Return Values

The VLA-object from which the reactor was removed.

Examples

_$ (vlr-owner-remove circleReactor archie)
#<VLA-OBJECT IAcadArc 03ad0bcc>

See Also

The vlr-owner-add function.

AutoLISP Functions

vlr-owner-remove

Returns the list of owners of an object reactor

(vlr-owners reactor)

AutoLISP Functions

vlr-owners

Page 347 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

reactor
A VLR object.

Return Values

A list of objects that notify the specified reactor.

Examples

 _$ (vlr-owners circleReactor)
(#<VLA-OBJECT IAcadCircle 01db98f4> #<VLA-OBJECT IAcadCircle 01db9724> #<VLA-OBJEC

Makes a reactor persistent

(vlr-pers reactor)

Arguments

reactor
A VLR object.

Return Values

The specified reactor object, if successful; otherwise nil.

Examples

Define a reactor:

_$ (setq circleReactor (vlr-object-reactor
(list myCircle) "Radius size" '((:vlr-modified . print-radius))))
#<VLR-Object-Reactor>

Make the reactor persistent:

_$ (vlr-pers circleReactor)
#<VLR-Object-Reactor>

AutoLISP Functions

vlr-pers

AutoLISP Functions

Page 348 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Returns a list of persistent reactors in the current drawing document

(vlr-pers-list [reactor])

Arguments

reactor
The reactor object to be listed. If reactor is not specified, vlr-pers-list lists all persistent reactors.

Return Values

A list of reactor objects.

Examples

_$ (vlr-pers-list)
(#<VLR-Object-Reactor> #<VLR-Object-Reactor> (#<VLR-Object-Reactor>)

vlr-pers-list

Determines whether a reactor is persistent

(vlr-pers-p reactor)

Arguments

reactor
A VLR object.

Return Values

The specified reactor object, if it is persistent; nil, if the reactor is transient.

Examples

Make a reactor persistent:

_$ (vlr-pers circleReactor)
#<VLR-Object-Reactor>

Verify that a reactor is persistent:

AutoLISP Functions

vlr-pers-p

Page 349 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

_$ (vlr-pers-p circleReactor)
#<VLR-Object-Reactor>

Change the persistent reactor to transient:

_$ (vlr-pers-release circleReactor)
#<VLR-Object-Reactor>

Verify that the reactor is no longer persistent:

_$ (vlr-pers-p circleReactor)
nil

Makes a reactor transient

(vlr-pers-release reactor)

Arguments

reactor
VLR object.

Return Values

The specified reactor object, if successful; otherwise nil.

AutoLISP Functions

vlr-pers-release

Returns a list of all possible callback conditions for this reactor type

(vlr-reaction-names reactor-type)

Arguments

reactor-type
One of the following symbols:

AutoLISP Functions

vlr-reaction-name

Page 350 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

:VLR-AcDb-Reactor

:VLR-Command-Reactor

:VLR-DeepClone-Reactor

:VLR-DocManager-Reactor

:VLR-DWG-Reactor

:VLR-DXF-Reactor

:VLR-Editor-Reactor

:VLR-Insert-Reactor

:VLR-Linker-Reactor

:VLR-Lisp-Reactor

:VLR-Miscellaneous-Reactor

:VLR-Mouse-Reactor

:VLR-Object-Reactor

:VLR-SysVar-Reactor

:VLR-Toolbar-Reactor

:VLR-Undo-Reactor

:VLR-Wblock-Reactor

:VLR-Window-Reactor

:VLR-XREF-Reactor

Return Values

A list of symbols indicating the possible events for the specified reactor type.

Examples

_$ (vlr-reaction-names :VLR-Editor-Reactor)
(:vlr-unknownCommand :vlr-commandWillStart :vlr-commandEnded....

Adds or replaces a callback function in a reactor

(vlr-reaction-set reactor event function)

Arguments

reactor
A VLR object.

AutoLISP Functions

vlr-reaction-set

Page 351 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

event
A symbol denoting one of the event types available for this reactor type.

function
A symbol representing the AutoLISP function to be added or replaced.

Return Values

Unspecified.

Examples

The following command changes the circleReactor reactor to call the print-area function when an
object is modified:

_$ (vlr-reaction-set circleReactor :vlr-modified 'print-area)
PRINT-AREA

Returns a list of pairs (event-name . callback_function) for the reactor

(vlr-reactions reactor)

Arguments

reactor
A VLR object.

Examples

_$ (vlr-reactions circleReactor)
((:vlr-modified . PRINT-RADIUS))

AutoLISP Functions

vlr-reactions

Returns a list of existing reactors

(vlr-reactors [reactor-type...])

AutoLISP Functions

vlr-reactors

Page 352 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Arguments

reactor-type
One or more of the following symbols:

:VLR-AcDb-Reactor

:VLR-Command-Reactor

:VLR-DeepClone-Reactor

:VLR-DocManager-Reactor

:VLR-DWG-Reactor

:VLR-DXF-Reactor

:VLR-Editor-Reactor

:VLR-Insert-Reactor

:VLR-Linker-Reactor

:VLR-Lisp-Reactor

:VLR-Miscellaneous-Reactor

:VLR-Mouse-Reactor

:VLR-Object-Reactor

:VLR-SysVar-Reactor

:VLR-Toolbar-Reactor

:VLR-Undo-Reactor

:VLR-Wblock-Reactor

:VLR-Window-Reactor

:VLR-XREF-Reactor

If you specify reactor-type arguments, vlr-reactors returns lists of the reactor types you specified. If you
omit reactor-type, vlr-reactors returns all existing reactors.

Return Values

A list of reactor lists; otherwise nil, if there are no reactors of any specified type. Each reactor list begins
with a symbol identifying the reactor type, followed by pointers to each reactor of that type.

Examples

List all reactors in a drawing:

_$ (vlr-reactors)
((:VLR-Object-Reactor #<VLR-Object-Reactor>) (:VLR-Editor-Reactor #<VLR-Editor-Rea

List all object reactors:

_$ (vlr-reactors :vlr-object-reactor)
((:VLR-Object-Reactor #<VLR-Object-Reactor>))

vlr-reactors returns a list containing a single reactor list.

Page 353 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

List all database reactors:

_$ (vlr-reactors :vlr-acdb-reactor)
nil

There are no database reactors defined.

List all DWG reactors:

_$ (vlr-reactors
:vlr-dwg-reactor)
((:VLR-DWG-Reactor #<VLR-DWG-Reactor> #<VLR-DWG-Reactor>))

vlr-reactors returns a list containing a list of DWG reactors.

Disables a reactor

(vlr-remove reactor)

Arguments

reactor
A VLR object.

Return Values

The reactor argument; otherwise nil, if unsuccessful.

Examples

The following command disables the circleReactor reactor:

_$ (vlr-remove circleReactor)
#<VLR-Object-reactor>

See Also

The vlr-remove-all function.

AutoLISP Functions

vlr-remove

Page 354 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Disables all reactors of the specified type

(vlr-remove-all [reactor-type])

Arguments

reactor-type
One of the following symbols:

:VLR-AcDb-Reactor

:VLR-Command-Reactor

:VLR-DeepClone-Reactor

:VLR-DocManager-Reactor

:VLR-DWG-Reactor

:VLR-DXF-Reactor

:VLR-Editor-Reactor

:VLR-Insert-Reactor

:VLR-Linker-Reactor

:VLR-Lisp-Reactor

:VLR-Miscellaneous-Reactor

:VLR-Mouse-Reactor

:VLR-Object-Reactor

:VLR-SysVar-Reactor

:VLR-Toolbar-Reactor

:VLR-Undo-Reactor

:VLR-Wblock-Reactor

:VLR-Window-Reactor

:VLR-XREF-Reactor

If no reactor-type is specified, vlr-remove-all disables all reactors.

Return Values

A list of lists. The first element of each list identifies the type of reactor, and the remaining elements identify
the disabled reactor objects. The function returns nil if there are no reactors active.

Examples

The following function call disables all editor reactors:

_$ (vlr-remove-all :vlr-editor-reactor)
((:VLR-Editor-Reactor #<VLR-Editor-Reactor>))

AutoLISP Functions

vlr-remove-all

Page 355 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The following call disables all reactors:

_$ (vlr-remove-all)
((:VLR-Object-Reactor #<VLR-Object-Reactor> #<VLR-Object-Reactor>
#<VLR-Object-Reactor>)(:VLR-Editor-Reactor#<VLR-Editor-Reactor>))

See Also

The vlr-remove function.

Defines whether a reactor's callback function will execute if its associated namespace is not active

(vlr-set-notification reactor 'range)

Arguments

reactor
A VLR object.

'range
The range argument is a symbol that can be either 'all-documents (execute the callback regardless of
whether the reactor is associated with the active document), or 'active-document-only (execute the
callback only if the reactor is associated with the active document).

Return Values

The VLR object.

Examples

Set a reactor to execute its callback function even if its associated namespace is not active:

_$ (vlr-set-notification circleReactor 'all-documents)
#<VLR-Object-Reactor>

AutoLISP Functions

vlr-set-notification

AutoLISP Functions

vlr-sysvar-reactor

Page 356 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Constructs an editor reactor object that notifies of a change to a system variable

(vlr-sysvar-reactor data callbacks)

Arguments

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “SysVar reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the “SysVar reactor callback data” table.

Return Values

The reactor_object argument.

SysVar reactor events
Event name Description
:vlr-sysVarWillChange AutoCAD is about to change the value of a system variable.

:vlr-sysVarChanged The value of a system variable has changed.

SysVar reactor callback data
Name List

length
Parameters

:vlr-
sysVarWillChange

1 A string identifying the system variable name.

:vlr-sysVarChanged 2 First parameter is a string identifying the system variable name.
Second parameter is symbol indicating whether the change was successful (T if
successful, nil if not).

Constructs an editor reactor object that notifies of a change to the bitmaps in a toolbar

(vlr-toolbar-reactor data callbacks)

Arguments

AutoLISP Functions

vlr-toolbar-reactor

Page 357 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “Toolbar reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the “Toolbar reactor callback data” table.

Return Values

The reactor_object argument.

Toolbar reactor events
Event name Description
:vlr-toolbarBitmapSizeWillChange The size of the AutoCAD toolbar icons is about to change.

:vlr-toolbarBitmapSizeChanged The size of the AutoCAD toolbar icons has changed.

Toolbar reactor callback data
Name List

length
Parameters

:vlr-
toolbarBitmapSizeWillChange
:vlr-toolbarBitmapSizeChanged

1 T, if the toolbar is being set to large bitmaps; nil if the toolbar is
being set to small bitmaps.

A predefined callback function that prints one or more callback arguments in the Trace window

(vlr-trace-reaction)

This function can be used as a debugging tool to verify that a reactor has fired.

Examples

Define a command reactor and assign vlr-trace-reaction as the callback function:

_$ (VLR-Reaction-Set (VLR-Command-Reactor) :VLR-commandWillStart 'VLR-trace-react
VLR-trace-reaction

At the AutoCAD Command prompt, enter the following:

AutoLISP Functions

vlr-trace-reaction

Page 358 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

_.LINE

Respond to the command prompts, then activate the VLISP window and open the Trace window. You
should see the following in the Trace window:

; "Reaction": :VLR-commandWillStart; "argument list": (#<VLR-COMMAND-REACTOR> ("LI

The output from vlr-trace-reaction identifies the type of trigger event, the reactor type, and the
command that triggered the reactor.

Returns a symbol representing the reactor type

(vlr-type reactor)

Arguments

reactor
A VLR object.

Return Values

A symbol identifying the reactor type. The following table lists the types that may be returned by vlr-type:

AutoLISP Functions

vlr-type

Reactor types
Reactor type Description
:VLR-AcDb-Reactor Database reactor.

:VLR-Command-Reactor An editor reactor notifying of a command event.

:VLR-DeepClone-Reactor An editor reactor notifying of a deep clone event.

:VLR-DocManager-Reactor Document management reactor.

:VLR-DWG-Reactor An editor reactor notifying of a drawing event (for example, opening or closing a
drawing file).

:VLR-DXF-Reactor An editor reactor notifying of an event related to reading or writing of a DXF file.

:VLR-Editor-Reactor General editor reactor; maintained for backward compatibility.

:VLR-Insert-Reactor An editor reactor notifying of an event related to block insertion.

:VLR-Linker-Reactor Linker reactor.

:VLR-Lisp-Reactor An editor reactor notifying of a LISP event.

:VLR-Miscellaneous-
Reactor

An editor reactor that does not fall under any of the other editor reactor types.

:VLR-Mouse-Reactor An editor reactor notifying of a mouse event (for example, a double-click).

:VLR-Object-Reactor Object reactor.

Page 359 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Examples

_$ (vlr-type circleReactor)
:VLR-Object-Reactor

:VLR-SysVar-Reactor An editor reactor notifying of a change to a system variable.

:VLR-Toolbar-Reactor An editor reactor notifying of a change to the bitmaps in a toolbar.

:VLR-Undo-Reactor An editor reactor notifying of an undo event.

:VLR-Wblock-Reactor An editor reactor notifying of an event related to writing a block.

:VLR-Window-Reactor An editor reactor notifying of an event related to moving or sizing an AutoCAD
window.

:VLR-XREF-Reactor An editor reactor notifying of an event related to attaching or modifying XREFs.

Returns a list of all reactor types

(vlr-types)

Return Values

(:VLR-Linker-Reactor :VLR-Editor-Reactor :VLR-AcDb-Reactor)

AutoLISP Functions

vlr-types

Constructs an editor reactor object that notifies of an undo event

(vlr-undo-reactor data callbacks)

Arguments

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

AutoLISP Functions

vlr-undo-reactor

Page 360 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(event-name . callback_function)

where event-name is one of the symbols listed in the “Undo reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the “Undo reactor callback data” table.

Return Values

The reactor_object argument.

Undo reactor events
Event name Description
:vlr-undoSubcommandAuto The UNDO command's Auto option has been executed.

:vlr-
undoSubcommandControl

The UNDO command's Control option has been executed.

:vlr-
undoSubcommandBegin

The UNDO command's BEGIN or GROUP option is being performed. BEGIN and
GROUP mark the beginning of a series of commands that can be undone as one
unit.

:vlr-undoSubcommandEnd The UNDO command's END option is being performed. UNDO/END marks the end
of a series of commands that can be undone as one unit.

:vlr-undoSubcommandMark The UNDO command's MARK option is about to be executed. This places a marker
in the undo file so UNDO/BACK can undo back to the marker.

:vlr-undoSubcommandBack The UNDO command's BACK option is about to be performed. UNDO/BACK undoes
everything back to the most recent MARK marker or back to the beginning of the
undo file if no MARK marker exists.

:vlr-
undoSubcommandNumber

The UNDO command's NUMBER option is about to be executed (the default action
of the UNDO command).

Undo reactor callback data
Name List

length
Parameters

:vlr-undoSubcommandAuto 2 First parameter is an integer indicating the activity. The value is always 4,
indicating that notification occurred after the operation was performed.
Second parameter is a symbol indicating the state of Auto mode. Value is
T if Auto mode is turned on, nil if Auto mode is turned off.

:vlr-
undoSubcommandControl

2 First parameter is an integer indicating the activity. The value is always 4,
indicating that notification occurred after the operation was performed.
Second parameter is an integer indicating the Control option selected. This
can be one of the following:
0—NONE was selected
1—ONE was selected
2—ALL was selected

:vlr-undoSubcommandBegin
:vlr-undoSubcommandEnd
:vlr-undoSubcommandMark
:vlr-undoSubcommandBack

1 An integer value of 0, indicating that notification occurs before the actual
operation is performed.

:vlr-
undoSubcommandNumber

2 First parameter is an integer indicating the activity. The value is always 0,
indicating that notification occurs before the actual operation is performed.
Second parameter is an integer indicating the number of steps being
undone.

Page 361 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Constructs an editor reactor object that notifies of an event related to writing a block

(vlr-wblock-reactor data callbacks)

Arguments

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “Wblock reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the “Wblock reactor callback data” table.

Return Values

The reactor_object argument.

AutoLISP Functions

vlr-wblock-reactor

Wblock reactor events
Event name Description
:VLR-wblockNotice A wblock operation is about to start.

:VLR-beginWblockPt A wblock operation is being performed on a set of entities.

:VLR-beginWblockId A wblock operation is being performed on a specified block.

:VLR-beginWblock A wblock operation is being performed on an entire database. Notification does not occur
until all the entities in the source database's model space are copied into the target
database.

:VLR-endWblock A wblock operation completed successfully.

:VLR-
beginWblockObjects

wblock has just initialized the object ID translation map.

Wblock reactor callback data
Name List

length
Parameters

:VLR-wblockNotice 1 Database object (VLA-object) from which the block will be created.

:VLR-beginWblockPt 3 First parameter is the target database object (VLA-object).
Second parameter is the source database object (VLA-object) containing the

Page 362 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

objects being wblocked.
Third parameter is a 3D point list (in WCS) to be used as the base point in the
target database.

:VLR-beginWblockId 3 First parameter is the target database object (VLA-object).
Second parameter is the source database object (VLA-object) containing the
objects being wblocked.
Third parameter is the object ID of the BlockTableRecord being wblocked.

:VLR-beginWblock
:VLR-otherWblock

2 First parameter is the target database object (VLA-object).
Second parameter is the source database object (VLA-object) containing the
objects being wblocked.

:VLR-abortWblock
:VLR-endWblock

1 The target database object (VLA-object).

:VLR-
beginWblockObjects

2 First parameter is the source database object (VLA-object) containing the
objects being wblocked.
Second parameter is an ID map.

Constructs an editor reactor object that notifies of an event related to moving or sizing an AutoCAD window

(vlr-window-reactor data callbacks)

Arguments

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “Window reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the “Window reactor callback data” table.

Return Values

The reactor_object argument.

AutoLISP Functions

vlr-window-reactor

Window reactor events
Event name Description
:vlr-docFrameMovedOrResized An MDI child frame window (a document window) has been moved or resized.

:vlr-mainFrameMovedOrResized The main AutoCAD window has been moved or resized.

Page 363 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Window reactor callback data
Name List

length
Parameters

:vlr-
docFrameMovedOrResized
:vlr-
mainFrameMovedOrResized

2 The first parameter is an integer containing the HWND of the window.
The second parameter indicates whether the window has been moved or
resized. The value is T if the window has been moved, nil if the window
has been resized.

Constructs an editor reactor object that notifies of an event related to attaching or modifying XREFs

(vlr-xref-reactor data callbacks)

Arguments

data
Any AutoLISP data to be associated with the reactor object; otherwise nil if no data.

callbacks
A list of pairs of the following form:

(event-name . callback_function)

where event-name is one of the symbols listed in the “XREF reactor events” table below, and
callback_function is a symbol representing a function to be called when the event fires. Each callback
function accepts two arguments:

reactor_object The VLR object that called the callback function.

list A list of extra data elements associated with the particular event. The contents of this list for particular
events are shown in the “XREF reactor callback data” table.

Return Values

The reactor_object argument.

AutoLISP Functions

vlr-xref-reactor

XREF reactor events
Event name Description
:VLR-beginAttach An xref is about to be attached.

:VLR-otherAttach An external reference is being added to the drawing database. This event occurs
after objects are cloned, but before any translation. This callback function is sent
just after beginDeepCloneXlation notification, but occurs only for the xref attach
process.

:VLR-abortAttach An xref attach operation was terminated before successful completion.

:VLR-endAttach An xref attach operation completed successfully.

:VLR-redirected An object ID in the xref drawing is being modified to point to the associated object
in the drawing being referenced.

:VLR-comandeered The object ID of the object is being appended to the symbol table of the drawing

Page 364 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

being xrefed into.

:VLR-beginRestore An existing xref is about to be resolved (typically when a drawing with xrefs is
loading).

:VLR-abortRestore An xref unload or reload was terminated before successful completion.

:VLR-endRestore An existing xref has been resolved (typically when a drawing with xrefs has
completed loading).

:VLR-
xrefSubcommandBindItem

The BIND subcommand of XREF was invoked, or a preexisting xref is being
bound.
Note that the BIND subcommand is interactive and triggers multiple events.

:VLR-
xrefSubcommandAttachItem

The ATTACH subcommand of XREF was invoked, or a preexisting xref is being
resolved.
Note that the ATTACH subcommand is interactive and triggers multiple events.

:VLR-
xrefSubcommandOverlayItem

The OVERLAY subcommand of XREF was invoked, or a preexisting xref is being
resolved.
Note that the OVERLAY subcommand is interactive and triggers multiple events.

:VLR-
xrefSubcommandDetachItem

The DETACH subcommand of XREF was invoked.
Note that the OVERLAY subcommand is interactive and triggers multiple events.

:VLR-
xrefSubcommandPathItem

The PATH subcommand of XREF was invoked.
Note that the PATH subcommand is interactive and triggers multiple events.

:VLR-
xrefSubcommandReloadItem

The RELOAD subcommand of XREF was invoked, or a preexisting xref is being
reloaded.
Note that the RELOAD subcommand is interactive and triggers multiple events.

:VLR-
xrefSubcommandUnloadItem

The UNLOAD subcommand of XREF was invoked, or a preexisting xref is being
unloaded.

XREF reactor callback data
Name List

length
Parameters

:VLR-beginAttach 3 First parameter is a VLA-object pointing to the target drawing
database.
Second parameter is a string containing the file name of the xref being
attached.
Third parameter is a VLA-object pointing to the drawing database that
contains the objects being attached.

:VLR-otherAttach 2 First parameter is a VLA-object pointing to the target drawing
database.
Second parameter is a VLA-object pointing to the drawing database
that contains the objects being attached.

:VLR-abortAttach 1 A VLA-object pointing to the drawing database that contains the
objects being attached.

:VLR-endAttach 1 A VLA-object pointing to the target drawing database.

:VLR-redirected 2 First parameter is an integer containing the object ID for the redirected
symbol table record (STR) in the drawing being referenced.
Second parameter is an integer containing the object ID for the object
in the xref drawing.

:VLR-comandeered 3 First parameter is a VLA-object pointing to the database receiving the
xref.
Second parameter is an integer containing the object ID of the object
being commandeered.
Third parameter is a VLA-object pointing to the drawing database that
contains the objects being attached.

Page 365 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

:VLR-beginRestore 3 First parameter is a VLA-object pointing to the database receiving the
xref.
Second parameter is a string containing the xref block table record
(BTR) name.
Third parameter is a VLA-object pointing to the drawing database that
contains the objects being attached.

:VLR-abortRestore
:VLR-endRestore

1 A VLA-object pointing to the target drawing database.

:VLR-xrefSubcommandBindItem 2 First parameter is an integer indicating the activity the BIND is carrying
out. Possible values are
0—BIND subcommand invoked.
2—xref with the indicated object ID is being bound.
3—xref with the indicated object ID was successfully bound.
4—BIND subcommand completed.
5—BIND operation is about to either terminate or fail to complete on
the specified object ID.
6—BIND operation has either terminated or failed to complete on the
specified object ID.
7—Sent for an XDep block bound by XBind.
8—Sent for all other symbols: Layers, Linetypes, TextStyles, and
DimStyles.
Second parameter is an integer containing the object ID of the xref
being bound, or 0 if not applicable.

:VLR-
xrefSubcommandAttachItem

2 First parameter is an integer indicating the activity the ATTACH is
carrying out. Possible values are
0—BIND subcommand invoked.
2—xref with the indicated object ID is being bound.
3—xref with the indicated object ID was successfully bound.
4—BIND subcommand completed.
5—BIND operation is about to either terminate or fail to complete on
the specified object ID.
6—BIND operation has either terminated or failed to complete on the
specified object ID.
Second parameter is a string identifying the file being attached;
otherwise nil if not applicable.

:VLR-
xrefSubcommandOverlayItem

2 First parameter is an integer indicating the activity the OVERLAY is
carrying out. Possible values are
0—BIND subcommand invoked.
2—xref with the indicated object ID is being bound.
3—xref with the indicated object ID was successfully bound.
4—BIND subcommand completed.
5—BIND operation is about to either terminate or fail to complete on
the specified object ID.
6—BIND operation has either terminated or failed to complete on the
specified object ID.
Second parameter is a string identifying the file being overlaid;
otherwise nil if not applicable.

:VLR-
xrefSubcommandDetachItem

2 First parameter is an integer indicating the activity the DETACH is
carrying out. Possible values are
0—BIND subcommand invoked.
2—xref with the indicated object ID is being bound.
3—xref with the indicated object ID was successfully bound.
4—BIND subcommand completed.
5—BIND operation is about to either terminate or fail to complete on
the specified object ID.

Page 366 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

6—BIND operation has either terminated or failed to complete on the
specified object ID.
Second parameter is an integer containing the object ID of the xref
being detached, or 0 if not applicable.

:VLR-xrefSubcommandPathItem 3 First parameter is an integer indicating the activity the DETACH is
carrying out. Possible values are
0—BIND subcommand invoked.
2—xref with the indicated object ID is being bound.
3—xref with the indicated object ID was successfully bound.
4—BIND subcommand completed.
5—BIND operation is about to either terminate or fail to complete on
the specified object ID.
6—BIND operation has either terminated or failed to complete on the
specified object ID.
Second parameter is an integer containing the object ID of the xref
being operated on, or 0 if not applicable.
Third parameter is a string identifying the new path name of the xref;
otherwise nil if not applicable.

:VLR-
xrefSubcommandReloadItem

2 First parameter is an integer indicating the activity the RELOAD is
carrying out. Possible values are
0—BIND subcommand invoked.
2—xref with the indicated object ID is being bound.
3—xref with the indicated object ID was successfully bound.
4—BIND subcommand completed.
5—BIND operation is about to either terminate or fail to complete on
the specified object ID.
6—BIND operation has either terminated or failed to complete on the
specified object ID.
Second parameter is an integer containing the object ID of the xref
being reloaded, or 0 if not applicable.

:VLR-
xrefSubcommandUnloadItem

2 First parameter is an integer indicating the activity the UNLOAD is
carrying out. Possible values are
0—BIND subcommand invoked.
2—xref with the indicated object ID is being bound.
3—xref with the indicated object ID was successfully bound.
4—BIND subcommand completed.
5—BIND operation is about to either terminate or fail to complete on
the specified object ID.
6—BIND operation has either terminated or failed to complete on the
specified object ID.
Second parameter is an integer containing the object ID of the xref
being unloaded, or 0 if not applicable.

Returns a list of viewport descriptors for the current viewport configuration

(vports)

AutoLISP Functions

vports

Page 367 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Return Values

One or more viewport descriptor lists consisting of the viewport identification number and the coordinates of
the viewport's lower-left and upper-right corners.

If the AutoCAD TILEMODE system variable is set to 1 (on), the returned list describes the viewport
configuration created with the AutoCAD VPORTS command. The corners of the viewports are expressed in
values between 0.0 and 1.0, with (0.0, 0.0) representing the lower-left corner of the display screen's
graphics area, and (1.0, 1.0) the upper-right corner. If TILEMODE is 0 (off), the returned list describes the
viewport objects created with the MVIEWcommand. The viewport object corners are expressed in paper
space coordinates. Viewport number 1 is always paper space when TILEMODE is off.

Examples

Given a single-viewport configuration with TILEMODE on, the vports function might return the following:

((1 (0.0 0.0) (1.0 1.0)))

Given four equal-sized viewports located in the four corners of the screen when TILEMODE is on, the
vports function might return the following lists:

((5 (0.5 0.0) (1.0 0.5))
 (2 (0.5 0.5) (1.0 1.0))
 (3 (0.0 0.5) (0.5 1.0))
 (4 (0.0 0.0) (0.5 0.5)))

The current viewport's descriptor is always first in the list. In the previous example, viewport number 5 is the
current viewport.

wcmatch
while
write-char
write-line

Topics in this section:

wcmatch

while

write-char

write-line

AutoLISP Functions

W Functions

Page 368 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Performs a wild-card pattern match on a string

(wcmatch string pattern)

Arguments

string
A string to be compared. The comparison is case-sensitive, so uppercase and lowercase characters must
match.

pattern
A string containing the pattern to match against string. The pattern can contain the wild-card pattern-
matching characters shown in the table Wild-card characters. You can use commas in a pattern to enter
more than one pattern condition. Only the first 500 characters (approximately) of the string and pattern are
compared; anything beyond that is ignored.

Both arguments can be either a quoted string or a string variable. It is valid to use variables and values
returned from AutoLISP functions for string and pattern values.

Return Values

If string and pattern match, wcmatch returns T; otherwise, wcmatch returns nil.

Examples

The following command tests a string to see if it begins with the character N:

AutoLISP Functions

wcmatch

Wild-card characters
Character Definition
(pound) Matches any single numeric digit.

@ (at) Matches any single alphabetic character.

. (period) Matches any single nonalphanumeric character.

* (asterisk) Matches any character sequence, including an empty one, and it can be used anywhere in the
search pattern: at the beginning, middle, or end.

? (question
mark)

Matches any single character.

~ (tilde) If it is the first character in the pattern, it matches anything except the pattern.

[...] Matches any one of the characters enclosed.

[~...] Matches any single character not enclosed.

- (hyphen) Used inside brackets to specify a range for a single character.

, (comma) Separates two patterns.

` (reverse
quote)

Escapes special characters (reads next character literally).

Page 369 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Command: (wcmatch "Name" "N*")

T

The following example performs three comparisons. If any of the three pattern conditions is met, wcmatch
returns T. The tests are:

Does the string contain three characters?
Does the string not contain an m?
Does the string begin with the letter “N”?

If any of the three pattern conditions is met, wcmatch returns T:

Command: (wcmatch "Name" "???,~*m*,N*")

T

In this example, the last condition was met, so wcmatch returned T.

Using Escape Characters with wcmatch

To test for a wild-card character in a string, you can use the single reverse-quote character (`) to escape the
character. Escape means that the character following the single reverse quote is not read as a wild-card
character; it is compared at its face value. For example, to search for a comma anywhere in the string
“Name”, enter the following:

Command: (wcmatch "Name" "*`,*")

nil

Both the C and AutoLISP programming languages use the backslash (\) as an escape character, so you
need two backslashes (\\) to produce one backslash in a string. To test for a backslash character anywhere
in “Name”, use the following function call:

Command: (wcmatch "Name" "*`*")

nil

All characters enclosed in brackets ([. . .]) are read literally, so there is no need to escape them, with the
following exceptions: the tilde character (~) is read literally only when it is not the first bracketed character
(as in "[A~BC]"); otherwise, it is read as the negation character, meaning that wcmatch should match all
characters except those following the tilde (as in "[~ABC]"). The dash character (-) is read literally only
when it is the first or last bracketed character (as in "[-ABC]" or "[ABC-]") or when it follows a leading
tilde (as in "[~-ABC]"). Otherwise, the dash character (-) is used within brackets to specify a range of
values for a specific character. The range works only for single characters, so "STR[1-38]" matches
STR1, STR2, STR3, and STR8, and "[A-Z]" matches any single uppercase letter.

The closing bracket character (]) is also read literally if it is the first bracketed character or if it follows a
leading tilde (as in "[]ABC]" or "[~]ABC]").

Note Because additional wild-card characters might be added in future releases of AutoLISP, it is a good
idea to escape all nonalphanumeric characters in your pattern to ensure upward compatibility.

Page 370 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Evaluates a test expression, and if it is not nil, evaluates other expressions; repeats this process until the test expression
evaluates to nil

(while testexpr [expr...])

The while function continues until testexpr is nil.

Arguments

testexpr
The expression containing the test condition.

expr
One or more expressions to be evaluated until testexpr is nil.

Return Values

The most recent value of the last expr.

Examples

The following code calls user function some-func ten times, with test set to 1 through 10. It then returns
11, which is the value of the last expression evaluated:

(setq test 1)
(while (<= test 10)
 (some-func test)
 (setq test (1+ test))
)

AutoLISP Functions

while

Writes one character to the screen or to an open file

(write-char num [file-desc])

Arguments

num
The decimal ASCII code for the character to be written.

file-desc
A file descriptor for an open file.

AutoLISP Functions

write-char

Page 371 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

Return Values

The num argument.

Examples

The following command writes the letter C to the command window, and returns the supplied num argument:

Command: (write-char 67)

C67

Assuming that f is the descriptor for an open file, the following command writes the letter C to that file:

Command: (write-char 67 f)

67

Note that write-char cannot write a NULL character (ASCII code 0) to a file.

Writes a string to the screen or to an open file

(write-line string [file-desc])

Arguments

string
A string.

file-desc
A file descriptor for an open file.

Return Values

The string, quoted in the normal manner. The quotes are omitted when writing to a file.

Examples

Open a new file:

Command: (setq f (open "c:\\my documents\\new.tst" "w"))

#<file "c:\\my documents\\new.tst">

Use write-line to write a line to the file:

Command: (write-line "To boldly go where nomad has gone before." f)

AutoLISP Functions

write-line

Page 372 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

"To boldly go where nomad has gone before."

The line is not physically written until you close the file:

Command: (close f)

nil

xdroom
xdsize

Topics in this section:

xdroom

xdsize

AutoLISP Functions

X Functions

Returns the amount of extended data (xdata) space that is available for an object (entity)

(xdroom ename)

Because there is a limit (currently, 16 kilobytes) on the amount of extended data that can be assigned to an
entity definition, and because multiple applications can append extended data to the same entity, this
function is provided so an application can verify there is room for the extended data that it will append. It can
be called in conjunction with xdsize, which returns the size of an extended data list.

Arguments

ename
An entity name (ename data type).

Return Values

An integer reflecting the number of bytes of available space. If unsuccessful, xdroom returns nil.

Examples

AutoLISP Functions

xdroom

Page 373 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

The following example looks up the available space for extended data of a viewport object:

Command: (xdroom vpname)

16162

In this example, 16,162 bytes of the original 16,383 bytes of extended data space are available, meaning
that 221 bytes are used.

Returns the size (in bytes) that a list occupies when it is linked to an object (entity) as extended data

(xdsize lst)

Arguments

lst
A valid list of extended data that contains an application name previously registered with the use of the
regapp function. See the Examples section of this function for lst examples.

Return Values

An integer reflecting the size, in bytes. If unsuccessful, xdsize returns nil.

Brace fields (group code 1002) must be balanced. An invalid lst generates an error and places the
appropriate error code in the ERRNO variable. If the extended data contains an unregistered application
name, you see this error message (assuming that CMDECHO is on):

Invalid application name in 1001 group

Examples

The lst can start with a -3 group code (the extended data sentinel), but it is not required. Because extended
data can contain information from multiple applications, the list must have a set of enclosing parentheses.

(-3 ("MYAPP" (1000 . "SUITOFARMOR")
 (1002 . "{")
 (1040 . 0.0)
 (1040 . 1.0)
 (1002 . "}")
)
)

Here is the same example without the -3 group code. This list is just the cdr of the first example, but it is
important that the enclosing parentheses are included:

AutoLISP Functions

xdsize

Page 374 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

(("MYAPP" (1000 . "SUITOFARMOR")
 (1002 . "{")
 (1040 . 0.0)
 (1040 . 1.0)
 (1002 . "}")
)
)

zerop

Topics in this section:

zerop

AutoLISP Functions

Z Functions

Verifies that a number evaluates to zero

(zerop number)

Arguments

number
A number.

Return Values

T if number evaluates to zero; otherwise nil.

Examples

Command: (zerop 0)

T

Command: (zerop 0.0)

T

Command: (zerop 0.0001)

AutoLISP Functions

zerop

Page 375 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

nil

Page 376 of 376AutoLISP Functions

6/10/2006file://C:\Documents%20and%20Settings\gary.black\Local%20Settings\Temp\~hh5338.htm

	Operators
	A Functions
	B Functions
	C Functions
	D Functions
	E Functions
	F Functions
	G Functions
	H Functions
	I Functions
	L Functions
	M Functions
	N Functions
	O Functions
	P Functions
	Q Functions
	R Functions
	S Functions
	T Functions
	U Functions
	V Functions
	W Functions
	X Functions
	Z Functions

