Debugging J-Link Applications. Seite 1 von 4

T —
gb the product development company country & lar(}:gﬂ%cet

company news & events products partners services & support store

In |

Is this document what you were looking for? Notatall C C € C C Definitely
Did this document answer your question? Notatall C C C C Completely Submit

Please rate the overall quality of this document. Poor C C C C C Excellent
Title Debugging J-Link Applications.
Product Pro/ENGINEER |Module JL}nk TPI ID 34380 |[Created SS‘JUN'
Reported
Workstation |All Reported f,,5n |yn 1999140
In Release
Datecode
Resolved Resolved In
SPR None In Release Datecode

Description

Thi s docunent outlines some techniques that can be used to debug J-Link
Appl i cati ons.

Al ternate Techni que

See resol ution bel ow.

Resol uti on

Pro/ ENG NEER starts the Java Virtual Machine (VM with the follow ng conmmand |ine
arguenents:

<jre command |ine> comptc.pfc.lnplenentation. Starter <host> <port>

comptc.pfc. I nplenentation. Starter is the nmandatory name of the J-Link class that
initializes J-Link and establishes connection between the VM and Pro/ ENG NEER

<host> i s the host name of the nachine where the application is running, and <port>
is a systemassi gned port nunber allocated by Pro/ ENG NEER for connection with the
VM Note: do not use "local host" or "loghost" as a host nane, it will not work due
to a tenmporary limtation in the socket library.

<jre command |line> varies by platform
The defaults for supported platforns are:

sund_sol ari s:
jre -native

sgi _el f2:
java -native -032 -nojit

sgi _m ps4:
java -native -n32 -nojit

al pha_uni x:
jre -native -nojit

i bm rs6000:

http://www.ptc.com/cg/tpi/34380.htm 08.04.02

Debugging J-Link Applications. Seite 2 von 4

jre -classpath "$CLASSPATH'

hp8k: NOTE! ON hp8k ONLY J-Link RUNS | N GREEN THREADS MODE
jre

i 486_nt, i486_wi n95, alpha_nt:
jre -classpath "$CLASSPATH'

SE Users note: A full JDK install is required even if no Java programs are being
conpiled on the target nachine, while on other platfornms JRE is enough to run
prograns.

In order to debug a J-Link programwith jdb, users *nust* be running under a debug
VM This can be a pure debug VM (java_g or jre_g), to which the user can renotely
connect fromjdb, or it could be jdb itself started directly from Pro/ ENG NEER

In order to start a debug VM the user nust change the VM startup command t hat
Pr o/ ENG NEER execut es:

set env PRO_JAVA COWNAND "<jre_g command |ine> -
debug comptc.pfc.Inplementation. Starter"

<jre_g command line> is the sane as <jre command |i ne> above, except that it nust
start jre_g or java_g instead of jre or java. Note the addition of -debug paraneter.
That paranmeter causes the VMto print a "password" that allows jdb to renotely
connect to the VM Upon startup, the VMw Il print something like:

Agent passwor d=t 8gav
The user can then start jdb:
jdb -password t8gav

It will connect to the running VM The user can then set breakpoints, print out
vari abl e val ues and use any avail able jdb conmands.

NOTE: jdb *must* have the sane CLASSPATH as the user application in order to work
correctly. Wien a J-Link application starts up, J-Link prints out
the application's CLASSPATH to standard out put.

NOTE: On Wndows platforns these nmessages output by Pro/ ENG NEER are not seen in the
MSDOS wi ndow from where the Pro/ ENG NEER startup command was executed from users
are directed to use the syntax

DOS> proe2000i . bat > out put . t xt

for starting Pro/ ENG NEER which will then capture the nessages in the output.txt
file.

Al'l user classes *nust* be conpiled with debug information (javac -g) in order for
jdb to show source code and val ues of vari abl es.

On all platforms except hp8k, J-Link |loads a native library for comunication with
Pr o/ ENG NEER
The name of the library on the different platforns is as foll ows:

sun4d_sol aris, sgi_elf2, sgi_m ps4, al pha_unix:
| i bj avaxportnt.so

i bm rs6000:
|i bj avaxportnt.a

i 486_nt, i486_wi n95, al pha_nt:
javaxportmnt.dll

If a debug VMis used, the VMw |l automatically append "_g" to the end of the nane
of the library, and there is no way to prevent it. For instance, on Solaris the
debug VM will try to load |libjavaxportnt_g.so, and on NT javaxportnt _g.dll. The
default installation will not provide that library. That library nust be the sane as

http://www.ptc.com/cg/tpi/34380.htm 08.04.02

Debugging J-Link Applications. Seite 3von 4

the installed javaxport library.

There are two ways to overcone this limtation. One way is to nake a copy or a link
i n $PRO_DI RECTORY/ $PRO_MACHI NE_TYPE/ l i b. Another way is to create a copy or a
synmbolic link in a local directory and add that local directory to the begi nning of
the shared library path. The shared library path environnment variable on different
platforns is:

sund_sol aris, sgi_elf2, alpha_unix:
LD_LI BRARY_PATH

sgi _m ps4:
LD LI BRARYN32_PATH
i bm rs6000:
LI BPATH
hp8k (provided for conpl eteness):
SHLI B_PATH
i 486_nt, i486_wi n95, al pha_nt:
PATH
On UNIX, the elenents of the path are separated with ":" (colon), on Wn32 with

";" (semcolon).

Another way is to start jdb right from Pro/ ENG NEER. Jdb has no argunent -nojit: (it
never runs with JIT). Oher than that, its command line is the sanme as the above
conmand lines for java and jre, except the conmand is jdb instead of java or jre.

I norder to establish the port nunber used for the connection follow the technique
illustrated below. Wite a script that echoes port# and then runs jdb.

For sgi _el f2:

cat > run_jdb << END_SCRI PT

#!/bin/csh -f

echo Starter arguments: $1 $2

jdb -native -032 comptc.pfc.|lnplementation. Starter
END_SCRI PT

chnod +x run_j db

set env PRO_JAVA COWAND run_j db

The output will ook like this:

Starter argunents: ol dpug 2386
Initializing jdb...
Thread-4[1] run comptc.pfc.|nplenentation. Starter ol dpug 2386

Pl ease note that Pro/ ENG NEER tines-out after 20 seconds by default when waiting for
the VMto start up and connect to Pro/ENG NEER |If this tineout functionality needs
to be disabl ed:

setenv PRO_JAVA CONNECT Tl MEOUT 0

Al so note that setting the PRO JAVA COMWAND envi ronnent vari able gives a great deal
of freedom

Custoners can actually use *any* JDK 1.1 conpliant VM although PTC dosen't
officially support VM s other than the ones that have been tested with J-Link (a
list is included in the JLink documentation). Using a different VM Ilike for instance
Symantec's may allow the custoners to utilize a nore friendly debugger than jdb,
like the one in Visual Cafe. Users will have to get a comand |ine version of the
debugger vendor's VM find out what its conmand |ine argunments are, and set

PRO_JAVA COWAND accordi ngly.

One inportant thing to keep in nmind is that except on hp8k, the VM mnust run with
native threads, otherw se the native conmunication library will not work. Hence the
switch "-native" on platforns that have both native and green threads. There is a
way around though. If you add "-Dci pPureJava" to the jre/java/jdb conmand line, J-
Link will use a Java comunication |library instead of the native library, and that

http://www.ptc.com/cg/tpi/34380.htm 08.04.02

Debugging J-Link Applications.

is *unsupported*, it's just an undocunented feature that nay prove hel pful

should work with a green thread VM on any platform It is especially useful
third-party VMs that may not support native threads. Please note that -DcipPurelava
in sone

cases for highly advanced users, but may change or di sappear altogether at any tine.

Seite4von4

W th

Questions or Comments? Contact the Customer Service Webmaster.

A

company | news & events | products | partners | services & support | store
site index | legal policies and guidelines

http://www.ptc.com/cg/tpi/34380.htm

08.04.02

