1.1 Körper messen

Dialog: NX 8.5

Für dieses Beispiel wurden folgende Voreinstellungen getroffen:

Festlegen der Einheit g - mm(Fläche = mm², Volumen = mm³) Analyse > Einheiten

Analysis > Units

Voreinstellen der *Dichte (Density) hier 7.830 für Stahl*, sowie der *Dichteeinheiten (Density Units)* G/Cu Cm. Vor der Erstellung des ersten Körpers (Solids). Dichte = 7.8306 g/cm³

Voreinstellungen > Konstruktion

Preferences > Modeling

Dichte	7.8306
Dichteeinheiten	G/Cu Cm 🔽

Die *Dichte* und deren *Einheit* kann ebenfalls im Nachhinein verändert werden.

Dichte zuweisen	ວ x
Körper	^
* Objekt auswählen (0)	+
Dichte	^
Dichte	7.8306
Einheiten Gramm -	Zentimeter
OK Anwenden	Abbrechen

Bearbeiten > Formelement > Dichte

Edit > Feature >Solid Density Analyse > Einheiten > Einheiteninformationen

Analysis > Units > Units Information Eine Auskunft über die Benennung der *Einheiten* erhält man mit der Funktion *Einheiteninformationen (Units Information)*.

Datei(F) Bearbeiten(E)			
Informationsliste erzeugt von : f Datum : Aktuelles aktives Teil : Knotenname :	eils 10.06.2013 15:52:36 S:\Schulungs_hbb\Freiformflaechen\ hbb_mtul	BSH_Best_Practice\	Ecke_verziehen_NX8_5.prt
Messen	Benennung (Basiseinheit)	Name anzeigen	Beschreibung
Länge	Millimeter	mm	Millimeter
Bereich	SquareMilliMeter	mm^2	Quadratmillimeter
Volumen	CubicMilliMeter	mm^3	Kubikmillimeter
Masse	Gram	g	Gramm
Massendichte	KilogramPerCubicMilliMeter	kg/mm^3	Kilogramm pro Kubikmillimeter
Stärkekoeffizient für Ermüdung	NewtonPerSquareMilliMeter	N/mm^2 (MPa)	Newton pro Quadratmillimeter
Zeit	Zweite	s	Sekunden
winkei	Grad	grad	Grad
Geschwindigkeit	MilliMeterPerSecond	mm/Sek	Millimeter pro Sekunde
Beschleunigung	MilliMeterPerSquareSecond	mm/s^2	Millimeter pro Quadratsekunde
Kraft	Newton	N	Newton
Kraft pro Einheitenlänge	NewtonsPerMilliMeter	N/mm	Newton pro Millimeter

Erzeugen eines *Quaders*. Der *Ursprung* (*Origin*) wurde in diesem Beispiel auf Null gesetzt. Dadurch ist die Ergebnisanzeige (*Körper messen*) leichter nachvollziehbar.

Q uader		ა x					
Тур							
🗊 Ursprung und	🗊 Ursprung und Kantenlängen						
Ursprung							
Bemaßungen		^					
Länge (XC)	100	mm 💽					
Breite (YC)	100	mm 💽					
Höhe (ZC)	100	mm 💽					
Boolesch		v					
Einstellungen		V					
Vorschau		V					
OK Abbrechen							

Die Maße des *Quaders* werden nach der Umstellung auf $_{,g} - mm^{"}$ auch in Millimeter angegeben (hier in mm: 100 x 100 x 100).

Wenn im Menü *Körper messen (Measure Bodies)* der Haken *Informationsfenster anzeigen (Show Information Window)* gesetzt ist, werden die Messergebnisse in einem separaten Fenster angezeigt.

🖸 Körper messen	x د
Objekte	^
✓ Körper auswählen (1)	
Assoziative Messung und Prüfung	v
Ergebnisanzeige	۸
Informationsfenster anzeigen	
Beschriftung Kein	
Einstellungen	V
OK Anwenden Abbrecher	

Analyse > Körper messen

Analysis > Measure Bodys.

i Informationen								
Datei(F) Bearbeiten(E)								
Informationsliste erzeugt	von : feils							
Datum : 10.06.2013 16:19:18								
Aktuelles aktives Teil	: S:\Schulungs_hbb\diverses\Analyse\Analyse_Koerper_messen_NX8_5.prt							
Knotenname	: hbb_mtu1	Ξ						
Bemaßungsmasseeigenschafte	1							
Angezeigte Masseeigenschaf	tswerte							
Volumen	= 1000000.00000000 mm^3							
Bereich	= 60000.00000000 mm^2							
Masse	= 7830.640000000 g							
Stärke	= 76.792345756 N							
Trägheitsradius	= 50.00000000 mm							
Schwerpunkt	= 50.00000000, 50.00000000, 50.00000000 mm							
1								
Deneillienne Magaasigenach	- Cuan							
Detaillierte Masseeigensch	irten							
Inform Finheit g - mm	11gxeit Von 0.99000000							
InformEfficient g - nam								
Dichte =	0.007830640							
Volumen = 10	00000.00000000							
Bereich = 60	000.00000000							
Masse = 78:	30.64000000							

Aufgelistet werden z.B.:

der *Bereich (Area),* dieser gibt die benetzte Oberfläche des Quaders an, d.h. die Flächen von Bohrungen und Taschen, etc. würden mit addiert werden. Die Fläche iergibt sich hier durch 5 Würfelflächen zu je 100 x 100 = 1.000.

Bereich = 60000.00000000

der Masseschwerpunkt (Center of Mass), bezogen auf das WCS (hier in der Quadermitte (X = 50 mm; Y = 50 mm; Z = 50 mm))

Masseschwerpunkt Xcbar, Ycbar, Zcbar = 50.00000000, 50.00000000, 50.00000000 Um Vergleichswerte zu erhalten, werden nun am Quader eine *Tasche* (*Pocket*), sowie zwei *Bohrungen* erstellt.

Nun wird der Körper erneut gemessen.

Das Volumen, die Masse und das Gewicht haben sich entsprechend verringert.

Der *Bereich* hat sich aufgrund der neu hinzugekommenen Flächen (*Bohrungen*, *Tasche*) vergrößert. (*Bereich* = *benetzte* Oberfläche)

Die Koordinaten des *Masseschwerpunkts* haben sich ebenfalls verändert.

Masseschwerpunkt				
Xcbar, Ycbar, Zcbar	=	50.000000000,	50.000000000,	50.000000000
		₩		
		V		
Masseschwerpunkt				
Xcbar, Ycbar, Zcbar	=	48.049048534,	50.000000000,	50.000000000

Es besteht die Möglichkeit, mit Hilfe der Funktion *Körper messen* den *Masseschwerpunkt* optisch darzustellen zulassen.

Hierzu muss die Haken bei Assoziativ (Associative) gesetzt und die Beschriftung (Annotation) auf Bemaßung anzeigen (Show Dimension) gesetzt sein.

O Körper messen	ວ x				
Objekte	^				
🗸 Körper auswählen (1	1)				
Assoziative Messung	und Prüfung 🔥 🗚				
Assoziativ					
Anforderung	Kein				
Ergebnisanzeige	^				
Informationsfenster	anzeigen				
Beschriftung	Bemaßung anzeiger 🔽				
Einstellungen	V				
OK Anwenden Abbrechen					

Tipp: Entfernen des angehängten Textes über F5

Durch den Assoziativ-Schalter wird die Körperbemaßung (Body Measurement) im Teile-Navigator (Part Navigator) aufgelistet.

Achtung: Wird der Körper geändert, muss die *Körperbemaßung* (*Body Measurement*) im *Teile-Navigator* per Drag and Drop verschoben werden, um den aktuellen *Masseschwerpunkt* zu erhalten.

Für die Darstellung des Trägheitsmoments ist es empfehlenswert, bei der Funktion *Körper messen* die Hauptachsen zu erzeugen (hier am Beispiel eines L-Profils).

Körper messen	ວ x
Objekte	^
✓ Körper auswählen (1)	
Assoziative Messung und Prüfung	V
Ergebnisanzeige	~
Informationsfenster anzeigen	
Beschriftung Hauptachsen erzei	u 🔽
Einstellungen	V
OK Anwenden Abbreche	en

Die Hauptachsen stehen stets senkrecht aufeinander und verlaufen immer durch den Schwerpunkt. Hauptachsen werden auch als Hauptrotationsachsen bezeichnet.

Trägheitsmoment (WCS) Ix, Iy, Iz = 2119509.525305520, 1736124.517499678, 709374.128423756

Trägheitsmomente werden in Bezug auf das WCS bzw. den Schwerpunkt gemessen.

Zur Erinnerung:

Alle Kräfte und Lasten, die in Richtung einer Hauptachse angreifen und durch den Schwerpunkt gehen, verbiegen den Körper nur in Richtung des Kraftvektors. Kräfte und Lasten, die nicht durch den Schwerpunkt gehen und nicht in Richtung einer Hauptachse wirken, erzeugen ein Rotationsmoment und verdrillen den Körper zusätzlich zur Biegung.

Für die *Richtungsvektoren (Direction vectors)* der Hauptachsen ist ebenfalls eine Auflistung im *Informationsfenster* vorhanden.

Haupta	chsen (l	Richtun	gsvek	toren relativ zu	WCS)	
Xp(X),	Xp(Y),	Xp(Z)	=	0.915214425,	0.402967191,	0.00000000
Yp(X),	Yp(Y),	Yp(Z)	=	-0.402967191,	0.915214425,	0.00000000
Zp(X),	Zp(Y),	Zp(Z)	=	0.00000000,	-0.000000000,	1.000000000