

Pro|ENGINEER Wildfire 4.0 NC Update Workshop Auszug interne Maschinensimulation Beat Fretz, PTC München

Erweiterte Projekte – Maschinensimulation innerhalb von Pro/NC

Maschinenkinematik in Pro/NC

- Fräsen und Drehen
- Pfad testen mit dynamischer Kollisionsprüfung
 - 3D Werkzeug, Halter, Spannmittel
 - Stop bei Kollision
- Simulation mit Maschinenkinematik
 - Definition der Maschine in Pro/E als Mechanismus
 - 2 CSYS : TOOL_POINT und MACH_ZERO
 - 3D Werkzeug benötigt ein CSYS namens TOOL_POINT
 - Zuordnung des Mechanismusmodells zur Arbeitszelle in Pro/NC
 - Suchpfad : Pro_mf_workcell_dir
 - Maschine wird beim Pfad testen benutzt
 - Kollisionsprüfung

🖬 Wkzę	gMaso	hinen-	Einst	ellung	8				
Datei									
🗅 🔗	😐 🗙	2							
Maschinenname		SIEMENS			~	CNC-Steuerung			
Maschinentyp		Fräsen 💌			*	Position			
Anzahl der Achsen		5-Achsen							
Ausgeben	Spindel	Vorschub	Wkzge	WkzgStre	ecke	Angepasste Zyklen	Kommentare	Maschinen- Baugruppe	
Maschinenbaugruppe TovL withdoor.asm Vorschau						k	Koordinat	ensystem DEF_CSYS	
							OK	Abbrechen	Zuweise

Der Inhalt folgender Übung besteht aus dem Aufbau einer 5-Achsen Laserschneidmaschine, sowie der Simulation des Werkzeugwegs

- Es handelt sich um eine 5 Achsen Laserdyne Maschine
 - 3 Linearachsen
 - 2 Rotaryachsen
- Setzen Sie das Arbeitsverzeichnis auf EX10
 - Laden Sie das config.pro vom Verzeichnis EX10
 - Hier wird die Option "pro_mf_workcell_dir" als Bibliothekspfad f
 ür die Maschinen gesetzt

Эртс

Both collectors Select component iter Select assembly item Move Component

Übung - Maschinenkinematik

Wir bauen eine 5-Achsen Maschine als Mechanismus

- Erzeugen Sie eine neue Baugruppe : "laserdyne_5ax"
 - Verwenden Sie das *inlbs_asm_design.asm* als Startvorlage (aus dem lokalen Verzeichnis)
- Als erstes bauen wir base.prt und positionieren das Bauteil mit "Standard"
- Einbau der Komponente f
 ür die X-Achse: xaxis.prt
 - Schubgelenk wählen
 - Kanten ausrichten
 - Ausrichtung von Oberfläche (base.prt) und Unterfläche (xaxis.prt)
 - Ausrichten von zwei Seitenflächen
 - Position auf 20 einstellen und als Regen Value speichern

Ľ Komponente für die Z Achse einbauen : zaxis.prt

□_, !

- Schubgelenk
 - Kanten ausrichten
 - Seitenflächen ausrichten
 - Die beiden oberen Flächen ausrichten als Verschiebe referenz
 - Translation 20 als Regenerierungswert einstellen
 - Optional Limits definieren

E Connection_24 (Sider)

Sut FSPROTRUSION

Placement Move Properties

19 13 L 14

Surf F5(PRIOTRUSION):X

Auis alignment

New Set

Current Position

Dynamic properties >>.

20.00

- % 0 ----

Forward looking information subject to change without notice

OT CEFINED . /a STATUS : Connection Definition Complete

TC

- Komponente für die Y Achse einbauen : yaxis.prt
 - Schubgelenk

- ⊒_, !
- Kanten ausrichten
- Seitenflächen ausrichten
- Die beiden hinteren Flächen ausrichten
- Translationswert auf 5 und Regenerierungswert einstellen
 - Optional Limits definieren

Connection_25 (Slider) Axis alignment

A Sut F5PROTRUSION

Rotation

New Se Placement Move Flexibility

🛛 🏷 🖳 Sider

Forward looking information subject to change without notice

PTC[®]

് ം Komponente für die C Achse einbauen : : caxis.prt

- Drehgelenk
 - Ausrichten der beiden Rotationsachsen
 - Ausrichten der Oberfläche von C und Unterfläche von Y Achse
 - Orientieren Sie als drittes die Seitenflächen
 - Regenerierungswert 0 einstellen

Translation

New Sel

C N Km

A_4 × A_5 A 1 **Cuttent Position** Regen value E Connection_28 (Pin) Asia alignment 0.00 ¥ [] 33 0.00 Enable regeneration value SulF7(PROTRUSION) CA Minimum Limit (Sof FSPRDTRUSION) Maximum Limit Dynamic properties >>> Placement Move Properties - % En.

OT OF THE - / STATUS Connection Definition Complete.

PTC[®]

Komponente f
ür die B Achse einbauen : daxis.prt

- Drehgelenk
- ×

Current Position

Minimum Limit

Maximum Limit

÷

Enable regeneration value

0.00

- Ausrichten der beiden Rotationsachsen
- Ausrichten der beiden Seitenflächen
- Ausrichten der beiden Oberflächen
- Regenerierungswert einstellen

Sut FEPROTRUSION: D

Sut F7(PROTRUSION)

Econnection_30 (Pin) Axis alignment

Translation

totation As

Regen value

0.00

32

A 3

A 1

A 2

PTC[®]

Wir benötigen noch 2 Koordinatensysteme:

- TOOL_POINT : wird von Pro/NC benutzt, um das Werkzeug zu positionieren
 - Definieren Sie das CSYS an der Spitze des daxis.prt.
- MACH_ZERO : wird von Pro/NC zur Positionierung der zu bearbeitenden Teile benutzt
 - Definieren Sie das CSYS in der Mitte des Tisches
- Achtung: Beide oben erzeugten Koordinatensysteme müssen in der Baugruppe liegen !!

Speichern Sie die Baugruppe

. 🔊 ртс

Übung - Maschinenkinematik

Nun wollen wir unsere Maschine zur Simulation benutzen

- Öffnen Sie: laser_test.mfg
- Wählen Sie im Modellbaum die Leitkurvenbeabeitung und testen den Weg
 - Zeigt die Standard Simulation innerhalb Pro/NC
- Zuordnen der Maschine zur Arbeitszelle
 - Öffnen Sie unter Operation die Arbeitszellen Definition 👘
 - Wählen Sie die Baugruppe
 - laserdyne_5ax.asm
 - Wählen Sie ACSO in der NC Baugruppe als Programmnullpunkt ACS0 wird dann auf MACH_ZERO der Maschine gesetzt
 - Vorschau zeigt Maschinenmodell
 - OK
- o Nun sind wir bereit f
 ür die Simulation!

Simulation der Maschinenkinematik

- Selektieren Sie die Trajectory NC Sequenz, rechte Maustaste und Maschine abspielen
 - Mechanism wird gestartet mit der Maschinenbaugruppe
 - Das Werkzeug sitzt auf TOOL_POINT
 - Die NC Baugruppe auf MACH_ZERO
 - Die Simulation wird direkt durch das CL_Data getrieben
 - In Mechanism kann die Kollisionsbetrachtung gesetzt werden
 - Tools/Baugruppeneinstellung/Einstellungen f
 ür Kollisionspr
 üfung
- Starten Sie die Animation!

Delete

Group

Suppress Modify

Rename Edit Definition Edit References

Pattern... Submit Now Submit Later

Play Path Machine Play

Save Sequence Parameters

up No

Insert Here