Robust Design Optimierung using optiSLang inside ANSYS Workbench

supported by HPC parametric pack\$

Dr.-Ing. Johannes Will

Managing director Dynardo GmbH

0.0

dynando

Excellence of optiSLang

- optiSLang is an algorithmic toolbox for sensitivity analysis, optimization, robustness evaluation, reliability analysis and robust design optimization
- optiSLang is the commercial tool that has completed the necessary functionality of sensitivity analysis, optimization and stochastic analysis to run real world industrial applications in CAE-based robust design optimizations
- optiSLang offers the beginner and expert users easy and safe to use predefined workflows of best practice
- Since 2009 interfacing via optiPlug support ANSYS workbench-optiSLang applications

optiSLang inside ANSYS Workbench v14

Modules Sensitivity+MOP, Optimization and Robustness+MOP provide "best practise" optiSLang functionality

Sensitivity Analysis

(Design Exploration)

Sensitivity Module

Minimal required user input:

• Definition of parameter variation

Sensitivity Module

The Meta Model of optimal Prognosis (MOP) is automatically created out of the DOE-Sampling **Minimal required user input: non**

Additional features:

supports removing designs out of DOE Post Processing

Optimization

Sensitivity Analysis and Optimization

4) Run an ARSM, gradient based or biological based optimization Algorithms

Optimization using MOP

After sensitivity analysis optimization using MOP is supported.

Minimum required user input:

- drop the optimization module onto MOP
- defining objective and constraints

"Optima" which are based on meta models need to be verified!

Proof optima:

- Automatic verification with real ANSYS call
- Check differences in post
 processing

Optimization Algorithms

Nature inspired optimization algorithms:

- Genetic algorithms,
- Evolutionary strategies
- Particle Swarm Optimization

Pareto Optimization

When to use which Algorithm

dynando

Optimization Wizzard

optiSLang helps you to select a suitable optimization algorithm. Support the underlying (automatic) selection process with some additional information about the solver and the problem itself.

Exampel for using MOP and best_design_Sensitivity:

- 1. Set the analysis status as "Preoptimized" (best design from Sensitivity)
- 2. Set the constraint violations to "Seldom"
- 3. Set failed designs to "None" (MOP gives always response values)
- 4. Set solver noise to "None" (MOP gives a smooth surface)

Analysis status:	Preoptimized 🔹
Constraints violations:	Seldom
Failed designs:	None
Solver noise:	None

Optimization Wizzard using MOP

Suggested algorithm is NLPQL Start point is automatically selected Press "Next"

Image: Second Se							
Optimization method Specify the optimization method							
Optimization method Response surface method							
Adaptive Response Surface Method (ARSM)							
Natural inspired optimization algorithms							
🔘 💿 Evolutionary Algorithm (EA) - local							
🔘 💿 Evolutionary Algorithm (EA) - global							
Particle Swarm Optimization (PSO) - local							
Particle Swarm Optimization (PSO) - global							
🔘 💿 Stochastic Design Improvement (SDI)							
Gradient based optimization							
Non-Linear Programming by Quadratic Lagrangian (NLPQL)							
Additional options							
2 Vise Previous Data As Starting Point(s)							
3. < Back Next > Cancel Help							

Robustness Design Optimization

dynando

Robustness = Sensitivity of Uncertainties

Robustness Evaluation

Minimum required user input:

- definition of input variation /scatter
- definition of robustness criteria
- number of samples for ALHS

Robust Design Optimization

Update Functionality optiSLang inside ANSYS v14.5

1

2

3

4

5

6 I

using continue optiSLang only send unsolved designs Computation partially completed В 🚨 Sensitivity The project "hook_sensi" has been partially computed. 🔄 Parameter Do you want to continue the computation or reset and 🚺 Criteria re-run the project (discarding all existing results)? 💥 DoE Edit... 😒 MOP Continue computation DoE Results 🕅 Results Keeps current results. DoE Results (Reduced Data Set) Sensitivity Finalize Reset and re-run Discards all existing results. Select Update Script Duplicate Ð. Cancel Update. 21 Refresh Reset ab Rename Properties Quick Help

Continue crashed session option inside ANSYS

using update at optiSLang container continue or reset can be chosen

optiSLang saves every design which was successfully calculated

X

Recalculate failed designs

- Due to different reasons design evaluations may fail
- With "Recalculate Failed Design Points" you can start them again

ž	Se	nsitivity				-			? ×	-	•			в	
	Sa	mpling	Result des	igns							1	33	Se		Edit
			Īd	Activation	Violated	Duplicates	Status	AREA01	AREA 📤	-	2	Ph	D		DoF Results
	1	0.50		✓ active	false		Succeeded	5.871	17.75 😑	_	-		-		
	2	0.49		🛛 active	false		Not succeeded	16.617	1.25		3	1 (x)	Q		Show Reduced Data Set
	3	0.48		🔽 active	false		Succeeded	14.627	11.25		4	8	D		Remove Reduced Data Set
	4	0.47		✓ active	false		Not succeeded	9.453	19.75		5	8	м		Finalize
	5	0.46		🛛 active	false		Succeeded	2.289	13.75		6	1	R		Recalculate Failed Design Points
	6	0.45		✓ active	false		Not succeeded	14.229	12.75				Sa		Coloret Underter Coviet
	7	0.44		✓ active	false		Not succeeded	7.065	11.75				50		Select Opdate Script
	8	0.43		✓ active	false		Not succeeded	18.209	15.75						Duplicate
	9	0.42		✓ active	false		Not succeeded	15.025	6.75					4	Update
	•		111						•					liter	-
							ОК	Cancel	Apply]					

Update via Python scripting

- ANSYS initialize per default an update mechanism, which updates a complete ANSYS Workbench project
- Mechanism can be overridden via python file
- optiSLang provides this feature for optiSLang design evaluations
- user has full access to his ANSYS model update

ate.p	ру	
	ite.;	te.py

Parallel evaluation using Ansys RSM

- ANSYS RSM is the powerful tool to distribute jobs
- optiSLang can fill the Workbench design table with a predefined number of designs

1

- ANSYS RSM organizes distribution of jobs
- If ANSYS RSM is installed you only need to:
 - Choose RSM Mode
 - Set max. number of parallel jobs

	A	D
	Property	Value
-	General	
	Component ID	DOE (optiSLang)
	Directory Name	Sensitivity
	Open Postprocessing during Solver Run	
	Open Postprocessing after Calculation	
	Save Design Point Directories	
=	Update Options	
	Use RSM Mode	
	Preferred Number of Design Points in Parallel	25

Ψ X

dynando

ANSYS HPC Parametric Pack optiSLang inside Ansys Workbench v14.5

optiSLang Algorithm Settings

- Select "Use RSM Mode" to enable parallel design point submission
- Set the "Preferred Number of Design Points in Parallel" to the intended RSM job size

Properties of Schematic B4: DOE 🗾 🗸 🥊							
	А	В					
1	Property	Value					
2	General						
3	Component ID	DOE (optiSLang)					
4	Directory Name	Sensitivity					
5	Open Postprocessing during Solver Run						
6	Open Postprocessing after Calculation						
7	Save Design Point Directories						
8	Notes						
9	Notes						
10	 Update Options 						
11	Use RSM Mode						
12	Preferred Number of Design Points in Parallel	4					

Flow simulation of LCD manufacturing process

Problem Description

- Identify model inflow parameter to match outflow
- Identified output velocities have to be in 10% error ranges comparing with reference values
- Input parameter: 10 pressure areas (100 design points)

Detail:

- Pressure-Based solver, K-Epsilon Model with Standard Wall Functions
- 78.800 nodes, 66.900 hexahedral elements
- Hardware: Workstation with dual Intel® Xeon® E5645 (2,4 GHz, 12 Cores),
 96 GB, all jobs running 1 core

Licensing Solution

- 1 Ansys Fluent
- 2 Ansys HPC Parametric Packs

Result/Benefit

~6,2x speedup over sequential execution

Temperature analysis of a Seal

Problem Description

- Sensitivity study of influence of geometry variation to seal deformation
- 15 Input geometry parameter (100 design points)

Detail:

- Mechanical analysis with temperature loading
- 6.100 nodes, 5.500 elements (2D)
- Hardware: Workstation with dual Intel® Xeon® E5645 (2,4 GHz, 12 Cores), 96 GB, all jobs running 1 core

Licensing Solution

- 1 Ansys Mechanical, 1 Ansys DesignModeler
- 2 Ansys HPC Parametric Packs

Result/Benefit

- ~4,1x speedup over sequential execution
- Easier and fully automated workflow!

dynando

Benefit of ANSYS HPC Parametric Pack

Faster turn around time for multiple jobs

- Geometry update and Result processing wing Time be performed sequentially on local resource
- Meshing, solution, result extraction executed in parallel

Scaling factor depend on:

- time for geometry update
- time for meshing & solution
- hardware environment

Benefit of ANSYS HPC Parametric Pack

Get ready for RDO by multiplying base licenses

One base license set can be multiplied by ANSYS HPC Parametric Packs

Now small, medium & large companies can increase significantly the number of parallel jobs!

Get ready for RDO using ANSYS HPC Parametric Pack

HPC Parametric pack is available in ANSYS workbench only

all parametric models from ANYS classic needs to be integrated in ANSYS workbench

optiSLang v4 supports integration node for ANSYS workbench including parameterization of additional responses (signals,..)

Dynardo Consulting switched to HPC Parametric Pack for all ANSYS RDO tasks Q2/2013

