4 Bedeutung der errechneten Spannung- und Verformungswerte

4.1 Spannungen

Mehrachsigen Spannungszustand umrechnen zum Vergleich mit Werkstoffkennwerten, die bei einachsiger Beanspruchung ermittelt werden.

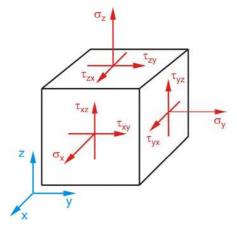


Bild 28: Spannungskomponenten

Komponenten des Spannungstensors

$$\begin{bmatrix} \sigma_{\mathsf{X}} & \tau_{\mathsf{X}\mathsf{y}} & \tau_{\mathsf{X}\mathsf{Z}} \\ \tau_{\mathsf{y}\mathsf{x}} & \sigma_{\mathsf{y}} & \tau_{\mathsf{y}\mathsf{Z}} \\ \tau_{\mathsf{Z}\mathsf{X}} & \tau_{\mathsf{Z}\mathsf{y}} & \sigma_{\mathsf{Z}} \end{bmatrix}$$

$$\begin{split} \tau_{xy} &= \tau_{yx}, \, \tau_{yz} = \tau_{zy}, \, \tau_{zx} = \tau_{xz} \\ \text{In den Ebenen der Hauptnormalspannungen} \\ \sigma_1 &> \sigma_2 > \sigma_3 \end{split}$$

sind die zugehörigen Schubspannungen Null.

4.2 Festigkeitshypothesen und Vergleichsspannungen

- ν Querkontraktionszahl (Stahl 0,3; GG 0,25; Gummi 0,5),
- μ Poissonzahl, μ = 1/ν
- Normalspannungshypothese (Hauptnormalspannungshypothese)

Größte Normalspannung ist maßgebend für Versagen ⇒ Trennbruch. Sprödbruchgefährdete Teile, z. B. aus Grauguss bei Zug, durchgehärteter Stahl

$$\sigma_{V} = \sigma_{1} \tag{11}$$

Dehnungshypothese (Hauptdehnungshypothese)

Größte Dehnung ist maßgebend für Versagen ⇒ Trennbruch. Sprödbruchgefährdete Teile, z. B. aus Grauguss bei Zug.

$$\varepsilon_{\text{max}} = \varepsilon_1 = \frac{\sigma_{\text{V}}}{\mathsf{E}} \tag{12}$$

$$\sigma_{V} = \sigma_{1} - \nu \left(\sigma_{2} + \sigma_{3} \right) \tag{13}$$

Schubspannungshypothese (Hauptschubspannungshypothese)

Größte Schubspannung ist maßgebend für Versagen ⇒ plastisches Verformen, Dauerbruch. Werkstoffe mit ausgeprägter Streckgrenze, wie weicher Stahl.

$$\tau_{\text{max}} = \frac{\sigma_1 - \sigma_3}{2} \tag{14}$$

$$\sigma_{V} = \sigma_{1} - \sigma_{3} \tag{15}$$

Gestaltänderungsenergiehypothese (v. Mises u. a.)

Gestaltänderungsenergie ist maßgebend für Versagen ⇒ plastisches Verformen, Dauerbruch.

Walzstahl, geschmiedeter Stahl, auch im vergüteten Zustand

$$\sigma_{V} = \sqrt{\frac{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}}{2}}$$
 (16)

 Erweiterte Schubspannungshypothese, Versagen tritt ein, wenn der größte Mohrsche Kreis die Versagensgrenze tangiert ⇒ Gleitbruch

4.3 Spannungsanzeigen in CATIA

Tabelle 2: Varianten der Spannungsanzeige beim Befehl Hauptspannung

	Kriterien				
Typen	Hauptneigung	Hauptwert	Hauptwert (absolu- ter Wert)	Tensorkomponente	von Mises
Berandung					х
Diskontinuierliches ISO	х	х	х	Х	х
Durchschnittliches ISO	х	х	х	х	х
Symbol		х			
Text	х	х	х	X 1)	х

¹) "Steuerelement für symmetrische Spannung" – Spannungswerte σ bzw. τ werden an den Knoten sofort nach Filteränderung angezeigt, ohne erst das Auswahlfenster schließen zu müssen.

4.4 CATIA-Benennungen und -Kurzzeichen:

"Hauptneigung" – Hauptschubspannung (ISO-Scherung) nach Versagenshypothese für duktile Werkstoffe, z. B. Stahl mit ausgeprägter Streckgrenze

$$\tau_{\text{max}} = \frac{\sigma_1 - \sigma_3}{2} \tag{17}$$

"Hauptwert" – Hauptnormalspannungen nach Versagenshypothese für sprödbruchgefährdete Werkstoffe, z. B. Grauguss mit Lamellengraphit. Mittels Filter Auswahl der anzuzeigenden Hauptspannung (RMT → Objekt ... → Definition → Register Darstellung → Hauptwert → Mehr >> → Filter Komponente:)

3D-Elemente

$$C11 = \sigma_1$$
, $C22 = \sigma_2$, $C33 = \sigma_3$

2D-Elemente, nur

C11 =
$$\sigma_1$$
, C22 = σ_2

CATIA V5 - FEM-Simulation

$$C11 = \sigma_{\boldsymbol{x}}, \quad C22 = \sigma_{\boldsymbol{y}}, \quad C33 = \sigma_{\boldsymbol{z}}, \quad C12 = \tau_{\boldsymbol{x}\boldsymbol{y}}, \quad C13 = \tau_{\boldsymbol{x}\boldsymbol{z}}, \quad C23 = \tau_{\boldsymbol{y}\boldsymbol{z}}$$

• "Von Mises" – σ_{V} nach Gestaltänderungsenergiehypothese gem. (16) bzw. mit den Tensor-komponenten

$$\sigma_{V} = \sqrt{\frac{\left(\sigma_{X} - \sigma_{y}\right)^{2} + \left(\sigma_{X} - \sigma_{z}\right)^{2} + \left(\sigma_{y} - \sigma_{z}\right)^{2}}{2} + 3\left(\tau_{xy}^{2} + \tau_{xz}^{2} + \tau_{yz}^{2}\right)}$$
(18)

- "Symbol" Pfeile als Spannungsvektoren, ermöglicht nur Anzeige der Hauptspannungen (Alle, C11 = σ_1 , C22 = σ_2 , C33 = σ_3 , C11 + C22, C11 + C33, C22 + C33)
- Diskontinuierliches und durchschnittliches ISO
 In der Regel mit "Durchschnittliches ISO", d. h., geglättete Durchschnittswerte der einzelnen Elementknoten. "Diskontinuierliches ISO" weist nicht geglättete und damit höhere Werte aus.

4.5 Verschiebungen

C1 = v_x , C2 = v_y , C3 = v_z im aktuellen **GSA**-Achsensystem