

 JT File Format Reference Version 9.5 Rev-A Page 1

JT File Format Reference
Version 9.5

Rev-A

© 2010 Siemens Product Lifecycle Management Software Inc. All rights reserved. Siemens, JT, and Parasolid are registered

trademarks or trademarks of Siemens Product Lifecycle Management Software Inc. in the United States and/or other

countries. OpenGL is a registered trademark or trademark of SGI. All other trademarks are the property of their respective

owners.

 JT File Format Reference Version 9.5 Rev-A Page 2

Acknowledgments
Documents of this type typically require many hands both to author, and to ensure their correctness. However, if one single

person can be identified most responsible for bringing this specification document into existence, it is Gary Lance. He

authored the JT v8.1 Specification almost single-handedly over the course of four months in 2006, beginning with no

knowledge of the DirectModel toolkit from which the JT format springs. This document owes much to the considerable

efforts and high standards of quality Gary brought to that first version.

Equally required of documents of this type, come the inevitable erratum or two. Paul Kitchen, of Wilcox Associates, Inc. a

Hexagon Metrology Company, is due special thanks for his patient, diligent, and even enthusiastic work with the authors in

finding and correcting several bugs in the original JT v8.1 reference document. To our knowledge, Paul is the first outside

developer to correctly read all data entities documented in the JT v8.1 specification.

This updated JT Version 9.5 document was written by the JT Format and DirectModel team's developers themselves:

Michael Carter, Jianbing Huang, Sashank Ganti, Jeremy Bennett, and Bo Xu.

 JT File Format Reference Version 9.5 Rev-A Page 3

Table of Contents

1 Siemens JT Data Format Reference Intellectual Property License Terms 12

2 Scope .. 13
2.1 What‟s New in This Revision ... 13

3 References and Additional Information ... 14

4 Definitions.. 15
4.1 Terms .. 15
4.2 Coordinate Systems ... 17

5 Acronyms and Abbreviations .. 17

6 Notational Conventions ... 18
6.1 Diagrams and Field Descriptions .. 18
6.2 Data Types .. 22

7 File Format ... 24
7.1 File Structure ... 25

7.1.1 File Header ... 25
7.1.2 TOC Segment .. 27
7.1.3 Data Segment ... 28

7.1.3.1 Segment Header .. 29
7.1.3.2 Data ... 30

7.2 Data Segments ... 33
7.2.1 LSG Segment ... 33

1.1.1.1.1.1 Texture Coordinate Generator Attribute Element ... 33
7.2.1.1 Graph Elements ... 34

7.2.1.1.1 Node Elements.. 34
7.2.1.1.1.1 Base Node Element ... 34
7.2.1.1.1.2 Partition Node Element ... 35
7.2.1.1.1.3 Group Node Element .. 38
7.2.1.1.1.4 Instance Node Element ... 39
7.2.1.1.1.5 Part Node Element .. 39
7.2.1.1.1.6 Meta Data Node Element .. 40
7.2.1.1.1.7 LOD Node Element .. 41
7.2.1.1.1.8 Range LOD Node Element ... 42
7.2.1.1.1.9 Switch Node Element ... 43
7.2.1.1.1.10 Shape Node Elements ... 44

7.2.1.1.2 Attribute Elements .. 54
7.2.1.1.2.1 Common Attribute Data Containers ... 55
7.2.1.1.2.2 Material Attribute Element ... 60
7.2.1.1.2.3 Texture Image Attribute Element ... 63
7.2.1.1.2.4 Draw Style Attribute Element ... 80
7.2.1.1.2.5 Light Set Attribute Element .. 82
7.2.1.1.2.6 Infinite Light Attribute Element ... 82
7.2.1.1.2.7 Point Light Attribute Element ... 85
7.2.1.1.2.8 Linestyle Attribute Element .. 88
7.2.1.1.2.9 Pointstyle Attribute Element ... 89
7.2.1.1.2.10 Geometric Transform Attribute Element .. 90
7.2.1.1.2.11 Shader Effects Attribute Element ... 92
7.2.1.1.2.12 Vertex Shader Attribute Element .. 93
7.2.1.1.2.13 Fragment Shader Attribute Element.. 94
7.2.1.1.2.14 Texture Coordinate Generator Attribute Element ... 95

7.2.1.2 Property Atom Elements ... 100
7.2.1.2.1 Base Property Atom Element ... 101
7.2.1.2.2 String Property Atom Element ... 101
7.2.1.2.3 Integer Property Atom Element .. 102
7.2.1.2.4 Floating Point Property Atom Element... 103

file:///C:\Users\carterm.PLM\Desktop\JT_v95%20Rev-A%20(No%20Scrambling).docx%23_Toc269725937

 JT File Format Reference Version 9.5 Rev-A Page 4

7.2.1.2.5 JT Object Reference Property Atom Element ... 103
7.2.1.2.6 Date Property Atom Element .. 104
7.2.1.2.7 Late Loaded Property Atom Element ... 106
7.2.1.2.8 Vector4f Property Atom Element ... 107

7.2.1.3 Property Table ... 108
7.2.1.3.1 Element Property Table .. 108

7.2.2 Shape LOD Segment .. 109
7.2.2.1 Shape LOD Element ... 109

7.2.2.1.1 Base Shape LOD Element .. 109
7.2.2.1.2 Vertex Shape LOD Element ... 110
7.2.2.1.3 Tri-Strip Set Shape LOD Element .. 124
7.2.2.1.4 Polyline Set Shape LOD Element ... 125
7.2.2.1.5 Point Set Shape LOD Element ... 125
7.2.2.1.6 Null Shape LOD Element ... 126

7.2.2.2 Primitive Set Shape Element ... 127
7.2.3 JT B-Rep Segment ... 134

7.2.3.1 JT B-Rep Element ... 134
7.2.3.1.1 Topological Entity Counts .. 137
7.2.3.1.2 Geometric Entity Counts .. 138
7.2.3.1.3 Topology Data .. 139
7.2.3.1.4 Geometric Data ... 147
7.2.3.1.5 Topological Entity Tag Counters .. 156
7.2.3.1.6 B-Rep CAD Tag Data... 157

7.2.4 XT B-Rep Segment .. 157
7.2.4.1 XT B-Rep Element .. 157

7.2.4.1.1 XT B-Rep Data ... 159
7.2.5 Wireframe Segment ... 159

7.2.5.1 Wireframe Rep Element .. 159
7.2.5.1.1 Wireframe MCS Curves Geometric Data ... 161
7.2.5.1.2 Wireframe Rep CAD Tag Data .. 161

7.2.6 Meta Data Segment .. 162
7.2.6.1 Property Proxy Meta Data Element ... 162
7.2.6.2 PMI Manager Meta Data Element... 165

7.2.6.2.1 PMI Entities .. 168
7.2.6.2.1.1 PMI Dimension Entities .. 168
7.2.6.2.1.2 PMI Note Entities ... 177
7.2.6.2.1.3 PMI Datum Feature Symbol Entities .. 177
7.2.6.2.1.4 PMI Datum Target Entities ... 178
7.2.6.2.1.5 PMI Feature Control Frame Entities ... 178
7.2.6.2.1.6 PMI Line Weld Entities .. 179
7.2.6.2.1.7 PMI Spot Weld Entities .. 179
7.2.6.2.1.8 PMI Surface Finish Entities .. 182
7.2.6.2.1.9 PMI Measurement Point Entities .. 182
7.2.6.2.1.10 PMI Locator Entities ... 184
7.2.6.2.1.11 PMI Reference Geometry Entities .. 184
7.2.6.2.1.12 PMI Design Group Entities ... 185
7.2.6.2.1.13 PMI Coordinate System Entities ... 187

7.2.6.2.2 PMI Associations .. 188
7.2.6.2.3 PMI User Attributes.. 190
7.2.6.2.4 PMI String Table .. 191
7.2.6.2.5 PMI Model Views .. 192
7.2.6.2.6 Generic PMI Entities .. 193
7.2.6.2.7 PMI CAD Tag Data .. 198
7.2.6.2.8 PMI Polygon Data .. 199

7.2.7 PMI Data Segment ... 202
7.2.8 JT ULP Segment .. 202

7.2.8.1 JT ULP Element .. 202
7.2.8.1.1 Topology Data .. 204
7.2.8.1.2 Geometric Data ... 221
7.2.8.1.3 Material Attribute Element Properties .. 243
7.2.8.1.4 Information Recovery ... 244

 JT File Format Reference Version 9.5 Rev-A Page 5

7.2.9 JT LWPA Segment .. 249
7.2.9.1 JT LWPA Element .. 249

7.2.9.1.1 Analytic Surface Geometry .. 250
8 Data Compression and Encoding ... 253

8.1 Common Compression Data Collection Formats.. 253
8.1.1 Int32 Compressed Data Packet .. 253
8.1.2 Int32 Compressed Data Packet Mk. 2 .. 258
8.1.3 Float64 Compressed Data Packet .. 263
8.1.4 Compressed Vertex Coordinate Array ... 267
8.1.5 Compressed Vertex Normal Array... 268
8.1.6 Compressed Vertex Texture Coordinate Array .. 270
8.1.7 Compressed Vertex Color Array .. 272
8.1.8 Compressed Vertex Flag Array .. 274
8.1.9 Point Quantizer Data .. 275
8.1.10 Texture Quantizer Data ... 275
8.1.11 Color Quantizer Data .. 276
8.1.12 Uniform Quantizer Data .. 278
8.1.13 Compressed Entity List for Non-Trivial Knot Vector ... 278
8.1.14 Compressed Control Point Weights Data .. 281
8.1.15 Compressed Curve Data .. 282
8.1.16 Compressed CAD Tag Data .. 285

8.2 Encoding Algorithms .. 287
8.2.1 Uniform Data Quantization .. 287
8.2.2 Bitlength CODEC .. 287
8.2.3 Arithmetic CODEC .. 288
8.2.4 Deering Normal CODEC ... 293

8.3 ZLIB Compression .. 294

9 Best Practices ... 294
9.1 Late-Loading Data .. 295
9.2 Bit Fields ... 295
9.3 Reserved Field ... 295
9.4 Local Version .. 295
9.5 Hash Value .. 295
9.6 Metadata Conventions ... 296

9.6.1 CAD Properties .. 296
9.6.2 Tessellation Properties ... 297
9.6.3 Miscellaneous Properties ... 298

9.7 LSG Attribute Accumulation Semantics ... 299
9.8 LSG Part Structure .. 299
9.9 Range LOD Node Alternative Rep Selection ... 300
9.10 Brep Face Group Associations .. 300

Appendix A: Object Type Identifiers ... 302

Appendix B: Semantic Value Class Shader Parameter Values .. 306

Appendix C: Decoding Algorithms – An Implementation ... 310

1 Common classes... 310
1.1 CntxEntry class ... 310
1.2 ProbabilityContext class ... 310
1.3 CodecDriver class ... 310
1.4 CodecDriver2 class ... 314

2 Bitlength decoding classes ... 314
2.1 BitLengthCodec class ... 314

3 Arithmetic decoding classes .. 316

 JT File Format Reference Version 9.5 Rev-A Page 6

3.1 ArithmeticProbabilityRange class ... 316
3.2 ArithmeticCodec class .. 316

4 Deering Normal decoding classes .. 318
4.1 DeeringNormalLookupTable class ... 319
4.2 DeeringNormalCodec class ... 320

Appendix D: Hashing – An Implementation .. 323

Appendix E: Polygon Mesh Topology Coder .. 326

1 DualVFMesh .. 327

2 Topology Decoder ... 332
2.1 MeshCoderDriver class ... 332
2.2 MeshCodec class ... 335
2.3 MeshDecoder class ... 341

Appendix F: Parasolid XT Format Reference.. 344

Types of File Documented .. 348

Text and Binary Formats .. 349

Logical Layout .. 350

Schema .. 352

Model Structure .. 363

Schema Definition .. 369

Node Types ... 441

Node Classes ... 444

System Attribute Definitions .. 445

 JT File Format Reference Version 9.5 Rev-A Page 7

List of Tables
Table 1: Basic Data Types .. 22
Table 2: Composite Data Types .. 22
Table 3: Segment Types ... 29
Table 4: Object Base Types .. 31
Table 5: Primitive Set Primitive Data Elements ... 129
Table 6: Primitive Set “params#” Data Fields Interpretation ... 130
Table 7: Common Property Keys and Their Value Encoding formats ... 197
Table 8: Parameter Domain .. 237
Table 9: CAD Property Conventions .. 297
Table 10: CAD Optional Property Units .. 297
Table 11: Object Type Identifiers ... 305
Table 12: Semantic Value Class Shader Parameter Values .. 306

List of Figures
Figure 1: JT File Structure .. 25
Figure 2: File Header data collection .. 26
Figure 3: TOC Segment data collection .. 27
Figure 6: TOC Entry data collection ... 28
Figure 7: Data Segment data collection .. 29
Figure 8: Segment Header data collection .. 29
Figure 9: Data collection... 30
Figure 10: Logical Element Header data collection .. 31
Figure 11: Element Header data collection ... 31
Figure 12: Logical Element Header ZLIB data collection .. 32
Figure 13: LSG Segment data collection .. 33
Figure 14: Base Node Element data collection ... 34
Figure 15: Base Node Data collection .. 35
Figure 16: Partition Node Element data collection ... 36
Figure 17: Vertex Count Range data collection .. 37
Figure 18: Group Node Element data collection ... 38
Figure 19: Group Node Data collection .. 38
Figure 20: Instance Node Element data collection ... 39
Figure 21: Part Node Element data collection .. 40
Figure 22: Meta Data Node Element data collection .. 40
Figure 23: Meta Data Node Data collection ... 41
Figure 24: LOD Node Element data collection .. 41
Figure 25: LOD Node Data collection .. 42
Figure 26: Range LOD Node Element data collection ... 43
Figure 27: Switch Node Element data collection .. 44
Figure 28: Base Shape Node Element data collection .. 45
Figure 29: Base Shape Data collection ... 45
Figure 30: Vertex Count Range data collection .. 47
Figure 31: Vertex Shape Node Element data collection ... 47
Figure 32: Vertex Shape Data collection .. 48
Figure 33: Quantization Parameters data collection ... 49
Figure 34: Tri-Strip Set Shape Node Element data collection .. 49
Figure 35: Polyline Set Shape Node Element data collection ... 50
Figure 36: Point Set Shape Node Element data collection.. 51
Figure 37: Polygon Set Shape Node Element data collection ... 52
Figure 38: NULL Shape Node Element data collection ... 52
Figure 39: Primitive Set Shape Node Element data collection ... 53

 JT File Format Reference Version 9.5 Rev-A Page 8

Figure 40: Primitive Set Quantization Parameters data collection ... 54
Figure 41: Base Attribute Data collection... 55
Figure 42: Base Shader Data collection .. 56
Figure 43: Shader Parameter data collection .. 58
Figure 44: Material Attribute Element data collection ... 61
Figure 45: Texture Image Attribute Element data collection .. 64
Figure 46: Texture Vers-1 Data collection ... 65
Figure 47: Texture Environment data collection .. 67
Figure 48: Texture Coord Generation Parameters data collection .. 70
Figure 49: Inline Texture Image Data collection .. 71
Figure 50: Image Format Description data collection ... 72
Figure 51: Texture Vers-2 Data collection ... 75
Figure 52: Texture Vers-3 Data collection ... 78
Figure 53: Draw Style Attribute Element data collection ... 81
Figure 54: Light Set Attribute Element data collection .. 82
Figure 55: Infinite Light Attribute Element data collection .. 83
Figure 56: Base Light Data collection .. 84
Figure 57: Shadow Parameters data collection ... 85
Figure 58: Point Light Attribute ElementPoint Light Attribute Element data collection 86
Figure 59: Spread Angle value with respect to the light cone .. 87
Figure 60: Attenuation Coefficients data collection ... 88
Figure 61: Linestyle Attribute Element data collection .. 88
Figure 62: Pointstyle Attribute Element data collection ... 90
Figure 63: Geometric Transform Attribute Element data collection .. 91
Figure 64: Shader Effects Attribute Element data collection .. 92
Figure 65: Vertex Shader Attribute Element data collection .. 94
Figure 66: Fragment Shader Attribute Element data collection .. 95
Figure 67: Texture Coordinate Generator Attribute Element data collection ... 96
Figure 68: Mapping Plane Element data collection .. 97
Figure 69: Mapping Cylinder Element data collection ... 98
Figure 70: Mapping Sphere Element data collection .. 99
Figure 71: Mapping TriPlanar Element data collection .. 100
Figure 72: Base Property Atom Element data collection .. 101
Figure 73: Base Property Atom Data collection ... 101
Figure 74: String Property Atom Element data collection .. 102
Figure 75: Integer Property Atom Element data collection .. 102
Figure 76: Floating Point Property Atom Element data collection ... 103
Figure 77: JT Object Reference Property Atom Element data collection ... 104
Figure 78: Date Property Atom Element data collection .. 105
Figure 79: Late Loaded Property Atom Element data collection .. 106
Figure 80: Vector4f Property Atom Element data collection ... 107
Figure 81: Property Table data collection ... 108
Figure 82: Element Property Table data collection... 109
Figure 83: Shape LOD Segment data collection ... 109
Figure 84: Base Shape LOD Element data collection ... 110
Figure 85: Base Shape LOD Data collection .. 110
Figure 86: Vertex Shape LOD Element data collection .. 110
Figure 87: Vertex Shape LOD Data collection .. 111
Figure 88: TopoMesh LOD Data collection ... 112
Figure 89: TopoMesh LOD Data collection ... 113
Figure 90: TopoMesh Topologically Compressed LOD Data collection ... 113
Figure 91: Topologically Compressed Rep Data Collection .. 115
Figure 92: Topologically Compressed Vertex Records data collection .. 118
Figure 93: TopoMesh Compressed Rep Data V1 data collection ... 119
Figure 94: TopoMesh Compressed Rep Data V2 data collection ... 122
Figure 95: Tri-Strip Set Shape LOD Element data collection .. 125

 JT File Format Reference Version 9.5 Rev-A Page 9

Figure 96: Polyline Set Shape LOD Element data collection ... 125
Figure 97: Point Set Shape LOD Element data collection .. 126
Figure 98: Null Shape LOD Element data collection ... 126
Figure 99: Primitive Set Shape Element data collection ... 127
Figure 100: Lossless Compressed Primitive Set Data collection .. 129
Figure 101: Lossy Quantized Primitive Set Data collection ... 131
Figure 102: Compressed params1 data collection .. 132
Figure 103: JT B-Rep Segment data collection .. 134
Figure 104: JT B-Rep Element data collection ... 136
Figure 105: Topological Entity Counts data collection .. 137
Figure 106: Geometric Entity Counts data collection ... 138
Figure 107: Topology Data collection .. 139
Figure 108: Regions Topology Data collection .. 140
Figure 109: Shells Topology Data collection ... 141
Figure 110: Trim Loop example in parameter Space - One Face with 2 Holes .. 142
Figure 111: Faces Topology Data collection .. 142
Figure 112: Loops Topology Data collection ... 144
Figure 113: CoEdges Topology Data collection ... 145
Figure 114: Edges Topology Data collection ... 146
Figure 115: Vertices Topology Data collection .. 146
Figure 116: Geometric Data collection ... 147
Figure 117: Surfaces Geometric Data collection .. 148
Figure 118: Non-Trivial Knot Vector NURBS Surface Indices data collection ... 149
Figure 119: NURBS Surface Degree data collection .. 150
Figure 120: NURBS Surface Control Point Counts data collection ... 150
Figure 121: NURBS Surface Control Point Weights data collection ... 151
Figure 122: NURBS Surface Control Points data collection .. 151
Figure 123: NURBS Surface Knot Vectors data collection .. 151
Figure 124: PCS Curves Geometric Data collection ... 152
Figure 125: Trivial PCS Curves data collection ... 153
Figure 126: MCS Curves Geometric Data collection ... 155
Figure 127: Point Geometric Data collection ... 155
Figure 128: Topological Entity Tag Counters data collection .. 156
Figure 129: B-Rep CAD Tag Data collection ... 157
Figure 130: XT B-Rep Element data collection .. 158
Figure 131: Wireframe Segment data collection .. 159
Figure 132: Wireframe Rep Element data collection .. 160
Figure 133: Wireframe MCS Curves Geometric Data collection ... 161
Figure 134: Wireframe Rep CAD Tag Data collection .. 161
Figure 135: Meta Data Segment data collection ... 162
Figure 136: Property Proxy Meta Data Element data collection .. 163
Figure 137: Date Property Value data collection .. 165
Figure 138: PMI Manager Meta Data Element data collection .. 166
Figure 139: PMI Entities data collection .. 168
Figure 140: PMI Dimension Entities data collection .. 168
Figure 141: PMI 2D Data collection ... 169
Figure 142: PMI Base Data collection .. 170
Figure 143: 2D-Reference Frame data collection ... 171
Figure 144: 2D Text Data collection .. 171
Figure 145: Text Box data collection .. 173
Figure 146: Constructing Text Polylines from data arrays ... 174
Figure 147: Text Polyline Data collection .. 174
Figure 148: Constructing Non-Text Polylines from packed 2D data arrays ... 175
Figure 149: Non-Text Polyline Data collection .. 176
Figure 150: PMI Note Entities data collection .. 177
Figure 151: PMI Datum Feature Symbol Entities data collection .. 178

 JT File Format Reference Version 9.5 Rev-A Page 10

Figure 152: PMI Datum Target Entities data collection ... 178
Figure 153: PMI Feature Control Frame Entities data collection ... 179
Figure 154: PMI Line Weld Entities data collection .. 179
Figure 155: PMI Spot Weld Entities data collection .. 180
Figure 156: PMI 3D Data collection ... 181
Figure 157: PMI Surface Finish Entities data collection .. 182
Figure 158: PMI Measurement Point Entities data collection .. 183
Figure 159: PMI Locator Entities data collection ... 184
Figure 160: PMI Reference Geometry Entities data collection .. 184
Figure 161: PMI Design Group Entities data collection ... 185
Figure 162: Design Group Attribute data collection ... 186
Figure 163: PMI Coordinate System Entities data collection ... 187
Figure 164: PMI Associations data collection .. 188
Figure 165: PMI User Attributes data collection .. 191
Figure 166: PMI String Table data collection ... 191
Figure 167: PMI Model Views data collection ... 192
Figure 168: Generic PMI Entities data collection ... 194
Figure 169: PMI Property data collection ... 196
Figure 170: PMI Property Atom data collection ... 198
Figure 171: PMI CAD Tag Data collection .. 199
Figure 172: PMI Polygon Data ... 200
Figure 173: JT ULP Segment data collection ... 202
Figure 174: JT ULP Element data collection .. 203
Figure 175: Topology Data collection .. 204
Figure 176: Topological Entity Counts data collection .. 205
Figure 177: Combined Predictor Type data collection ... 206
Figure 178: Regions Topology Data collection .. 207
Figure 179: Shells Topology Data collection ... 208
Figure 180: Faces Topology Data collection .. 209
Figure 181: Loops Topology Data collection ... 212
Figure 182: CoEdges Topology Data collection ... 214
Figure 183: Surface Domain Classification .. 216
Figure 184: Edges Topology Data collection ... 218
Figure 185: Vertices Topology Data collection .. 220
Figure 186: Geometric Data collection ... 221
Figure 187: U32: Geometric Tabe Flag .. 222
Figure 188: Degree Table data collection ... 223
Figure 189: Recover Nurbs Degree .. 224
Figure 190: Number of Control Points Table data collection ... 225
Figure 191: Recover Number of Control Points ... 226
Figure 192: Dimension Table data collection ... 227
Figure 193: Recover Dimension ... 228
Figure 194: 3D Unit Vector Table data collection .. 229
Figure 195: Recover Dimension ... 230
Figure 196: 2D Unit Vector Table data collection .. 231
Figure 197: Recover 2D Unit Vector .. 231
Figure 198: 3D MCS Point Table data collection ... 232
Figure 199: Recover 3D MCS Points ... 233
Figure 200: Knot Vector Table data collection ... 234
Figure 201: Recover Knot Vectors ... 235
Figure 202: 1D MCS Table data collection .. 236
Figure 203: Recover 1D MCS Table .. 238
Figure 204: PCS Value Table data collection ... 239
Figure 205: Recover PCS Value Table ... 240
Figure 206: Radian Table data collection ... 240
Figure 207: Recover Radian Table ... 241

 JT File Format Reference Version 9.5 Rev-A Page 11

Figure 208: Weight Table data collection ... 242
Figure 209: Recover Weight Table ... 243
Figure 210: Material Attribute Element Properties ... 244
Figure 211: Information Recovery.. 245
Figure 212: PCS Curve Recovery from Surface Domain ... 246
Figure 213: MCS Curve Recovery ... 247
Figure 214: MCS Curve Recovery from Surface Geometry ... 248
Figure 215: PCS Curve Recovery from MCS Curve and Surface Geometry ... 249
Figure 216: JT LWPA Segment data collection ... 249
Figure 217: JT LWPA Element data collection .. 250
Figure 218: Analytic Surface Geometry data collection ... 251
Figure 219: Analytic Surface Creation ... 252
Figure 220: Int32 Compressed Data Packet data collection ... 254
Figure 221: Int32 Probability Contexts data collection .. 256
Figure 222: Int32 Probability Context Table Entry data collection .. 257
Figure 223: Int32 Compressed Data Packet Mk. 2 data collection ... 259
Figure 224: Int32 Probability Contexts Mk. 2 data collection .. 261
Figure 225: Int32 Probability Context Table Entry Mk. 2 data collection .. 262
Figure 226: Float64 Compressed Data Packet data collection .. 264
Figure 227: Float64 Probability Contexts data collection ... 266
Figure 228: Float64 Probability Context Table Entry data collection .. 266
Figure 229: Compressed Vertex Coordinate Array data collection .. 267
Figure 230: Compressed Vertex Normal Array data collection .. 269
Figure 231: Compressed Vertex Texture Coordinate Array data collection ... 271
Figure 232: Compressed Vertex Color Array data collection ... 273
Figure 233: Compressed Vertex Flag Array data collection ... 275
Figure 234: Point Quantizer Data collection... 275
Figure 235: Texture Quantizer Data collection ... 276
Figure 236: Color Quantizer Data collection .. 277
Figure 237: Uniform Quantizer Data collection ... 278
Figure 238: Compressed Entity List for Non-Trivial Knot Vector data collection 279
Figure 239: Compressed Control Point Weights Data collection ... 281
Figure 240: Compressed Curve Data collection ... 282
Figure 241: Non-Trivial Knot Vector NURBS Curve Indices data collection ... 284
Figure 242: NURBS Curve Control Point Weights data collection .. 284
Figure 243: NURBS Curve Control Points data collection... 284
Figure 244: Compressed CAD Tag Data collection ... 285
Figure 245: Compressed CAD Tag Type-2 Data collection ... 286
Figure 246: Sextant Coding on the Sphere ... 294
Figure 249: JT Format Convention for Modeling each Part in LSG .. 300

 JT File Format Reference Version 9.5 Rev-A Page 12

1 Siemens JT Data Format Reference Intellectual Property License Terms

The general idea of using an interchange format for electronic documents is in the public domain. Anyone is free to devise a

set of unique data structures and operators that define an interchange format for electronic documents. However, Siemens

Product Lifecycle Management Software Inc. owns the copyright for the particular data structures and operators, the JT™

Data Format Reference and the written specification constituting the interchange format called the JT Data Format. Thus,

these elements of the JT Data Format may not be copied without Siemens‟s permission.

Siemens will enforce its copyright. Siemens‟s intention is to maintain the integrity of the JT Data Format standard, enabling

the public to distinguish between the JT Data Format and other interchange formats for electronic documents. However,

Siemens desires to promote the use of the JT Data Format for information interchange among diverse products and

applications. Accordingly, Siemens gives anyone copyright permission, subject to the conditions stated below, to:

 Prepare and distribute files whose content conforms solely to the JT Data Format.

 Write and distribute software applications that produce discreet output represented in the JT Data Format. Write

and distribute software applications that accept input in the form of the JT Data Format and display, print, or

otherwise interpret the contents

 Copy Siemens‟s copyrighted list of data structures and operators in the written specification to the extent

necessary to use the JT Data Format for the purposes above.

 For avoidance of doubt, the permissions granted in the preceding sentences do not include the reading, writing or

distribution of files whose content contains output in the JT Data Format and any other data in any other format

and do not include the right to incorporate, integrate, or combine the JT Data Format, structure, or schema into

any other data format, structure, or schema.

The conditions of such copyright permission are:

 Anyone who uses the copyrighted list of data structures and operators, as stated above, must include an

appropriate copyright notice.

This limited right to use the copyrighted list of data structures and operators does not include the right to copy this document,

other copyrighted material from Siemens, or the software in any of Siemens‟s products that use the JT Data Format, in whole

or in part, nor does it include the right to use any Siemens patents, except as may be permitted by an official Siemens JT Data

Format Reference Patent Clarification Notice.

Nothing in this book is intended to grant you any right or license to use the Marks for any purpose.

 JT File Format Reference Version 9.5 Rev-A Page 13

2 Scope

This reference defines the syntax and semantics of the JT Version 9.5 file format.

The JT format is an industry focused, high-performance, lightweight, flexible file format for capturing and repurposing 3D

Product Definition data that enables collaboration, validation and visualization throughout the extended enterprise. JT format

is the de-facto standard 3D Visualization format in the automotive industry, and the single most dominant 3D visualization

format in Aerospace, Heavy Equipment and other mechanical CAD domains.

The JT format is both robust, and streamable, and contains best-in-class compression for compact and efficient

representation. The JT format was designed to be easily integrated into enterprise translation solutions, producing a single set

of 3D digital assets that support a full range of downstream processes from lightweight web-based viewing to full product

digital mockups.

At its core the JT format is a scene graph with CAD specific node and attributes support. Facet information (triangles), is

stored with sophisticated geometry compression techniques. Visual attributes such as lights, textures, materials and shaders

(Cg and OGLSL) are supported. Product and Manufacturing Information (PMI), Precise Part definitions (B-Rep) and

Metadata as well as a variety of representation configurations are supported by the format. The JT format is also structured

to enable support for various delivery methods including asynchronous streaming of content.

Some of the highlights of the JT format include:

 Built-in support for assemblies, sub-assemblies and part constructs

 Flexible partitioning scheme, supporting single or multiple files

 B-Rep, including integrated support for industry standard Parasolid® (XT) format

 Product Manufacturing Information in support of paperless manufacturing initiatives

 Precise and imprecise wireframe

 Discrete purpose-built Levels of Detail

 Wire harness information

 Triangle sets, Polygon sets, Point sets, Line sets and Implicit Primitive sets (cylinder, cone, sphere, etc…)

 Full array of visual attributes: Materials, Textures, Lights, Shaders

 Hierarchical Bounding Box and Bounding Spheres

 Advanced data compression that allows producers of JT files to fine tune the tradeoff between compression ratio

and fidelity of the data.

Beyond the data contents description of the JT Format, the overall physical structure/organization of the format is also

designed to support operations such as:

Offline optimizations of the data contents

 File granularity and flexibility optimized to meet the needs of Enterprise Data Translation Solutions

Asynchronous streaming of content

 Viewing optimizations such as view frustum and occlusion culling and fixed-framerate display modes.

Layers, and Layer Filters.

Along with the pure syntactical definition of the JT Format, there is also series of conventions which although not required to

have a reference compliant JT file, have become commonplace within JT format translators. These conventions have been

documented in the “Best Practices” section of this JT format reference.

This JT format reference does not specifically address implementation of, nor define, a run-time architecture for viewing

and/or processing JT data. This is because although the JT format is closely aligned with a run-time data representation for

fast and efficient loading/unloading of data, no interaction behavior is defined within the format itself, either in the form of

specific viewer controls, viewport information, animation behavior or other event-based interactivity. This exclusion of

interaction behavior from the JT format makes the format more easily reusable for dissimilar application interoperation and

also facilitates incremental update, without losing downstream authored data, as the original CAD asset revises.

2.1 What’s New in This Revision

Revision A

 JT File Format Reference Version 9.5 Rev-A Page 14

This specification is based on the Version 8.1 Rev D specification, but with major changes to all sections, and as such is a

completely new, standalone document.

3 References and Additional Information
[1] JT Open Program (http://www.jtopen.com) --- A program to help members leverage the benefits of open

collaboration across the extended enterprise through the adoption of the JT format, a technology that makes it

possible to view and share product information throughout the product lifecycle. Membership in the JT Open

Program provides access to the JT Open Toolkit library, which among other things, provides read and write access

to JT data and enforces certain JT conventions to ensure data compatibility with other JT-enabled applications.

[2] JT2Go download (http://www.jt2go.com) --- JT2Go is the no-charge 3D JT viewer from Siemens. JT2Go puts 3D

data at your fingertips by allowing anyone to download the no-charge viewer. JT2Go also allows anyone to embed

3D JT data directly into Microsoft Office documents. JT2Go offers full 3D interactivity on parts, assemblies, and

even 2D drawings (CGM & TIF).

[3] Siemens: PLM Components: Parasolid: XT Pipeline (http://www.ugs.com/products/open/parasolid/pipeline.shtml)

--- This web page provides information on the Parasolid precise boundary representation format (XT) and how this

XT format fits within the Siemens vision of seamless exchange of digital product models across enterprises,

between different disciplines, using their PLM applications of choice.

[4] OpenGL Programming Guide : The official guide to learning OpenGL Version 2, Fifth Edition, by OpenGL

Architecture Review Board, Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis (Addison-Wesley 2005) --

- This book gives in-depth explanation of the OpenGL Specification and will provide further insight into the

significance of some of the data (e.g. Materials, Textures) that can exist in a JT file. Information in this book may

also serve as a guide for how one could process the data contained in a JT file to produce/render an image on the

screen.

[5] Michael Deering, Geometry Compression, Computer Graphics, Proceedings SIGGRAPH „95, August 1995, pp.

13-20.

[6] Michael Deering, Craig Gotsman, Stefan Gumhold, Jarek Rossignac, and Gabriel Taubin, 3D Geometry

Compression, Course Notes for SIGGRAPH 2000, July 25, 2000.

[7] OpenGL Shading Language Specification (http://www.opengl.org/documentation/glsl/) --- OpenGL Shading

Language (GLSL) as defined by the OpenGL Architectural Review Board, the governing body of OpenGL.

[8] Cg Toolkit Users Manual (http://developer.nvidia.com/object/cg_users_manual.html) --- Explains everything you

need to learn and use the Cg language as well as the Cg runtime library.

[9] The Cg Tutorial: The Definitive Guide to Programmable Real-Time Graphics, Randima Fernando and Mark J.

Kilgard, nVIDIA Corporation, Addison Wesley Publishing Company, April 2003

[10] K. Weiler. Topological Structures for Geometric Modeling, PhD thesis, Rensselaer Polytechnic Institute, Troy,

NY, 1986.

[11] C. M. Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann Publishers, Inc., San Mateo,

California, 1989.

[12] Les Piegl and Wayne Tiller, The NURBS Book, Springer-Verlag, 1997.

[13] Planetmath.org - Huffman Coding (http://planetmath.org/encyclopedia/HuffmanCoding.html) --- This web page

provides a technical overview of Huffman coding which is one form of data encoding used within the JT format.

http://www.jtopen.com/
http://www.jt2go.com/
http://www.ugs.com/products/open/parasolid/pipeline.shtml
http://www.opengl.org/documentation/glsl/
http://developer.nvidia.com/object/cg_users_manual.html
http://planetmath.org/encyclopedia/HuffmanCoding.html

 JT File Format Reference Version 9.5 Rev-A Page 15

[14] Michael Schindler, Practical Huffman Coding (http://www.compressconsult.com/huffman/#encoding) --- This web

page provides some coding hints for implementing Huffman coding which is one form of data encoding used

within the JT format.

[15] Glen G. Langdon Jr., An Introduction to Arithmetic Coding, IBM Journal of Research and Development, Volume

28, Number 2, March 1984, pp. 135-149.

[16] Paul G. Howard and Jeffrey Scott Vitter, Practical Implementation of Arithmetic Coding. Image and Text

Compression, ed. J. A. Storer, Kluwer Academic Publishers, April 1992, pp. 85-112.

[17] zlib.net (http://www.zlib.net/) --- This web page provides (either directly or through links) complete detailed

information on ZLIB compression including frequently asked questions, technical documentation, source code

downloads, etc.

[18] Andrei Khodakovsky, Pierre Alliez, Mathieu Desbrun, and Peter Schröder, Near-Optimal Connectivity Encoding

of 2-Manifold Polygon Meshes, Graphical Models,

Vol. 64, No. 3-4, Pages: 147 - 168, 2002.

[19] B. Schneier, Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish), Fast Software

Encryption, Cambridge Security Workshop Proceedings (December 1993), Springer-Verlag, 1994, pp. 191-204.

4 Definitions

4.1 Terms

It is assumed that readers of this document are familiar with concepts in the area of computer graphics and solid modeling.

The intention of this section is not to provide comprehensive definitions, but is to provide a short introduction and

clarification of the usage of terms within this document.

Assembly A related collection of model parts, represented in a JT format

logical scene graph as a logical graph branch

Attribute Objects associated with nodes in a logical scene graph and

specifying one of several appearances, positioning, or rendering

characteristics of a shape.

Boundary Representation A solid model representation where the solid volume is specified by

its surface boundary (both its geometric and topological boundaries).

CodeText A collection of data in encoded form.

Directed Acyclic Graph A graph is a set of nodes, and a set of edges connecting the nodes in

a tree like structure. A directed graph is one in which every edge

has a direction such that edge (u,v), connecting node-u with node-v,

is different from edge (v,u). A Directed Acyclic Graph is a directed

graph with no cycles; where a cycle is a path (sequence of edges)

from a node to itself. So with a Directed Acyclic Graph there is no

path that can be followed within the graph such that the first node in

the path is the same as the last node in the path.

JT Enabled Application Application which supports reading and/or writing reference

compliant JT Format files.

Level of Detail One alternative graphical representation for some model component

(e.g. part).

Logical Scene Graph A scene graph representing the logical organization of a model.

Contains shapes and attributes representing the model’s physical

http://www.compressconsult.com/huffman/#encoding
http://www.zlib.net/

 JT File Format Reference Version 9.5 Rev-A Page 16

components, properties identifying arbitrary metadata (e.g. names,

semantic roles) of those components, and a hierarchical structure

expressing the component relationships.

Mipmap A reduced resolution version of a texture map. Mipmaps are used to

texture a geometric primitive whose screen resolution differs from

the resolution of the source texture map originally applied to the

primitive.

Model Representation, in JT format, of a physical or virtual product, part,

assembly; or collections of such objects.

Parasolid XT Format Parasolid boundary representation format

Product and Manufacturing Information Collection of information created on a 3D/2D CAD Model to

completely document the product with respect to design,

manufacturing, inspection, etc. This may includes data such as:

Dimensions (tolerances for each dimension)

Geometric tolerances of feature (datums, feature control frames)

Manufacturing information (surface finish, welding notations)

Inspection information (key locations points)

Assembly instructions

Product information (materials, suppliers, part numbers)

Property An object associated with a logical scene graph node and identifying

arbitrary application or enterprise specific information (meta-data)

related to that node.

Quantize Constrain something to a discrete set of values, such as an integer or

integral multiplier of a common factor, rather than a continuous set

of values, such as a real number.

Scene Graph In the context of the JT format, a scene graph is a directed acyclic

graph that arranges the logical and often (but not necessarily) spatial

representation of a graphical scene.

Shader A user-definable program, expressed directly in a target assembly

language, or in high-level form to be compiled. A shader program

replaces a portion of the otherwise fixed-functionality graphics

pipeline with some user-defined function. At present, hardware

manufacturers have made it possible to run a shader for each vertex

that is processed or each pixel that is rendered.

Streaming In the context of the JT format, streaming refers to both:

Loading from disk based medium only the portions of data that are

required by the user to perform the tasks at hand. The motivation

being to more efficiently manage system memory.

Transfer of data in a stream of packets, over the internet on an on-

demand basis, where the data is interpreted in real-time by the

application as the data packets arrive. The motivation being that the

user can begin using or interacting with the data almost immediately

- no waiting for the entire data file(s) to be transferred before

beginning

The desired end result of both being to deliver only the JT data that

the user needs, where the user needs it, when the user needs it. A

 JT File Format Reference Version 9.5 Rev-A Page 17

“just-in-time” approach to delivering JT format product data.

Shape A logical scene graph leaf node containing or referencing the

geometric shape definition data (e.g. vertices, polygons, normals,

etc.) of a model component.

Texture Channel A Texture Unit plus the texture environment. In OpenGL® terms,

Texture Channel basically controls “glActiveTexture” [4]

Texture Object JT format meaning is the same as in OpenGL [4] “A named cache

that stores texture data, such as the image array, associated

mipmaps, and associated texture parameter values: width, height,

border width, internal format, resolution of components,

minification and magnification filters, wrapping modes, border

color, and texture priority.”

Texture Unit JT format meaning is the same as in OpenGL [4], with the

connotation that texture parameters go with the Texture Unit

(through binding of a texture object) but texture environment

(texturing function) does not.

4.2 Coordinate Systems

The data contained within a JT file is defined within one of the following coordinate systems. If not otherwise specified in a

data field‟s description, it should be assumed that the data is defined in Local Coordinate System.

Local Coordinate System (LCS). The coordinate system in which shape geometry is specified. It is the coordinate

system used to specify the “raw” data with no transforms applied.

Node Coordinate System (NCS). Local coordinates transformed by any transforms specified as attributes at the node.

The NCS is also often referred to as Model Coordinate System (MCS).

World Coordinate System (WCS). Node coordinates transformed by transforms inherited from a node‟s parent (i.e. the

coordinate system at the root of the graph).

View Coordinate System (VCS). World coordinates transformed by a view matrix.

5 Acronyms and Abbreviations

Abs Absolute Value

BBox Bounding Box

B-Rep Boundary Representation

CAE Computer Aided Engineering

Cg C for Graphics

CODEC Coder-Decoder

GD&T Geometric Dimensioning and Tolerancing

GLSL OpenGL Shader Language

GPU Graphics Processing Unit

GUID Globally Unique Identifier

HSV Hue, Saturation, Value

HSVA Hue, Saturation, Value, Alpha

 JT File Format Reference Version 9.5 Rev-A Page 18

LCS Local Coordinate System

LOD Level of Detail

LsbFirst Least Significant Byte First

LSG Logical Scene Graph

Max Maximum

MCS Model Coordinate System

Min Minimum

MsbFirst Most Significant Byte First

N/A Not Applicable

NCS Node Coordinate System

PCS Parameter Coordinate Space

PLM Product Lifecycle Management

PMI Product and Manufacturing Information

RGB Red, Green, Blue

RGBA Red, Green, Blue, Alpha

TOC Table of Contents.

VPCS Viewpoint Coordinate System

URL Uniform Resource Locator

WCS World Coordinate System

6 Notational Conventions

6.1 Diagrams and Field Descriptions

Symbolic diagrams are used to describe the structure of the JT file. The symbols used in these diagrams have the following

meaning:

Rectangles represent a data field of one of the standard data types.

Arrows convey the ordering of the information.

Rectangles with the right side corners clipped off represent information that has been

compressed.

Folders represent a logical collection of one or more of the standard data types.

This information is grouped for clarity and the basic data types that compose the

group are detailed in following sections of the document.

Rectangles with extra lines at left and the right sides corners clipped off represent

information logical stepsthat has been compressed.

 JT File Format Reference Version 9.5 Rev-A Page 19

The format used to title the diagram symbols is dependent upon the symbol type as follows:

Diagram “rectangle box” (i.e. standard data types) symbols are titled using a format of “Data_Type : Field_Name.” The

Data_Type is an abbreviated data type symbol as defined in 6.2 Data Types. In the example below the Data_Type is “I32” (a

signed 32 bit integer) and Field_Name is “Count.”

Diagram “folder” (i.e. logical data collections) symbols are simply titled with a collection name. In the example below the

collection name is “Graph Elements.”

Diagram “rectangle box with lines at left and right sides” are simply titled with a logic step name. In the example below the

logic step name is “Recover First Shell Indices”.

Diagram “rectangle box with clipped right side corners” (i.e. compressed/encoded data fields) are titled using one of the

following three formats:

Data Type; followed by open brace “{“, number of bits used to store value, closed brace “}”, and a colon “:”; followed by the

Field Name. This format for titling the diagram symbol indicates that the data is compressed but not encoded. The

compression is achieved by using only a portion of the total bit range of the data type to store the value (e.g. if a count value

can never be larger than the value “63” then only 6 bits are needed to store all possible count values). In the example below

the Data Type is “U32”, “6” bits are used to store the value, and Field Name is “Count”

Data Type followed by open brace “{“, compressed data packet type, “,”, Predictor Type, closed brace “}”, and a colon “:”;

followed by the field name. This format for titling the diagram indicates that a vector of “Data Type” data (i.e. primal

values) is ran through “Predictor Type” algorithm and the resulting output array of residual values is then compressed and

encoded into a series of symbols using one of the two supported compressed data packet types.

The two supported compressed data packet types are:

Int32CDP – The Int32CDP (i.e. Int32 Compressed Data Packet) represents the format used to encode/compress a collection

of data into a series of Int32 based symbols. A complete description for Int32 Compressed Data Packet can be found in 8.1.1

Int32 Compressed Data Packet.

Int32CDP2 – The Int32CDP2 (i.e.Int32 Compressed Data Packet Mk. 2) represents a second-generation version of the above

compressed data packet, and sports a simplified and more compact file layout, and the ability to more efficiently encode

clustered data and bitfields. A complete description for Int32 Compressed Data Packet Mk. 2 can be found in 8.1.2 Int32

Compressed Data Packet Mk. 2.

Float64CDP – The Float64CDP (i.e. Float64 Compressed Data Packet) represents the format used to encode/compress a

collection of data into a series of Float64 based symbols. A complete description for Float64 Compressed Data Packet can be

found in 8.1.3 Float64 Compressed Data Packet.

The Int32 Compressed Data Packet type is used for compressing/encoding both “integer” and “float” (through quantization)

data. While the Float64 Compressed Data Packet type is used for compressing/encoding “double” data.

In the example below the Data Type is “VecU32”, Int32 Compressed Data Packet type is used, Lag1 Predictor Type is used,

and Field Name is “First Shell Index.”

U32{6} : Count

Recover First Shell

Indices

Graph Elements

I32 : Count

 JT File Format Reference Version 9.5 Rev-A Page 20

As mentioned above (with Predictor Type algorithm), the primal input data values are NOT always what is

encoded/compressed. This is because the primal input data is first run through a Predictor Type algorithm, which produces

an output array of residual values (i.e. difference from the predicted value), and this resulting output array of residual values

is the data which is actually encoded/compressed. The JT format supports several Predictor Type algorithms and each use of

Int32CDP or Float64CDP specifies, using the above described notation format, what Predictor Type algorithm is being used

on the data. The JT format supported Predictor Type algorithms are as follows (note that a sample implementation of

decoding the predictor residual values back into the primal values can be found in Appendix C: Decoding Algorithms – An

Implementation):

Predictor

Type

Description

Lag1 Predicts as last value

Lag2 Predicts as value before last

Stride1 Predicts using stride from last two values

Stride2 Predicts using stride from values 2 and 4 back

StripIndex This is a completely empirical predictor. Looks at the values two

back and four back in the stream, and uses the stride between these

two values to predict the current value if and only if the stride lays

between -8 and 8 noninclusive, else it predicts the value as the one

two back plus two. In pseudo-code form the predicted values is

computed as follows:

if(val2back - val4back < 8 && val2back - val4back > -8)

 iPredicted = val2back + (val2back - val4back);

else

 iPredicted = val2back + 2;

Ramp Predict value “i” as values “i‟s” index

Xor1 Predict as last, but use XOR instead of subtract to compute

residual

Xor2 Predict as value before last, but use XOR instead of subtract to

compute residual

NULL No prediction applied

Each predictor type can be combined with additional processing steps, and in such case the predictor type is prefixed with

“Combined:”. For example, “Combined:Lag1” means that predictor type “Lag1” is combined with additional preprocessing

steps. Additional description about the processing steps is provided whenever such combined predictor is used.

“Data Type : Field Name” . This format for titling the diagram symbol indicates that the data is both compressed and

encoded. The Data_Type is an abbreviated data type symbol as defined in 6.2 Data Types and usually represent a vector/array

of data. How the data is compressed and encoded into the Data Type is indicated by a CODEC type and other information

stored before the particular data in the file. In the example below the Data_Type is “VecU32” and Field_Name is

“CodeText.”

Note that for some JT file Segment Types there is ZLIB compression also applied to all bytes of element data stored in the

segment. This ZLIB compression applied to all the segment‟s data is not indicated in the diagrams through the use of

VecU32 : CodeText

VecU32{Int32CDP, Lag1} : First Shell

Index

 JT File Format Reference Version 9.5 Rev-A Page 21

“rectangle box with clipped right side corners”. Instead, one must examine information stored with the first Element in the

file segment to determine if ZLIB compression is applied to all data in the segment. A complete description of the JT

format data compression and encoding can be found in 7.1.3 Data Segment and 8 Data Compression and Encoding.

Following each data collection diagram is detailed descriptions for each entry in the data diagram.

For rectangles this detail includes the abbreviated data type symbol, field name, verbal data description, and compression

technique/algorithm where appropriate. If the data field is documented as a collection of flags, then the field is to be treated

as a bit mask where the bit mask is formed by combining the flags using the binary OR operator. Each bits usage is

documented, and bit ON indicates flag value is TRUE and bit OFF indicates flag value is FALSE. Any undocumented bits

are reserved.

For folders (i.e. data collections), if the collection is not detailed under a sub-section of the particular document section

referencing the data collection, then a comment is included following the diagram indicating where in the document the

particular data collection is detailed.

If an arrow appears with a branch in its shaft, then there are two or more options for data to be stored in the file. Which data

is stored will depend on information previously read from the file. The following example shows data field A followed by

(depending on value of A) either data field B, C, or D.

In cases where the same data type repeats, a loop construct is used where the number of iterations appears next to the loop

line. There are two forms of this loop construct. The first form is used when the number of iterations is not controlled by

some previous read count value. Instead the number of iterations is either a hard coded count (e.g. always 80 characters) or is

indicated by some end-of-list marker in the data itself (thus the count is always minimum of 1). This first form of the loop

construct looks as follows:

The second form of this loop construct is used when the number of iterations is based on data (e.g. count) previously read

from the file. In this case it is valid for there to be zero data iterations (zero count). This second from of the loop construct

looks as follows (data field D is repeated C value times).

U8 : B

I32 : A

80

A = = 1 A = = 2

U8 : B

U16 : C U32 : D

I32 : A

 JT File Format Reference Version 9.5 Rev-A Page 22

6.2 Data Types

The data types that can occur in the JT binary files are listed in the following two tables.

Table 1: Basic Data Types lists the basic/standard data types which can occur in JT file.

Table 1: Basic Data Types

Type Description

UChar An unsigned 8-bit byte.

U8 An unsigned 8-bit integer value.

U16 An unsigned 16-bit integer value.

U32 An unsigned 32-bit integer value.

U64 An unsigned 64-bit integer value.

I16 A signed two‟s complement 16-bit integer value.

I32 A signed two‟s complement 32-bit integer value.

I64 A signed two's complement 64-bit integer value.

F32 An IEEE 32-bit floating point number.

F64 An IEEE 64-bit double precision floating point number

Table 2: Composite Data Types lists some composite data types which are used to represent some frequently occurring

groupings of the basic data types (e.g. Vector, RGBA color). The composite data types are defined in this reference simply

for convenience/brevity in describing the JT file contents.

Table 2: Composite Data Types

Type Description Symbolic Diagram

BBoxF32 The BBoxF32 type defines a bounding box using two

CoordF32 types to store the XYZ coordinates for the

bounding box minimum and maximum corner points.

CoordF32 The CoordF32 type defines X, Y, Z coordinate values. So a

CoordF32 is made up of three F32 base types.

F32 : Data
3

CoordF32 : Min Corner

CoordF32 : Max Corner

U8 : D
C

I32 : C

 JT File Format Reference Version 9.5 Rev-A Page 23

Type Description Symbolic Diagram

CoordF64 The CoordF64 type defines X, Y, Z coordinate values. So a

CoordF64 is made up of three F64 base types.

DirF32 The DirF32 type defines X, Y, Z components of a direction

vector. So a DirF32 is made up of three F32 base types.

GUID The GUID type is a 16 byte (128-bit) number. GUID is

stored/written to the JT file using a four-byte word (U32), 2

two-byte words (U16), and 8 one-byte words (U8) such as:

{3F2504E0-4F89-11D3-9A-0C-03-05-E8-2C-33-01}

In the JT format GUIDs are used as unique identifiers (e.g.

Data Segment ID, Object Type ID, etc.)

HCoordF32 The HCoordF32 type defines X, Y, Z, W homogeneous

coordinate values. So an HCoordF32 is made up of four F32

base types.

HCoordF64 The HCoordF64 type defines X, Y, Z, W homogeneous

coordinate values. So an HCoordF64 is made up of four F64

base types

MbString The MbString type starts with an I32 that defines the number

of characters (NumChar) the string contains. The number of

bytes of character data is “2 * NumChar” (i.e. the strings are

written out as multi-byte characters where each character is

U16 size).

Mx4F32 Defines a 4-by-4 matrix of F32 values for a total of 16 F32

values. The values are stored in row major order (right most

subscript, column varies fastest), that is, the first 4 elements

form the first row of the matrix.

PlaneF32 The PlaneF32 type defines a geometric Plane using the

General Form of the plane equation (Ax + By + Cz + D = 0).

The PlaneF32 type is made up of four F32 base types where

the first three F32 define the plane unit normal vector (A, B,

C) and the last F32 defines the negated perpendicular distance

(D), along normal vector, from the origin to the plane.

Quaternion The Quaternion type defines a 3-dimensional orientation (no

translation) in quaternion linear combination form (a + bi + cj

+ dk) where the four scalar values (a, b, c, d) are associated

with the 4 dimensions of a quaternion (1 real dimension, and 3

imaginary dimensions). So the Quaternion type is made up of

F32 : Data
4

F32 : Data
16

I32 : Count

U16 : Char
Count

F64 : Data
4

F32 : Data
4

U32

U16

U8

2

8

F32 : Data
3

F64 : Data
3

 JT File Format Reference Version 9.5 Rev-A Page 24

Type Description Symbolic Diagram
four F32 base types.

RGB The RGB type defines a color composed of Red, Green, Blue

components, each of which is a F32. So a RGB type is made

up of three F32 base types. The Red, Green, Blue color

values typically range from 0.0 to 1.0.

RGBA The RGBA type defines a color composed of Red, Green,

Blue, Alpha components, each of which is a F32. So a RGBA

type is made up of four F32 base types. The Red, Green, Blue

color values typically range from 0.0 to 1.0. The Alpha value

ranges from 0.0 to 1.0 where 1.0 indicates completely opaque.

String The String type starts with an I32 that defines the number of

characters (NumChar) the string contains. The number of

bytes of character data is “NumChar” (i.e. the strings are

written out as single-byte characters where each character is

U8 size).

VecF32 The VecF32 type defines a vector/array of F32 base type. The

type starts with an I32 that defines the count of following F32

base type data. So a VecF32 is made up of one I32 followed

by that number of F32. Note that it is valid for the I32 count

number to be equal to “0”, indicating no following F32.

VecF64 The VecF64 type defines a vector/array of F64 base type. The

type starts with an I32 that defines the count of following F64

base type data. So a VecF64 is made up of one I32 followed

by that number of F64. Note that it is valid for the I32 count

number to be equal to “0”, indicating no following F64.

VecI32 The VecI32 type defines a vector/array of I32 base type. The

type starts with an I32 that defines the count of following I32

base type data. So a VecI32 is made up of one I32 followed

by that number of I32. Note that it is valid for the I32 count

number to be equal to “0”, indicating no following I32.

VecU32 The VecU32 type defines a vector/array of U32 base type.

The type starts with an I32 that defines the count of following

U32 base type data. So a VecU32 is made up of one I32

followed by that number of U32. Note that it is valid for the

I32 count number to be equal to “0”, indicating no following

U32.

7 File Format

All objects represented in the JT format are assigned an “object identifier” (e.g. see 7.2.1.1.1.1.1 Base Node Data, or

7.2.1.1.2.1.1 Base Attribute Data) and all references from one object to another object are represented in the JT format using

the referenced object‟s “object identifier”. It is the responsibility of JT format readers/writers to maintain the integrity of

I32 : Count

U32 : Data
Count

I32 : Count

I32 : Data
Count

I32 : Count

F64 : Data
Count

I32 : Count

F32 : Data
Count

I32 : Count

U8 : Char
Count

F32 : Data
4

F32 : Data
3

F32 : Data
4

 JT File Format Reference Version 9.5 Rev-A Page 25

these object references by doing appropriate pointer unswizzling/swizzling as JT format data is read into memory or written

out to disk. Where “pointer swizzling” refers to the process of converting references based on object identifiers into direct

memory pointer references and “pointer unswizzling” is the reverse operation (i.e. replacing references based on memory

pointers with object identifier references).

7.1 File Structure

A JT file is structured as a sequence of blocks/segments. The File Header block is always the first block of data in the file.

The File Header is followed (in no particular order) by a TOC Segment and a series of other Data Segments. The one Data

Segment which must always exist to have a reference compliant JT file is the 7.2.1 LSG Segment.

The TOC Segment is located within the file using data stored in the File Header. Within the TOC Segment is information

that locates all other Data Segments within the file. Although there are no JT format compliance rules about where the TOC

Segment must be located within the file, in practice the TOC Segment is typically located either immediately following the

File header (as shown in the below Figure) or at the very end of the file following all other Data Segments.

Figure 1: JT File Structure

7.1.1 File Header

The File Header is always the first block of data in a JT file. The File Header contains information about the JT file version

and TOC location, which Loaders use to determine how to read the file. The exact contents of the File Header are as follows:

File Header

Data Segment

TOC Segment

 JT File Format Reference Version 9.5 Rev-A Page 26

Figure 2: File Header data collection

UChar : Version

An 80-character version string defining the version of the file format used to write this file. The Version string has the

following format:

Version M.n Comment

Where M is replaced by the major version number, n is replaced by the minor version number, and Comment provides other

unspecified reserved information. The string with the following format is commonly used as Comment to indicate the DM

library version that was used to write this JT file:

DM Maj.Min.Qrm.Irm

Where Maj, Min, Qrm, and Irm are replaced by the major, minor, QRM, and IRM numbers respectively.

The version string is padded with spaces to a length of 75 ASCII characters and then the final five characters must be filled

with the following linefeed and carriage return character combination (shown using c-style syntax):

Version[75] = „ „

Version[76] = „\n„

Version[77] = „\r„

Version[78] = „\n„

Version[79] = „ „

These final 5 characters (shown above and referred to as ASCII/binary translation detection bytes) can be used by JT file

readers to validate that the JT files has not been corrupted by ASCII mode FTP transfers. For a JT Version 9.5 file written by

DM library version 7.3.4.0 this string will look as follows:

“Version 9.5 JT DM 7.3.4.0 \n\r\n “

UChar : Version

UChar : Byte Order

I32 : Reserved Field

I32 : TOC Offset

80

GUID : LSG Segment ID

Reserved Field != 0

GUID: Reserved Field

 JT File Format Reference Version 9.5 Rev-A Page 27

UChar : Byte Order

Defines the file byte order and thus can be used by the loader to determine if there is a mismatch (thus byte swapping

required) between the file byte order and the machine (on which the loader is being run) byte order. Valid values for Byte

Order are:

0 – Least Significant byte first (LsbFirst)

1 – Most Significant byte first (MsbFirst)

I32 : Reserved Field

Must have the value 0.

I32 : TOC Offset

Defines the byte offset from the top of the file to the start of the TOC Segment.

GUID : LSG Segment ID

LSG Segment ID specifies the globally unique identifier for the Logical Scene Graph Data Segment in the file. This ID

along with the information in the TOC Segment can be used to locate the start of LSG Data Segment in the file. This ID is

needed because without it a loader would have no way of knowing the location of the root LSG Data Segment. All other

Data Segments must be accessible from the root LSG Data Segment.

GUID: Reserved Field

Reserved Field is a data field reserved for future JT format expansion

7.1.2 TOC Segment

The TOC Segment contains information identifying and locating all individually addressable Data Segments within the file.

A TOC Segment is always required to exist somewhere within a JT file. The actual location of the TOC Segment within the

file is specified by the File Header segment‟s “TOC Offset” field. The TOC Segment contains one TOC Entry for each

individually addressable Data Segment in the file.

Figure 3: TOC Segment data collection

I32 : Entry Count

Entry Count is the number of entries in the TOC.

7.1.2.1 TOC Entry

Each TOC Entry represents a Data Segment within the JT File. The essential function of a TOC Entry is to map a Segment

ID to an absolute byte offset within the file.

I32 : Entry Count

TOC Entry

Entry Count

 JT File Format Reference Version 9.5 Rev-A Page 28

Figure 4: TOC Entry data collection

GUID : Segment ID

Segment ID is the globally unique identifier for the segment.

I32 : Segment Offset

Segment Offset defines the byte offset from the top of the file to start of the segment.

I32 : Segment Length

Segment Length is the total size of the segment in bytes.

U32 : Segment Attributes

Segment Attributes is a collection of segment information encoded within a single U32 using the following bit allocation.

Bits 0 - 23 Reserved for future use.

Bits 24 - 31 Segment type. Complete list of Segment types can be found

in Table 3: Segment Types.

7.1.3 Data Segment

All data stored in a JT file must be defined within a Data Segment. Data Segments are “typed” based on the general

classification of data they contain. See Segment Type field description below for a complete list of the segment types.

Beyond specific data field compression/encoding, some Data Segment types also have a ZLIB compression conditionally

applied to all the Data bytes of information persisted within the segment. Whether ZLIB compression is conditionally

applied to a segment‟s Data bytes of information is indicated by information stored with the first “Element” in the segment.

Also Table 3: Segment Types has a column indicating whether the Segment Type may have ZLIB compression applied to its

Data bytes.

All Data Segments have the same basic structure.

I32 : Segment Offset

I32 : Segment Length

U32 : Segment Attributes

GUID : Segment ID

 JT File Format Reference Version 9.5 Rev-A Page 29

Figure 5: Data Segment data collection

7.1.3.1 Segment Header

Segment Header contains information that determines how the remainder of the Segment is interpreted by the loader.

Figure 6: Segment Header data collection

GUID : Segment ID

Global Unique Identifier for the segment.

I32 : Segment Type

Segment Type defines a broad classification of the segment contents. For example, a Segment Type of “1” denotes that the

segment contains Logical Scene Graph material; “2” denotes contents of a B-Rep, etc.

The complete list of segment types is as follows. The column labeled "ZLIB Applied?" denotes whether ZLIB compression

is conditionally applied to the entirety of the segment's Data payload.

Table 3: Segment Types

Type Data Contents
ZLIB

Applied?
1 Logical Scene Graph Yes

2 JT B-Rep Yes

3 PMI Data Yes

4 Meta Data Yes

6 Shape No

7 Shape LOD0 No

8 Shape LOD1 No

9 Shape LOD2 No

10 Shape LOD3 No

11 Shape LOD4 No

12 Shape LOD5 No

13 Shape LOD6 No

14 Shape LOD7 No

15 Shape LOD8 No

I32 : Segment Type

I32 : Segment Length

GUID : Segment ID

Segment Header

Data

 JT File Format Reference Version 9.5 Rev-A Page 30

Type Data Contents
ZLIB

Applied?
16 Shape LOD9 No

17 XT B-Rep Yes

18 Wireframe Representation Yes

20 ULP Yes

24 LWPA Yes

Note: Segment Types 7-16 all identify the contents as LOD Shape data, where the increasing type number is intended to

convey some notion of how high an LOD the specific shape segment represents. The lower the type in this 7-16 range the

more detailed the Shape LOD (i.e. Segment Type 7 is the most detailed Shape LOD Segment). For the rare case when there

are more than 10 LODs, LOD9 and greater are all assigned Segment Type 16.

Note: The more generic Shape Segment type (i.e. Segment Type 6) is used when the Shape Segment has one or more of the

following characteristics:

 Not a descendant of an LOD node,

 Is referenced by (i.e. is a child of) more than one LOD node,

 Shape has its own built-in LODs, and

 No way to determine what LOD a Shape Segment represents.

I32 : Segment Length

Segment Length is the total size of the segment in bytes. This length value includes all segment Data bytes plus the Segment

Header bytes (i.e. it is the size of the complete segment) and should be equal to the length value stored with this segment‟s

TOC Entry.

7.1.3.2 Data

The interpretation of the Data section depends on the Segment Type. See 7.2 Data Segments for complete description for all

Data Segment that may be contained in a JT file.

Although the Data section is Segment Type dependent there is a common structure which often occurs within the Data

section. This structure is a list or multiple lists of Elements where each Element has the same basic structure which consists

of some fixed length header information describing the type of object contained in the Element, followed by some variable

length object type specific data.

Individual data fields of an Element data collection (and its children data collections) may have advanced

compression/encoding applied to them as indicated through compression related data values stored as part of the particular

Element‟s storage format. In addition, another level of compression (i.e. ZLIB compression) may be conditionally applied to

all bytes of information stored for all Elements within a particular Segment. Not all Segment types support ZLIB

compression on all Segment data as indicated in Table 3: Segment Types. If a particular file Segment is of the type which

supports ZLIB compression on all the Segment data, whether this compression is applied or not is indicated by data values

stored in the Logical Element Header ZLIB data collection of the first Element within the Segment. An in-depth description

of JT file compression/encoding techniques can be found in 8 Data Compression and Encoding.

Figure 7: Data collection

Object Data

Logical Element Header

Object Data

Logical Element Header ZLIB

For Segment Types that do NOT support

ZLIB compression on all Segment Data.

(see Table 3: Segment Types.)

For Segment Types that support ZLIB

compression on all Segment Data

(see Table 3: Segment Types.)

 JT File Format Reference Version 9.5 Rev-A Page 31

7.1.3.2.1 Logical Element Header

Logical Element Header contains data defining the length in bytes of the Element along with the Element Header.

Figure 8: Logical Element Header data collection

Complete description for Logical Element Header can be found in 7.1.3.2.2 Element Header.

I32 : Element Length

Element Length is the total length in bytes of the element Object Data.

7.1.3.2.2 Element Header

Element Header contains data describing the object type contained in the Element.

Figure 9: Element Header data collection

GUID : Object Type ID

Object Type ID is the globally unique identifier for the object type. A complete list of the assigned GUID for all object types

stored in a JT file can be found in Appendix A: Object Type Identifiers.

UChar : Object Base Type

Object Base Type identifies the base object type. This is useful when an unknown element type is encountered and thus the

best the loader can do is to read the known Object Base Type data bytes (base type object data is always written first) and

then skip (read pass) the bytes of unknown data using knowledge of number of bytes encompassing the Object Base Type

data and the unknown types Length field. If the Object Base Type is unknown then the loader should simply skip (read pass)

Element Length number of bytes.

Valid Object Base Types include the following:

Table 4: Object Base Types

Base

Type
Description Base Type’s Data Format

255 Unknown Graph Node Object none

0 Base Graph Node Object 7.2.1.1.1.1.1 Base Node Data

1 Group Graph Node Object 7.2.1.1.1.3.1Group Node Data

2 Shape Graph Node Object 7.2.1.1.1.10.1.1 Base Shape Data

3 Base Attribute Object 7.2.1.1.2.1.1 Base Attribute Data

4 Shape LOD none

GUID : Object Type ID

UChar : Object Base Type

I32 : Texture Coord

Channel

I32 : Element Length

Object Data

 JT File Format Reference Version 9.5 Rev-A Page 32

Base

Type
Description Base Type’s Data Format

5 Base Property Object 7.2.1.2.1.1 Base Property Atom Data

6 JT Object Reference Object

7.2.1.2.5 JT Object Reference Property Atom Element

without the Logical Element Header ZLIB data

collection.

8 JT Late Loaded Property Object
0 Late Loaded Property Atom Element without the

Logical Element Header ZLIB data collection.

9 JtBase (none) none

I32 : Object ID

Object ID is the identifier for this Object. Other objects referencing this particular object do so using the Object ID.

7.1.3.2.3 Logical Element Header ZLIB

Logical Element Header ZLIB data collection is the format of Element Header data used by all Elements within Segment

Types that support ZLIB compression on all data in the Segment. See Table 3: Segment Types for information on whether a

particular Segment Type supports ZLIB compression on all data in the Segment.

Figure 10: Logical Element Header ZLIB data collection

Complete description for Logical Element Header can be found in 7.1.3.2.1 Logical Element Header. Note that if

Compression Flag indicates that ZLIB compression is ON for all element data in the Segment, then the Logical Element

Header data collection is also compressed accordingly.

I32 : Compression Flag

Compression Flag is a flag indicating whether ZLIB compression is ON/OFF for all data elements in the file Segment. Valid

values include the following:

 = 2 ZLIB compression is ON

!= 2 ZLIB compression is OFF.

Logical Element Header

If first Element

within file Segment

I32 : Compressed Data Length

U8 : Compression Algorithm

I32 : Compression Flag

 JT File Format Reference Version 9.5 Rev-A Page 33

I32 : Compressed Data Length

Compressed Data Length specifies the compressed data length in number of bytes. Note that data field Compression

Algorithm is included in this count.

U8 : Compression Algorithm

Compression Algorithm specifies the compression algorithm applied to all data in the Segment. Valid values include the

following:

= 1 No compression

= 2 ZLIB compression

7.1.3.2.4 Object Data

The interpretation of the Object Data section depends upon the Object Type ID stored in the Logical Element Header (see

7.1.3.2.1 Logical Element Header).

7.2 Data Segments

7.2.1 LSG Segment

LSG Segment contains a collection of objects (i.e. Elements) connected through directed references to form a directed acyclic

graph structure (i.e. the LSG). The LSG is the graphical description of the model and contains graphics shapes and attributes

representing the model‟s physical components, properties identifying arbitrary metadata (e.g. names, semantic roles) of those

components, and a hierarchical structure expressing the component relationships. The “directed” nature of the LSG

references implies that there is by default “state/attribute” inheritance from ancestor to descendant (i.e. predecessor to

successor). It is the responsibility of the loader to insure that the acyclic property of the resulting LSG is maintained.

The first Graph Element in a LSG Segment should always be a Partition Node. The LSG Segment type supports ZLIB

compression on all element data, so all elements in LSG Segment use the Logical Element Header ZLIB form of element

header data.

Figure 11: LSG Segment data collection

Complete description for Segment Header can be found in 7.1.3.1Segment Header.

Segment Header

Graph Elements Until End-Of-Elements marker

reached. See Table 11: Object

Type Identifiers for marker ID.

1.1.1.1.1.1 Textur
e
Coord
inate
Gener
ator
Attrib
ute
Eleme
nt

Object Type ID:
0xaa1b831d, 0x6e47,

0x4fee, 0xa8, 0x65,

0xcd, 0x7e, 0x1f, 0x2f,

0x39, 0xdc

Texture Coordinate

Property Table

Until End-Of-Elements marker

reached. See Table 11: Object

Type Identifiers for marker ID.

 JT File Format Reference Version 9.5 Rev-A Page 34

7.2.1.1 Graph Elements

Graph Elements form the backbone of the LSG directed acyclic graph structure and in doing so serve as the JT model‟s

fundamental description. There are two general classifications of Graph elements, Node Elements and Attribute Elements.

Node Elements are nodes in the LSG and in general can be categorized as either an internal or leaf node. The leaf nodes are

typically shape nodes used to represent a model‟s physical components and as such either contain or reference some

graphical representation or geometry. The internal nodes define the hierarchical organization of the leaf nodes, forming both

spatial and logical model relationships, and often contain or reference information (e.g. Attribute Elements) that is inherited

down the LSG to all descendant nodes.

Attribute Elements represent graphical data (like appearance characteristics (e.g. color), or positional transformations) that

can be attached to a node, and inherit down the LSG.

Each of these general Graph Element classifications (i.e. Node/Attribute Elements) is sub-typed into specific/concrete types

based on data content and implied specialized behavior. The following sub-sections describe each of the Node and Attribute

Element types.

7.2.1.1.1 Node Elements

Node Elements represent the relationships of a model‟s components. The model‟s component hierarchy is formed via

certain types of Node Elements containing collections of references to other Node Elements who in turn may reference other

collections of Node Elements. Node Elements are also the holders (either directly or indirectly) of geometric shape,

properties, and other information defining a model‟s components and representations.

7.2.1.1.1.1 Base Node Element

Object Type ID: 0x10dd1035, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Base Node Element represents the simplest form of a node that can exist within the LSG. The Base Node Element has no

implied LSG semantic behavior nor can it contain any children nodes.

Figure 12: Base Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Base Node Data

Logical Element Header ZLIB

 JT File Format Reference Version 9.5 Rev-A Page 35

7.2.1.1.1.1.1 Base Node Data

Figure 13: Base Node Data collection

I16 : Version Number

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for Base

Node Data.

U32 : Node Flags

Node Flags is a collection of flags. The flags are combined using the binary OR operator. These flags store various state

information of the node object. All undocumented bits are reserved.

0x00000001 Ignore Flag

= 0 – Algorithms traversing the LSG structure should include/process this node.

= 1 – Algorithms traversing the LSG structure should skip the whole subgraph rooted at

this node. Essentially the traversal should be pruned.

I32 : Attribute Count

Attribute Count indicates the number of Attribute Objects referenced by this Node Object. A node may have zero Attribute

Object references.

I32 : Attribute Object ID

Attribute Object ID is the identifier for a referenced Attribute Object.

7.2.1.1.1.2 Partition Node Element

Object Type ID: 0x10dd103e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

A Partition Node represents an external JT file reference and provides a means to partition a model into multiple physical JT

files (e.g. separate JT file per part in an assembly). When the referenced JT file is opened, the Partition Node‟s children are

really the children of the LSG root node for the underlying JT file. Usage of Partition Nodes in LSG also aids in supporting

JT file loader/reader “best practice” of late loading data (i.e. can delay opening and loading the externally referenced JT file

until the data is needed).

I16 : Version Number

U32 : Node Flags

I32 : Attribute Count

I32 : Attribute Object ID
Attribute Count

 JT File Format Reference Version 9.5 Rev-A Page 36

Figure 14: Partition Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Group Node Data can be found in 7.2.1.1.1.3.1Group Node Data.

I32 : Partition Flags

Partition Flags is a collection of flags. The flags are combined using the binary OR operator. These flags store various state

information of the Partition Node Object such as indicating the presence of optional data. All undocumented bits are

reserved.

0x00000001 Untransformed bounding box is written.

Group Node Data

I32 : Partition Flags

MbString : File Name

I32 : Partition Flags

F32 : Area

Vertex Count Range

Node Count Range

Polygon Count Range

BBoxF32 : Transformed BBox

BBoxF32 : Untransformed BBox

Logical Element Header ZLIB

(Partition Flags & 0x00000001) != 0

(Partition Flags & 0x00000001) = = 0

BBoxF32 : Reserved Field

 JT File Format Reference Version 9.5 Rev-A Page 37

MbString : File Name

File Name is the relative path portion of the Partition‟s file location. Where “relative path” should be interpreted to mean the

string contains the file name along with any additional path information that locates the partition JT file relative to the

location of the referencing JT file

BBoxF32 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion

BBoxF32 : Transformed BBox

The Transformed BBox is an NCS axis aligned bounding box and represents the transformed geometry extents for all

geometry contained in the Partition Node. This bounding box information may be used by a renderer of JT data to determine

whether to load the data contained within the Partition node (i.e. is any part of the bounding box within the view frustum).

F32 : Area

Area is the total surface area for this node and all of its descendents. This value is stored in NCS coordinate space (i.e. values

scaled by NCS scaling).

BBoxF32 : Untransformed BBox

The Untransformed BBox is only present if Bit 0x00000001 of Partition Flags data field is ON. The Untransformed BBox is

an LCS axis-aligned bounding box and represents the untransformed geometry extents for all geometry contained in the

Partition Node. This bounding box information may be used by a renderer of JT data to determine whether to load the data

contained within the Partition node (i.e. is any part of the bounding box within the view frustum).

7.2.1.1.1.2.1 Vertex Count Range

Vertex Count Range is the aggregate minimum and maximum vertex count for all descendants of the Partition Node. There

is a minimum and maximum value to accommodate descendant branches having LOD nodes, which encompass a range of

count values within the branch, and to accommodate nodes that can themselves generate varying representations. The

minimum value represents the least vertex count that can be achieved by the Partition Node‟s descendants. The maximum

value represents the greatest vertex count that can be achieved by the Partition Node‟s descendants.

Figure 15: Vertex Count Range data collection

I32 : Min Count

Min Count is the least vertex count that can be achieved by the Partition Node‟s descendants.

I32 : Max Count

Max Count is the maximum vertex count that can be achieved by the Partition Node‟s descendants.

7.2.1.1.1.2.2 Node Count Range

Node Count Range is the aggregate minimum and maximum count of all node descendants of the Partition Node. There is a

minimum and maximum value to accommodate descendant branches having LOD nodes, which encompass a range of

descendant node count values within the branch. The minimum value represents the least node count that can be achieved by

the Partition Node‟s descendants. The maximum value represents the greatest node count that can be achieved by the

Partition Node‟s descendants.

The data format for Node Count Range is the same as that described in 7.2.1.1.1.2.1Vertex Count Range.

I32 : Min Count

I32 : Max Count

 JT File Format Reference Version 9.5 Rev-A Page 38

7.2.1.1.1.2.3 Polygon Count Range

Polygon Count Range is the aggregate minimum and maximum polygon count for all descendants of the Partition Node.

There is a minimum and maximum value to accommodate descendant branches having LOD nodes, which encompass a

range of count values within the branch, and to accommodate nodes that can themselves generate varying representations.

The minimum value represents the least polygon count that can be achieved by the Partition Node‟s descendants. The

maximum value represents the greatest polygon count that can be achieved by the Partition Node‟s descendants.

The data format for Polygon Count Range is the same as that described in 7.2.1.1.1.2.1Vertex Count Range.

7.2.1.1.1.3 Group Node Element

Object Type ID: 0x10dd101b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Group Nodes contain an ordered list of references to other nodes, called the group‟s children. Group nodes may contain zero

or more children; the children may be of any node type. Group nodes may not contain references to themselves or their

ancestors.

Figure 16: Group Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

7.2.1.1.1.3.1 Group Node Data

Figure 17: Group Node Data collection

Complete description for Base Node Data can be found in 7.2.1.1.1.1.1Base Node Data.

I16 : Version Number

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for Group

Node Data.

Base Node Data

I32 : Child Count

I32 : Child Node Object ID

Child Count

I16 : Version Number

Group Node Data

Logical Element Header ZLIB

 JT File Format Reference Version 9.5 Rev-A Page 39

I32 : Child Count

Child Count indicates the number of child nodes for this Group Node Object. A node may have zero children.

I32 : Child Node Object ID

Child Node Object ID is the identifier for the referenced Node Object.

7.2.1.1.1.4 Instance Node Element

Object Type ID: 0x10dd102a, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

An Instance Node contains a single reference to another node. Their purpose is to allow sharing of nodes and assignment of

instance-specific attributes for the instanced node. Instance Nodes may not contain references to themselves or their

ancestors.

For example, a Group Node could use Instance Nodes to instance the same Shape Node several times, applying different

material properties and matrix transformations to each instance. Note that this could also be done by using Group Nodes

instead of Instance Nodes, but Instance Nodes require fewer resources.

Figure 18: Instance Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Node Data can be found in 7.2.1.1.1.1.1Base Node Data.

I16: Version Number

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for

Instance Node Element.

I32 : Child Node Object ID

Child Node Object ID is the identifier for the instanced Node Object.

7.2.1.1.1.5 Part Node Element

Object Type ID: 0xce357244, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1

A Part Node Element represents the root node for a particular Part within a LSG structure. Every unique Part represented

within a LSG structure should have a corresponding Part Node Element. A Part Node Element typically references (using

Late Loaded Property Atoms) additional Part specific geometric data and/or properties (e.g. B-Rep data, PMI data).

Base Node Data

I16: Version Number

Logical Element Header ZLIB

I32 : Child Node Object ID

 JT File Format Reference Version 9.5 Rev-A Page 40

Figure 19: Part Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Meta Data Node Data can be found in 7.2.1.1.1.6.1Meta Data Node Data.

I16 : Version Number

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for Part

nodes.

I32: Reserved Field

Reserved Field is a data field reserved for future JT format expansion

7.2.1.1.1.6 Meta Data Node Element

Object Type ID: 0xce357245, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1

The Meta Data Node Element is a node type used for storing references to specific “late loaded” meta-data (e.g. properties,

PMI). The referenced meta-data is stored in a separate addressable segment of the JT File (see 7.2.6 Meta Data Segment) and

thus the use of this Meta Data Node Element is in support of the JT file loader/reader “best practice” of late loading data (i.e.

storing the referenced meta-data in separate addressable segment of the JT file allows a JT file loader/reader to ignore this

node‟s meta-data on initial load and instead late-load the node‟s meta-data upon demand so that the associated meta-data

does not consume memory until needed).

Figure 20: Meta Data Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Meta Data Node Data

Logical Element Header ZLIB

Meta Data Node Data

I16 : Version Number

I32: Reserved Field

Logical Element Header ZLIB

 JT File Format Reference Version 9.5 Rev-A Page 41

7.2.1.1.1.6.1 Meta Data Node Data

Figure 21: Meta Data Node Data collection

Complete description for Group Node Data can be found in 7.2.1.1.1.3.1Group Node Data.

I16 : Version Number

Version Number is the version identifier for this data. Version number “0x0001” is currently the only valid value for Meta

Data Node Data.

7.2.1.1.1.7 LOD Node Element

Object Type ID: 0x10dd102c, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

An LOD Node holds a list of alternate representations. The list is represented as the children of a base group node, however,

there are no implicit semantics associated with the ordering. Traversers of LSG may apply semantics to the ordering as part

of alternative representation selection.

Each alternative representation could be a sub-assembly where the alternative representation is a group node with an

assembly of children.

Figure 22: LOD Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

LOD Node Data

Logical Element Header ZLIB

Group Node Data

I16 : Version Number

 JT File Format Reference Version 9.5 Rev-A Page 42

7.2.1.1.1.7.1 LOD Node Data

Figure 23: LOD Node Data collection

Complete description for Group Node Data can be found in 7.2.1.1.1.3.1Group Node Data.

I16: Version Number

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for LOD

Node Data.

VecF32 : Reserved Field

Reserved Field is a vector data field reserved for future JT format expansion.

I32 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

7.2.1.1.1.8 Range LOD Node Element

Object Type ID: 0x10dd104c, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Range LOD Nodes hold a list of alternate representations and the ranges over which those representations are appropriate.

Range Limits indicate the distance between a specified center point and the eye point, within which the corresponding

alternate representation is appropriate. Traversers of LSG consult these range limit values when making an alternative

representation selection.

Group Node Data

VecF32 : Reserved Field

I32 : Reserved Field

I16: Version Number

 JT File Format Reference Version 9.5 Rev-A Page 43

Figure 24: Range LOD Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for LOD Node Data can be found in 7.2.1.1.1.7.1 LOD Node Data

I16: Version Number

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for Range

LOD Node Data.

VecF32 : Range Limits

Range Limits indicate the WCS distance between a specified center point and the eye point, within which the corresponding

alternate representation is appropriate. It is not required that the count of range limits is equivalent to the number of

alternative representations. These values are considered “soft values” in that loaders/viewers of JT data are free to throw

these values away and compute new values based on their desired LOD selection semantics.

Best practices suggest that LSG traversers apply the following strategy, at Range LOD Nodes, when making alternative

representation selection decisions based on Range Limits: The first alternate representation is valid when the distance

between the center and the eye point is less than or equal to the first range limit (and when no range limits are specified). The

second alternate representation is valid when the distance is greater than the first limit and less than or equal to the second

limit, and so on. The last alternate representation is valid for all distances greater than the last specified limit.

CoordF32 : Center

Center specifies the X,Y,Z coordinates for the NCS center point upon which alternative representation selection eye distance

computations are based. Typically this location is the center of the highest-detail alternative representation. These values are

considered “soft values” in that loaders/viewers of JT data are free to throw these values away and compute new values based

on their desired LOD selection semantics

7.2.1.1.1.9 Switch Node Element

Object Type ID: 0x10dd10f3, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

The Switch Node is very much like a Group Node in that it contains an ordered list of references to other nodes, called the

children nodes. The difference is that a Switch Node also contains additional data indicating which child (one or none) a

LSG traverser should process/traverse.

LOD Node Data

VecF32 : Range Limits

CoordF32 : Center

Logical Element Header ZLIB

I16: Version Number

 JT File Format Reference Version 9.5 Rev-A Page 44

Figure 25: Switch Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Group Node Data can be found in 7.2.1.1.1.3.1Group Node Data.

I16 : Version Number

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for Switch

nodes.

I32 : Selected Child

Selected Child is the index for the selected child node. Valid Selected Child values reside within the following range: “-1 <

Selected Child < Child Count”. Where “-1” indicates that no child is to be selected and “Child Count” is the data field value

from 7.2.1.1.1.3.1Group Node Data.

7.2.1.1.1.10 Shape Node Elements

Shape Node Elements are “leaf” nodes within the LSG structure and contain or reference the geometric shape definition data

(e.g. vertices, polygons, normals, etc.).

Typically Shape Node Elements do not directly contain the actual geometric shape definition data, but instead reference

(using Late Loaded Property Atoms) Shape LOD Segments within the file for the actual geometric shape definition data.

Storing the geometric shape definition data within separate independently addressable data segments in the JT file, allows a

JT file reader to be structured to support the “best practice” of delaying the loading/reading of associated data until it is

actually needed. Complete descriptions for Late Loaded Property Atom Elements and Shape LOD Segments can be found in

0 Late Loaded Property Atom Element and 7.2.2 Shape LOD Segment respectively.

There are several types of Shape Node Elements which the JT format supports. The following sub-sections document the

various Shape Node Element types.

7.2.1.1.1.10.1 Base Shape Node Element

Object Type ID: 0x10dd1059, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Base Shape Node Element represents the simplest form of a shape node that can exist within the LSG.

Group Node Data

I16 : Version Number

I32 : Selected Child

Logical Element Header ZLIB

 JT File Format Reference Version 9.5 Rev-A Page 45

Figure 26: Base Shape Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

7.2.1.1.1.10.1.1 Base Shape Data

Figure 27: Base Shape Data collection

Complete description for Base Node Data can be found in 7.2.1.1.1.1.1Base Node Data

F32 : Compression Level

I32 : Size

Base Node Data

BBoxF32 : Reserved Field

BBoxF32 : Untransformed BBox

F32 : Area

Vertex Count Range

Polygon Count Range

Node Count Range

I16: Version Number

Base Shape Data

Logical Element Header ZLIB

 JT File Format Reference Version 9.5 Rev-A Page 46

I16: Version Number

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for Base

Shape Data.

BBoxF32 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

BBoxF32 : Untransformed BBox

The Untransformed BBox is an axis-aligned LCS bounding box and represents the untransformed geometry extents for all

geometry contained in the Shape Node.

F32 : Area

Area is the total surface area for this node and all of its descendents. This value is stored in NCS coordinate space (i.e. values

scaled by NCS scaling).

I32 : Size

Size specifies the in memory length in bytes of the associated/referenced Shape LOD Element. This Size value has no

relevancy to the on-disk (JT File) size of the associated/referenced Shape LOD Element. A value of zero indicates that the in

memory size is unknown. See 7.2.2.1Shape LOD Element for complete description of Shape LOD Elements. JT file

loaders/readers can leverage this Size value during late load processing to help pre-determine if there is sufficient memory to

load the Shape LOD Element.

F32 : Compression Level

Compression Level specifies the qualitative compression level applied to the associated/referenced Shape LOD Element. See

7.2.2.1Shape LOD Element for complete description of Shape LOD Elements. This compression level value is a qualitative

representation of the compression applied to the Shape LOD Element. The absolute compression (derived from this

qualitative level) applied to the Shape LOD Element is physically represented in the JT format by other data stored with both

the Shape Node and the Shape LOD Element (e.g. 7.2.1.1.1.10.2.1.1Quantization Parameters), and thus it's not necessary to

understand how to map this qualitative value to absolute compression values in order to uncompress/decode the data

= 0.0 “Lossless” compression used.

= 0.1 “Minimally Lossy” compression used. This setting generally results in modest

compression ratios with little if any visual difference when compared to the same images

rendered from “Lossless” compressed Shape LOD Element.

= 0.5 “Moderate Lossy” compression used. The setting results in more data loss than

“Minimally Lossy” and thus higher compression ratio is obtained. Some visual difference

will likely be noticeable when compared to the same images rendered from “Lossless”

compressed Shape LOD Element.

= 1.0 “Aggressive Lossy” compression used. With this setting as much data as possible will be

thrown away, resulting in highest compression ratio, while still maintaining a modestly

useable representation of the underlying data. Visual differences may be evident when

compared to the same images rendered from “Lossless” compressed Shape LOD Element.

7.2.1.1.1.10.1.1.1 Vertex Count Range

Vertex Count Range is the aggregate minimum and maximum vertex count for this Shape Node. There is a minimum and

maximum value to accommodate shape types that can themselves generate varying representations. The minimum value

 JT File Format Reference Version 9.5 Rev-A Page 47

represents the least vertex count that can be achieved by the Shape Node. The maximum value represents the greatest vertex

count that can be achieved by the Shape Node.

Figure 28: Vertex Count Range data collection

I32 : Min Count

Min Count is the least vertex count that can be achieved by this Shape Node.

I32 : Max Count

Max Count is the maximum vertex count that can be achieved by this Shape Node. A value of “-1” indicates maximum

vertex count is unknown.

7.2.1.1.1.10.1.1.2 Node Count Range

Node Count Range is the aggregate minimum and maximum count of all node descendants of the Shape Node. The

minimum value represents the least node count that can be achieved by the Shape Node‟s descendants. The maximum value

represents the greatest node count that can be achieved by Shape Node‟s descendants. For Shape Nodes the minimum and

maximum count values should always be equal to “1”.

The data format for Node Count Range is the same as that described in 7.2.1.1.1.10.1.1.1Vertex Count Range.

7.2.1.1.1.10.1.1.3 Polygon Count Range

Polygon Count Range is the aggregate minimum and maximum polygon count for this Shape Node. There is a minimum and

maximum value to accommodate shape types that can themselves generate varying representations. The minimum value

represents the least polygon count that can be achieved by the Shape Node. The maximum value represents the greatest

polygon count that can be achieved by the Shape Node.

 The data format for Polygon Count Range is the same as that described in 7.2.1.1.1.10.1.1.1Vertex Count Range.

7.2.1.1.1.10.2 Vertex Shape Node Element

Object Type ID: 0x10dd107f, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Vertex Shape Node Element represents shapes defined by collections of vertices.

Figure 29: Vertex Shape Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

7.2.1.1.1.10.2.1 Vertex Shape Data

Vertex Shape Data

Logical Element Header ZLIB

I32 : Min Count

I32 : Max Count

 JT File Format Reference Version 9.5 Rev-A Page 48

Figure 30: Vertex Shape Data collection

Complete description for Base Shape Data can be found in 7.2.1.1.1.10.1.1 Base Shape Data.

I16: Version Number

Version Number is the version identifier for this node. Version number “0x0002” is currently the highest valid value for

Vertex Shape Data.

U64 : Vertex Binding

Vertex Bindings is a collection of normal, texture coordinate, and color binding information encoded within a single U64.

All undocumented bits are reserved. For more information see Vertex Shape LOD Data U64 : Vertex Bindings.

7.2.1.1.1.10.2.1.1 Quantization Parameters

Quantization Parameters specifies for each shape data type grouping (i.e. Vertex, Normal, Texture Coordinates, Color) the

number of quantization bits used for given qualitative compression level. Although these Quantization Parameters values are

saved in the associated/referenced Shape LOD Element, they are also saved here so that a JT File loader/reader does not have

to load the Shape LOD Element in order to determine the Shape quantization level. See 7.2.2.1Shape LOD Element for

complete description of Shape LOD Elements.

Base Shape Data

U64 : Vertex Binding

Quantization Parameters

I16: Version Number

U64 : Vertex Binding

Version Number = = 1

 JT File Format Reference Version 9.5 Rev-A Page 49

Figure 31: Quantization Parameters data collection

U8 : Bits Per Vertex

Bits Per Vertex specifies the number of quantization bits per vertex coordinate component. Value must be within range

[0:24] inclusive.

U8 : Normal Bits Factor

Normal Bits Factor is a parameter used to calculate the number of quantization bits for normal vectors. Value must be within

range [0:13] inclusive . The actual number of quantization bits per normal is computed using this factor and the following

formula: “BitsPerNormal = 6 + 2 * Normal Bits Factor”

U8 : Bits Per Texture Coord

Bits Per Texture Coord specifies the number of quantization bits per texture coordinate component. Value must be within

range [0:24] inclusive.

U8 : Bits Per Color

Bits Per Color specifies the number of quantization bits per color component. Value must be within range [0:24] inclusive.

7.2.1.1.1.10.3 Tri-Strip Set Shape Node Element

Object Type ID: 0x10dd1077, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

A Tri-Strip Set Shape Node Element defines a collection of independent and unconnected triangle strips. Each strip

constitutes one primitive of the set and is defined by one list of vertex coordinates.

Figure 32: Tri-Strip Set Shape Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Vertex Shape Data can be found in 7.2.1.1.1.10.2.1Vertex Shape Data.

7.2.1.1.1.10.4 Polyline Set Shape Node Element

Object Type ID: 0x10dd1046, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Vertex Shape Data

Logical Element Header ZLIB

U8 : Bits Per Vertex

U8 : Normal Bits Factor

U8 : Bits Per Texture Coord

U8 : Bits Per Color

 JT File Format Reference Version 9.5 Rev-A Page 50

A Polyline Set Shape Node Element defines a collection of independent and unconnected polylines. Each polyline constitutes

one primitive of the set and is defined by one list of vertex coordinates.

Figure 33: Polyline Set Shape Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Vertex Shape Data can be found in 7.2.1.1.1.10.2.1Vertex Shape Data.

I16: Version Number

Version Number is the version identifier for this node. Version number “0x0002” is currently the highest valid value for

Polyline Set Shape Data.

F32 : Area Factor

Area Factor specifies a multiplier factor applied to a Polyline Set computed surface area. In JT data viewer applications there

may be LOD selection semantics that are based on screen coverage calculations. The so-called ”surface area” of a polyline is

computed as if each line segment were a square. This Area Factor turns each edge into a narrow rectangle. Valid Area

Factor values lie in the range (0,1].

U64: Vertex Bindings

Vertex Bindings is a collection of normal, texture coordinate, and color binding information encoded within a single U64.

All undocumented bits are reserved. For more information see Vertex Shape LOD Data U64 : Vertex Bindings.

7.2.1.1.1.10.5 Point Set Shape Node Element

Object Type ID: 0x98134716, 0x0010, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83, 0x5d, 0x5a

A Point Set Shape Node Element defines a collection of independent and unconnected points. Each point constitutes one

primitive of the set and is defined by one vertex coordinate.

Vertex Shape Data

F32 : Area Factor

Logical Element Header ZLIB

U64: Vertex Bindings

Version Number = = 1

I16: Version Number

 JT File Format Reference Version 9.5 Rev-A Page 51

Figure 34: Point Set Shape Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Vertex Shape Data can be found in 7.2.1.1.1.10.2.1Vertex Shape Data.

I16: Version Number

Version Number is the version identifier for this node. Version number “0x0002” is currently the highest valid value for

Point Set Shape Data.

F32 : Area Factor

Area Factor specifies a multiplier factor applied to the Point Set computed surface area. In JT data viewer applications there

may be LOD selection semantics that are based on screen coverage calculations. The computed “surface area” of a Point Set

is equal to the larger (i.e. whichever is greater) of either the area of the Point Set‟s bounding box, or “1.0”. Area Factor

scales the result of this “surface area” computation..

U64: Vertex Bindings

Vertex Bindings is a collection of normal, texture coordinate, and color binding information encoded within a single U64.

All undocumented bits are reserved. For more information see Vertex Shape LOD Data U64 : Vertex Bindings.

7.2.1.1.1.10.6 Polygon Set Shape Node Element

Object Type ID: 0x10dd1048, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

A Polygon Set Shape Node Element defines a collection of independent and unconnected polygons. Each polygon constitutes

one primitive of the set and is defined by one list of vertex coordinates.

Vertex Shape Data

F32 : Area Factor

Logical Element Header ZLIB

U64: Vertex Bindings

Version Number = = 1

I16: Version Number

 JT File Format Reference Version 9.5 Rev-A Page 52

Figure 35: Polygon Set Shape Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Vertex Shape Data can be found in 7.2.1.1.1.10.2.1Vertex Shape Data.

7.2.1.1.1.10.7 NULL Shape Node Element

Object Type ID: 0xd239e7b6, 0xdd77, 0x4289, 0xa0, 0x7d, 0xb0, 0xee, 0x79, 0xf7, 0x94, 0x94

A NULL Shape Node Element defines a shape which has no direct geometric primitive representation (i.e. it is

empty/NULL). NULL Shape Node Elements are often used as “proxy/placeholder” nodes within the serialized LSG when

the actual Shape LOD data is run time generated (i.e. not persisted).

Figure 36: NULL Shape Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Shape Data can be found in 7.2.1.1.1.10.1.1 Base Shape Data.

I16 : Version Number

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for NULL

Shape Node Element.

7.2.1.1.1.10.8 Primitive Set Shape Node Element

Object Type ID: 0xe40373c1, 0x1ad9, 0x11d3, 0x9d, 0xaf, 0x0, 0xa0, 0xc9, 0xc7, 0xdd, 0xc2

A Primitive Set Shape Node Element represents a list/set of primitive shapes (e.g. box, cylinder, sphere, etc.) who‟s LODs

can be procedurally generated. “Procedurally generate” means that the raw geometric shape definition data (e.g. vertices,

polygons, normals, etc) for LODs is not directly stored; instead some basic shape information is stored (e.g. sphere center and

radius) from which LODs can be generated.

Primitive Set Shape Node Elements actually do not even directly contain this basic shape definition data, but instead

reference (using Late Loaded Property Atoms) Primitive Set Shape Elements within the file for the actual basic shape

definition data. Storing the basic shape definition data within separate independently addressable data segments in the JT

file, allows a JT file reader to be structured to support the “best practice” of delaying the loading/reading of associated data

until it is actually needed. Complete descriptions for Late Loaded Property Atom Elements and Primitive Set Shape Element

can be found in 0 Late Loaded Property Atom Element and 7.2.2.2 Primitive Set Shape Element respectively.

I16 : Version Number

Logical Element Header ZLIB

Base Shape Data

Vertex Shape Data

Logical Element Header ZLIB

 JT File Format Reference Version 9.5 Rev-A Page 53

Figure 37: Primitive Set Shape Node Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Shape Data can be found in 7.2.1.1.1.10.1.1 Base Shape Data.

I16 : Version Number

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for

Primitive Set Shape Node Element.

I32 : Texture Coord Binding

Texture Coord Binding specifies how (at what granularity) texture coordinate data is supplied (“bound”) for the shape in the

associated/referenced Shape LOD Element. Valid values are as follows:

= 0 None. Shape has no texture coordinate data.

= 1 Per Vertex. Shape has texture coordinates for every vertex.

I32 : Color Binding

Color Binding specifies how (at what granularity) color data is supplied (“bound”) for the shape in the associated/referenced

Shape LOD Element. Valid values are the same as documented for Texture Coord Binding data field.

Logical Element Header ZLIB

Base Shape Data

I32 : Texture Coord Binding

I32 : Color Binding

Primitive Set

Quantization Parameters

I16 : Version Number

I32 : Texture Coord Gen Type

I16 : Version Number

 JT File Format Reference Version 9.5 Rev-A Page 54

I16 : Version Number

Version Number is the version identifier for this element. The value of this Version Number indicates the format of data

fields to follow.

= 0 Version 0 Format

= 1 Version 1 Format

I32 : Texture Coord Gen Type

Texture Coord Gen Type specifies how texture coordinates are to be generated.

= 0 Single Tile…Indicates that a single copy of a texture image will be applied to significant

primitive features (i.e. cube face, cylinder wall, end cap) no matter how eccentrically shaped.

= 1 Isotropic…Implies that multiple copies of a texture image may be mapped onto eccentric

surfaces such that a mapped texel stays approximately square.

7.2.1.1.1.10.8.1 Primitive Set Quantization Parameters

Primitive Set Quantization Parameters specifies for the two shape data type grouping (i.e. Vertex, Color) the number of

quantization bits used for given qualitative compression level. Although these Quantization Parameters values are saved in

the associated/referenced Shape LOD Element, they are also saved here so that a JT File loader/reader does not have to load

the Shape LOD Element in order to determine the Shape quantization level. See 7.2.2.1Shape LOD Element for complete

description of Shape LOD Elements.

Figure 38: Primitive Set Quantization Parameters data collection

U8 : Bits Per Vertex

Bits Per Vertex specifies the number of quantization bits per vertex coordinate component. Value must be within range

[0:24] inclusive.

U8 : Bits Per Color

Bits Per Color specifies the number of quantization bits per color component. Value must be within range [0:24] inclusive.

7.2.1.1.2 Attribute Elements

Attribute Elements (e.g. color, texture, material, lights, etc.) are placed in LSG as objects associated with nodes. Attribute

Elements are not nodes themselves, but can be associated with any node.

For applications producing or consuming JT format data, it is important that the JT format semantics of how attributes are

meant to be applied and accumulated down the LSG are followed. If not followed, then consistency between the applications

in terms of 3D positioning and rendering of LSG model data will not be achieved.

To that end each attribute type defines its own application and accumulation semantics, but in general attributes at lower

levels in the LSG take precedence and replace or accumulate with attributes set at higher levels. Nodes without associated

U8 : Bits Per Vertex

U8 : Bits Per Color

 JT File Format Reference Version 9.5 Rev-A Page 55

attributes inherit those of their parents. Attributes inherit only from their parents, thus a node‟s attributes do not affect that

node‟s siblings. The root of a partition inherits the attributes in effect at the referring partition node.

Attributes can be declared “final” (see 7.2.1.1.2.1.1Base Attribute Data), which terminates accumulation of that attribute type

at that attribute and propagates the accumulated values there to all descendants of the associated node. Descendants can

explicitly do a one-shot override of “final” using the attribute “force” flag (see 7.2.1.1.2.1.1Base Attribute Data), but do not

by default. Note that “force” does not turn OFF “final” – it is simply a one-shot override of “final” for the specific attribute

marked as “forcing.” An analogy for this “force” and “final” interaction is that “final” is a back-door in the attribute

accumulation semantics, and that “force” is a doggy-door in the back-door!

7.2.1.1.2.1 Common Attribute Data Containers

7.2.1.1.2.1.1 Base Attribute Data

Figure 39: Base Attribute Data collection

I16: Version Number

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for Base

Shape Data.

U8 : State Flags

State Flags is a collection of flags. The flags are combined using the binary OR operator and store various state information

for Attribute Elements; such as indicating that the attributes accumulation is final. All undocumented bits are reserved.

0x01 Accumulation Final flag.

Provides a means to terminate a particular attribute type‟s accumulation at any node of the LSG

and thereby force all descendants to have that value of the attribute.

= 0 – Accumulation is to occur normally

= 1 – Accumulation is “final”

0x02 Accumulation Force flag.

Provides a way to assign nodes in LSG, attributes that must not be overridden by ancestors.

= 0 – Accumulation of this attribute obeys ancestor‟s Final flag setting.

= 1 – Accumulation of this attribute is forced (overrides ancestor‟s Final flag setting)

0x04 Accumulation Ignore Flag.

Provides a way to indicate that the attribute is to be ignored (not accumulated).

= 0 – Attribute is to be accumulated normally (subject to values of Force/Final flags)

= 1 – Attribute is to be ignored.

0x08 Attribute Persistable Flag.

I16: Version Number

U8 : State Flags

U32 : Field Inhibit Flags

 JT File Format Reference Version 9.5 Rev-A Page 56

Provides a way to indicate that the attribute is to be persistable to a JT file.

= 0 – Attribute is to be non-persistable.

= 1 – Attribute is to be persistable.

U32 : Field Inhibit Flags

Field Inhibit Flags is a collection of flags. The flags are combined using the binary OR operator and store the per attribute

value accumulation flag. Each value present in an Attribute Element is given a field number ranging from 0 to 31. If the

field‟s corresponding bit in Inhibit Flags is set, then the field should not participate in attribute accumulation. All bits are

reserved.

See each particular Attribute Element (e.g. Material Attribute Element) for a description of bit field assignments for each

attribute value.

7.2.1.1.2.1.2 Base Shader Data

The JT v9 file format is able to represent vertex- and fragment shader programs in GLSL source code form together with

parameter bindings for both. The shader source code can be specified inline directly in the JT file, or as a filename

containing the shader source code.

Figure 40: Base Shader Data collection

I16 : Version Number

Version Number is the version identifier for this data collection. Version number “0x0001” is currently the only valid value.

I16 : Version Number

I32 : Shader Language

U32 : Inline Source Flag

Inline Source Flag = = 1

MbString : Source Code MbString : Source Code Loc

I32 : Shader Param Count

Shader Parameter
Shader Param

Count

 JT File Format Reference Version 9.5 Rev-A Page 57

I32 : Shader Language

Shader Language specifies the Shader program language. JT v9.5 only supports the GLSL Shading Language.

= 0 None

= 2 GLSL (“GL Shading Language” as defined by the Architectural Review Board of

OpenGL, the governing body of OpenGL [7].

U32 : Inline Source Flag

Inline Source Flag specifies whether the shader‟s “source code” is stored within this JT file or in some other externally

referenced file. Valid values include the following:

= 0 Source code stored in an externally referenced file.

= 1 Source code stored within this JT file.

MbString : Source Code

Source Code is the shader‟s source code in Shader Language programming language.

MbString : Source Code Loc

Source Code Loc specifies the file name for the external file containing the shader‟s source code.

I32 : Shader Param Count

Shader Param Count specifies the number of shader parameters.

7.2.1.1.2.1.2.1 Shader Parameter

Shader Parameter data collection defines a Shader input and/or output parameter. A list of Shader Parameters represents the

runtime linkage of the shader program into the GPU‟s data streams.

 JT File Format Reference Version 9.5 Rev-A Page 58

Figure 41: Shader Parameter data collection

MbString : Param Name

Param Name specifies the shader parameter name.

U32 : Param Type

Param Type specifies the shader parameter type. Valid types include the following:

= 0 Unknown

= 1 Boolean

= 2 Integer

= 3 Float

= 4 Vector of two Integer values.

= 5 Vector of three Integer values

= 6 Vector of four Integer values

= 7 Vector of two Float values

= 8 Vector of three Float values

= 9 Vector of four Float values

= 10 2 x 2 matrix of Float values

= 11 3 x 3 matrix of Float values

= 12 4 x 4 matrix of Float values

MbString : Param Name

U32 : Param Type

U32 : Value Class

U32 : Direction

U32 : Semantic Binding

U32 : Variability

U32 : Reserved Field

16
U32 : Value

 JT File Format Reference Version 9.5 Rev-A Page 59

= 13 Texture Object/Unit number bound to current 1D texture sampler

= 14 Texture Object/Unit number bound to current 2D texture sampler

= 15 Texture Object/Unit number bound to current 3D texture sampler

= 16 Texture Object/Unit number bound to current rectangle map texture sampler

= 17 Texture Object/Unit number bound to current cube map texture sampler

= 18 Texture Object/Unit number bound to current 1D shadow map texture sampler

= 19 Texture Object/Unit number bound to current 2D shadow map texture sampler

U32 : Value Class

Value Class specifies the shader parameter “value class”. Valid values include the following:

= 0 Unknown class

= 1 Immediate class.

= 2 Semantic class (i.e. Shader Parameter is implicitly tied/bound to a piece of OpenGL

graphics system state (e.g. OpenGL ModelView matrix) or JT graphics system state

(e.g. diffuse material color)). The actual graphics state that the parameter is bound

to is indicated by value in Value data field.

U32 : Direction

Direction specifies whether the shader parameter is an input, output, or input/output parameter. Valid values include the

following:

= 0 Unknown

= 1 Input parameter

= 2 Output parameter

= 3 Both an Input and an Output parameter.

U32 : Semantic Binding

Semantic Binding specifies the “per vertex input and/or output” or the “per fragment input and/or output” this shader

parameter is associated with (i.e. bound to). Valid values, including their input/output applicability to vertex and fragment

shaders, are as follows (note that N/A indicates „Not Applicable”):

Value
Binding

Description

Vertex Shader

Applicability

Fragment Shader

Applicability
= 0 Unknown

= 1 None

= 2 Position Input/Output Input

= 3 Normal Input N/A

= 4 Binormal Input N/A

= 5 Blend Indices Input N/A

= 6 Blend Weight Input N/A

= 7 Tangent Input N/A

= 8 Point Size Input/Output Input

= 10 Texture Coordinate 0 Input/Output Input

= 11 Texture Coordinate 1 Input/Output Input

= 12 Texture Coordinate 2 Input/Output Input

= 13 Texture Coordinate 3 Input/Output Input

= 14 Texture Coordinate 4 Input/Output Input

= 15 Texture Coordinate 5 Input/Output Input

= 16 Texture Coordinate 6 Input/Output Input

= 17 Texture Coordinate 7 Input/Output Input

 JT File Format Reference Version 9.5 Rev-A Page 60

Value
Binding

Description

Vertex Shader

Applicability

Fragment Shader

Applicability
= 20 Fog Coordinate Output Input

= 21 Primary Color Output Input

= 22 Secondary Color Output Input

= 23 Primary Color N/A Output

= 24 Depth Value N/A Output

U32 : Variability

Variability specifies how often the value of the parameter is allowed to change. Valid values include the following:

= 0 Unknown

= 1 Constant (a parameter that takes on a single value and never changes)

= 2 Uniform (a parameter that may take on a different value each time the shader is

invoked but remains the same for all vertices or fragments processed by the

shader)

= 3 Varying (a parameter which may change with every vertex or fragment processed

by the shader)

U32 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

U32 : Value

Value specifies the shader parameter values treated as a U32 array of bytes. The maximum number of bytes required to store

all possible Param Type and Value Class dependent values is 64 bytes and thus there are 16 U32 values stored. The

interpretation of the Value data is Param Type and Value Class dependent as follows:

For “Immediate” Value Class parameters (i.e. Value Class = = 1), the interpretation of the Value data is dependent upon the

Param Type value.

For “Semantic” Value Class parameters, the Value data is to be interpreted as a single U32 with all the possible values

documented in Appendix B: Semantic Value Class Shader Parameter Values.

7.2.1.1.2.2 Material Attribute Element

Object Type ID: 0x10dd1030, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Material Attribute Element defines the material properties of a object. JT format LSG traversal semantics state that material

attributes accumulate down the LSG by replacement.

The Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments for the Material Attribute Element data fields,

are as follows:

Field Inhibit

Flag Bit

Data Field(s) Bit Applies To

0 Ambient Common RGB Value, Ambient Color

1 Diffuse Color and Alpha (Legacy)

2 Specular Common RGB Value, Specular Color

3 Emission Common RGB Value, Emission Color

4 Blending Flag, Source Blending Factor, Destination Blending Factor

5 Override Vertex Color Flag

6 Material Reflectivity

7 Diffuse Color

8 Diffuse Alpha

 JT File Format Reference Version 9.5 Rev-A Page 61

Figure 42: Material Attribute Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.

I16 : Version Number

Version Number is the version identifier for this element. The value of this Version Number indicates the format of data

fields to follow.

= 1 Version-1 Format

RGBA : Ambient Color

Base Attribute Data

U16 : Data Flags

RGBA : Specular Color

RGBA : Emission Color

RGBA : Diffuse Color and Alpha

F32 : Shininess

Logical Element Header ZLIB

F32 : Reflectivity

I16 : Version
Number

Version Number = = 2

 JT File Format Reference Version 9.5 Rev-A Page 62

= 2 Version-2 Format

U16 : Data Flags

Data Flags is a collection of flags and factor data. The flags and factor data are combined using the binary OR operator. The

flags store information to be used for interpreting how to read subsequent Material data fields. All undocumented bits are

reserved.

0x0010 Blending Flag. Blending is a color combining operation in the graphics pipeline that happens

just before writing a color to the framebuffer. If Blending is ON then incoming fragment RGBA

color values are used (based on Source Blend Factor) and existing framebuffer‟s RGBA color

values are used (based on Destination Blend Factor) to blend between the incoming fragment

RGBA and the current frame buffer RGBA to arrive at a new RGBA color to write into the

framebuffer. If Blending is OFF then incoming fragment RGBA color is written directly into

framebuffer unmodified (i.e. completely overriding existing framebuffer RGBA color).

Additional information on how one might leverage the Blending Flag and Blending Factors to

render an image can be found in the references listed in section 3 References and Additional

Information.

= 0 – Blending OFF.

= 1 – Blending ON

0x0020 Override Vertex Colors Flag. If ON, then a shape‟s per vertex colors are to be overridden by the

accumulated Material color.

= 0 – Override OFF

= 1 – Override ON

0x07C0 Source Blend Factor (stored in bits 6 – 10 or in binary notation 0000011111000000). If Blending

Flag enabled, this value indicates how the incoming fragment‟s (i.e. the source) RGBA color

values are to be used to blend with the current framebuffer‟s (i.e. the destination) RGBA color

values. Additional information on the interpretation of the Blending Factor values and how one

might leverage them to render an image can be found in reference [4] listed in section 3

References and Additional Information.

= 0 – Interpret same as OpenGL GL_ZERO Blending Factor

= 1 – Interpret same as OpenGL GL_ONE Blending Factor

= 2 – Interpret same as OpenGL GL_DST_COLOR Blending Factor

= 3 – Interpret same as OpenGL GL_SRC_COLOR Blending Factor

= 4 – Interpret same as OpenGL GL_ONE_MINUS_DST_COLOR Blending Factor

= 5 – Interpret same as OpenGL GL_ONE_MINUS_SRC_COLOR Blending Factor

= 6 – Interpret same as OpenGL GL_SRC_ALPHA Blending Factor

= 7 – Interpret same as OpenGL GL_ONE_MINUS_SRC_ALPHA Blending Factor

= 8 – Interpret same as OpenGL GL_DST_ALPHA Blending Factor

= 9 – Interpret same as OpenGL GL_ONE_MINUS_DST_ALPHA Blending Factor

= 10 – Interpret same as OpenGL GL_SRC_ALPHA_SATURATE Blending Factor

0xF800 Destination Blend Factor (stored in bits 11 – 15 or in binary notation 1111100000000000).). If

Blending Flag enabled, this value indicates how the current framebuffer‟s (the destination)

RGBA color values are to be used to blend with the incoming fragment‟s (the source) RGBA

color values. Additional information on the interpretation of the Blending Factor values and

how one might leverage them to render an image can be found in reference [4] listed in section 3

References and Additional Information.

= 0 – Interpret same as OpenGL GL_ZERO Blending Factor

= 1 – Interpret same as OpenGL GL_ONE Blending Factor

= 2 – Interpret same as OpenGL GL_DST_COLOR Blending Factor

 JT File Format Reference Version 9.5 Rev-A Page 63

= 3 – Interpret same as OpenGL GL_SRC_COLOR Blending Factor

= 4 – Interpret same as OpenGL GL_ONE_MINUS_DST_COLOR Blending Factor

= 5 – Interpret same as OpenGL GL_ONE_MINUS_SRC_COLOR Blending Factor

= 6 – Interpret same as OpenGL GL_SRC_ALPHA Blending Factor

= 7 – Interpret same as OpenGL GL_ONE_MINUS_SRC_ALPHA Blending Factor

= 8 – Interpret same as OpenGL GL_DST_ALPHA Blending Factor

= 9 – Interpret same as OpenGL GL_ONE_MINUS_DST_ALPHA Blending Factor

= 10 – Interpret same as OpenGL GL_SRC_ALPHA_SATURATE Blending Factor

RGBA : Ambient Color

Ambient Color specifies the ambient red, green, blue, alpha color values of the material.

RGBA : Diffuse Color and Alpha

Diffuse Color and Alpha specify the diffuse red, green, blue color components, and alpha value of the material.

RGBA : Specular Color

Specular Color specifies the specular red, green, blue, alpha color values of the material.

RGBA : Emission Color

Emission Color specifies the emissive red, green, blue, alpha color values of the material.

F32 : Shininess

Shininess is the exponent associated with specular reflection and highlighting. Shininess controls the degree with which the

specular highlight decays. Only values in the range [1,128] are valid.

F32 : Reflectivity

Reflectivity specifies the material reflectivity of the material. It represents the fraction of light reflected in the mirror

direction by the material. Only values in the range [0.0, 1.0] are valid.

7.2.1.1.2.3 Texture Image Attribute Element

Object Type ID: 0x10dd1073, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Texture Image Attribute Element defines a texture image and its mapping environment. JT format LSG traversal semantics

state that texture image attributes accumulate down the LSG by replacement on a per channel basis. See below for more

information on texture image channels.

Note that additional information on the interpretation of the various Texture Image Attribute Element data fields can be found

in the OpenGL references listed in section 3 References and Additional Information.

The Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments for the Texture Image Attribute Element data

fields, are as follows:

Field Inhibit

Flag Bit
Data Field(s) Bit Applies To

0 I32 : Texture Type, Mipmap Image Texel Data, MbString : External Storage Name,

Shared Image Flag

1 Border Mode, Border Color

2 Mipmap Minification Filter, Mipmap Magnification Filter

3 S-Dimen Wrap Mode, T-Dimen Wrap Mode, R-Dimen Wrap Mode

4 Blend Type, Blend Color

5 Texture Transform

6 Tex Coord Gen Mode, Tex Coord Reference Plane

8 Internal Compression Level

 JT File Format Reference Version 9.5 Rev-A Page 64

Figure 43: Texture Image Attribute Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1 Base Attribute Data.

Complete description for Texture Vers-1 Data can be found in 7.2.1.1.2.3.1 Texture Vers-1 Data.

Complete description for Texture Vers-2 Data can be found in 7.2.1.1.2.3.2 Texture Vers-2 Data.

Complete description for Texture Vers-3 Data can be found in 7.2.1.1.2.3.3 Texture Vers-3 Data.

I16 : Version Number

Version Number is the version identifier for this element. The value of this Version Number indicates the format of data

fields to follow.

= 1 Version-1 Format

= 2 Version-2 Format

= 3 Version-3 Format

Because the 7.2.1.1.2.3Texture Image Attribute Element has undergone major upgrades during the lifetime of the JT v9 file

format, the attribute has a complex version structure to be mindful of. Usually, when a data element in the JT file is

versioned, it is for the purpose of merely adding a few pieces of new data onto the end of the existing data format. In this

way, older viewers and readers of the JT file that do not yet know about higher local versions will naturally read the lower-

numbered version blocks and ignore the higher-numbered ones they do not know how to read. This is sometimes the case

with Texture Image Attribute Element, but sometimes not. Entirely new texture types with no analogous lower-level

functionality have been added. In these cases, the most sensible thing for an older reader to do it to ignore the texture image

entirely as if it were not even present in the JT file.

Base Attribute Data

I16 : Version Number

Because the

7.2.1.1.2.3Texture

Image Attribute

Element has

undergone major

upgrades during the

lifetime of the JT v9

file format, the

attribute has a

complex version

structure to be

mindful of. Usually,

when a data element

in the JT file is

versioned, it is for the

purpose of merely

adding a few pieces of

new data onto the end

of the existing data

format. In this way,

older viewers and

readers of the JT file

that do not yet know

about higher local

versions will naturally

read the lower-

numbered version

blocks and ignore the

higher-numbered

ones they do not know

how to read. This is

sometimes the case

with Texture Image

Attribute Element,

but sometimes not.

Entirely new texture

types with no

analogous lower-level

functionalityA have

been added. In these

cases, the most

sensible thing for an

older reader to do it

to ignore the texture

image entirely as if it

were not even present

in the JT file.

In order to support this

Logical Element Header ZLIB

Version Number > = 2

Texture Vers-2 Data

Texture Vers-3 Data

Version Number > = 3

 JT File Format Reference Version 9.5 Rev-A Page 65

In order to support this sensible fallback mechanism, the following two general rules are followed: 1) a given texture image is

written at the lowest version level that completely captures its contents, and 2) lower-order Texture Vers Data blocks are

written with a "stub" texture.

7.2.1.1.2.3.1 Texture Vers-1 Data

Texture Vers-1 Data format is stored in JT file if the Texture Image Element is a vanilla/basic texture image (i.e. if texture

does not use any advanced features as described in 7.2.1.1.2.3.2Texture Vers-2 Data and 7.2.1.1.2.3.3Texture Vers-3 Data).

However, advanced textures also write a Texture Vers-1 Data block because of the need to be backward-compatible with

older readers that may not understand Vers-2 and Vers-3 data.

Figure 44: Texture Vers-1 Data collection

Complete details for Texture Environment can be found in 7.2.1.1.2.3.1.1Texture Environment.

Complete details for Texture Coord Generation Parameters can be found in 7.2.1.1.2.3.1.2Texture Coord Generation

Parameters.

Complete details for Inline Texture Image Data can be found in 7.2.1.1.2.3.1.3Inline Texture Image Data.

I32 : Texture Type

Texture Environment

Texture Coord

Generation Parameters

I32 : Texture Channel

U32 : Reserved Field

U8 : Inline Image Storage Flag

1D MCS Codes

I32 : Image Count

MbString : External Storage Name
Inline Texture Image

Data Image

Count
Image

Count

Inline Image Storage Flag == 0 Inline Image Storage Flag == 1

 JT File Format Reference Version 9.5 Rev-A Page 66

I32 : Texture Type

Texture Type specifies the type of texture.

= 0 None.

= 1 One-Dimensional. A one-dimensional texture has a height (T-Dimension)

and depth (R-Dimension) equal to “1” and no top or bottom border.

= 2 Two-Dimensional. A two-dimensional texture has a depth (R-Dimension)

equal to “1.”

= 3 Three-Dimensional. A three-dimensional texture can be thought of as

layers of two-dimensional sub image rectangles arranged in a sequence.

= 4 Bump Map. A bump map texture is a texture where the image texel data

(e.g. RGB color values) represents surface normal XYZ components.

= 5 Cube Map. A cube map texture is a texture cube centered at the origin and

formed by a set of six two-dimensional texture images.

= 6 Depth Map. A depth map texture is a texture where the image texel data

represents depth values.

I32 : Texture Channel

Texture Channel specifies the texture channel number for the Texture Image Element. For purposes of multi-texturing, the

JT concept of a texture channel corresponds to the OpenGL concept of a “texture unit.” The Texture Channel value must be

between 0 and 31 inclusive. Best practices suggest that renderer of JT data ignore all but channel-0 if the renderer does not

support multi-textured geometry. Also for purposes of blending, renderer of JT data should assume that higher numbered

texture channels “blend over” lower numbered ones.

U32 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

U8 : Inline Image Storage Flag

Inline Image Storage Flag is a flag that indicates whether the texture image is stored within the JT File (i.e. inline) or in some

other external file.

= 0 Texture image stored in an external file.

= 1 Texture image stored inline in this JT file.

I32 : Image Count

Image Count specifies the number of texture images. A “Cube Map” I32 : Texture Type must have six images while all other

Texture Types should only have one image.

MbString : External Storage Name

External Storage Name is a string identifying the name of an external texture image storage. External Storage Name is only

present if data field Inline Image Storage Flag equals “0.” If present there will be data field Image Count number of External

Storage Name instances. This External Storage Name string is a relative path based name for the texture image file. Where

“relative path” should be interpreted to mean the string contains the file name along with any additional path information that

locates the texture image file relative to the location of the referencing JT file.

7.2.1.1.2.3.1.1 Texture Environment

The Texture Environment is a collection of data defining various aspects of how a texture image is to be mapped/applied to a

surface.

 JT File Format Reference Version 9.5 Rev-A Page 67

Figure 45: Texture Environment data collection

I32 : Border Mode

Border Mode specifies the texture border mode.

= 0 No border.
= 1 Constant Border Color. Indicates that the texture has a constant border

color whose value is defined in data field Border Color.

= 2 Explicit. Indicates that a border texel ring is present in the texture image

definition.

I32 : Border Mode

I32 : Mipmap Magnification Filter

I32 : Mipmap Minification Filter

I32 : S-Dimen Wrap Mode

I32 : T-Dimen Wrap Mode

I32 : R-Dimen Wrap Mode

I32 : Blend Type

I32 : Internal Compression Level

RGBA : Blend Color

RGBA : Border Color

Mx4F32 : Texture Transform

 JT File Format Reference Version 9.5 Rev-A Page 68

I32 : Mipmap Magnification Filter

Mipmap Magnification Filter specifies the texture filtering method to apply when a single pixel on screen maps to a tiny

portion of a texel.

= 0 None.

= 1 Nearest. Texel with coordinates nearest the center of the pixel is used.

= 2 Linear. A weighted linear average of the 2 x 2 array of texels nearest to the

center of the pixel is used. For one-dimensional texture is average of 2

texels. For three dimensional texel is 2 x 2 x 2 array.

I32 : Mipmap Minification Filter

Mipmap Minification Filter specifies the texture filtering method to apply when a single pixel on screen maps to a large

collection of texels.

= 0 None.

= 1 Nearest. Texel with coordinates nearest the center of the pixel is used.

= 2 Linear. A weighted linear average of the 2 x 2 array of texels nearest to the center of the

pixel is used. For one-dimensional texture is average of 2 texels. For three-dimensional

texture is 2 x 2 x 2 array.

= 3 Nearest in Mipmap. Within an individual mipmap, the texel with coordinates nearest the

center of the pixel is used.

= 4 Linear in Mipmap. Within an individual mipmap, a weighted linear average of the 2 x 2

array of texels nearest to the center of the pixel is used. For one-dimensional texture is

average of 2 texels. For three-dimensional texture is 2 x 2 x 2 array

= 5 Nearest between Mipmaps. Within each of the adjacent two mipmaps, selects the texel

with coordinates nearest the center of the pixel and then interpolates linearly between these

two selected mipmap values.

= 6 Linear between Mipmaps. Within each of the two adjacent mipmaps, computes value based

on a weighted linear average of the 2 x 2 array of texels nearest to the center of the pixel

and then interpolates linearly between these two computed mipmap values.

I32 : S-Dimen Wrap Mode

S-Dimen Wrap Mode specifies the mode for handling texture coordinates S-Dimension values outside the range [0, 1].

= 0 None.

= 1 Clamp. Any values greater than 1.0 are set to 1.0; any values less than 0.0 are set to 0.0

= 2 Repeat Integer parts of the texture coordinates are ignored (i.e. retains only the fractional

component o texture coordinates greater than 1.0 and only one-minus the fractional

component of values less than zero). Resulting in copies of the texture map tiling the

surface

= 3 Mirror Repeat. Like Repeat, except the surface tiles “flip-flop” resulting in an alternating

mirror pattern of surface tiles.

= 4 Clamp to Edge. Border is always ignored and instead texel at or near the edge is chosen

for coordinates outside the range [0, 1]. Whether the exact nearest edge texel or some

average of the nearest edge texels is used is dependent upon the mipmap filtering value.

= 5 Clamp to Border. Nearest border texel is chosen for coordinates outside the range [0, 1].

Whether the exact nearest border texel or some average of the nearest border texels is used

is dependent upon the mipmap filtering value.

I32 : T-Dimen Wrap Mode

T-Dimen Wrap Mode specifies the mode for handling texture coordinates T-Dimension values outside the range [0, 1]. Same

mode values as documented for S-Dimen Wrap Mode.

 JT File Format Reference Version 9.5 Rev-A Page 69

I32 : R-Dimen Wrap Mode

R-Dimen Wrap Mode specifies the mode for handling texture coordinates R-Dimension values outside the range [0, 1].

Same mode values as documented for S-Dimen Wrap Mode.

I32 : Blend Type

Blend Type contains information indicating how the values in the texture map are to be modulated/combined/blended with

the original color of the surface or some other alternative color to compute the final color to be painted on the surface.

Additional information on the interpretation of the Blend Type values and how one might leverage them to render an image

can be found in reference [4] listed in section 3 References and Additional Information.

= 0 None.

= 1 Decal. Interpret same as OpenGL GL_DECAL environment mode.

= 2 Modulate. Interpret same as OpenGL GL_MODULATE environment mode.

= 3 Replace. Interpret same as OpenGL GL_REPLACE environment mode.

= 4 Blend. Interpret same as OpenGL GL_BLEND environment mode.

= 5 Add. Interpret same as OpenGL GL_ADD environment mode.

= 6 Combine. Interpret same as OpenGL GL_COMBINE environment mode.

I32 : Internal Compression Level

Internal Compression Level specifies a data compression hint/recommendation that a JT file loader is free to follow for

internally (in memory) storing texel data. This setting does not affect how image texel data is actually stored in JT files or

other externally referenced files.

= 0 None. No compression of texel data.

= 1 Conservative. Lossless compression of texel data.

= 2 Moderate. Texel components truncated to 8-bits each.

= 3 Aggressive. Texel components truncates to 4-bits each (or 5 bits for RGB images).

RGBA : Blend Color

Blend Color specifies the color to be used for the “Blend” mode of Blend Type operations.

RGBA : Border Color

Border Color specifies the constant border color to use for “Clamp to Border” style wrap modes when the texture itself does

not have a border.

Mx4F32 : Texture Transform

Texture Transform defines the texture coordinate transformation matrix. A renderer of JT data would typically apply this

transform to texture coordinates prior to applying the texture.

7.2.1.1.2.3.1.2 Texture Coord Generation Parameters

Texture Coord Generation Parameters contains information indicating if and how texture coordinate components should be

automatically generated for each of the 4 components (S, T, R, Q) of a texture coordinate.

 JT File Format Reference Version 9.5 Rev-A Page 70

Figure 46: Texture Coord Generation Parameters data collection

I32 : Tex Coord Gen Mode

Tex Coord Gen Mode specifies the texture coordinate generation mode for each component (S, T, R, Q) of texture

coordinate. There are four mode values stored, one for each component of texture coordinate. The mode values are stored in

S, T, R, Q order.

= 0 None. No texture coordinates automatically generated.

= 1 Model Coordinate System Linear. Texture coordinates computed as a distance from a

reference plane specified in model coordinates.

= 2 View Coordinate System Linear. Texture coordinates computed as a distance from a

reference plane specified in view coordinates.

= 3 Sphere Map. Texture coordinates generated based on spherical environment mapping.

= 4 Reflection Map. Texture coordinates generated based on cubic environment mapping.

= 5 Normal Map. Texture coordinates computed/set by copying vertex normal in view

coordinates to S, T, R.

PlaneF32 : Tex Coord Reference Plane

Reference Plane specifies the reference plane used for “Model Coordinate System Linear” and “View Coordinate System

Linear” texture coordinate generation modes. There are four Reference Planes stored, one for each component of texture

coordinate. The Reference Planes are stored in S, T, R, Q order. Even if a components “Tex Coord Gen Mode” is one that

does not require a reference plane, dummy reference planes are still stored in JT file.

7.2.1.1.2.3.1.3 Inline Texture Image Data

Inline Texture Image Data is a collection of data defining the texture format properties and image texel data for one texture

image. Inline Texture Image Data is only present if data field Inline Image Storage Flag equals “1.” If present there will be

data field Image Count number of Inline Texture Image Data instances.

I32 : Tex Coord Gen Mode

PlaneF32 : Tex Coord Reference Plane

4

4

 JT File Format Reference Version 9.5 Rev-A Page 71

Figure 47: Inline Texture Image Data collection

Complete description for Image Format Description can be found in 7.2.1.1.2.3.1.3.1Image Format Description.

I32 : Total Image Data Size

Total Image Data Size specifies the total length, in bytes, of the on-disk representation for all mipmap images. This byte

total does not include the I32 : Mipmap Image Byte Count

 data field storage (4 bytes per) for each mipmap.

I32 : Mipmap Image Byte Count

Mipmap Image Byte Count specifies the length, in bytes, of the on-disk representation of the next mipmap image.

UChar : Mipmap Image Texel Data

Mipmap Image Texel Data is the mipmap‟s block of image data. The length of this field in bytes is specified by the value of

data field Mipmap Image Byte Count.

7.2.1.1.2.3.1.3.1 Image Format Description

The Image Format Description is a collection of data defining the pixel format, data type, size, and other miscellaneous

characteristics of the texel image data.

I32 : Total Image Data Size

UChar : Mipmap Image Texel Data Mipmap Image

Byte Count

Image Format

Description

I32 : Mipmap Image Byte
Count

Mipmaps

Count

 JT File Format Reference Version 9.5 Rev-A Page 72

Figure 48: Image Format Description data collection

U32 : Pixel Format

Pixel format specifies the format of the texture image pixel data. Depending on the format, anywhere from one to four

elements of data exists per texel.

= 0 No format specified. Texture mapping is not applied.
= 1 RGB: A red color component followed by green and blue color components

= 2 RGBA: A red color component followed by green, blue, and alpha color components

= 3 LUM: A single luminance component

= 4 LUMA: A luminance component followed by an alpha color component.

= 5 A single stencil index.

= 6 A single depth component

= 7 A single red color component

= 8 A single green color component

= 9 A single blue color component

U32 : Pixel Format

U32 : Pixel Data Type

I16 : Dimensionality

I16 : Row Alignment

I16 : Width

I16 : Height

I16 : Depth

I16 : Number Border Texels

U8 : Shared Image Flag

I16 : Mipmaps
Count

 JT File Format Reference Version 9.5 Rev-A Page 73

= 10 A single alpha color component

= 11 A blue color component, followed by green and red color components

= 12 A blue color component, followed by green , red, and alpha color components

= 13 A depth component, followed by a stencil component

U32 : Pixel Data Type

Pixel Data Type specifies the data type used to store the per texel data. If the Pixel Format represents a multi component

value (e.g. red, green, blue) then each value requires the Pixel Data Type number of bytes of storage (e.g. a Pixel Format

Type of “1” with Pixel Data Type of “3” would require 3 bytes of storage for each texel).

= 0 No type specified. Texture mapping is not applied.

= 1 Signed 8-bit integer

= 2 Single-precision 32-bit floating point

= 3 Unsigned 8-bit integer

= 4 Single bits in unsigned 8-bit integers

= 5 Unsigned 16-bit integer

= 6 Signed 16-bit integer

= 7 Unsigned 32-bit integer

= 8 Signed 32-bit integer

= 9 16-bit floating point according to IEEE-754 format (i.e. 1 sign

bit, 5 exponent bits, 10 mantissa bits)

I16 : Dimensionality

Dimensionality specifies the number of dimensions the texture image has. Valid values include:

= 1 One-dimensional texture

= 2 Two-dimensional texture

= 3 Three-dimensional texture

I16 : Row Alignment

Row Alignment specifies the byte alignment for image data rows. This data field must have a value of 1, 2, 4, or 8. If set to

1 then all bytes are used (i.e. no bytes are wasted at end of row). If set to 2, then if necessary, an extra wasted byte(s) is/are

stored at the end of the row so that the first byte of the next row has an address that is a multiple of 2 (multiple of four for

Row Alignment equal 4 and multiple of 8 for row alignment equal 8). The actual formula (using C syntax) to determine

number of bytes per row is as follows:

BytesPerRow = (numBytesPerPixel * ImageWidth + RowAlignment – 1) & ~(RowAlignment – 1)

I16 : Width

Width specifies the width dimension (number of texel columns) of the texture image in number of pixels.

I16 : Height

Height specifies the height dimension (number of texel rows) of the texture image in number of pixels. Height is 1 for one-

dimensional images.

I16 : Depth

Depth specifies the depth dimension (number of texel slices) of the texture image in number of pixels. Depth is 1 for one-

dimensional and two-dimensional images.

I16 : Number Border Texels

Number Border Texels specifies the number of border texels in the texture image definition. Valid values are 0 and 1.

 JT File Format Reference Version 9.5 Rev-A Page 74

U8 : Shared Image Flag

Shared Image Flag is a flag indicating whether this texture image is shareable with other Texture Image Element attributes.

= 0 Image is not shareable with other Texture Image Elements.

= 1 Image is shareable with other Texture Image Elements.

I16 : Mipmaps Count

Mipmaps Count specifies the number of mipmap images. A value of 1 indicates that no mipmaps are used. A value greater

than 1 indicates that mipmaps are present all the way down to a 1-by-1 texel.

7.2.1.1.2.3.2 Texture Vers-2 Data

Texture Vers-2 Data collection supports texturing effects not representable in the Texture Vers-1 Data format (e.g. more

precise texture types, automatic texture channel, etc.). Any Texture Image Attribute Element using the Texture Vers-2 Data

format will contain a “degenerate” Texture Vers-1 Data block, where Image Count data field has a value of “0”.

 JT File Format Reference Version 9.5 Rev-A Page 75

Figure 49: Texture Vers-2 Data collection

Complete details for Texture Environment can be found in 7.2.1.1.2.3.1.1Texture Environment.

Complete details for Texture Coord Generation Parameters can be found in 7.2.1.1.2.3.1.2Texture Coord Generation

Parameters.

Complete details for Inline Texture Image Data can be found in 7.2.1.1.2.3.1.3Inline Texture Image Data.

Texture Vers-1 Data : Stub

This is a dummy block written with its I32 : Texture Type field set to "None". This block is included so that older readers

that do not understand Texture Vers-2 Data will read an "empty" texture.

I32 : Texture Type

Texture Environment

Texture Coord

Generation Parameters

I32 : Texture Channel

U32 : Reserved Field

U8 : Inline Image Storage Flag

I32 : Image Count

MbString : External Storage Name
Inline Texture Image

Data Image

Count
Image

Count

Inline Image Storage Flag == 0 Inline Image Storage Flag == 1

Texture Vers-1 Data :

Stub

 JT File Format Reference Version 9.5 Rev-A Page 76

I32 : Texture Type

Texture Type specifies the type of texture. There is a complete restructuring and redefinition of what a “texture type” implies

in Texture Vers-2 Data. It is a much stronger concept now, that not only describes generally what the texture image contains,

but also defines precisely what the texture is being used for. In the following list, “image” refers to an image texture, “pre-lit”

indicates that the image texture is to be applied before lighting when rendering the object to which it is applied, and “post-lit”

indicates that the image texture is to be applied after lighting. A gloss map is a pre-lit texture that applies itself to the specular

material component of lighting instead of the diffuse component. A light map is an environment texture (texture at infinity

surrounding the whole model) that serves as a source of illumination during shading calculations.

Texture

Type
Description

Explicit

Channel
Auto

Channel
= 0 None. N/A N/A

= 1 One-Dimensional post-lit image texture. Yes No

= 2 Two-Dimensional post-lit image texture. Yes No

= 3 Three-Dimensional post-lit image texture. Yes No

= 4 Two-Dimensional 3-component tangent-space normal map. No Yes

= 5 Cube post-lit image texture. Yes No

= 7 Cube pre-lit image texture. Yes No

= 8 One-Dimensional pre-lit image texture. Yes No

= 9 Two-Dimensional pre-lit image texture. Yes No

= 10 Three-Dimensional pre-lit image texture. Yes No

= 11 Cube environment map. No Yes

= 12 One-Dimensional gloss map (specular) texture. No Yes

= 13 Two-Dimensional gloss map (specular) texture. No Yes

= 14 Three-Dimensional gloss map (specular) texture. No Yes

= 15 Cube gloss map (specular) texture. No Yes

= 16 Two-Dimensional 1-component bumpmap. No Yes

= 17 Two-Dimensional 3-component world-space normal map. No Yes

= 18 Two-Dimensional sphere environment map. No Yes

= 19 Two-Dimensional latitude/longitude environment map. No Yes

= 20 Two-Dimensional spherical diffuse light map. No Yes

= 21 Cube diffuse light map. No Yes

= 22 Two-Dimensional latitude/longitude diffuse light map. No Yes

= 23 Two-Dimensional spherical specular light map. No Yes

= 24 Cube specular light map. No Yes

= 25 Two-Dimensional latitude/longitude specular light map. No Yes

I32 : Texture Channel

Texture Channel specifies the texture channel number for the Texture Image Element. For purposes of multi-texturing, the JT

concept of a texture channel corresponds to the OpenGL concept of a “texture unit.” The Texture Channel value must be

between -1 and 31 inclusive. The value -1 is accepted to denote a texture whose channel number is to be automatically

assigned. This assignment will never displace another texture with an explicit texture channel assignment from its slot. Best

practices suggest that renderer of JT data ignore all but channel-0 if the renderer does not support multi-textured geometry.

Also for purposes of blending, any renderer of JT data should ensure that higher numbered texture channels “blend over”

lower numbered ones.

Pre- and post-lit image textures must specify an explicit texture channel. All other texture types must specify -1 for their

texture channel.

U32 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

 JT File Format Reference Version 9.5 Rev-A Page 77

U8 : Inline Image Storage Flag

Inline Image Storage Flag is a flag that indicates whether the texture image is stored within the JT File (i.e. inline) or in some

other external file.

= 0 Texture image stored in an external file.

= 1 Texture image stored inline in this JT file.

I32 : Image Count

Image Count specifies the number of texture images. A “Cube Map” I32 : Texture Type must have six images while all other

Texture Types may only have one image.

MbString : External Storage Name

External Storage Name is a string identifying the name of an external texture image storage. External Storage Name is only

present if data field Inline Image Storage Flag equals 0. If present, there will be data field Image Count number of External

Storage Name instances. This External Storage Name string is a relative path based name for the texture image file. Where

“relative path” should be interpreted to mean the string contains the file name along with any additional path information that

locates the texture image file relative to the location of the referencing JT file.

7.2.1.1.2.3.3 Texture Vers-3 Data

Texture Vers-3 Data collection supports texturing effects not representable in the Texture Vers-1 Data format or the Texture

Vers-2 Data format (e.g. texture coordinate channel, separator texture type, and texture channel greater than 31). Any Texture

Image Attribute Element using the Texture Vers-3 Data format will contain a “degenerate” Texture Vers-1 Data block, and a

“degenerate” Texture Vers-2 Data block, where Image Count data field has a value of 0 and the Texture Type will be set to

None.

 JT File Format Reference Version 9.5 Rev-A Page 78

Figure 50: Texture Vers-3 Data collection

Complete details for Texture Environment can be found in 7.2.1.1.2.3.1.1Texture Environment.

Complete details for Texture Coord Generation Parameters can be found in 7.2.1.1.2.3.1.2Texture Coord Generation

Parameters.

Complete details for Inline Texture Image Data can be found in 7.2.1.1.2.3.1.3Inline Texture Image Data.

I32 : Texture Type

Texture Environment

Texture Coord

Generation Parameters

I32 : Texture Channel

U32 : Reserved Field

U8 : Inline Image Storage Flag

I32 : Image Count

MbString : External Storage Name
Inline Texture Image

Data Image

Count
Image

Count

Inline Image Storage Flag == 0 Inline Image Storage Flag == 1

I32 : Tex Coord

ChannelI16 : Version

Number

Texture Vers-2 Data :

Stub

 JT File Format Reference Version 9.5 Rev-A Page 79

Texture Vers-2 Data : Stub

This is a dummy block written with its I32 : Texture Type field set to "None". This block is included so that older readers

that do not understand Texture Vers-3 Data will read an "empty" texture.

I32 : Texture Type

Texture Type specifies the type of texture. A new texture type, separator texture, is defined in Texture Vers-3 Data to support

resetting the texture accumulation state mid-graph. Shadow maps and prefiltered light maps, however, are a general exception

to this rule. In the following list, “image” refers to an image texture, “pre-lit” indicates that the image texture is to be applied

before lighting when rendering the object to which it is applied, and “post-lit” indicates that the image texture is to be applied

after lighting. A gloss map is a pre-lit texture that applies itself to the specular material component of lighting instead of the

diffuse component. A light map is an environment texture (texture at infinity surrounding the whole model) that serves as a

source of illumination during shading calculations.

Texture

Type
Description

Explicit

Channel

Auto

Channel
= 0 None. N/A N/A

= 1 One-Dimensional post-lit image texture. Yes No

= 2 Two-Dimensional post-lit image texture. Yes No

= 3 Three-Dimensional post-lit image texture. Yes No

= 4 Two-Dimensional 3-component tangent-space normal map. No Yes

= 5 Cube post-lit image texture. Yes No

= 7 Cube pre-lit image texture. Yes No

= 8 One-Dimensional pre-lit image texture. Yes No

= 9 Two-Dimensional pre-lit image texture. Yes No

= 10 Three-Dimensional pre-lit image texture. Yes No

= 11 Cube environment map. No Yes

= 12 One-Dimensional gloss map (specular) texture. No Yes

= 13 Two-Dimensional gloss map (specular) texture. No Yes

= 14 Three-Dimensional gloss map (specular) texture. No Yes

= 15 Cube gloss map (specular) texture. No Yes

= 16 Two-Dimensional 1-component bumpmap. No Yes

= 17 Two-Dimensional 3-component world-space normal map. No Yes

= 18 Two-Dimensional sphere environment map. No Yes

= 19 Two-Dimensional latitude/longitude environment map. No Yes

= 20 Two-Dimensional spherical diffuse light map. No Yes

= 21 Cube diffuse light map. No Yes

= 22 Two-Dimensional latitude/longitude diffuse light map. No Yes

= 23 Two-Dimensional spherical specular light map. No Yes

= 24 Cube specular light map. No Yes

= 25 Two-Dimensional latitude/longitude specular light map. No Yes

=26 Resets texture state except shadow map and light maps. N/A N/A

I32 : Texture Channel

Texture Channel specifies the texture channel number for the Texture Image Element. For purposes of multi-texturing, the JT

concept of a texture channel corresponds to the OpenGL concept of a “texture unit.” The Texture Channel value must be

between -1 and 2,147,483,647 inclusive. The value -1 is accepted to denote a texture whose channel number is to be

automatically assigned. This assignment will never displace another texture with an explicit texture channel assignment from

its slot. Best practices suggest that renderer of JT data ignore all but channel-0 if the renderer does not support multi-textured

geometry. Also for purposes of blending, any renderer of JT data should ensure that higher numbered texture channels

“blend over” lower numbered ones.

 JT File Format Reference Version 9.5 Rev-A Page 80

Pre- and post-lit image textures must specify an explicit texture channel. All other texture types must specify -1 for their

texture channel.

U32 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

U8 : Inline Image Storage Flag

Inline Image Storage Flag is a flag that indicates whether the texture image is stored within the JT File (i.e. inline) or in some

other external file.

= 0 Texture image stored in an external file.

= 1 Texture image stored inline in this JT file.

I32 : Image Count

Image Count specifies the number of texture images. A “Cube Map” I32 : Texture Type must have six images while all other

Texture Types should only have one image.

MbString : External Storage Name

External Storage Name is a string identifying the name of an external texture image storage. External Storage Name is only

present if data field Inline Image Storage Flag equals “0.” If present there will be data field Image Count number of External

Storage Name instances. This External Storage Name string is a relative path based name for the texture image file. Where

“relative path” should be interpreted to mean the string contains the file name along with any additional path information that

locates the texture image file relative to the location of the referencing JT file.

I32 : Tex Coord Channel

Tex Coord Channel specifies the channel number for texture coordinate generation. Value must be within range [-1,

2147483647] inclusive.

7.2.1.1.2.4 Draw Style Attribute Element

Object Type ID: 0x10dd1014, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Draw Style Attribute Element contains information defining various aspects of the graphics state/style that should be used for

rendering associated geometry. JT format LSG traversal semantics state that draw style attributes accumulate down the LSG

by replacement.

The Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments for the Draw Style Attribute Element data fields,

are as follows:

Field Inhibit

Flag Bit
Data Field(s) Bit Applies To

0 Two Sided Lighting Flag

1 Back-face Culling Flag

2 Outlined Polygons Flag

3 Lighting Enabled Flag

4 Flat Shading Flag

5 Separate Specular Flag

 JT File Format Reference Version 9.5 Rev-A Page 81

Figure 51: Draw Style Attribute Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.

I16 : Version Number

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for Draw

Style Attribute Element.

U8 : Data Flags

Data Flags is a collection of flags. The flags are combined using the binary OR operator and store various state settings for

Draw Style Attribute Elements. All undocumented bits are reserved.

0x01 Back-face Culling Flag.

Indicates if back-facing polygons should be discarded (culled).

= 0 – Back-facing polygons not culled.

= 1 – Back-facing polygons culled.

0x02 Two Sided Lighting Flag.

Indicates if two sided lighting should be enabled to insure that polygons are illuminated

on both sides.

= 0 – Disable two sided lighting.

= 1 – Enable two sided lighting.

0x04 Outlined Polygons Flag.

Indicates if polygons should be draw as “wireframes” i.e. not filled.

= 0 – Polygons drawn as filled.

= 1 – Only polygon‟s outline drawn.

0x08 Lighting Enabled Flag.

Indicates if lighting should be enabled. If lighting disabled, then renderer should perform

no calculations concerning normals, light sources, material properties, etc.

= 0 – Disable lighting.

= 1 – Enable lighting.

0x10 Flat Shading Flag.

Indicates if the geometry should be rendered with single color (flat shading) or with many

different color (smooth/Gouraud) shading.

= 0 – Disable flat shading (i.e. use smooth/Gouraud shading).

= 1 – Enable flat shading.

0x20 Separate Specular Flag.

Indicates if the application of the specular color should be delayed until after texturing. If

U8 : Data Flags

Base Attribute Data

I16 : Version Number

Logical Element Header ZLIB

 JT File Format Reference Version 9.5 Rev-A Page 82

no texture mapping then this flag setting is irrelevant.

= 0 – Apply specular color contribution before texture mapping.

= 1 – Apply specular color contribution after texture mapping.

7.2.1.1.2.5 Light Set Attribute Element

Object Type ID: 0x10dd1096, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Light Set Attribute Element holds an unordered list of Lights. JT format LSG traversal semantics state that light set attributes

accumulate down the LSG through addition of lights to an attribute list.

Light Set Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments.

Figure 52: Light Set Attribute Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.

I16 : Version Number

Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value for

Light Set Attribute Element.

I32 : Light Count

Light Count specifies the number of lights in the Light Set.

I32 : Light Object ID

Light Object ID is the identifier for a referenced Light Object.

7.2.1.1.2.6 Infinite Light Attribute Element

Object Type ID: 0x10dd1028, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Infinite Light Attribute Element specifies a light source emitting unattenuated light in a single direction from every point on

an infinite plane. The infinite location indicates that the rays of light can be considered parallel by the time they reach an

object.

Base Attribute Data

Logical Element Header ZLIB

I32 : Light Count

Light Count
I32 : Light Object ID

I16 : Version Number

 JT File Format Reference Version 9.5 Rev-A Page 83

JT format LSG traversal semantics state that infinite light attributes accumulate down the LSG through addition of lights to

an attribute list.

Infinite Light Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments.

Figure 53: Infinite Light Attribute Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Light Data can be found in 7.2.1.1.2.6.1Base Light Data.

Complete description for Shadow Parameters can be found in 7.2.1.1.2.6.2 Shadow Parameters.

16 : Version Number

Version Number is the version identifier for this element. The value of this Version Number indicates the format of data

fields to follow.

= 1 Version-1 Format

= 2 Version-2 Format

DirF32 : Direction

Direction specifies the direction the light is pointing in.

Base Light Data

Logical Element Header ZLIB

DirF32 : Direction

16 : Version Number

Version Number = = 2

Shadow Opacity

specifies the shadow

opacity factor on

Light source. Value

must be within range

[0.0, 1.0] inclusive.

Shadow Opacity is

intended to convey

how dark a shadow

cast by this light

source are to be

rendered. A value of

1.0 means that no

light from this light

source reaches a

shadowed surface,

resulting in a black

shadow.

Shadow Parameters

 JT File Format Reference Version 9.5 Rev-A Page 84

7.2.1.1.2.6.1 Base Light Data

Figure 54: Base Light Data collection

I16 : Version Number

Version number is the version identifier for this element. Version number “0x0001” is currently the only valid value for Base

Light Data.

RGBA : Ambient Color

Ambient Color specifies the ambient red, green, blue, alpha color values of the light.

RGBA : Diffuse Color

Diffuse Color specifies the diffuse red, green, blue, alpha color values of the light.

RGBA : Specular Color

Specular Color specifies the specular red, green, blue, alpha color values of the light.

F32 : Brightness

Brightness specifies the Light brightness. The Brightness value must be greater than or equal to “-1”.

I32 : Coord System

Coord System specifies the coordinate space in which Light source is defined. Valid values include the following:

I16 : Version Number

RGBA : Ambient Color

RGBA : Diffuse Color

RGBA : Specular Color

F32 : Brightness

I32 : Coord System

U8 : Shadow Caster Flag

F32 : Shadow Opacity

 JT File Format Reference Version 9.5 Rev-A Page 85

= 1 Viewpoint Coordinate System. Light source is to move together with the viewpoint

= 2 Model Coordinate System. Light source is affected by whatever model transforms

that are current when the light source is encountered in LSG.

= 3 World Coordinate system. Light source is not affected by model transforms in the

LSG.

U8 : Shadow Caster Flag

Shadow Caster Flag is a flag that indicates whether the light is a shadow caster or not.

= 0 Light source is not a shadow caster.

= 1 Light source is a shadow caster.

F32 : Shadow Opacity

Shadow Opacity specifies the shadow opacity factor on Light source. Value must be within range [0.0, 1.0] inclusive.

Shadow Opacity is intended to convey how dark a shadow cast by this light source are to be rendered. A value of 1.0 means

that no light from this light source reaches a shadowed surface, resulting in a black shadow.

7.2.1.1.2.6.2 Shadow Parameters

Figure 55: Shadow Parameters data collection

F32 : Non-shadow Alpha Factor

Non-shadow Alpha Factor is one of a matched pair of fields intended to govern how a shadowing light source (one whose

Shadow Caster Flag is set) casts "alpha light" into areas that it directly illuminates (i.e. are not in shadow). Those fragments

directly lit by this light source will have their alpha values scaled by Non-shadow Alpha Factor. Non-shadow Alpha Factor

value must lie on the range [0.0, 1.0] inclusive.

This field can be used to create "drop shadows" by setting its value to 0. The effect being that all geometry illuminated by

the light source will be "burned away," leaving behind only those parts lying in shadow. Naturally, implementing this

intended behavior implies extensive viewer support.

F32 : Shadow Alpha Factor

Shadow Alpha Factor is one of a matched pair of fields intended to govern how a shadowing light source (one whose Shadow

Caster Flag is set) casts "alpha light" into areas that it does not illuminate (i.e. are in shadow). Those fragments in shadow

from this light source will have their alpha values scaled by Shadow Alpha Factor. Shadow Alpha Factor value must lie on

the range [0.0, 1.0] inclusive.

This field has the opposite effect of Non-shadow Alpha Factor. If set to a value of 0, for example, it will cause all geometry

shadowed from the light source to be burned away, leaving behind only those parts directly illuminated by the light source.

Naturally, implementing this intended behavior implies extensive viewer support.

7.2.1.1.2.7 Point Light Attribute Element

Object Type ID: 0x10dd1045, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

F32 : Non-shadow Alpha Factor

Non-shadow Alpha Factor is one
of a matched pair of fields intended

to govern how a shadowing light

source (one whose Shadow Caster

Flag is set) casts "alpha light" into

areas that it directly illuminates

(i.e. are not in shadow). Those

fragments directly lit by this light

source will have their alpha values

scaled by Non-shadow Alpha

Factor. Non-shadow Alpha Factor

value must lie on the range [0.0,

1.0] inclusive.

This field can be used to create

"drop shadows" by setting its value

to 0. The effect being that all

geometry illuminated by the light

source will be "burned away,"

leaving behind only those parts

lying in shadow. Naturally,

implementing this intended

behavior implies extensive viewer

support.

F32 : Shadow Alpha Factor

 JT File Format Reference Version 9.5 Rev-A Page 86

Point Light Attribute Element specifies a light source emitting light from a specified position, along a specified direction, and

with a specified spread angle

JT format LSG traversal semantics state that point light attributes accumulate down the LSG through addition of lights to an

attribute list.

Point Light Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments.

Figure 56: Point Light Attribute ElementPoint Light Attribute Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Light Data can be found in 7.2.1.1.2.6.1 Base Light Data.

Complete description for Attenuation Coefficients can be found in 7.2.1.1.2.7.1Attenuation Coefficients.

Complete description for Shadow Parameters can be found in 7.2.1.1.2.6.2 Shadow Parameters.

Logical Element Header ZLIB

HCoordF32 : Position

F32 : Spread Angle

DirF32 : Spot Direction

I32 : Spot Intensity

I16 : Version Number

Attenuation Coefficients

Version Number = = 2

Shadow Opacity

specifies the shadow

opacity factor on

Light source. Value

must be within range

[0.0, 1.0] inclusive.

Shadow Opacity is

intended to convey

how dark a shadow

cast by this light

source are to be

rendered. A value of

1.0 means that no

light from this light

source reaches a

shadowed surface,

resulting in a black

shadow.

Shadow Parameters

Base Light Data

 JT File Format Reference Version 9.5 Rev-A Page 87

I16 : Version Number

Version Number is the version identifier for this element. The value of this Version Number indicates the format of data

fields to follow.

= 1 Version-1 Format

= 2 Version-2 Format

HCoordF32 : Position
Position specifies the light position in homogeneous coordinates.

F32 : Spread Angle

Spread Angle, as shown in Figure 57 below, specifies in degrees the half angle of the light cone. Valid Spread Angle values

are clamped and interpreted as follows:

angle = = 180.0 Simple point light

0.0 >= angle <= 90.0 Spot Light

Figure 57: Spread Angle value with respect to the light cone

DirF32 : Spot Direction

Spot Direction specifies the direction the spot light is pointing in.

I32 : Spot Intensity

Spot Intensity specifies the intensity distribution of the light within the spot light cone. Spot Intensity is really a “spot

exponent” in a lighting equation and indicates how focused the light is at the center. The larger the value, the more focused

the light source. Only non-negative Spot intensity values are valid.

7.2.1.1.2.7.1 Attenuation Coefficients

Attenuation Coefficients data collection contains the coefficients for how light intensity decreases with distance.

Spread Angle

 JT File Format Reference Version 9.5 Rev-A Page 88

Figure 58: Attenuation Coefficients data collection

F32 : Constant Attenuation

Constant Attenuation specifies the constant coefficient for how light intensity decreases with distance. Value must be greater

than or equal to “0”.

F32 : Linear Attenuation

Linear Attenuation specifies the linear coefficient for how light intensity decreases with distance. Value must be greater than

or equal to “0”.

F32 : Quadratic Attenuation

Quadratic Attenuation specifies the quadratic coefficient for how light intensity decreases with distance. Value must be

greater than or equal to “0”.

7.2.1.1.2.8 Linestyle Attribute Element

Object Type ID: 0x10dd10c4, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Linestyle Attribute Element contains information defining the graphical properties to be used for rendering polylines. JT

format LSG traversal semantics state that Linestyle attributes accumulate down the LSG by replacement.

Linestyle Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments.

Figure 59: Linestyle Attribute Element data collection

Base Attribute Data

Logical Element Header ZLIB

U8 : Data Flags

F32 : Line Width

I16: Version Number

F32 : Constant Attenuation

F32 : Linear Attenuation

F32 : Quadratic Attenuation

 JT File Format Reference Version 9.5 Rev-A Page 89

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.

I16: Version Number

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for

Linestyle Attribute Element.

U8 : Data Flags

Data Flags is a collection of flags and line type data. The flags and line type data are combined using the binary OR operator

and store various polyline rendering attributes. All undocumented bits are reserved.

0x0F
Line Type (stored in bits 0 – 3 or in binary notation 00001111)

Line type specifies the polyline rendering stipple-pattern.

= 0 - Solid
= 1 – Dash
= 2 – Dot
= 3 – Dash_Dot
= 4 – Dash_Dot_Dot
= 5 – Long_Dash
= 6 – Center_Dash
= 7 – Center_Dash_Dash

0x10
Antialiasing Flag (stored in bit 4 or in binary notation 00010000)

Indicates if antialiasing should be applied as part of rendering polylines.

= 0 – Antialiasing disabled.

= 1 – Antialiasing enabled.

F32 : Line Width

Line Width specifies the width in pixels that should be used for rendering polylines. The value of this field must be greater

than 0.0.

7.2.1.1.2.9 Pointstyle Attribute Element

Object Type ID: 0x8d57c010, 0xe5cb, 0x11d4, 0x84, 0xe, 0x00, 0xa0, 0xd2, 0x18, 0x2f, 0x9d

Pointstyle Attribute Element contains information defining the graphical properties that should be used for rendering points.

JT format LSG traversal semantics state that Pointstyle attributes accumulate down the LSG by replacement.

Pointstyle Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments.

 JT File Format Reference Version 9.5 Rev-A Page 90

Figure 60: Pointstyle Attribute Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.

I16 : Version Number

Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value for

Pointstyle Attribute Element.

U8 : Data Flags

Data Flags is a collection of flags and point type data. The flags and point type data are combined using the binary OR

operator and store various point rendering attributes. All undocumented bits are reserved.

0x0F Point Type (stored in bits 0 – 3 or in binary notation 00001111)

These bits are reserved for future expansion of the format to support Point Types.

0x10 Antialiasing Flag (stored in bit 4 or in binary notation 00010000)

Indicates if antialiasing should be applied as part of rendering points.

= 0 – Antialiasing disabled.

= 1 – Antialiasing enabled.

F32 : Point Size

Point Size specifies the size in pixels that should be used for rendering points. The value must be greater than 0.0.

7.2.1.1.2.10 Geometric Transform Attribute Element

Object Type ID: 0x10dd1083, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Geometric Transform Attribute Element contains a 4x4 homogeneous transformation matrix that positions the associated

LSG node‟s coordinate system relative to its parent LSG node. JT format LSG traversal semantics state that geometric

transform attributes accumulate down the LSG through matrix multiplication as follows:

p‟ = pAM

Where p is a point of the model, p’ is the transformed point, M is the current modeling transformation matrix inherited from

ancestor LSG nodes and previous Geometric Transform Attribute Element, and A is the transformation matrix of this

Geometric Transform Attribute Element. The matrix is allowed to contain translation, rotation, and uniform- and non-

Base Attribute Data

Logical Element Header ZLIB

I16 : Version Number

F32 : Point Size

U8 : Data Flags

 JT File Format Reference Version 9.5 Rev-A Page 91

uniform scaling factors, including negative scales. It is not allowed to contain shearing or projective components, or scaling

factors of zero (which would make the matrix singular).

Geometric Transform Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit

assignments.

Figure 61: Geometric Transform Attribute Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.

I16: Version Number

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for

Geometric Transform Attribute Element.

U16 : Stored Values Mask

Stored Values mask is a 16-bit mask where each bit is a flag indicating whether the corresponding element in the matrix is

different from the identity matrix. Only elements which are different from the identity matrix are actually stored. The bits

are assigned to matrix elements as follows:

Bit15 Bit14 Bit13 Bit12

Bit11 Bit10 Bit9 Bit8

Bit7 Bit6 Bit5 Bit4

Bit3 Bit2 Bit1 Bit0

The individual bit-flag values are interpreted as follows:

Base Attribute Data

Logical Element Header ZLIB

U16 : Stored Values Mask

if(Stored Values Mask & 0x8000)

F32 : Element Value

Stored Values Mask = Stored Values Mask << 1

16

I16: Version Number

 JT File Format Reference Version 9.5 Rev-A Page 92

= 0 Value not stored (matrix value same as corresponding element in identity matrix)

= 1 Value stored

F32 : Element Value

Element Value specifies a particular matrix element value.

7.2.1.1.2.11 Shader Effects Attribute Element

Object Type ID: 0xaa1b831d, 0x6e47, 0x4fee, 0xa8, 0x65, 0xcd, 0x7e, 0x1f, 0x2f, 0x39, 0xdb

Shader Effects Attribute Element contains information specifying “high-level” shader functionality (e.g. Phong shading,

bump mapping, etc.) that should be used for rendering the geometry this attribute element is associated with.

JT format LSG traversal semantics state that shader effects attributes accumulate down the LSG by replacement.

Shader Effects Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments.

Figure 62: Shader Effects Attribute Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Base Attribute Data

Logical Element Header ZLIB

I16 : Version Number

I32 : Reserved Field 1

U32 : Enable Flag

F32 : Env Map Reflectivity

I32 : Reserved Field 2

F32 : Bumpiness Factor

U32 : Reserved Field 3

U32 : Phong Shading Flag

U32 : Reserved Field 4

 JT File Format Reference Version 9.5 Rev-A Page 93

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.

I16 : Version Number

Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value.

U32 : Enable Flag

Enable Flag specifies whether this Shader Effects Attribute is enabled. Valid values include the following:

= 0 Shader Effects Attribute disabled

= 1 Shader Effects Attribute enabled

I32 : Reserved Field 1

Reserved Field 1 is a data field reserved for future JT format expansion

F32 : Env Map Reflectivity

Env Map Reflectivity specifies the fraction of the environment to be reflected (1 minus this fraction will show through form

the underlying texture channel). Valid value must be in the range [0:1] inclusive.

I32 : Reserved Field 2

Reserved Field 2 is a data field reserved for future JT format expansion

F32 : Bumpiness Factor

Bumpiness Factor specifies the degree of “bumpiness”, or the relative “height” of the bump map. Larger values make the

bumps appear deep and more severe. Negative values invert the sense of the bump map, making the surface appear engraved,

rather than embossed. This value only has an effect with tangent space bump maps.; it has no effect on the appearance of

object space bump maps.

U32 : Reserved Field 3

Reserved Field 3 is a data field reserved for future JT format expansion

U32 : Phong Shading Flag

Phong Shading Flag specifies whether Phong Shading (i.e. per fragment lighting) is enabled. Valid values include the

following:

= 0 Phong Shading disabled

= 1 Phong Shading enabled

U32 : Reserved Field 4

Reserved Field 4 is a data field reserved for future JT format expansion

7.2.1.1.2.12 Vertex Shader Attribute Element

Object Type ID: 0x2798bcad, 0xe409, 0x47ad, 0xbd, 0x46, 0xb, 0x37, 0x1f, 0xd7, 0x5d, 0x61

Vertex Shader Attribute Element defines a per-vertex shader program in the GLSL shading language. A complete

description of the GLSL shading language can be found in references listed within the 3 References and Additional

Information section of this document.

JT format LSG traversal semantics state that vertex shader attributes accumulate down the LSG by replacement.

 JT File Format Reference Version 9.5 Rev-A Page 94

In general, a shader program is used to replace a portion of the otherwise fixed-function graphics pipeline with some user-

defined functionality. Specifically a Vertex Shader program is a small user defined program to be run for each vertex that is

sent to the GPU for processing. A Vertex shader can alter vertex positions and normals, generate texture coordinates,

perform Gouraud per-vertex lighting, etc.

Figure 63: Vertex Shader Attribute Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.

I16 : Version Number

Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value.

7.2.1.1.2.13 Fragment Shader Attribute Element

Object Type ID: 0xad8dccc2, 0x7a80, 0x456d, 0xb0, 0xd5, 0xdd, 0x3a, 0xb, 0x8d, 0x21, 0xe7

Fragment Shader Attribute Element defines a per-fragment shader program in the GLSL shading language. A complete

description of the GLSL shading language can be found in references listed within the 3 References and Additional

Information section of this document.

JT format LSG traversal semantics state that fragment shader attributes accumulate down the LSG by replacement; with the

exception that if the new fragment shader attribute‟s shader language is not the same as current fragment shader attribute‟s

shader language, then new fragment shader attribute is simply ignored.

In general, a shader program is used to replace a portion of the otherwise fixed-function graphics pipeline with some user-

defined functionality. Specifically a Fragment Shader program is a small user defined program to be run for each fragment

generated by the GPU hardware‟s scan-conversion logic. A fragment is a "proto-pixel" generated by triangle scan-

conversion, but not let laid down into the frame buffer, where it will become an actual pixel. A Fragment Shader can support

sophisticated effects like Phong shading, shadow mapping, bump mapping, reflection mapping, etc.

Base Attribute Data

Logical Element Header ZLIB

Base Shader Data

I16 : Version Number

 JT File Format Reference Version 9.5 Rev-A Page 95

Figure 64: Fragment Shader Attribute Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.

Complete description for Base Shader Data can be found in 7.2.1.1.2.1.2 Base Shader Data.

I16 : Version Number

Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value.

7.2.1.1.2.14 Texture Coordinate Generator Attribute Element

Object Type ID: 0xaa1b831d, 0x6e47, 0x4fee, 0xa8, 0x65, 0xcd, 0x7e, 0x1f, 0x2f, 0x39, 0xdc

Texture Coordinate Generator Attribute Element defines texture coordinate generation for texture mapping. Multiple texture

coordinate generation at a given node is supported by way of the “texture coordinate channel” concept. JT format LSG

traversal semantics state that Texture Coordinate Generator attributes accumulate down the LSG by replacement on a per-

channel basis.

Texture Coordinate Generator Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data)

bit assignments.

Base Attribute Data

Logical Element Header ZLIB

Base Shader Data

I16 : Version Number

 JT File Format Reference Version 9.5 Rev-A Page 96

Figure 65: Texture Coordinate Generator Attribute Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.

Complete description for Mapping Surface can be found in 7.2.1.1.2.14.1Mapping Surface.

I16 : Version Number

Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value.

I32 : Texture Coord Channel

Tex Coord Channel specifies the channel number for texture coordinate generation. Value must be within range [0,

2147483647] inclusive. This number is intended to match up with the I32 : Tex Coord Channel field on Texture Image

Attribute Element in order to associate a specific Texture Coordinate Generator with a Specific Texture Image.

7.2.1.1.2.14.1 Mapping Surface

Mapping Surface defines the mapping surface for texture coordinate generation. Four kinds of mapping surfaces, Mapping

Plane Element, Mapping Cylinder Element, Mapping Sphere Element, and Mapping TriPlanar Element, are defined to

support texture coordinate generation.

7.2.1.1.2.14.1.1 Mapping Plane Element

Object Type ID: 0xa3cfb921, 0xbdeb, 0x48d7, 0xb3, 0x96, 0x8b, 0x8d, 0xe, 0xf4, 0x85, 0xa0

Mapping Plane Element defines the mapping plane for texture coordinate generation.

Base Attribute Data

Logical Element Header ZLIB

I32 : Texture Coord Channel

Mapping Surface

I16 : Version Number

 JT File Format Reference Version 9.5 Rev-A Page 97

Figure 66: Mapping Plane Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

I16 : Version Number

Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value.

Mx4F64 : Mapping Plane Matrix

Mx4F64 : Mapping Plane Matrix specifies the transformation matrix and mapping parameters for the mapping plane. The

transformation matrix defines the mapping coordinate system transformed from I32 : Coordinate System. The mapping

parameters specifies the width and height of the mapping plane. The mapping plane is defined in the + xy-plane of the

mapping coordinate system. In the mapping process, the geometry vertex coordinates in Model Coordinate System are

transformed to the mapping coordinate system at first, and then the transformed vertex coordinates are mapped to texture

coordinates as following:

s-coordinate = x-coordinate of the transformed vertex / the width of the mapping plane

t-coordinate = y-coordinate of the transformed vertex / the height of the mapping plane

I32 : Coordinate System

Coordinate system specifies the coordinate space in which mapping plane is defined. Valid values include the following

= 0 Undefined Coordinate System.

= 1 Viewpoint Coordinate System. Mapping plane is to move together with the

viewpoint.

= 2 Model Coordinate System. Mapping plane is affected by whatever model

transforms that are current when the mapping plane is encountered in LSG.

= 3 World Coordinate system. Mapping plane is not affected by model transforms in

the LSG.

7.2.1.1.2.14.1.2 Mapping Cylinder Element

Object Type ID: 0x3e70739d, 0x8cb0, 0x41ef, 0x84, 0x5c, 0xa1, 0x98, 0xd4, 0x0, 0x3b, 0x3f

Mapping Cylinder Element defines the mapping cylinder for texture coordinate generation.

Mx4F64 : Mapping Plane Matrix

I32 : Coordinate System

Logical Element Header ZLIB

I16 : Version Number

 JT File Format Reference Version 9.5 Rev-A Page 98

Figure 67: Mapping Cylinder Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

I16 : Version Number

Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value.

Mx4F64 : Mapping Cylinder Matrix

Mx4F64 : Mapping Cylinder Matrix specifies the transformation matrix and mapping parameters for the mapping cylinder.

The transformation matrix defines the mapping coordinate system transformed from I32 : Coordinate System. The mapping

parameters specifies the horizontal sweep angle and height of the mapping cylinder. The mapping cylinder‟s axis is parallel

to the z-axis of the mapping coordinate system, and the horizontal sweep angle starts from the +x-axis in a counter clockwise

direction. In the mapping process, the geometry vertex coordinates in Model Coordinate System are transformed to the

mapping coordinate system at first, and then the transformed vertex coordinates are mapped to texture coordinates as

following:

s-coordinate = the horizontal sweep angle of the vertex / the horizontal sweep angle of the mapping cylinder

t-coordinate = the z-coordinate of the vertex / height of the mapping cylinder

Mapping Cylinder Element implements the strategy to handle texture coordinates who cross the seam of the texture in the

mapping process.

I32 : Coordinate System

Coordinate system specifies the coordinate space in which mapping cylinder is defined. Valid values include the following

= 0 Undefined Coordinate System.

= 1 Viewpoint Coordinate System. Mapping cylinder is to move together with the

viewpoint.

= 2 Model Coordinate System. Mapping cylinder is affected by whatever model

transforms that are current when the mapping cylinder is encountered in LSG.

= 3 World Coordinate system. Mapping cylinder is not affected by model transforms

in the LSG.

7.2.1.1.2.14.1.3 Mapping Sphere Element

Object Type ID: 0x72475fd1, 0x2823, 0x4219, 0xa0, 0x6c, 0xd9, 0xe6, 0xe3, 0x9a, 0x45, 0xc1

Mapping Sphere Element defines the mapping sphere for texture coordinate generation.

Mx4F64 : Mapping Cylinder Matrix

I32 : Coordinate System

Logical Element Header ZLIB

I16 : Version Number

 JT File Format Reference Version 9.5 Rev-A Page 99

Figure 68: Mapping Sphere Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

I16 : Version Number

Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value.

Mx4F64 : Mapping Sphere Matrix

Mx4F64 : Mapping Sphere Matrix specifies the transformation matrix and mapping parameters of the mapping sphere. The

transformation matrix defines the mapping coordinate system transformed from I32 : Coordinate System. The mapping

parameters specify the horizontal sweep angle and vertical sweep angle of the mapping sphere. The mapping sphere‟s center

is at the origin of the mapping coordinate system, and the poles of the sphere are parallel to the z-axis of the coordinate

system. The horizontal sweep angle starts from the +x-axis in a counter clockwise direction, and the vertical sweep angle is

from the +z-axis to the –z-axis. In the mapping process, the geometric vertex coordinates in Model Coordinate System are

transformed to the mapping coordinate system at first, and then the transformed vertex coordinates are mapped to texture

coordinates as following:

s-coordinate = the horizontal sweep angle of the vertex / the horizontal sweep angle of the mapping sphere

t-coordinate = the vertical sweep angle of the vertex / the vertical sweep angle of the mapping sphere

Mapping Sphere Element implements the strategy to handle texture coordinates who cross the seam of the texture in the

mapping process.

I32 : Coordinate System

Coordinate system specifies the coordinate space in which mapping sphere is defined. Valid values include the following

= 0 Undefined Coordinate System.

= 1 Viewpoint Coordinate System. Mapping sphere is to move together with the

viewpoint.

= 2 Model Coordinate System. Mapping sphere is affected by whatever model

transforms that are current when the mapping sphere is encountered in LSG.

= 3 World Coordinate system. Mapping sphere is not affected by model transforms in

the LSG.

7.2.1.1.2.14.1.4 Mapping TriPlanar Element

Object Type ID: 0x92f5b094, 0x6499, 0x4d2d, 0x92, 0xaa, 0x60, 0xd0, 0x5a, 0x44, 0x32, 0xcf

Mapping TriPlanar Element defines the mapping triplanar surface for texture coordinate generation.

Mx4F64 : Mapping Sphere Matrix

I32 : Coordinate System

Logical Element Header ZLIB

I16 : Version Number

 JT File Format Reference Version 9.5 Rev-A Page 100

Figure 69: Mapping TriPlanar Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

I16 : Version Number

Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value.

Mx4F64 : Mapping TriPlanar Matrix

Mx4F64 : Mapping TriPlanar Matrix specifies the transformation matrix and mapping parameter for the mapping triplanar.

The transformation matrix defines the mapping coordinate system transformed from I32 : Coordinate System. The mapping

parameter specifies the planar length of the triplanar. The left bottom corner of the triplanar is located at the origin of the

mapping coordinate system, and the three planes are in the + xy-plane, + yz-plane, and + xz-plane respectively. In the

mapping process, the geometry vertex coordinates in Model Coordinate System are transformed to the mapping coordinate

system at first, and then the transformed vertex coordinates are projected to the corresponding plane based on the maximum

component of its normals, and at last the projected vertex coordinates are mapped to texture coordinates as following:

s-coordinate = the first-coordinate of the projected vertex / the planar length of the triplanar

t-coordinate = the second-coordinate of the projected vertex / the planar length of the triplanar

I32 : Coordinate System

Coordinate system specifies the coordinate space in which mapping triplanar surface is defined. Valid values include the

following

= 0 Undefined Coordinate System.

= 1 Viewpoint Coordinate System. Mapping triplanar surface is to move together with

the viewpoint.

= 2 Model Coordinate System. Mapping triplanar surface is affected by whatever

model transforms that are current when the mapping triplanar surface is

encountered in LSG.

= 3 World Coordinate system. Mapping triplanar surface is not affected by model

transforms in the LSG.

7.2.1.2 Property Atom Elements

Property Atom Elements are meta-data objects associated with nodes or Attributes. Property Atom Elements are not nodes or

attributes themselves, but can be associated with any node or Attribute to maintain arbitrary application- or enterprise

information (meta-data) pertaining to that node or Attribute. Each Node Element or Attribute Element in an LSG may hold

zero or more Property Atom Elements and this relationship information is stored within 7.2.1.3 Property Table section of a JT

file.

Mx4F64 : Mapping TriPlanar Matrix

I32 : Coordinate System

Logical Element Header ZLIB

I16 : Version Number

 JT File Format Reference Version 9.5 Rev-A Page 101

An individual property is specified as a key/value Property Atom Element pair, where the key identifies the type and meaning

of the value. The JT format supports many different Property Atom Element key/value object types. The different Property

Atom Element key/value object types are documented in the following subsections.

 Some “Best Practices” for placing application or enterprise properties/meta-data on Nodes in JT files can be found in 9.6

Metadata Conventions section of this reference.

7.2.1.2.1 Base Property Atom Element

Object Type ID: 0x10dd104b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Base Property Atom Element represents the simplest form of a property that can exist within the LSG and has no type

specific value data associated with it.

Figure 70: Base Property Atom Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

7.2.1.2.1.1 Base Property Atom Data

Figure 71: Base Property Atom Data collection

I16: Version Number

Version Number is the version identifier for this data collection. Version number “0x0001” is currently the only valid value

for Base Property Atom Data.

U32 : State Flags

State Flags is a collection of flags. The flags are combined using the binary OR operator and store various state information

for property atoms. Bits 0 – 7 are freely available for an application to store whatever property atom information desired.

All other bits are reserved for future expansion of the file format.

7.2.1.2.2 String Property Atom Element

Object Type ID: 0x10dd106e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

String Property Atom Element represents a character string property atom.

I16: Version Number

U32 : State Flags

Base Property Atom Data

Logical Element Header ZLIB

 JT File Format Reference Version 9.5 Rev-A Page 102

Figure 72: String Property Atom Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data.

I16: Version Number

Version Number is the version identifier for this data collection. Version number “0x0001” is currently the only valid value

for String Property Atom Element.

MbString : Value

Value contains the character string value for this property atom.

7.2.1.2.3 Integer Property Atom Element

Object Type ID: 0x10dd102b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Integer Property Atom Element represents a property atom whose value is of I32 data type.

Figure 73: Integer Property Atom Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data.

Base Property Atom Data

I16: Version Number

Logical Element Header ZLIB

I32 : Value

Base Property Atom Data

I16: Version Number

Logical Element Header ZLIB

MbString : Value

 JT File Format Reference Version 9.5 Rev-A Page 103

I16: Version Number

Version Number is the version identifier for this data collection. Version number “0x0001” is currently the only valid value

for Integer Property Atom Element.

I32 : Value

Value contains the integer value for this property atom.

7.2.1.2.4 Floating Point Property Atom Element

Object Type ID: 0x10dd1019, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Floating Point Property Atom Element represents a property atom whose value is of F32 data type.

Figure 74: Floating Point Property Atom Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data.

I16: Version Number

Version Number is the version identifier for this data collection. Version number “0x0001” is currently the only valid value.

F32 : Value

Value contains the floating point value for this property atom.

7.2.1.2.5 JT Object Reference Property Atom Element

Object Type ID: 0x10dd1004, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

JT Object Reference Property Atom Element represents a property atom whose value is an object ID for another object within

the JT file.

Base Property Atom Data

I16: Version Number

Logical Element Header ZLIB

F32 : Value

 JT File Format Reference Version 9.5 Rev-A Page 104

Figure 75: JT Object Reference Property Atom Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data.

I16: Version Number

Version Number is the version identifier for this data collection. Version number “0x0001” is currently the only valid value.

I32 : Object ID

Object ID specifies the identifier within the JT file for the referenced object.

7.2.1.2.6 Date Property Atom Element

Object Type ID: 0xce357246, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1

Date Property Atom Element represents a property atom whose value is a “date”.

Base Property Atom Data

I16: Version Number

Logical Element Header ZLIB

I32 : Object ID

 JT File Format Reference Version 9.5 Rev-A Page 105

Figure 76: Date Property Atom Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data.

I16 : Version Number

Version Number is the version identifier for this data collection. Version number “0x0001” is currently the only valid value

for Late Loaded Property Atom Element.

I16 : Year

Year specifies the date year value. Valid values are [1900, 2999] inclusive.

I16 : Month

Month specifies the date month value. Valid values are [0, 11] inclusive.

I16 : Day

Day specifies the date day value. Valid values are [1, 31] inclusive.

Base Property Atom Data

Logical Element Header ZLIB

I16 : Year

I16 : Month

I16 : Day

I16 : Hour

I16 : Minute

I16 : Second

I16 : Version Number

 JT File Format Reference Version 9.5 Rev-A Page 106

I16 : Hour

Hour specifies the date hour value. Valid values are [0, 23] inclusive.

I16 : Minute

Minute specifies the date minute value. Valid values are [0, 59] inclusive.

I16 : Second

Second specifies the date Second value. Valid values are [0, 59] inclusive.

7.2.1.2.7 Late Loaded Property Atom Element

Object Type ID: 0xe0b05be5, 0xfbbd, 0x11d1, 0xa3, 0xa7, 0x00, 0xaa, 0x00, 0xd1, 0x09, 0x54

Late Loaded Property Atom Element is a property atom type used to reference an associated piece of atomic data in a

separate addressable segment of the JT file. The “Late Loaded” connotation derives from the associated data being stored in

a separate addressable segment of the JT file, and thus a JT file reader can be structured to support the “best practice” of

delaying the loading/reading of the associated data until it is actually needed.

Late Loaded Property Atom Elements are used to store a variety of data, including, but not limited to, Shape LOD Segments

and B-Rep Segments (see 7.2.2 Shape LOD Element and 7.2.3 JT B-Rep Segment).

Figure 77: Late Loaded Property Atom Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data.

I16 : Version Number

Version Number is the version identifier for this data collection. Version number “0x0001” is currently the only valid value

for Late Loaded Property Atom Element.

Base Property Atom Data

GUID : Segment ID

I32 : Segment Type

Logical Element Header ZLIB

I16 : Version Number

I32 : Payload Object ID

I32 : Reserved

 JT File Format Reference Version 9.5 Rev-A Page 107

GUID : Segment ID

Segment ID is the globally unique identifier for the associated data segment in the JT file. See 7.1.2 TOC Segment for

additional information on how this Segment ID can be used in conjunction with the file TOC Entries to locate the associated

data in the JT file.

The complete list of segment types can be found in Table 3: Segment Types.

I32 : Segment Type

Segment Type defines a broad classification of the associated data segment contents. For example, a Segment Type of “1”

denotes that the segment contains Logical Scene Graph material; “2” denotes contents of a B-Rep, etc.

I32 : Payload Object ID

Object ID is the identifier for the payload. Other objects referencing this particular payload will do so using the Object ID.

I32 : Reserved

Reserved data field that is guaranteed to always be greater than or equal to 1

7.2.1.2.8 Vector4f Property Atom Element

Object Type ID: 0x2e7db4be, 0xc71a, 0x4b18, 0x9d, 0x7, 0xc7, 0x22, 0x7e, 0x9f, 0xef, 0x76

Vector4f Property Atom Element represents a property atom whose value is of VecF32 data type with the length to be equal

to 4 .

Figure 78: Vector4f Property Atom Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data.

I16 : Version Number

Version Number is the version identifier for this data collection. Version number “0x0001” is currently the only valid value

for Late Loaded Property Atom Element.

F32 : Value

Value contains the floating point value for this property atom

Base Property Atom Data

Logical Element Header ZLIB

I16 : Version Number

F32 : Value
4

 JT File Format Reference Version 9.5 Rev-A Page 108

7.2.1.3 Property Table

The Property Table is where the data connecting Node Elements and Attribute Elements with their associated Properties is

stored. The Property Table contains an Element Property Table for each element in the JT File which has associated

Properties. An Element Property Table is a list of key/value Property Atom Element pairs for all Properties associated with a

particular Node Element Object or Attribute Element Object.

For a reference compliant JT File all Node Elements, Attribute Elements, and Property Atom Elements contained in a JT file

should have been read by the time a JT file reader reaches the Property Table section of the file. This means that all Node

Objects, Attribute Objects, and Property Atom Objects referenced in the Property Table (through Object IDs), should have

already been read, and if not, then the file is corrupt (i.e. not reference compliant).

Figure 79: Property Table data collection

I16 : Version Number

Version Number is the version identifier for this Property Table. Version number “0x0001” is currently the only valid value.

I32 : Element Property Table Count

Element Property Table Count specifies the number of Element Property Tables to follow. This value is equivalent to the

total number of Node Elements (see 7.2.1.1.1Node Elements) and Attribute Elements (see 7.2.1.1.2 Attribute Elements) that

have associated Property Atom Elements (see 7.2.1.2 Property Atom Elements).

I32 : Element Object ID

Element Object ID is the identifier for the Node Element object (see 7.2.1.1.1Node Elements) or the Attribute Element object

(see 7.2.1.1.2Attribute Elements) that the following Element Property Table is for (i.e. Node Element or Attribute Element

that all properties in the following Element Property Table are associated with).

7.2.1.3.1 Element Property Table

The Element Property Table is a list of key/value Property Atom Element pairs for all properties associated with a particular

Node Element Object or Attribute Element Object. The list is terminated by a “0” value for Key Property Atom Object ID.

I16 : Version Number

I32 : Element Property Table Count

Element Property

Table Count

I32 : Element Object ID

Element Property Table

 JT File Format Reference Version 9.5 Rev-A Page 109

Figure 80: Element Property Table data collection

I32 : Key Property Atom Object ID

Key Property Atom Object ID is the identifier for the Property Atom Element object (see 7.2.1.2 Property Atom Elements)

representing the “key” part of the property key/value pair. A value of “0” indicates the end of the Node Property Table.

I32 : Value Property Atom Object ID

Value Property Atom Object ID is the identifier for the Property Atom Element object (see 7.2.1.2 Property Atom Elements)

representing the “value” part of the property key/value pair. A value is not stored if Key Property Atom Object ID has a

value of “0”.

7.2.2 Shape LOD Segment

Shape LOD Segment contains an Element that defines the geometric shape definition data (e.g. vertices, polygons, normals,

etc) for a particular shape Level Of Detail or alternative representation. Shape LOD Segments are typically referenced by

Shape Node Elements using Late Loaded Property Atom Elements (see 7.2.1.1.1.10 Shape Node Elements and 0 Late Loaded

Property Atom Element respectively).

Figure 81: Shape LOD Segment data collection

Complete description for Segment Header can be found in 7.1.3.1Segment Header.

7.2.2.1 Shape LOD Element

A Shape LOD Element is the holder/container of the geometric shape definition data (e.g. vertices, polygons, normals, etc.)

for a single LOD. Much of the “heavyweight” data contained within a Shape LOD Element may be optionally compressed

and/or encoded. The compression and/or encoding state is indicated through other data stored in each Shape LOD Element.

There are several types of Shape LOD Elements which the JT format supports. The following sub-sections document the

various Shape LOD Element types.

7.2.2.1.1 Base Shape LOD Element

Object Type ID: 0x10dd10a4, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Base Shape LOD Element serves as the underlying representation for all LODs.

Segment Header

Shape LOD Element

I32 : Value Property Atom Object ID

While Key

Property Atom

Object ID != 0

I32 : Key Property Atom Object ID

 JT File Format Reference Version 9.5 Rev-A Page 110

Figure 82: Base Shape LOD Element data collection

Complete description for Logical Element Header can be found in 7.1.3.2.1Logical Element Header.

7.2.2.1.1.1 Base Shape LOD Data

Base shape LOD data contains the common items to all shape LODs.

Figure 83: Base Shape LOD Data collection

I16 : Version Number

Version Number is the version identifier for this Base Shape LOD Data. Version number “0x0001” is currently the only

valid value.

7.2.2.1.2 Vertex Shape LOD Element

Object Type ID: 0x10dd10b0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Vertex Shape LOD Element represents LODs defined by collections of vertices.

Figure 84: Vertex Shape LOD Element data collection

Complete description for Logical Element Header can be found in 7.1.3.2.1Logical Element Header.

7.2.2.1.2.1 Vertex Shape LOD Data

 Vertex Shape LOD Data collection is an abstract container for geometric primitives such as triangle strips, line strips, or

points, depending on the specific type of Vertex Shape. The set of primitives are further partitioned into so-called "face

groups." The Vertex Shape LOD Data also contains the vertex attribute bindings and quantization settings used to store the

vertex records referenced by the primitives.

One use for face groups is to establish a correspondence between Brep faces and their triangle representation. A convention

for mapping JTBrep and XTBrep faces to face groups is described in section 9.10 Brep Face Group Associations.

Logical Element

Header

Base Shape LOD Data

 Vertex Shape LOD Data

I16 : Version Number

Logical Element

Header

Base Shape LOD Data

 JT File Format Reference Version 9.5 Rev-A Page 111

Figure 85: Vertex Shape LOD Data collection

Complete description for TopoMesh Compressed LOD Data and TopoMesh Topologically Compressed LOD Data can be

found in 7.2.2.1.2.3 TopoMesh Compressed LOD Data and 7.2.2.1.2.4 TopoMesh Topologically Compressed LOD Data.

I16 : Version Number

Version Number is the version identifier for this Vertex Shape LOD Data. Version number “0x0001” is currently the only

valid value.

U64 : Vertex Bindings

Binding Attributes is a collection of normal, texture coordinate, and color binding information encoded within a single U64

using the following bit allocation. All undocumented bits are reserved.

Bits 1-3 Vertex Coordinate Binding. The Vertex Coordinate Binding denotes per vertex

coordinate field data is present when one of the bits is set.

 Bit 1 - 2 Component Vertex Coordinates

 Bit 2 - 3 Component Vertex Coordinates

 Bit 3 - 4 Component Vertex Coordinates

Bit 4 Normal Binding. The Normal Binding denotes per vertex normal field data is

present when the bit is set. Normal field data is always stored in 3 Component

Normals when present.

Bits 5 -6 Color Binding. The Color Binding denotes per vertex color field data is present

when one of the bits is set.

 Bit 5 - 3 Component Colors

 Bit 6 - 4 Component Color

Bit 7 Vertex Flag Binding. The Vertex Flag Binding denotes the per vertex flag field is

present on the shape when the bit is set.

Bits 9-12 Texture Coordinate 0 Binding. The Texture Coordinate 0 binding denotes per

vertex texture coordinates field data is present when one of the bits is set:

 Bit 9 - 1 Component Texture Coordinates

 Bit 10 - 2 Component Texture Coordinates

 Bit 11 - 3 Component Texture Coordinates

 Bit 12 - 4 Component Texture Coordinates

Bits 13-16 Texture Coordinate 1 Binding. The Texture Coordinate 1 binding denotes per

vertex texture coordinates field data is present when one of the bits is set:

 Bit 13 - 1 Component Texture Coordinates

 Bit 14 - 2 Component Texture Coordinates

 Bit 15 - 3 Component Texture Coordinates

 Bit 16 - 4 Component Texture Coordinates

Bits 17-20 Texture Coordinate 2 Binding. The Texture Coordinate 2 binding denotes per

vertex texture coordinates field data is present when one of the bits is set:

I16 : Version Number

U64 : Vertex Bindings

TopoMesh Compressed LOD Data TopoMesh Topologically

Compressed LOD Data

If TopoMesh Compressed Rep Data V1

TopoMesh Compressed Rep Data V1

contains the geometric shape definition

data (e.g. vertices, colors, normals,

etc.) in a lossy or lossless compressed

formed.

Figure 91: TopoMesh Compressed

Rep Data V1 data collection

 JT File Format Reference Version 9.5 Rev-A Page 112

 Bit 17 - 1 Component Texture Coordinates

 Bit 18 - 2 Component Texture Coordinates

 Bit 19 - 3 Component Texture Coordinates

 Bit 20 - 4 Component Texture Coordinates

Bits 21-24 Texture Coordinate 3 Binding. The Texture Coordinate 3 binding denotes per

vertex texture coordinates field data is present when one of the bits is set:

 Bit 21 - 1 Component Texture Coordinates

 Bit 22 - 2 Component Texture Coordinates

 Bit 23 - 3 Component Texture Coordinates

 Bit 24 - 4 Component Texture Coordinates

Bits 25-28 Texture Coordinate 4 Binding. The Texture Coordinate 4 binding denotes per

vertex texture coordinates field data is present when one of the bits is set:

 Bit 25 - 1 Component Texture Coordinates

 Bit 26 - 2 Component Texture Coordinates

 Bit 27 - 3 Component Texture Coordinates

 Bit 28 - 4 Component Texture Coordinates

Bits 29-32 Texture Coordinate 5 Binding. The Texture Coordinate 5 binding denotes per

vertex texture coordinates field data is present when one of the bits is set:

 Bit 29 - 1 Component Texture Coordinates

 Bit 30 - 2 Component Texture Coordinates

 Bit 31 - 3 Component Texture Coordinates

 Bit 32 - 4 Component Texture Coordinates

Bits 33-36 Texture Coordinate 6 Binding. The Texture Coordinate 6 binding denotes per

vertex texture coordinates field data is present when one of the bits is set:

 Bit 33 - 1 Component Texture Coordinates

 Bit 34 - 2 Component Texture Coordinates

 Bit 35 - 3 Component Texture Coordinates

 Bit 36 - 4 Component Texture Coordinates

Bits 37-40 Texture Coordinate 7 Binding. The Texture Coordinate 7 binding denotes per

vertex texture coordinates field data is present when one of the bits is set:

 Bit 37 - 1 Component Texture Coordinates

 Bit 38 - 2 Component Texture Coordinates

 Bit 39 - 3 Component Texture Coordinates

 Bit 40 - 4 Component Texture Coordinates

Bit 64 Auxiliary Vertex Field Binding. The Auxiliary Vertex Field Binding denotes per

vertex auxiliary field data is present on the shape when the bit is set.

7.2.2.1.2.2 TopoMesh LOD Data

TopoMesh LOD Data collection contains the common items to all TopoMesh LOD elements.

Figure 86: TopoMesh LOD Data collection

I16 : Version Number

Version Number is the version identifier for this TopoMesh LOD Data. Version number “0x0001” and “0x0002” are

currently the only valid values.

I16 : Version Number

I32: Vertex Records

Object ID

 JT File Format Reference Version 9.5 Rev-A Page 113

I32: Vertex Records Object ID

Vertex Records Object ID is the identifier for the vertex records associated with this Object. Other objects referencing these

vertex records will do so using this Object ID.

7.2.2.1.2.3 TopoMesh Compressed LOD Data

TopoMesh Compressed LOD Data collection contains the common items to all TopoMesh Compressed LOD data elements.

Figure 87: TopoMesh LOD Data collection

Complete description for TopoMesh LOD Data, TopoMesh Compressed Rep Data V1, and TopoMesh Compressed Rep Data

V2 can be found in 7.2.2.1.2.2 TopoMesh LOD Data, 7.2.2.1.2.7 TopoMesh Compressed Rep Data V1, and 7.2.2.1.2.8

TopoMesh Compressed Rep Data V2.

I16 : Version Number

Version Number is the version identifier for this TopoMesh LOD Data. Version number “0x0001” and "0x0002" are

currently the only valid values.

7.2.2.1.2.4 TopoMesh Topologically Compressed LOD Data

TopoMesh Topologically Compressed LOD Data collection contains the common items to all TopoMesh Topologically

Compressed LOD data elements.

Figure 88: TopoMesh Topologically Compressed LOD Data collection

Complete description for TopoMesh LOD Data and Topologically Compressed Rep Data can be found in 7.2.2.1.2.2

TopoMesh LOD Data and 7.2.2.1.2.5 Topologically Compressed Rep Data.

I16 : Version Number

Version Number is the version identifier for this TopoMesh Topologically Compressed LOD Data. Version number

“0x0001” and “0x0002” are currently the only valid values.

I16 : Version Number

Topologically Compressed Rep Data

TopoMesh LOD Data

I16 : Version Number

TopoMesh LOD Data

TopoMesh Compressed Rep Data V1

If I16 : Version Number is greater or equal to 2

TopoMesh Compressed Rep Data V2

 JT File Format Reference Version 9.5 Rev-A Page 114

7.2.2.1.2.5 Topologically Compressed Rep Data

JT v9 represents triangle strip data very differently than it does in the JT v8 format. The new scheme stores the triangles

from a TriStripSet as a topologically-connected triangle mesh. Even though more information is stored to the JT file, the

additional structure provided by storing the full topological adjacency information actually provides a handsome reduction in

the number of bytes needed to encode the triangles. More importantly, however, the topological information aids us in a

more significant respect -- that of only storing the unique vertex records used by the TriStripSet. Combined, these two

effects reduce the typical storage footprint of TriStripSet data by approximately half relative to the JT v8 format.

The tristrip information itself is no longer stored in the JT file -- only the triangles themselves. The reader is expected to re-

tristrip (or not) as it sees fit, as tristrips may no longer provide a performance advantage during rendering. There may,

however, remain some memory savings for tristripping, and so the decision to tristrip is left to the user.

To begin the decoding process, first read the compressed data fields shown in Figure 89. These fields provide all the

information necessary to reconstruct the per face-group organized sets of triangles. The first 22 fields represent the

topological information, and the remaining fields constitute the set of unique vertex records to be used. The next step is to

run the topological decoder algorithm detailed in Appendix E: Polygon Mesh Topology Coder on this data to reconstruct the

topologically connected representation of the triangle mesh in a so-called "dual VFMesh.” The triangles in this heavy-weight

data structure can then be exported to a lighter-weight form, and the dual VFMesh discarded if desired.

 JT File Format Reference Version 9.5 Rev-A Page 115

Figure 89: Topologically Compressed Rep Data Collection

VecI32{Int32CDP2} : Face Degrees

Similarly to the way valences are encoded, the topology encoder emits the degree (number of incident vertices) of each face

in the order they were visited. The number of face degrees in this array is equal to the number of faces in the mesh.

8

8

U32 : Composite Hash

VecI32{Int32CDP2} : Face Degrees

VecI32{Int32CDP2} : Vertex Valences

VecI32{Int32CDP2} : Vertex Groups

VecI32{Int32CDP2, Lag1} : Vertex Flags

VecI32{Int32CDP2} : Face Attribute Masks

(30 LSBs)

VecI32{Int32CDP2} : Face Attribute Mask 8

(30 next MSBs)

VecI32{Int32CDP2} : Face Attribute Mask 8

(4 MSBs)

VecI32{Int32CDP2, Lag1} : Split Face Syms

VecI32{Int32CDP2} : Split Face Positions

Topologically Compressed Vertex Records

VecU32 : High-Degree Face Attribute Masks

 JT File Format Reference Version 9.5 Rev-A Page 116

VecI32{Int32CDP2} : Vertex Valences

As the coder visits each vertex in the mesh, it emits the valence (number of incident faces) of each vertex. These valences are

collect in the order they were visited into this array. The number of valences in this array is equal to the number of

(topological) vertices in the mesh.

VecI32{Int32CDP2} : Vertex Groups

This array is parallel to the Vertex Valences array above. As the coder emits the valence of each vertex, it also emits the face

group number to which the dual vertex belongs into this array.

VecI32{Int32CDP2, Lag1} : Vertex Flags

This array is also parallel to the Vertex Valences array, and contains a value of 0 when the dual face was present in the

original triangle mesh, and a value of 1 if the dual face is a cover face that was added to artificially close the original mesh.

VecI32{Int32CDP2} : Face Attribute Masks (30 LSBs)

This field is written 8 times – once for each of the 8 context groups listed above – and encodes the face attribute bit vector

associated with a single face.

VecI32{Int32CDP2} : Face Attribute Mask 8 (30 next MSBs)

This field encodes the next 30 most significant bits of the 8
th

 context group of face attribute bit vectors.

VecI32{Int32CDP2} : Face Attribute Mask 8 (4 MSBs)

This field encodes the 4 most significant bits of the 8
th

 context group of face attribute bit vectors, rounding out its full 64-bit

width.

VecU32 : High-Degree Face Attribute Masks

This field encodes all remaining face attribute bit vectors, adjoined end-to-end, and encoded as a single array of unsigned

integers.

VecI32{Int32CDP2, Lag1} : Split Face Syms

Encodes the list of “split face” ID numbers in the order the coder encountered them.

VecI32{Int32CDP2} : Split Face Positions

Encodes the list of “split face” positions in the active vertex queue in the order the code encountered them.

U32 : Composite Hash

This field is a hash value computed on all of the above data using the hash function described in Appendix D: . It is written

into the JT file so that a reader can perform the same hash on the above data and compare against this value in order to

guarantee that it has read and decoded correct data from the JT file. It is highly encouraged that all readers perform this

check, as even a single bit error in the topology information above can have catastrophic consequences on the topology

decoder and the resulting mesh. Any writers are required to write this field using the method provided so that other readers

may validate the data they read.

UInt32 uHash = 0;

UInt32 anDegSyms[8] = {0},

 nValSyms = 0,

 nVGrpSyms = 0,

 nVtxFlags = 0,

 anAttrMasks[8] = {0},

 nLrgAttrMasks = 0,

 nSplitVtxSyms = 0,

 nSplitVtxPos = 0;

VecI32 vFaceDegreeSymbols[8], vviValenceSymbols, vFaceGroupSyms,

 vvuAttrMasks[8], viSplitVtxSyms, viSplitVtxPos;

VecI16 vFaceFlags;

VecU32 vuTmp, vuAttrMasksLrg;

...

for (i=0 ; i<8 ;i++)

 JT File Format Reference Version 9.5 Rev-A Page 117

 uHash = hash32((UInt32*) vFaceDegreeSymbols[i].ptr(), anDegSyms[i], uHash);

uHash = hash32((UInt32*) vviValenceSymbols.ptr(), nValSyms, uHash);

uHash = hash32((UInt32*)vVtxGroupSyms.ptr(), nVGrpSyms, uHash);

uHash = hash16((UInt16*)vVtxFlags.ptr(), nFlags, uHash);

for (i=0 ; i<7 ;i++)

 uHash = hash32((UInt32*)vvuAttrMasks[i].ptr(), anAttrMasks[i], uHash);

vuTmp = vvuAttrMasks[7] & 0x3fffffff; // Lower 30 bits of each element

uHash = hash32(vuTmp.ptr(), anAttrMasks[7], uHash);

vuTmp = (vvuAttrMasks[7] >> 30) & 0x3fffffff; // Next 30 bits of each element

uHash = hash32(vuTmp.ptr(), anAttrMasks[7], uHash);

vuTmp = (vvuAttrMasks[7] >> 60) & 0x0f; // Upper 4 bits of each element

uHash = hash32(vuTmp.ptr(), anAttrMasks[7], uHash);

uHash = hash32(vuAttrMasksLrg.ptr(), nLrgAttrMasks, uHash);

uHash = hash32((UInt32*)viSplitVtxSyms.ptr(), nSplitVtxSyms, uHash);

uHash = hash32((UInt32*)viSplitVtxPos.ptr(), nSplitVtxPos, uHash);

7.2.2.1.2.6 Topologically Compressed Vertex Records

Documented here is the format of the vertex data written by the topological encoder from Appendix E: . Some additional

explanation is necessary, however, because only the unique vertex coordinates are written to the JT file, while the remaining

vertex attributes (normals, colors, texture coordinates, vertex flags) may not be unique.

Vertex coordinates are written to the file in the order that they were visited by the topology encoder. Note that this means

that the number of vertex coordinates written is equal to the number of topological vertices in the mesh (i.e. all vertex

coordinates are unique).

By contrast one set of vertex attribute records is written to the file corresponding to each 1 bit across all encoded dual Face

Attribute Masks. The vertex attribute records are written in the order that the topology encoder visited them. The reader

must then use the topology decoder's output to correctly associate each vertex attribute record to the correct vertex coordinate

using the dual Face Attribute Masks.

 JT File Format Reference Version 9.5 Rev-A Page 118

 Figure 90: Topologically Compressed Vertex Records data collection

U64: Vertex Bindings

Vertex Bindings is a collection of normal, texture coordinate, and color binding information encoded within a single U64.

All undocumented bits are reserved. For more information see Vertex Shape LOD Data U64 : Vertex Bindings.

I32 : Number of Topological Vertices

This field is the number of topological vertices encoded by the topology encoder. This is the number of unique vertex

coordinates that will be written in the later Compressed Vertex Coordinate Array field.

I32 : Number of Vertex Attributes

One set of vertex attribute records is written to the file corresponding to each 1 bit across all encoded dual Face Attribute

Masks. The vertex attribute records are written in the order that the topology encoder visited them. The reader must then use

the topology decoder's output to correctly associate each vertex attribute record to the correct vertex coordinate using the dual

Face Attribute Masks.

U64: Vertex Bindings

Quantization Parameters

I32 : Number of Vertex Attributes

I32 : Number of Topological Vertices

If num topo vts > 0

8

if Normal Bindings

if Color Bindings

if vertex flag Bindings

if Tex Coord n Bindings

if Coordinate Bindings

Compressed Vertex

Coordinate Array

Compressed Vertex

Normal Array

Compressed Vertex Color

Array

Compressed Vertex

Texture Coordinate Array

Compressed Vertex Flag

Array

 JT File Format Reference Version 9.5 Rev-A Page 119

7.2.2.1.2.7 TopoMesh Compressed Rep Data V1

TopoMesh Compressed Rep Data V1 contains the geometric shape definition data (e.g. vertices, colors, normals, etc.) in a

lossy or lossless compressed formed.

Figure 91: TopoMesh Compressed Rep Data V1 data collection

Complete description for Quantization Parameters can be found in 7.2.1.1.1.10.2.1.1 Quantization Parameters.

I32: Number of Primitive List Indices

I32: Number of Vertex List Indices

I32: FGPV List Indices Hash

U64: Vertex Bindings

VecI32{Int32CDP2} : Primitive List Indices

VecI32{Int32CDP2} : Vertex List Indices

Quantization Parameters

I32: Number of Vertex Records

I32: Number of Unique Vertex

Coordinates

If number records > 0

I32: Unique Vertex List Map Hash

8

if Normal Bindings

if Color Bindings

if vertex flag Bindings

if Tex Coord n Bindings

if Coordinate Bindings

Compressed Vertex

Coordinate Array

Compressed Vertex

Normal Array

Compressed Vertex Color

Array

Compressed Vertex

Texture Coordinate Array

Compressed Vertex Flag

Array

VecI32{Int32CDP2} : Unique Vertex Coordinate

Length List

VecI32{Int32CDP2} : Face Group List Indices

if Polyline Shape

I32: Number of Face Group List Indices

if Polyline Shape

 JT File Format Reference Version 9.5 Rev-A Page 120

I32: Number of Face Group List Indices

Number of Face Group List Indices.

I32: Number of Primitive List Indices

Number of Primitive List Indices.

I32: Number of Vertex List Indices

Number of Vertex List Indices.

VecI32{Int32CDP2} : Face Group List Indices

Face Group List Indices is a vector of indices into the uncompressed Raw Primitive Data marking the start/beginning of

Faces. Face Group List Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP2} : Primitive List Indices

Primitive List Indices is a vector of indices into the uncompressed Raw Vertex Data marking the start/beginning of

primitives. Primitive List Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP2} : Vertex List Indices

Vertex List Indices is a vector of indices (one per vertex) into the uncompressed/dequantized unique vertex data arrays

(Vertex Coords, Vertex Normals, Vertex Texture Coords, Vertex Colors) identifying each Vertex‟s data (i.e. for each Vertex

there is an index identifying the location within the unique arrays of the particular Vertex‟s data). The Compressed Vertex

Index List uses the Int32 version of the CODEC to compress and encode data.

I32: FGPV List Indices Hash

The FGPV Hash is the combined hash value of the Face Group List Indices (if Polyline), Primitive List Indices, and Vertex

List Indices. Refer to section 9.5 for a more detailed description on hashing.

UInt32 uHash = 0;

UInt32 nFGIdx = 0,

 nPrimIdx = 0,

 nVtxIdx = 0;

vecI32 vFGIndices, vPrimIdices, vVertexIndices;

...

if (bLineStrip)

 uHash = hash32((UInt32*)(&vFGIndices), nFGIdx+1, uHash);

uHash = hash32((UInt32*)(& vPrimIdices), nPrimIdx+1, uHash);

uHash = hash32((UInt32*)(& vVertexIndices), nVtxIdx , uHash);

U64: Vertex Bindings

Vertex Bindings is a collection of normal, texture coordinate, and color binding information encoded within a single U64.

All undocumented bits are reserved. For more information see Vertex Shape LOD Data U64 : Vertex Bindings.

I32: Number of Vertex Records

Number of vertex records.

I32: Number of Unique Vertex Coordinates

Number of unique vertex coordinates values in the Compressed Vertex Coordinate Array.

VecI32{Int32CDP2} : Unique Vertex Coordinate Length List

The Unique Vertex Length List contains the number of vertex records containing each of the unique vertex coordinates and

should sum to the number of vertex records. When read in the Compressed Vertex Coordinate Array only contains a single

value for each unique vertex coordinate value and is therefore parallel to the Unique Vertex Length List. In order to expand

its coordinates into the vertex record space it unique coordinate value will need to be smeared out such that each unique

vertex coordinate is repeated the number of times specified in the Unique Vertex Length List. The Compressed Vertex

Normal, Color, Texture, and Flag Arrays do not require the same expansion.

 JT File Format Reference Version 9.5 Rev-A Page 121

I32: Unique Vertex List Map Hash

The Unique Vertex List Map Hash is the hash value of Unique Vertex Coordinate Length List. Refer to section 9.5 for a

more detailed description on hashing.

UInt32 uHash = 0;

UInt32 nUniqVtx = 0;

vecF32 vUniqVtxIndices;

...

uHash = hash32((UInt32*)(&vUniqVtxIndices), nUniqVtx, uHash);

7.2.2.1.2.8 TopoMesh Compressed Rep Data V2

TopoMesh Compressed Rep Data V2 data contains additional geometric shape data (auxiliary vertex fields) that were not

included in V1. Auxiliary fields are parallel to the existing vertex record information and contain additional information

pertaining to each vertex.

 JT File Format Reference Version 9.5 Rev-A Page 122

Figure 92: TopoMesh Compressed Rep Data V2 data collection

Complete description for TopoMesh Compressed Rep Data V1 can be found in TopoMesh Compressed Rep Data V1.

I16 : Version Number

Version Number is the version identifier for this TopoMesh Compressed Rep Data V2. Version number “0x0001” is

currently the only valid value.

U64 : Vertex Bindings

Vertex Bindings is a collection of normal, texture coordinate, and color binding information encoded within a single U64.

All undocumented bits are reserved. For more information see Vertex Shape LOD Data U64 : Vertex Bindings.

I32 : Auxiliary Data Hash

VecU32{Int32CDP2} : Data

Lower Mantissae

VecU32{Int32CDP2} : Data

Upper Mantissae

VecU32{Int32CDP2} : Data

Exponents

I16 : Version Number

uHash =

hash32((UInt32*)

vviValenceSymbols.ptr(),

nValSyms, uHash);

uHash =

hash32((UInt32*)vVtxGro

upSyms.ptr(),

nVGrpSyms, uHash);

uHash =

hash16((UInt16*)vVtxFla

gs.ptr(), nFlags, uHash

);

for (i=0 ; i<7 ;i++)

 uHash =

hash32((UInt32*)vvuAttr

Masks[i].ptr(),

anAttrMasks[i], uHash

);

vuTmp = vvuAttrMasks[7]

& 0x3fffffff; // Lower

30 bits of each element

uHash =

hash32(vuTmp.ptr(),

anAttrMasks[7], uHash

);

vuTmp =

(vvuAttrMasks[7] >> 30)

& 0x3fffffff; // Next

30 bits of each element

uHash =

hash32(vuTmp.ptr(),

anAttrMasks[7], uHash

);

vuTmp =

(vvuAttrMasks[7] >> 60)

& 0x0f; // Upper 4 bits

of each element

uHash =

hash32(vuTmp.ptr(),

anAttrMasks[7], uHash

);

uHash =

hash32(vuAttrMasksLrg.p

tr(), nLrgAttrMasks,

uHash);

uHash =

hash32((UInt32*)viSplit

VtxSyms.ptr(),

nSplitVtxSyms, uHash);

uHash =

hash32((UInt32*)viSplit

VtxPos.ptr(),

nSplitVtxPos, uHash);

1.1.1.1.1.3 Topologi
cally
Compres
sed
Vertex
Records

Documented here is the

format of the vertex data

written by the topological

encoder from Appendix E: .

Some additional

explanation is necessary,

however, because only the

unique vertex coordinates

are written to the JT file,

U64 : Vertex Bindings

if auxiliary vertex field binding

Bindings

GUID : Unique Field Identifier

U8 : Field Type

if data F

if data F64

if data F32 or F64

VecU32{Int32CDP2} : Data

U32_2

VecU32{Int32CDP2} : Data

U32_1

VecU32{Int32CDP2} : Data

U32_0

if data I

if data U32, I32, U64, or I64

if data U64 or I64

Number Auxiliary Fields

Number Components

 JT File Format Reference Version 9.5 Rev-A Page 123

GUID : Unique Field Identifier

Each Auxiliary Vertex Field is associated with Unique Field Identifier to denote the usage of the contained data. All Unique

Field Identifiers are currently reserved. These identifiers are intended to be unique across all application domains, therefore

any JT file producer wishing to "lock down" a Unique Field Identifier so that others can rely on its semantic identity should

contact the JTOpen industry liaison to obtain them.

U8 : Field Type

Defines the number of components and type of data contained within the auxiliary field based upon the below table.

VecU32{Int32CDP2} : Data U32_0

Data U32_0 contains the low order bits from the data i'th data component for each vertex record in an U32 vector. For U8,

I8, U16, and I16 data types this contains all bits. For U32, I32, U64, and I64 data types it contains bits 0 through 30. Data

U32_0 uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP2} : Data U32_1

Data U32_1 contains the middle order bits from the data i'th data component for each vertex record in an U32 vector. For

U32 and I32 data types it only contains bit 31. For U64 and U64 data types it contains bits 31 through 61. Data U32_1 uses

the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP2} : Data U32_2

Data U32_2 contains the upper order bits from the data i'th data component for each vertex record in an U32 vector. For U64

and I64 data types it contains bits 62 and 63. Data U32_2 uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP2} : Data Lower Mantissae

Vertex Coord Components is a vector of lower bits of Floating Point Mantissae for all the i'th component values of a set of

vertex coordinates. For F32 data type this contains all bits of the mantissa, however for F64 data type it only contains bits 0

through 30. Data Lower Mantissae uses the Int32 version of the CODEC to compress and encode data.

Type Data Components Type Data Components

1 U8 1 24 I32 4

2 U8 2 25 U64 1

3 U8 3 26 U64 2

4 U8 4 27 U64 3

5 I8 1 28 U64 4

6 I8 2 29 I64 1

7 I8 3 30 I64 2

8 I8 4 31 I64 3

9 U16 1 32 I64 4

10 U16 2 33 F32 1

11 U16 3 34 F32 2

12 U16 4 35 F32 3

13 I16 1 36 F32 4

14 I16 2 37 F32 2x2

15 I16 3 38 F32 3x3

16 I16 4 39 F32 4x4

17 U32 1 40 F64 1

18 U32 2 41 F64 2

19 U32 3 42 F64 3

20 U32 4 43 F64 4

21 I32 1 44 F64 2x2

22 I32 2 45 F64 3x3

23 I32 3 46 F64 4x4

 JT File Format Reference Version 9.5 Rev-A Page 124

VecU32{Int32CDP2} : Data Upper Mantissae

Vertex Coord Components is a vector of upper bits of the Floating Point Mantissae for all the i'th component values of a set

of vertex coordinates. For the F64 data type it contains bits 31 though 51. Data Upper Mantissae uses the Int32 version of

the CODEC to compress and encode data.

VecU32{Int32CDP2} : Data Exponents

Vertex Coord Components is a vector of Floating Point Exponents and Sign for all the i'th component values of a set of

vertex coordinates. Data Exponents uses the Int32 version of the CODEC to compress and encode data.

I32 : Auxiliary Data Hash

The Auxiliary Data Hash is the combined hash of auxiliary field data arrays. Refer to section 9.5 for a more detailed

description on hashing.

UInt32 uHash = 0;

UInt32 nVtxRec = 0,

 nComp = 0;

vecU32 vU32_0, vU32_1, vU32_2, vLMANT, vUMANT, vEXP;

...

if (bU8 || bI8 | bU16 | bI16) {

 for (int i=0 ; i<nComp ; i++) {

 uHash = hash32(&vU32_0[i], nVtxRec, uHash);

 }

} else if (bU32 || bI32) {

 for (int i=0 ; i<nComp ; i++) {

 uHash = hash32(&vU32_0[i], nVtxRec, uHash);

 uHash = hash32(&vU32_1[i], nVtxRec, uHash);

 }

} else if (bU64 || bI64) {

 for (int i=0 ; i<nComp ; i++) {

 uHash = hash32(&vU32_0[i], nVtxRec, uHash);

 uHash = hash32(&vU32_1[i], nVtxRec, uHash);

 uHash = hash32(&vU32_2[i], nVtxRec, uHash);

 }

} else if (bF32) {

 for (int i=0 ; i<nComp ; i++) {

 uHash = hash32(&vLMANT[i], nVtxRec, uHash);

 uHash = hash32(&vEXP[i], nVtxRec, uHash);

 }

} else {

 for (int i=0 ; i<nComp ; i++) {

 uHash = hash32(&vLMANT[i], nVtxRec, uHash);

 uHash = hash32(&vUMANT[i], nVtxRec, uHash);

 uHash = hash32(&vEXP[i], nVtxRec, uHash);

 }

}

7.2.2.1.3 Tri-Strip Set Shape LOD Element

Object Type ID: 0x10dd10ab, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

A Tri-Strip Set Shape LOD Element contains the geometric shape definition data (e.g. vertices, polygons, normals, etc.) for a

single LOD of a collection of independent and unconnected triangle strips. Each strip constitutes one primitive of the set and

the ordering of the vertices in forming triangles, is the same as OpenGL‟s triangle strip definition [4].

A Tri-Strip Set Shape LOD Element is typically referenced by a Tri-Strip Set Shape Node Element using Late Loaded

Property Atom Elements (see 7.2.1.1.1.10.3 Tri-Strip Set Shape Node Element and 0 Late Loaded Property Atom

ElementLate Loaded Property Atom Element respectively).

 JT File Format Reference Version 9.5 Rev-A Page 125

Figure 93: Tri-Strip Set Shape LOD Element data collection

Complete description for Logical Element Header can be found in 7.1.3.2.1Logical Element Header.

Complete description for Vertex Shape LOD Data can be found in 7.2.2.1.2.1 Vertex Shape LOD Data.

I16 : Version Number

Version Number is the version identifier for this Tri-Strip Set Shape LOD. Version number “0x0001” is currently the only

valid value.

7.2.2.1.4 Polyline Set Shape LOD Element

Object Type ID: 0x10dd10a1, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

A Polyline Set Shape LOD Element contains the geometric shape definition data (e.g. vertices, normals, etc.) for a single

LOD of a collection of independent and unconnected polylines. Each polyline constitutes one primitive of the set.

A Polyline Set Shape LOD Element is typically referenced by a Polyline Set Shape Node Element using Late Loaded

Property Atom Elements (see 7.2.1.1.1.10.5 Polyline Set Shape Node Element and 0 Late Loaded Property Atom Element

respectively).

Figure 94: Polyline Set Shape LOD Element data collection

Complete description for Logical Element Header can be found in 7.1.3.2.1Logical Element Header.

Complete description for Vertex Shape LOD Data can be found in 7.2.2.1.2.1 Vertex Shape LOD Data.

I16 : Version Number

Version Number is the version identifier for this Polyline Set Shape LOD. Version number “0x0001” is currently the only

valid value.

7.2.2.1.5 Point Set Shape LOD Element

Object Type ID: 0x98134716, 0x0011, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83, 0x5d, 0x5a

Logical Element

Header

 Vertex Shape LOD Data

I16 : Version Number

Logical Element

Header

 Vertex Shape LOD Data

I16 : Version Number

 JT File Format Reference Version 9.5 Rev-A Page 126

A Point Set Shape LOD Element contains the geometric shape definition data (e.g. coordinates, normals, etc.) for a collection

of independent and unconnected points. Each point constitutes one primitive of the set.

A Point Set Shape LOD Element is typically referenced by a Point Set Shape Node Element using Late Loaded Property

Atom Elements (see 7.2.1.1.1.10.5 Point Set Shape Node Element and 0 Late Loaded Property Atom Element respectively).

Figure 95: Point Set Shape LOD Element data collection

Complete description for Logical Element Header can be found in 7.1.3.2.1Logical Element Header.

Complete description for Vertex Shape LOD Data can be found in 7.2.2.1.2.1 Vertex Shape LOD Data.

I16 : Version Number

Version Number is the version identifier for this Point Set Shape LOD. Version number “0x0001” is currently the only valid

value.

7.2.2.1.6 Null Shape LOD Element

Object Type ID: 0x3e637aed, 0x2a89, 0x41f8, 0xa9, 0xfd, 0x55, 0x37, 0x37, 0x3, 0x96, 0x82

A Null Shape LOD Element represents the pseudo geometric shape definition data for a NULL Shape Node Element.

Although a NULL Shape Node Element has no real geometric primitive representation (i.e. is empty), its usage as a

“proxy/placeholder” node within the LSG still supports the concept of having a defined bounding box and thus the existence

of this Null Shape LOD Element type.

A Null Shape LOD Element is typically referenced by a NULL Shape Node Element using Late Loaded Property Atom

Elements (see 7.2.1.1.1.10.7 NULL Shape Node Element and 7.2.1.2.7 Late Loaded Property Atom Element respectively).

Figure 96: Null Shape LOD Element data collection

Complete description for Logical Element Header can be found in 7.1.3.2.1 Logical Element Header.

Logical Element

Header

I16 : Version Number

BBoxF32 : Untransformed BBox

Logical Element

Header

 Vertex Shape LOD Data

I16 : Version Number

 JT File Format Reference Version 9.5 Rev-A Page 127

I16 : Version Number

Version Number is the version identifier for this Null Shape LOD Element. Version number “0x0001” is currently the only

valid value.

BBoxF32 : Untransformed BBox

The Untransformed BBox is an axis-aligned LCS bounding box and represents the untransformed extents for this Null Shape

LOD Element.

7.2.2.2 Primitive Set Shape Element

Object Type ID: 0xe40373c2, 0x1ad9, 0x11d3, 0x9d, 0xaf, 0x0, 0xa0, 0xc9, 0xc7, 0xdd, 0xc2

A Primitive Set Shape Element defines the minimum data necessary to procedurally generate LODs for a list of primitive

shapes (e.g. box, cylinder, sphere, etc.). “Procedurally generate” means that the raw geometric shape definition data (e.g.

vertices, polygons, normals, etc) for LODs is not directly stored; instead some basic shape information is stored (e.g. sphere

center and radius) from which LODs can be generated.

Figure 97: Primitive Set Shape Element data collection

Logical Element

Header

I16 : Version Number

I32 : Bits Per Vertex

Lossless Compressed

Primitive Set Data

Bits Per Vertex = = 0

Lossy Quantized

Primitive Set Data

I32 : Texture Coord Binding

I32 : Color Binding

I16 : Version Number

I32 : Texture Coord Gen Type

 JT File Format Reference Version 9.5 Rev-A Page 128

Complete description for Logical Element Header can be found in 7.1.3.2.1Logical Element Header.

I16 : Version Number

Version Number is the version identifier for this element. Only version number 0x0001 is valid for now

I32 : Texture Coord Binding

Texture Coord Binding specifies how (at what granularity) texture coordinate data is supplied (“bound”) for the shape. Valid

values are as follows:

= 0 None. Shape has no texture coordinate data.

= 1 Per Vertex. Shape has texture coordinates for every vertex.

I32 : Color Binding

Color Binding specifies how (at what granularity) color data is supplied (“bound”) for the shape. Valid values are the same

as documented for Texture Coord Binding data field.

I16 : Version Number

Version Number is the version identifier for this element. The value of this Version Number indicates the format of data

fields to follow.

= 1 Version-1 Format

= 2 Version-2 Format

I32 : Bits Per Vertex

Bits Per Vertex specifies the number of quantization bits per vertex coordinate component. Value must be within range

[0:32] inclusive.

I32 : Texture Coord Gen Type

Texture Coord Gen Type specifies how texture coordinates are to be generated.

= 0 Single Tile…Indicates that a single copy of a texture image will be applied to significant

primitive features (i.e. cube face, cylinder wall, end cap) no matter how eccentrically shaped.

= 1 Isotropic…Implies that multiple copies of a texture image may be mapped onto eccentric

surfaces such that a mapped texel stays approximately square.

7.2.2.2.1 Lossless Compressed Primitive Set Data

The Lossless Compressed Primitive Set Data collection contains all the per-primitive information stored in a “lossless”

compression format for all primitives in the Primitive Set. The Lossless Compressed Primitive Set Data collection is only

present when the Bits Per Vertex data field equals “0” (see 7.2.2.2 Primitive Set Shape Element for complete description).

 JT File Format Reference Version 9.5 Rev-A Page 129

Figure 98: Lossless Compressed Primitive Set Data collection

I32 : Uncompressed Data Size

Uncompressed Data size specifies the uncompressed size of Primitive Data or Compressed Primitive Data in bytes.

I32 : Compressed Data Size

Compressed Data Size specifies the compressed size of Primitive Data or Compressed Primitive Data in bytes. If the

Compressed Data Size is negative, then the Compressed Primitive Data field is not present (i.e. data is not compressed) and

the absolute value of Compressed Data Size should be equal to Uncompressed Data Size value.

U8 : Primitive Data

The Primitive Data field is a packed array of the raw per primitive data (i.e. reserved, params1, params2, params3, color,

type) sequentially for all primitives in the set. The Primitive Data field is only present if Compressed Data Size value is less

than zero.

The per primitive data is packed into Primitive Data array using an interleaved data schema/format as follows:

{[reserved], [params1], [params2], [params3], [color], [type]}, …, for all primitives

Where the data elements have the following size and meaning:

Element Data Type Description
reserved I32 This is a field reserved for future expansion of the JT Format.

params1 CoordF32 Interpretation is Primitive Type specific (see below table)

params2 DirF32 Interpretation is Primitive Type specific (see below table)

params3 Quaternion Interpretation is Primitive Type specific (see below table)

color RGB Red, Green, Blue color component values

type I32 Primitive Type

= 0 – Box

= 1 – Cylinder

= 2 – Pyramid

= 3 – Sphere

= 4 – Tri-Prism

Table 5: Primitive Set Primitive Data Elements

Given this format of the Primitive Data, and the previously read size fields, a reader can then implicitly compute the data

stride (length of one primitive entry in Primitive Data), and number of primitives.

The interpretation of the three “params#” data fields is primitive type dependent as follows:

I32 : Uncompressed Data Size

I32 : Compressed Data Size

U8 : Primitive Data Abs(Compressed

Data Size)

U8 : Compressed

Primitive Data Compressed

Data Size

Compressed Data Size < 0 Compressed Data Size > 0

 JT File Format Reference Version 9.5 Rev-A Page 130

Primitiv

e Type
params1 params2 params3

[0] [1] [2] [0] [1] [2] [0] [1] [2] [3]

Box min X min Y min Z
length

X

length

Y

length

Z
orientation in Quaternion form

Cylinder
base

center X

base

center

Y

base

center

Z

spine

X

spine

Y

spine

Z

radius

1

radius

2
N/A N/A

Pyramid
base

center X

base

center

Y

base

center

Z

length

X

length

Y

length

Z
orientation in Quaternion form

Sphere center X
center

Y

center

Z
radius N/A N/A N/A N/A N/A N/A

Tri-Prism
bottom

front X

bottom

front Y

bottom

front Z

length

X (to

right)

length

Y (to

back)

length

Z (to

top)

orientation in Quaternion form

Table 6: Primitive Set “params#” Data Fields Interpretation

U8 : Compressed Primitive Data

The Compressed Primitive Data field represents the same data as documented in Primitive Data field above except that the

data is compressed using the general “ZLIB deflation compression” method. The Compressed Primitive Data field is only

present if Compressed Data Size value is greater than zero. See 8 Data Compression and Encoding for more details on ZLIB

compression and ZLIB library version used.

7.2.2.2.2 Lossy Quantized Primitive Set Data

The Lossy Quantized Primitive Set Data collection contains all the per-primitive information (i.e. reserved, params1,

params2, params3, color, type) stored in a “lossy” encoding/compression format for all primitives in the Primitive Set. The

Lossy Quantized Primitive Set Data collection is only present when the Bits Per Vertex data field is NOT equal to “0” (See

7.2.2.2 Primitive Set Shape Element for compete description).

The interpretation of the three per-primitive “params#” data fields is primitive type dependent. See Table 6: Primitive Set

“params#” Data Fields Interpretation in 7.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description

of the “params#” data fields.

 JT File Format Reference Version 9.5 Rev-A Page 131

Figure 99: Lossy Quantized Primitive Set Data collection

I32 : Primitive Count

Primitive Count specifies the number of primitives in the Primitive Set.

Quaternion : params3

Interpretation of params3 data field is primitive Type dependent. See Table 6: Primitive Set “params#” Data Fields

Interpretation in 7.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the params3 data

fields.

CoordF32 : params1

Interpretation of params1 data field is primitive Type dependent. See Table 6: Primitive Set “params#” Data Fields

Interpretation in 7.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the params1 data

fields.

DirF32 : params2

Interpretation of params1 data field is primitive Type dependent. See Table 6: Primitive Set “params#” Data Fields

Interpretation in 7.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the params1 data

fields.

RGB : Color

Color specifies the Red, Green Blue color components for the primitive. This data field is only present if previously read

Color Binding (see 7.2.2.2 Primitive Set Shape Element) is not equal to “0”.

I32 : Primitive Count

Primitive Count > 4

Primitive

Count

Quaternion : params3

CoordF32 : params1

DirF32 : params2

RGB : Color

I32 : Type

Color Binding != 0

U8 : Bits Per Color

Compressed params1

Compressed params3

Compressed params2

Color Binding != 0

Compressed Colors

VecI32{Int32CDP, Lag1} : Compressed Types

 JT File Format Reference Version 9.5 Rev-A Page 132

I32 : Type

Type specifies the primitive type. See Table 5: Primitive Set Primitive Data Elements in 7.2.2.2.1 Lossless Compressed

Primitive Set Data for valid primitive Type values.

U8 : Bits Per Color

Bits Per Color specifies the number of quantization bits per color component. Value must be within range [0:32] inclusive.

VecI32{Int32CDP, Lag1} : Compressed Types

The Compressed Types data field is a vector of Type data for all the primitives in the Primitive Set. Compressed Types uses

the Int32 version of the CODEC to compress and encode data. In an uncompressed form the valid primitive Type vales are

as documented in Table 5: Primitive Set Primitive Data Elements in 7.2.2.2.1 Lossless Compressed Primitive Set Data.

7.2.2.2.2.1 Compressed params1

Compressed params1 is the compressed representation of the params1 data for all the primitives in the Primitive Set. Note

that the interpretation of the uncompressed params1 data is primitive Type dependent. See Table 6: Primitive Set “params#”

Data Fields Interpretation in 7.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the

params1 data fields

The params1 data for all primitives in the Primitive Set is compressed/encoded on a per ordinate basis using a separate

Uniform Quantizer (with Bits Per Vertex number of quantization bits) for each collection of ordinate values. Since params1

is of type “CoordF32”, it has three ordinate values (three F32 values), and thus three Uniform Quantizers (where a Uniform

Quantizer is a scalar quantizer/encoder whose range is divided into levels of equal spacing). See 8 Data Compression and

Encoding for more complete description of Uniform Quantizer.

The JT Format packs all the params1 data for all primitives into a single array using an ordinate dependent order (as shown

below) and then encodes each of the lists of ordinate values using a separate Uniform Quantizer per ordinate list.

{prim1 params1[0], prim2 params1[0],…primN params1[0],

 prim1 params1[1], prim2 params1[1],…primN params1[1],

 prim1 params1[2], prim2 params1[2],…primN params1[2]}

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate value

collection, and an integer array of params1 quantization codes that corresponds to the above described “ordinate dependent

order” packed array of params1 data.

Figure 100: Compressed params1 data collection

VecF32 : Quantization Range Min/Max Pairs

Quantization Range Min/Max Pairs is a vector of Uniform Quantizer range min/max value pairs. There must be a min/max

pair for each ordinate value collection (i.e. each Uniform Quantizer). Thus the length of this vector is “2 * num_ordinates”

(so vector length would be “6” for params1 data).

VecI32{Int32CDP, Lag1} : params1 Codes

The params1 Codes data field is a vector of quantizer “codes” for the params1 data of all the primitives in the Primitive Set.

The params1Codes also uses the Int32 version of the CODEC to compress and encode data.

VecF32 : Quantization Range Min/Max Pairs

VecI32{Int32CDP, Lag1} : params1 Codes

 JT File Format Reference Version 9.5 Rev-A Page 133

7.2.2.2.2.2 Compressed params3

Compressed params3 is the compressed representation of the params3 data for all the primitives in the Primitive Set. Note

that the interpretation of the uncompressed param31 data is primitive Type dependent. See Table 6: Primitive Set “params#”

Data Fields Interpretation in 7.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the

params3 data fields

The params3 data for all primitives in the Primitive Set is compressed/encoded on a per ordinate basis using a separate

Uniform Quantizer (with Bits Per Vertex number of quantization bits) for each collection of ordinate values. Since params1

is of type “Quaternion”, it has four ordinate values (four F32 values), and thus four Uniform Quantizers (where a Uniform

Quantizer is a scalar quantizer/encoder whose range is divided into levels of equal spacing). See 8 Data Compression and

Encoding for more complete description of Uniform Quantizer.

The JT Format packs all the params3 data for all primitives into a single array using an ordinate dependent order (as shown

below) and then encodes each of the lists of ordinate values using a separate Uniform Quantizer per ordinate list.

{prim1 params3[0], prim2 params3[0],…primN params3[0],

 prim1 params3[1], prim2 params3[1],…primN params3[1],

 prim1 params3[2], prim2 params3[2],…primN params3[2],

 prim1 params3[3], prim2 params3[3],…primN params3[3]}

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate value

collection, and an integer array of params3 quantization codes that corresponds to the above described “ordinate dependent

order” packed array of params3 data.

The storage format of Compressed params3 is exactly the same as that documented in Figure 100: Compressed params1 data

collection.

7.2.2.2.2.3 Compressed params2

Compressed params2 is the compressed representation of the params2 data for all the primitives in the Primitive Set. Note

that the interpretation of the uncompressed params2 data is primitive Type dependent. See Table 6: Primitive Set “params#”

Data Fields Interpretation in 7.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the

params2 data fields

The params2 data for all primitives in the Primitive Set is compressed/encoded on a per ordinate basis using a separate

Uniform Quantizer (with Bits Per Vertex number of quantization bits) for each collection of ordinate values. Since params2

is of type “DirF32”, it has three ordinate values (three F32 values), and thus three Uniform Quantizers (where a Uniform

Quantizer is a scalar quantizer/encoder whose range is divided into levels of equal spacing). See 8 Data Compression and

Encoding for more complete description of Uniform Quantizer.

The JT Format packs all the params2 data for all primitives into a single array using an ordinate dependent order (as shown

below) and then encodes each of the lists of ordinate values using a separate Uniform Quantizer per ordinate list.

{prim1 params2[0], prim2 params2[0],…primN params2[0],

 prim1 params2[1], prim2 params2[1],…primN params2[1],

 prim1 params2[2], prim2 params2[2],…primN params2[2]}

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate value

collection, and an integer array of params2 quantization codes that corresponds to the above described “ordinate dependent

order” packed array of params2 data.

The storage format of Compressed params2 is exactly the same as that documented in Figure 100: Compressed params1 data

collection.

7.2.2.2.2.4 Compressed Colors

Compressed Colors is the compressed representation of the color data for all the primitives in the Primitive Set. This data

collection is only present if previously read Color Binding (see 7.2.2.2 Primitive Set Shape Element) is not equal to “0”.

The color data for all primitives in the Primitive Set is compressed/encoded on a per ordinate basis using a separate Uniform

Quantizer (with Bits Per Color number of quantization bits) for each collection of ordinate values. Since color is of type

 JT File Format Reference Version 9.5 Rev-A Page 134

“RGB”, it has three ordinate values (three F32 values), and thus three Uniform Quantizers (where a Uniform Quantizer is a

scalar quantizer/encoder whose range is divided into levels of equal spacing). See 8 Data Compression and Encoding for

more complete description of Uniform Quantizer.

The JT Format packs all the color data for all primitives into a single array using an ordinate dependent order (as shown

below) and then encodes each of the lists of ordinate values using a separate Uniform Quantizer per ordinate list.

{prim1 color[0], prim2 color[0],…primN color[0],

 prim1 color[1], prim2 color[1],…primN color[1],

 prim1 color[2], prim2 color[2],…primN color[2]}

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate value

collection, and an integer array of color quantization codes that corresponds to the above described “ordinate dependent

order” packed array of color data.

The storage format of Compressed Colors is exactly the same as that documented in Figure 100: Compressed params1 data

collection.

7.2.3 JT B-Rep Segment

JT B-Rep Segment contains an Element that defines the precise geometric Boundary Representation data for a particular Part

in JT B-Rep format. Note that there is also another Boundary Representation format (i.e. XT B-Rep) supported by the JT file

format within a different file Segment Type. Complete description for the XT B-Rep can be found in 7.2.4 XT B-Rep

Segment.

JT B-Rep Segments are typically referenced by Part Node Elements (see 7.2.1.1.1.5Part Node Element) using Late Loaded

Property Atom Elements (see 0Second specifies the date Second value. Valid values are [0, 59] inclusive.

Late Loaded Property Atom Element Late Loaded Property Atom Element). The JT B-Rep Segment type supports ZLIB

compression on all element data, so all elements in JT B-Rep Segment use the Logical Element Header ZLIB form of

element header data.

Figure 101: JT B-Rep Segment data collection

Complete description for Segment Header can be found in 7.1.3.1Segment Header.

7.2.3.1 JT B-Rep Element

Object Type ID: 0x873a70c0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

JT B-Rep Element represents a particular Part‟s precise data in JT boundary representation format. Much of the

“heavyweight” data contained within a JT B-Rep Element is compressed and/or encoded. The compression and/or encoding

state is indicated through other data stored in each JT B-Rep Element.

Two important aspects of a Part are its geometry and its topology. The geometry describes the shape of a Part: this Surface is

a plane, that Surface is a cylinder, this Curve is an arc, etc. The topology describes the connectivity of the Part: this Point is

inside the Part, these Surfaces are next to each other, etc. The 0, 1, and 2 dimensional building blocks of geometry are

Points, Curves, and Surfaces. The corresponding topological building blocks are Vertices, Edges, and Faces. Topology also

uses Shells and Regions to conceptually divide up the three dimensional space.

Parts may have the same topology, but wildly different geometry. Imagine the Surfaces of a Part being composed of rubber.

The topology of the Part does not change as we deform the Part by bending or stretching the surfaces, as long as we do not

cut or glue them (we call this a “nice” deformation). A Part‟s topology can be classified as being “manifold” or “non-

Segment Header

JT B-Rep Element

 JT File Format Reference Version 9.5 Rev-A Page 135

manifold”; where “manifold” implies that the Part has the property that each Edge, excluding seams and poles, has exactly

two faces using it.

Similarly, Parts may have nearly identical geometry but different topology. The topology of a Part depends on how the

geometry is put together. A Part may be manifold or non-manifold simply depending on how the geometry is put together.

In addition to describing connectivity in space, topology is used to describe areas of interest (active areas) on Surfaces.

These active Surface areas are used in defining a complex Part. The areas are specified by oriented Loops and often referred

to as trimmed Surfaces which are exactly the 2-dimensional topological building block called a Face.

Readers desiring/needing a more in-depth exploration of boundary representation theory in order to understand the

significance/meaning of some of the JT B-Rep data fields are referred to references [10], [11] and [12] listed in 3 References

and Additional Information section of this document.

Since the topology is a convenient way to describe or organize the Part, it is also convenient to store the geometry of the Part

in the topological structures. The following sub-sections document the JT B-Rep format for storing the topology and

geometry of a Part in a JT file.

 JT File Format Reference Version 9.5 Rev-A Page 136

Figure 102: JT B-Rep Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

I16 : Version Number

Version Number is the version identifier for this JT B-Rep Element. Only version number 0x0001 is currently defined.

I16 : Version Number

U32 : Reserved Field

Topological Entity Counts

Geometric Entity Counts

Topology Data

Region Count > 0

Geometric Data

Topological Entity Tag Counters

Version Number > 4

U32 : CAD Tags Flag

CAD Tags Flag = = 1

B-Rep CAD Tag Data

Logical Element Header ZLIB

CoordF64 : Reserved Field

F64 : Reserved Field

 JT File Format Reference Version 9.5 Rev-A Page 137

U32 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

CoordF64 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

F64 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

U32 : CAD Tags Flag

CAD Tags Flag is a flag indicating whether CAD Tag data exist for the JT B-Rep.

7.2.3.1.1 Topological Entity Counts

Topological Entity Counts data collection defines the counts for each of the various topological entities within a B-Rep.

Figure 103: Topological Entity Counts data collection

I32 : Region Count

Region Count indicates the number of topological region entities in the B-Rep.

I32 : Shell Count

Shell Count indicates the number of topological shell entities in the B-Rep

I32 : Face Count

Face Count indicates the number of topological face entities in the B-Rep

I32 : Region Count

I32 : Shell Count

I32 : Face Count

I32 : Loop Count

I32 : CoEdge Count

I32 : Edge Count

I32 : Vertex Count

 JT File Format Reference Version 9.5 Rev-A Page 138

I32 : Loop Count

Loop Count indicates the number of topological loop entities in the B-Rep

I32 : CoEdge Count

CoEdge Count indicates the number of topological coedge entities in the B-Rep

I32 : Edge Count

Edge Count indicates the number of topological edge entities in the B-Rep

I32 : Vertex Count

Vertex Count indicates the number of topological vertex entities in the B-Rep

7.2.3.1.2 Geometric Entity Counts

Geometric Entity Counts data collection defines the counts for each of the various geometric entities within a B-Rep.

Figure 104: Geometric Entity Counts data collection

I32 : Surface Count

Surface Count indicates the number of distinct geometric surface entities in the B-Rep

I32 : PCS Curve Count

PCS Curve Count indicates the number of distinct geometric Parameter Coordinate Space curves (i.e. UV curve) entities in

the B-Rep

I32 : MCS Curve Count

MCS Curve Count indicates the number of distinct geometric (Model Coordinate Space) curves (i.e. XYZ curve) entities in

the B-Rep.

I32 : Point Count

Point Count indicates the number of distinct geometric point entities in the B-Rep.

I32 : Surface Count

I32 : PCS Curve Count

I32 : MCS Curve Count

I32 : Point Count

 JT File Format Reference Version 9.5 Rev-A Page 139

7.2.3.1.3 Topology Data

Figure 105: Topology Data collection

7.2.3.1.3.1 Regions Topology Data

Regions Topology Data defines the set of non-overlapping Shells comprising each Region. The volume of a Region is that

volume lying inside each “anti-hole Shell” and outside each simply-contained “hole Shell” belonging to the particular

Region. A Region is analogous to a dimensionally elevated face where Region corresponds to Face and Shell corresponds to

Trim Loop.

Regions Topology Data

Shells Topology Data

Shell Count > 0

Faces Topology Data

Face Count > 0

Loops Topology Data

Loop Count > 0

CoEdges Topology Data

CoEdge Count > 0

Edges Topology Data

Edge Count > 0

Vertices Topology Data

Vertex Count > 0

 JT File Format Reference Version 9.5 Rev-A Page 140

Each Region‟s defining Shells are identified in a list of Shells by an index for both the first Shell and the last Shell in each

Region (i.e. all Shells inclusive between the specified first and last Shell list index define the particular Region).

Figure 106: Regions Topology Data collection

VecI32{Int32CDP, Lag1} : First Shell Indices

First Shell Indices is a vector of indices representing the index of the first Shell in each Region. First Shell Indices uses the

Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Last Shell Indices

Last Shell Indices is a vector of indices representing the index of the last Shell in each Region. Last Shell Indices uses the

Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Region Tags

Each Region has an identifier tag. Region Tags is a vector of identifier tags for a set of Regions. Region Tags uses the Int32

version of the CODEC to compress and encode data.

7.2.3.1.3.2 Shells Topology Data

Shells Topology Data defines the set of topological adjacent Faces making up each Shell. A Shell‟s set of topological

adjacent Faces define a single (usually closed) two manifold solid that in turn defines the boundary between the finite volume

of space enclosed within the Shell and the infinite volume of space outside the Shell. Additional, each Shell has a flag that

denotes whether the Shell refers to the finite interior volume (i.e. a “hole Shell”) or the infinite exterior volume (i.e. an “anti-

hole Shell”).

Each Shell‟s defining Faces are identified in a list of Faces by an index for both the first Face and the last Face in each Shell

(i.e. all Faces inclusive between the specified first and last Face list index define the particular Shell).

VecI32{Int32CDP, Lag1} : First Shell Indices

VecI32{Int32CDP, Lag1} : Last Shell Indices

VecI32{Int32CDP, Lag1} : Region Tags

 JT File Format Reference Version 9.5 Rev-A Page 141

Figure 107: Shells Topology Data collection

VecI32{Int32CDP, Lag1} : First Face Indices

First Face Indices is a vector of indices representing the index of the first Face in each Shell. First Face Indices uses the

Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Last Face Indices

Last Face Indices is a vector of indices representing the index of the last Face in each Shell. Last Face Indices uses the Int32

version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Shell Tags

Each Shell has an identifier tag. Shell Tags is a vector of identifier tags for a set of Shells. Shell Tags uses the Int32 version

of the CODEC to compress and encode data.

VecI32{Int32CDP, Xor1} : Shell Anti-Hole Flags

Each Shell has a flag identifying whether the Shell is an anti-hole Shell. Shell Anti-Hole Flags is a vector of anti-hole flags

for a set of Shells.

In an uncompressed/decoded form the flag values have the following meaning:

= 0 Shell is not an anti-hole Shell

= 1 Shell is an anti-hole Shell

Shell Anti-Hole Flags uses the Int32 version of the CODEC to compress and encode data.

7.2.3.1.3.3 Faces Topology Data

A Face is a two-dimensional topological building block defined as the active (that portion to be used in the model)

regions/areas of a Geometric Surface; where active regions/areas of a Geometric Surface are indicated using oriented Trim

Loops. Faces Topology Data specifies the underlying Geometric Surface and Trim Loops making up each Face along with a

“reverse normal” flag and identifier tag for each Face.

A Face must be trimmed with at least one “anti-hole” Trim Loop and zero or more “hole” Trim Loops. Thus the area of the

Geometric Surface defined as the Face, is the area inside the “anti-hole” Trim Loops and outside each “hole” Trim Loop. No

Trim Loops (“hole‟ or “anti-hole”) may intersect/cross or be tangent at any point. “Anti-Hole” Trim Loops must be defined

with a counter-clockwise orientation in the underlying surface's parameter space whereas “hole” Trim Loops must be defined

with a clockwise orientation. With this Trim Loop orientation definition, as one traverses a Trim Loop of a Face, the material

or “active region” is always to one‟s left. Figure 108 gives an example in parameter space of proper trim loop definition and

orientation (as indicated by the arrows on the loop‟s CoEdges) for a face with two holes. “L1” represents the face “anti-hole”

VecI32{Int32CDP, Lag1} : First Face Indices

VecI32{Int32CDP, Lag1} : Last Face Indices

VecI32{Int32CDP, Lag1} : Shell Tags

VecI32{Int32CDP, Xor1} : Shell Anti-Hole Flags

 JT File Format Reference Version 9.5 Rev-A Page 142

Trim Loop while “L2” and L3” represent the two “hole” Trim Loops. Note that each hole is always represented by a separate

distinct “hole” Trim Loop.

Figure 108: Trim Loop example in parameter Space - One Face with 2 Holes

Each Face‟s underlying Geometric Surface is identified by an index into a list of Geometric Surfaces. Each Face‟s defining

Trim Loops are identified in a list of trim Loops by an index for both the first Trim Loop and the last Trim Loop in each Face

(i.e. all Trim Loops inclusive between the specified first and last Trim Loop list index define the particular Face).

Figure 109: Faces Topology Data collection

VecI32{Int32CDP, Lag1} : First Trim Loop Indices

VecI32{Int32CDP, Lag1} : Last Trim Loop Indices

VecI32{Int32CDP, Lag1} : Surface Indices

VecI32{Int32CDP, Lag1} : Face Tags

VecI32{Int32CDP, Xor1} : Face Reverse Normal Flags

 JT File Format Reference Version 9.5 Rev-A Page 143

VecI32{Int32CDP, Lag1} : First Trim Loop Indices

First Trim Loop Indices is a vector of indices representing the index of the first Trim Loop in each Face. First Trim Loop

Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Last Trim Loop Indices

Last Trim Loop Indices is a vector of indices representing the index of the last Trim Loop in each Face. Last Trim Loop

Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Surface Indices

Surface Indices is a vector of indices representing the index of the underlying Geometric Surface for each Face. Surface

Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Face Tags

Each Face has an identifier tag. Face Tags is a vector of identifier tags for a set of Faces. Face Tags uses the Int32 version of

the CODEC to compress and encode data.

VecI32{Int32CDP, Xor1} : Face Reverse Normal Flags

Each Face has a flag identifying whether the Face‟s normal(s) should be interpreted to point in the direction opposite of the

usual U cross V normal (note that these flags do not imply any sort of parameter reversal, the flag only implies that the

material is on the other side of the surface).

Face Reverse Normal Flags is a vector of reverse-normal flags for a set of Faces.

In an uncompressed/decoded form the flag values have the following meaning:

= 0 Face normal is not reversed

= 1 Face normal is reversed.

Face Reverse Normal Flags uses the Int32 version of the CODEC to compress and encode data.

7.2.3.1.3.4 Loops Topology Data

A Loop (often called Trimming Loop) defines in parameter space a 1D boundary around which geometric surfaces are

trimmed to form a Face. Loops Topology Data specifies the CoEdges making up each Loop along with an anti-hole flag and

identifier tag for each Loop.

A Loop is composed of one or more CoEdges and the Loop must be closed and non-self-intersecting.

Each Loop‟s defining CoEdges are identified in a list of CoEdges by an index for both the first CoEdge and the last CoEdge

in each Loop (i.e. all CoEdges inclusive between the specified first and last CoEdge list index define the particular Loop).

 JT File Format Reference Version 9.5 Rev-A Page 144

Figure 110: Loops Topology Data collection

VecI32{Int32CDP, Lag1} : First CoEdge Indices

First CoEdge Indices is a vector of indices representing the index of the first CoEdge in each Loop. First CoEdge Indices

uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Last CoEdge Indices

Last CoEdge Indices is a vector of indices representing the index of the last CoEdge in each Loop. Last CoEdge Indices uses

the Int32 version of the CODEC to compress and encode data.

VecI32{I32CDP, Lag1} : Loop Tags

Each Loop has an identifier tag. Loop Tags is a vector of identifier tags for a set of Loops. Loop Tags uses the Int32 version

of the CODEC to compress and encode data.

VecI32{I32CDP, Xor1} : Anti-Hole Flags

Each Loop has a flag identifying whether the Loop is an anti-hole Loop. Anti-Hole Flags is a vector of anti-hole flags for a

set of Loops

In an uncompressed/decoded form the flag values have the following meaning:

= 0 Loop is not an anti-hole Loop

= 1 Loop is an anti-hole Loop

Anti-Hole Flags uses the Int32 version of the CODEC to compress and encode data.

7.2.3.1.3.5 CoEdges Topology Data

A CoEdge defines a parameter space edge trim Loop segment (i.e. the projection of an Edge into the parameter space of the

Face). CoEdges Topology Data specifies the underlying Edge and PCS Curve making up each CoEdge along with a MCS

curve reversed flag and tag for each CoEdge.

The “Co” portion of the CoEdge name derives from the manifold topology definition that each Edge has exactly two Faces

containing it; thus a CoEdge defines one Face‟s “use” of an Edge and the adjoining Face also has a CoEdge (“edge use” in

some other terminologies) for the same underlying Edge. This sharing of the same underlying Edge by two adjoining Faces

requires an “MCS Curve Reversed Flag” on each CoEdge to indicate the edge traversal direction (i.e. for a proper manifold

topology definition each CoEdge must traverse the Edge in opposite directions).

VecI32{Int32CDP, Lag1} : First CoEdge Indices

VecI32{Int32CDP, Lag1} : Last CoEdge Indices

VecI32{I32CDP, Lag1} : Loop Tags

VecI32{I32CDP, Xor1} : Anti-Hole Flags

 JT File Format Reference Version 9.5 Rev-A Page 145

Figure 111: CoEdges Topology Data collection

VecI32{Int32CDP, Lag1} : Edge Indices

Edge Indices is a vector of indices representing the index of the underlying Edge for each CoEdge. Edge Indices uses the

Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : PCS Curve Indices

PCS Curve Indices is a vector of indices representing the index of the PCS Curve (UV Curve) for each CoEdge. PCS Curve

Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : CoEdge Tags

Each CoEdge has an identifier tag. CoEdge Tags is a vector of identifier tags for a set of CoEdges. CoEdge Tags uses the

Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Xor1} : MCS Curve Reversed Flags

Each CoEdge has a flag indicating whether the directional sense of the associated Edge‟s MCS curve should be interpreted as

opposite the direction its parameterization implies. MCS Curve Reversed Flags is a vector of reverse flags for a set of

CoEdges.

In an uncompressed/decoded form the flag values have the following meaning:

= 0 Directional sense of associated edges MCS curve should not be interpreted as opposite the

direction its parameterization implies.

= 1 Directional sense of associated edges MCS curve should be interpreted as opposite the

direction its parameterization implies.

MCS Curve Reversed Flags uses the Int32 version of the CODEC to compress and encode data.

7.2.3.1.3.6 Edges Topology Data

An Edge defines a model space trim Loop segment. Edges Topology Data specifies the underlying MCS Curve and start and

end Vertex making up each Edge along with an identification tag for each Edge.

If manifold topology, then two faces join at a single model Edge and thus an edge is shared/referenced by two CoEdges (one

per Face).

VecI32{Int32CDP, Lag1} : Edge Indices

VecI32{Int32CDP, Lag1} : PCS Curve Indices

VecI32{Int32CDP, Lag1} : CoEdge Tags

VecI32{Int32CDP, Xor1} : MCS Curve Reversed Flags

 JT File Format Reference Version 9.5 Rev-A Page 146

Figure 112: Edges Topology Data collection

VecI32{Int32CDP, Lag1} : Start Vertex Indices

Start Vertex Indices is a vector of indices representing the index of the start Vertex in each Edge. Start Vertex Indices uses

the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : End Vertex Indices

End Vertex Indices is a vector of indices representing the index of the end Vertex in each Edge. End Vertex Indices uses the

Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : MCS Curve Indices

MCS Curve Indices is a vector of indices representing the index of the MCS Curve (Model Space curve) for each Edge. MCS

Curve Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Edge Tags

Each Edge has an identifier Tag. Edge Tags is a vector of identifier Tags for a set of Edges. Edge Tags uses the Int32 version

of the CODEC to compress and encode data.

7.2.3.1.3.7 Vertices Topology Data

A Vertex is the simplest topological entity and is basically made up of a geometric Point. Vertices Topology Data specifies

the underlying geometric Point making up each Vertex along with an identification tag for each Vertex.

The presence of Vertices Topology Data in a JT B-Rep topology definition is optional. Vertex data is optional because

unlike most topological entities, no connectivity information is contained in a Vertex structure and Vertex data is also not

necessary for performing operations such as tessellation or mass properties calculations.

A Vertex is usually shared/referenced by two or more Edges (e.g. if the corners of four rectangular Faces touches at a

common point, this point is represented by a Vertex and is shared by four Edges).

Figure 113: Vertices Topology Data collection

VecI32{Int32CDP, Lag1} : Point Indices

VecI32{Int32CDP, Lag1} : Vertex Tags

VecI32{Int32CDP, Lag1} : Start Vertex Indices

VecI32{Int32CDP, Lag1} : End Vertex Indices

VecI32{Int32CDP, Lag1} : MCS Curve Indices

VecI32{Int32CDP, Lag1} : Edge Tags

 JT File Format Reference Version 9.5 Rev-A Page 147

VecI32{Int32CDP, Lag1} : Point Indices

Point Indices is a vector of indices representing the index of the geometric point for each Vertex. Point Indices uses the Int32

version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Vertex Tags

Each Vertex has an identifier Tag. Vertex Tags is a vector of identifier Tags for a set of Vertices. Vertex Tags uses the Int32

version of the CODEC to compress and encode data.

7.2.3.1.4 Geometric Data

Figure 114: Geometric Data collection

7.2.3.1.4.1 Surfaces Geometric Data

Surfaces Geometric Data collection contains the JT B-Rep‟s geometric Surface data. Currently only NURBS Surface types

are supported within a JT B-Rep. The count/number of Surfaces within a JT B-Rep is indicated by data field Surface Count

documented in 7.2.3.1.2 Geometric Entity Counts.

Surfaces Geometric

Data

Surface Count > 0

PCS Curves Geometric

Data

PCS Curve Count > 0

MCS Curves

Geometric Data

MCS Curve Count > 0

Point Geometric Data

Point Count > 0

 JT File Format Reference Version 9.5 Rev-A Page 148

Figure 115: Surfaces Geometric Data collection

VecI32{Int32CDP, Lag1} : Surface Base Types

Each Surface is assigned a base type identifier. Surface Base Types is a vector of base type identifiers for each Surface in a

list of Surfaces. Currently only NURBS Surface Base Type is supported, but a type identifier is still included in the

specification to allow for future expansion of the JT Format to support other surface types within a JT B-Rep.

 In an uncompressed/decoded form the Surface base type identifier values have the following meaning:

= 1 Surface is a NURBS surface

Non-Trivial Knot Vector

NURBS Surface Indices

NURBS Surface Degree

NURBS Surface Control

Point Counts

NURBS Surface Control

Point Weights

NURBS Surface Control

Points

NURBS Surface Knot

Vectors

VecI32{Int32CDP, Lag1} : Surface Base Types

VecI32{Int32CDP, Lag1} : NURBS Surface Control Point Dimensionality

VecI32{Int32CDP, Lag1} : NURBS Surface Reserved Fields

 JT File Format Reference Version 9.5 Rev-A Page 149

Surface Base Types uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : NURBS Surface Control Point Dimensionality

NURBS Surface Control Point Dimensionality is a vector of control point dimensionality values for each NURBS Surface in

a list of Surfaces (i.e. there is a stored values for each NURBS Surface in the list).

In an uncompressed/decoded form dimensionality values have the following meaning:

= 3 Non-Rational (each control point has 3 coordinates)

= 4 Rational (each control point has 4 coordinates)

NURBS Surface Control Point Dimensionality uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : NURBS Surface Reserved Fields

NURBS Surface Reserved Fields is a vector of data reserved for future expansion of the JT format. Each NURBS Surface in

a list of Surfaces has one reserved data field entry in this NURBS Surface Reserved Fields vector. NURBS Surface Reserved

Fields uses the Int32 version of the CODEC to compress and encode data

7.2.3.1.4.1.1 Non-Trivial Knot Vector NURBS Surface Indices

Non-Trivial Knot Vector NURBS Surface Indices data collection specifies for both U and V directions the Surface index

identifiers (i.e. indices to particular NURBS Surfaces within a list of Surfaces) for all NURBS Surfaces containing non-trivial

knot vectors. A description/definition for “non-trivial knot vector” can be found in 8.1.13 Compressed Entity List for Non-

Trivial Knot Vector.

This Surface index data is stored in a compressed format.

Figure 116: Non-Trivial Knot Vector NURBS Surface Indices data collection

Both Non-Trivial U Knot Vector Surface Indices and Non-Trivial V Knot Vector Surface Indices have the same data format

as that documented for data collection 8.1.13 Compressed Entity List for Non-Trivial Knot Vector.

7.2.3.1.4.1.2 NURBS Surface Degree

NURBS Surface Degree data collection defines the Surface degree in both U and V directions for each NURBS Surface in a

list of Surfaces (i.e. there are stored values for each NURBS Surface in the list). This degree data for the list of Surfaces is

stored in a compressed format.

Non-Trivial U Knot

Vector Surface Indices

Non-Trivial V Knot

Vector Surface Indices

 JT File Format Reference Version 9.5 Rev-A Page 150

Figure 117: NURBS Surface Degree data collection

VecI32{Int32CDP, Lag1} : U-Degrees

U-Degrees is a vector of Surface degree values in U direction for each NURBS Surface in a list of Surfaces. U-Degrees uses

the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : V-Degrees

V -Degrees is a vector of Surface degree values in V direction for each NURBS Surface in a list of Surfaces. V-Degrees uses

the Int32 version of the CODEC to compress and encode data.

7.2.3.1.4.1.3 NURBS Surface Control Point Counts

NURBS Surface Control Point Counts defines the number of NURBS Surface control points for both U and V directions for

each NURBS Surface in a list of Surfaces (i.e. there are stored values for each NURBS Surface in the list). The control point

count data for the list of Surfaces in stored in a compressed format.

Figure 118: NURBS Surface Control Point Counts data collection

VecI32{Int32CDP, Lag1} : U-Control Point Counts

U-Control Point Counts is a vector of control point counts in U direction for each NURBS Surface in a list of Surfaces. U-

Control Point Counts uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : V-Control Point Counts

V-Control Point Counts is a vector of control point counts in V direction for each NURBS Surface in a list of Surfaces. V-

Control Point Counts uses the Int32 version of the CODEC to compress and encode data.

7.2.3.1.4.1.4 NURBS Surface Control Point Weights

NURBS Surface Control Point Weights data collection defines the Weight values for a conditional set of Control Points for a

list of NURBS Surfaces. The storing of the Weight value for a particular Control Point is conditional, because if NURBS

Surface Control Point Dimension is “non-rational” or the actual Control Point‟s Weight value is “1”, then no Weight value is

stored for the Control Point (i.e. Weight value can be inferred to be “1”).

The NURBS Surface Control Point Weights data is stored in a compressed format.

VecI32{Int32CDP, Lag1} : U-Control Point Counts

VecI32{Int32CDP, Lag1} : V-Control Point Counts

VecI32{Int32CDP, Lag1} : U-Degrees

VecI32{Int32CDP, Lag1} : V-Degrees

 JT File Format Reference Version 9.5 Rev-A Page 151

Figure 119: NURBS Surface Control Point Weights data collection

Complete description for Compressed Control Point Weights Data can be found in 8.1.14 Compressed Control Point Weights

Data.

7.2.3.1.4.1.5 NURBS Surface Control Points

NURBS Surface Control Points is the compressed and/or encoded representation of the Control Point coordinates for each

NURBS Surface in a list of Surfaces (i.e. there are stored values for each NURBS Surface in the list). Note that these are

non-homogeneous coordinates (i.e. Control Point coordinates have been divided by the corresponding Control Point Weight

values).

Figure 120: NURBS Surface Control Points data collection

VecF64{Float64CDP, NULL} : Control Points

Control Points is a vector of Control Point coordinates for all the NURBS Surfaces in a list of Surfaces. All the NURBS

Surfaces Control Point coordinates are cumulated into this single vector in the same order as the Surface appears in the

Surface list (i.e. Surface-1 U Control Points, Surface-1 V Control Points, Surface-2 U Control Points, Surface-2 V Control

Points, etc.). Control Points uses the Float64 version of the CODEC to compress and encode data in a “lossless” manner.

7.2.3.1.4.1.6 NURBS Surface Knot Vectors

NURBS Surface Knot Vectors defines the knot vectors for both U and V directions for each NURBS Surface having non-

trivial knot vectors in a list of Surfaces (i.e. there are stored values for each non-trivial knot vector NURBS Surface in the

list). The NURBS Surfaces for which knot vectors are stored (i.e. those containing non-trivial knot vectors) are identified in

data collection Non-Trivial Knot Vector NURBS Surface Indices documented in 7.2.3.1.4.1.1 Non-Trivial Knot Vector

NURBS Surface Indices.

The knot vector data for the list of Surfaces is stored in a compressed format.

Figure 121: NURBS Surface Knot Vectors data collection

VecF64{Float64CDP, NULL} : U Knot Vectors

U Knot Vectors is a list of knot vector values in U direction for each NURBS Surface having non-trivial knot vectors in a list

of Surfaces. All these NURBS Surface U direction non-trivial knot vectors are cumulated into this single list in the same

order as the Surface appears in the Surface list (i.e. Surface-N Non-Trivial U Knot Vector, Surface-M Non-Trivial U Knot

Vector, etc.). U Knot Vectors uses the Float64 version of the CODEC to compress and encode data.

VecF64{Float64CDP, NULL} : U Knot Vectors

VecF64{Float64CDP, NULL} : V Knot Vectors

VecF64{Float64CDP, NULL} : Control Points

Compressed Control

Point Weights Data

 JT File Format Reference Version 9.5 Rev-A Page 152

VecF64{Float64CDP, NULL} : V Knot Vectors

V Knot Vectors is a list of knot vector values in V direction for each NURBS Surface having non-trivial knot vectors in a list

of Surfaces. All these NURBS Surface V direction non-trivial knot vectors are cumulated into this single list in the same

order as the Surface appears in the Surface list (i.e. Surface-N Non-Trivial V Knot Vector, Surface-M Non-Trivial V Knot

Vector, etc.). V Knot Vectors uses the Float64 version of the CODEC to compress and encode data.

7.2.3.1.4.2 PCS Curves Geometric Data

PCS Curves Geometric Data collection contains the JT B-Rep‟s Parameter Coordinate Space geometric Curve data (i.e. UV

Curve data). This geometric PCS Curve data is divided up into two collection types; one data collection for what are

considered “Trivial” PCS curves and one data collection for compressed/encoded PCS NURBS Curve data.

“Trivial” PCS Curves are those UV Curves whose definition is such that the actual UV Curve definition can be derived from

the parametric domain definition by storing a limited amount of descriptive data for each UV curve (i.e. do not have to store

the complete NURBS UV Curve definition).

The count/number of PCS Curves within a JT B-Rep is indicated by data field PCS Curve Count documented in 7.2.3.1.2

Geometric Entity Counts.

Figure 122: PCS Curves Geometric Data collection

Complete description for Compressed Curve Data can be found in 8.1.15 Compressed Curve Data.

7.2.3.1.4.2.1 Trivial PCS Curves

Trivial PCS Curves data collection represents those UV curves whose definition is such (i.e. “trivial” enough) that the actual

UV curve definition can be derived from the parametric domain definition by storing a limited amount of descriptive data for

each UV curve (i.e. do not have to store the complete UV curve definition). These Trivial PCS Curves are grouped into three

classifications (Trivial Domain Loop, Trivial Box Loop, or Trivial Domain UV Curve) and stored as described in the

following sub-sections.

Compressed Curve Data

Trivial PCS Curves

 JT File Format Reference Version 9.5 Rev-A Page 153

Figure 123: Trivial PCS Curves data collection

I32 : Trivial Domain Loops Exist Flag

Trivial Domain Loops Exist Flag is a flag indicating whether “trivial” domain loops exist/follow. A Trivial Domain Loop is

a Loop that encloses the entire parametric domain. (i.e. all UV Curves of the Loop span the entire length of the Surface

parametric domain). Given this criteria a Trivial Domain Loop must always be made up of four Trivial Domain UV curves.

= 0 Trivial Domain Loops do not exist.

I32 : Trivial Domain Loops Exist Flag

I32 : Trivial Box Loops Exist Flag

I32 : Trivial Domain UV Curves Exist Flag

Trivial Domain Loops Exist Flag = = 1

Trivial Box Loops Exist Flag = = 1

Trivial Domain UV Curves Exist Flag = = 1

VecI32{Int32CDP, Lag1} : Trivial Domain Loop UV Curve Indices

VecI32{Int32CDP, Lag1} : Trivial Box Loop UV Curve Indices

VecF64{Float64CDP, NULL} : Trivial Box Loop Corner Coords

VecI32{Int32CDP, Lag1} : Trivial UV Curve Indices

VecI32{Int32CDP, Lag1} : Trivial UV Curve Para Domain Side Codes

 JT File Format Reference Version 9.5 Rev-A Page 154

= 1 Trivial Domain Loops exist.

I32 : Trivial Box Loops Exist Flag

Trivial Box Loops Exist Flag is a flag indicating whether “trivial” box loops exist/follow. A trivial Box Loop is a Loop that

forms a rectangle (i.e. corresponding curve end coordinates of opposite sides of the box are equal). Given this criteria a

Trivial Box Loop must always be made up of four UV curves

= 0 Trivial Box Loops do not exist.

= 1 Trivial Box Loops exist.

“Equality of corresponding curve end coordinates of opposite sides of the box” is represented graphically as follows:

I32 : Trivial Domain UV Curves Exist Flag

Trivial Domain UV Curves Exist Flag is a flag indicating whether “trivial” domain UV curves (Loop CoEdges) exist/follow

that are not part of a Trivial Domain Loop or Trivial Box Loop (i.e. a Loop contains some UV curves that span the entire

length of the Surface parametric domain but not all the Loop UV curves meet this criteria and thus not captured as part of the

Trivial Domain Loop data).

= 0 Trivial Domain UV Curves do not exist.

= 1 Trivial Domain UV Curves exist.

VecI32{Int32CDP, Lag1} : Trivial Domain Loop UV Curve Indices

Trivial Domain Loop UV Curve Indices is a vector of all UV curve indices that are part of a Trivial Domain Loop. Note that

each Trivial Domain Loop is always made up of four UV curves (thus four UV curve indices per Loop). Trivial Domain

Loop UV Curve Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Trivial Box Loop UV Curve Indices

Trivial Box Loop UV Curve Indices is a vector of all UV Curve indices that are part of a Trivial Box Loop. Note that each

Trivial Box Loop is always made up of four UV Curves (thus four UV Curve indices per Loop). Trivial Box Loop UV

Curve Indices uses the Int32 version of the CODEC to compress and encode data.

VecF64{Float64CDP, NULL} : Trivial Box Loop Corner Coords

Trivial Box Loop Corner Coords is a vector of box corner coordinates for all Trivial Box Loops (i.e. each Box Loop will

store two box coroner coordinates). A Box Loop‟s set of “box corner coordinates” are the coordinates of the two min/max

diagonally opposite corners of the box. Note that if the Box Loop is a “hole”, then the max and min corners are the other

ends of the respective box sides that contain the max and min corners. Trivial Box Loop Corner Coords uses the Float64

version of the CODEC to compress and encode data.

V

U

P0 P1

P2

P3

P4 P5

P6

P7

P0[0] – P5[0] = 0

P1[0] – P4[0] = 0

P2[1] – P7[1] = 0

P3[1] – P6[1] = 0

 JT File Format Reference Version 9.5 Rev-A Page 155

VecI32{Int32CDP, Lag1} : Trivial UV Curve Indices

Trivial UV Curve Indices is a vector of all Loop UV Curve indices that are not part of a Trivial Domain Loop or Trivial Box

Loop. Trivial UV Curve Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Trivial UV Curve Para Domain Side Codes

Trivial UV Curve Para Domain Side Codes is a vector containing a “side code” for each Trivial UV Curve indicating which

parametric domain side the UV Curve lies on.

In an uncompressed/decoded form the parametric domain side values have the following meaning:

= 0 Bottom side of parametric domain

= 1 Right side of parametric domain

= 2 Top side of parametric domain

= 3 Left side of parametric domain

Trivial UV Curve Para Domain Side Codes uses the Int32 version of the CODEC to compress and encode data.

7.2.3.1.4.3 MCS Curves Geometric Data

MCS Curves Geometric Data collection contains the JT B-Rep‟s Model Coordinate System geometric Curve data (i.e. XYZ

Curve data). Currently only NURBS Curve types are supported within a JT B-Rep. The count/number of MCS Curves

within a JT B-Rep is indicated by data field MCS Curve Count documented in 7.2.3.1.2 Geometric Entity Counts.

Figure 124: MCS Curves Geometric Data collection

Complete description for Compressed Curve Data can be found in 8.1.15 Compressed Curve Data.

7.2.3.1.4.4 Point Geometric Data

Point Geometric Data collection contains the JT B-Rep‟s geometric Point data. Each Point is simply represented by a

CoordF32 for the Point‟s coordinate components. The count/number of Points within a JT B-Rep is indicated by data field

Point Count documented in 7.2.3.1.2 Geometric Entity Counts.

Figure 125: Point Geometric Data collection

CoordF32 : Point Coordinates

Point Coordinates specifies the XYZ coordinate components for a Point.

CoordF32 : Point Coordinates
 Point Count

Compressed Curve

Data

 JT File Format Reference Version 9.5 Rev-A Page 156

7.2.3.1.5 Topological Entity Tag Counters

Topological Entity Tag Counters data collection specifies the next available “unique” tag value for each entity type in a JT B-

Rep. These are rolling tag counters that are meant to be used for assigning a unique tag when a new entity is added to a JT B-

Rep.

Figure 126: Topological Entity Tag Counters data collection

I32 : Region Tag Counter

Region tag Counter specifies the next available “unique‟ tag value for Region entity.

I32 : Shell Tag Counter

Shell Tag Counter specifies the next available “unique‟ tag value for Shell entity.

I32 : Face Tag Counter

Face Tag Counter specifies the next available “unique‟ tag value for Face entity.

I32 : Loop Tag Counter

Loop Tag Counter specifies the next available “unique‟ tag value for Loop entity.

I32 : CoEdge Tag Counter

CoEdge Tag Counter specifies the next available “unique‟ tag value for CoEdge entity.

I32 : Edge Tag Counter

Edge Tag Counter specifies the next available “unique‟ tag value for Edge entity.

I32 : Vertex Tag Counter

Vertex Tag Counter specifies the next available “unique‟ tag value for Vertex entity.

I32 : Region Tag Counter

I32 : Shell Tag Counter

I32 : Face Tag Counter

I32 : Loop Tag Counter

I32 : CoEdge Tag Counter

I32 : Edge Tag Counter

I32 : Vertex Tag Counter

 JT File Format Reference Version 9.5 Rev-A Page 157

7.2.3.1.6 B-Rep CAD Tag Data

The B-Rep CAD Tag Data collection contains the list of persistent IDs, as defined in the CAD System, to uniquely identify

individual Faces and Edges in the JT B-Rep. The existence of this B-Rep CAD Tag Data collection is dependent upon the

value of previously read data field CAD Tags Flag as documented in 7.2.3.1 JT B-Rep Element.

If B-Rep CAD Tag Data collection is present, there will be a CAD Tag for every Face and every Edge in the JT B-Rep and

the list order will be Face CAD Tags followed by Edge CAD Tags. Therefore the total number of CAD Tags in the list

should be equal to “Face Count + Edge Count” as documented in 7.2.3.1.1 Topological Entity Counts.

Figure 127: B-Rep CAD Tag Data collection

Complete description for Compressed CAD Tag Data can be found in 8.1.16 Compressed CAD Tag Data.

7.2.4 XT B-Rep Segment

XT B-Rep Segment contains an Element that defines the precise geometric Boundary Representation data for a particular Part

in Parasolid boundary representation (XT) format. Note that there is also another Boundary Representation format (i.e. JT B-

Rep) supported by the JT file format within a different file Segment Type. Complete description for the JT B-Rep can be

found in 7.2.3 JT B-Rep Segment.

XT B-Rep Segments are typically referenced by Part Node Elements (see 7.2.1.1.1.5Part Node Element) using Late Loaded

Property Atom Elements (see 0Second specifies the date Second value. Valid values are [0, 59] inclusive.

Late Loaded Property Atom Element). The XT B-Rep Segment type supports ZLIB compression on all element data, so all

elements in XT B-Rep Segment use the Logical Element Header ZLIB form of element header data.

7.2.4.1 XT B-Rep Element

Object Type ID: 0x873a70e0, 0x2ac9, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

XT B-Rep Element represents a particular part‟s precise data in Parasolid boundary representations (XT) format.

Compressed CAD

Tag Data

 JT File Format Reference Version 9.5 Rev-A Page 158

Figure 128: XT B-Rep Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

I32 : Version Number

Version Number is the version identifier for this XT B-Rep Element. Version number “2” is currently the only valid value

for v9 JT files.

I32 : Parasolid Kernel Major Version Number

Parasolid Kernel Major Version Number specifies the major version number for the revision of Parasolid that wrote the XT

B-Rep data into JT File.

I32 : Parasolid Kernel Minor Version Number

Parasolid Kernel Minor Version Number specifies the minor version number for the revision of Parasolid that wrote the XT

B-Rep data into JT File.

I32 : Parasolid Kernel Build Number

Parasolid Kernel Build Number specifies the build number for the revision of Parasolid that wrote the XT B-Rep data into JT

File.

I32 : XT B-Rep Data Length

XT B-Rep Data Length specifies the length in bytes of the XT B-Rep Data collection. A JT file loader/reader may use this

information to compute the end position of the XT B-Rep Data within the JT file and thus skip (for whatever reason) reading

the remaining XT B-Rep Data.

I32 : Version Number

I32 : Parasolid Kernel Major Version Number

I32 : Parasolid Kernel Minor Version Number

I32 : XT B-Rep Data Length

XT B-Rep Data

Logical Element Header ZLIB

I32 : Parasolid Kernel Build Number

 JT File Format Reference Version 9.5 Rev-A Page 159

7.2.4.1.1 XT B-Rep Data

The XT B-Rep Data collection specifies the raw stream of bytes that Parasolid uses to represent a Part‟s B-Rep Body(s) in an

external file. The XT B-Rep Data collection format in the JT file is exactly equivalent to the Parasolid XT “Neutral Binary”

encoding format as written by the Parasolid “PK_PART_transmit” interface routine.

Complete documentation for the Parasolid XT “Neutral Binary” encoding format as written by “PK_PART_transmit” can be

found in Appendix F: Parasolid XT Format Reference.

7.2.5 Wireframe Segment

Wireframe Segment contains an Element that defines the precise 3D wireframe data for a particular Part. A Wireframe

Segment is typically referenced by a Part Node Element (see 7.2.1.1.1.5 Part Node Element) using a Second specifies the

date Second value. Valid values are [0, 59] inclusive.

Late Loaded Property Atom Element (see 0 Late Loaded Property Atom Element). The Wireframe Segment type supports

ZLIB compression on all element data, so all elements in Wireframe Segment use the Logical Element Header ZLIB form of

element header data.

Figure 129: Wireframe Segment data collection

Complete description for Segment Header can be found in 7.1.3.1Segment Header.

7.2.5.1 Wireframe Rep Element

Object Type ID: 0x873a70d0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

A Wireframe Rep Element represents a particular Part‟s precise 3D wireframe data (e.g. reference curves, section curves).

Much of the “heavyweight” data contained within a Wireframe Rep Element is compressed and/or encoded. The

compression and/or encoding state is indicated through other data stored in each Wireframe Rep Element.

Segment Header

Wireframe Rep Element

 JT File Format Reference Version 9.5 Rev-A Page 160

Figure 130: Wireframe Rep Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

I16 : Version Number

Version Number is the version identifier for this JT Wireframe Rep Element. Version numbers “1” is currently supported.

I32 : Edge Count

I32 : MCS Curve Count

Edge Count > 0

MCS Curve Count > 0

Wireframe MCS

Curves Geometric Data

I32 : Edge Tag Counter

VecI32{Int32CDP2, Lag1} : MCS Curve Indices

VecI32{Int32CDP2, Lag1} : Edge Tags

Logical Element Header ZLIB

Wireframe Rep CAD

Tag Data

CAD Tags Flag = = 1

I16 : Version Number

U32: CAD Tags Flag

 JT File Format Reference Version 9.5 Rev-A Page 161

I32 : Edge Count

Edge Count indicates the number of topological Edge entities in the Wireframe Rep

I32 : MCS Curve Count

MCS Curve Count indicates the number of distinct geometric (Model Coordinate Space) curves (i.e. XYZ curve) entities in

the Wireframe Rep.

VecI32{Int32CDP2, Lag1} : MCS Curve Indices

MCS Curve Indices is a vector of indices representing the index of the MCS Curve (Model Space curve) for each Edge. MCS

Curve Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP2, Lag1} : Edge Tags

Each Edge has an identifier Tag. Edge Tags is a vector of identifier Tags for a set of Edges. Edge Tags uses the Int32 version

of the CODEC to compress and encode data.

I32 : Edge Tag Counter

Edge Tag Counter specifies the next available “unique‟ tag value for Edge entity.

U32: CAD Tags Flag

CAD Tags Flag is a flag indicating whether CAD Tag data exist for the Wireframe Rep.

7.2.5.1.1 Wireframe MCS Curves Geometric Data

Wireframe MCS Curves Geometric Data collection contains the Wireframe Rep‟s Model Coordinate System geometric

Curve data (i.e. XYZ Curve data). Currently only NURBS Curve types are supported within a Wireframe Rep. The

count/number of MCS Curves within a Wireframe Rep is indicated by data field MCS Curve Count documented in 7.2.5.1

Wireframe Rep Element.

Figure 131: Wireframe MCS Curves Geometric Data collection

Complete description for Compressed Curve Data can be found in 8.1.15 Compressed Curve Data.

7.2.5.1.2 Wireframe Rep CAD Tag Data

The Wireframe Rep CAD Tag Data collection contains the list of persistent IDs, as defined in the CAD System, to uniquely

identify individual Edges in the Wireframe Rep. The existence of this Wireframe Rep CAD Tag Data collection is dependent

upon the value of previously read data field CAD Tags Flag as documented in 7.2.5.1 Wireframe Rep Element.

If Wireframe Rep CAD Tag Data collection is present, there will be a CAD Tag for every Edge in the Wireframe Rep.

Therefore the total number of CAD Tags in the list should be equal to “Edge Count” as documented in 7.2.5.1 Wireframe

Rep Element.

Figure 132: Wireframe Rep CAD Tag Data collection

Compressed CAD

Tag Data

Compressed Curve

Data

 JT File Format Reference Version 9.5 Rev-A Page 162

Complete description for Compressed CAD Tag Data can be found in 8.1.16 Compressed CAD Tag Data.

7.2.6 Meta Data Segment

Meta Data Segments are used to store large collections of meta-data in separate addressable segments of the JT File. Storing

meta-data in a separate addressable segment allows references (from within the JT file) to these segments to be constructed

such that the meta-data can be late-loaded (i.e. JT file reader can be structured to support the “best practice” of delaying the

loading/reading of the referenced meta-data segment until it is actually needed).

Meta Data Segments are typically referenced by Part Node Elements (see 7.2.1.1.1.5Part Node Element) using Late Loaded

Property Atom Elements (see 0 Late Loaded Property Atom ElementSecond specifies the date Second value. Valid values

are [0, 59] inclusive.

Late Loaded Property Atom Element).

The Meta Data Segment type supports ZLIB compression on all element data, so all elements in Meta Data Segment use the

Logical Element Header ZLIB form of element header data.

Figure 133: Meta Data Segment data collection

Complete description for Segment Header can be found in 7.1.3.1 Segment Header.

The following sub-sections document the various I32 : Texture Coord Channel types.

7.2.6.1 Property Proxy Meta Data Element

Object Type ID: 0xce357247, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1

A Property Proxy Meta Data Element serves as a “proxy” for all meta-data properties associated with a particular Meta Data

Node Element (see 7.2.1.1.1.6 Meta Data Node Element). The proxy is in the form of a list of key/value property pairs where

the key identifies the type and meaning of the value. Although the property key is always in the form of a String data type,

the value can be one of several data types.

Segment Header

Meta Data Element

 JT File Format Reference Version 9.5 Rev-A Page 163

Figure 134: Property Proxy Meta Data Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

I16: Version Number

Version Number is the version identifier for this data collection. Version number “0x0001” is currently the only valid value.

Logical Element Header ZLIB

MbString : Property Key

U8 : Property Value Type

If Property Key string is not

empty (i.e. NULL).

MbString : String Property Value

Property Value Type = = 1

I32 : Integer Property Value

Property Value Type = = 2

F32 : Float Property Value

Property Value Type = = 3

Property Value Type = = 4

Date Property Value

while Property Key

string is not empty

(i.e. NULL).

I16: Version Number

 JT File Format Reference Version 9.5 Rev-A Page 164

MbString : Property Key

Property Key specifies the key string for the property.

U8 : Property Value Type

Property Value Type specifies the data type for the Property Value. If the type equals “0” then no Property Value is written.

Valid types include the following:

= 0 Unknown

= 1 MbString data type value

= 2 I32 data type value

= 3 F32 data type value

= 4 Date value

MbString : String Property Value

String Property Value represents the property value when Property Value Type = = 1.

I32 : Integer Property Value

Integer Property Value represents the property value when Property Value Type = = 2.

F32 : Float Property Value

Float Property Value represents the property value when Property Value Type = = 3.

7.2.6.1.1 Date Property Value

Date Property Value represents the property value when Property Value Type = = 4. Date Property Value data collection

represents a date as a combination of year, month, day, hour, minute, and second data fields.

 JT File Format Reference Version 9.5 Rev-A Page 165

Figure 135: Date Property Value data collection

I16 : Year

Year specifies the date year value.

I16 : Month

Month specifies the date month value.

I16 : Day

Day specifies the date day value.

I16 : Hour

Hour specifies the date hour value.

I16 : Minute

Minute specifies the date minute value.

I16 : Second

Second specifies the date Second value.

7.2.6.2 PMI Manager Meta Data Element

Object Type ID: 0xce357249, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1

The PMI Manager Meta Data Element data collection is a type of I32 : Texture Coord Channel which contains the Product

and Manufacturing Information for a part/assembly.

I16 : Year

I16 : Month

I16 : Day

I16 : Hour

I16 : Minute

I16 : Second

 JT File Format Reference Version 9.5 Rev-A Page 166

Figure 136: PMI Manager Meta Data Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

I16: Version Number

I16 : Reserved Field

I16: Version Number

Version Number is the

version identifier for

this PMI Manager

Element. Version

numbers 0x0001 and

0x0002 are currently

supported.

I16 : PMI
Version
Number

Version Number is the

version identifier for

the PMI. There are

several PMI versions

that must be supported

for JT File format 8.1.

This is because if an

older JT File format

containing PMI is read

and then re-exported

to JT File Format 8.1,

the exported PMI data

must be maintained in

the version format

originally read from

the initial JT file (i.e.

PMI data read from a

JT File is not migrated

to new version format

when re-exported to

another JT File

format).

The valid PMI version

numbers are as

follows:

=

3

Version-3

=

4

Version-4

=

5

Version-5

=

6

Version-6

PMI Associations

PMI User Attributes

PMI String Table

PMI Model Views

PMI Version Number > 5

Generic PMI Entities

PMI Version Number > 7

U32 : CAD Tags Flag

CAD Tags Flag = = 1

PMI CAD Tag

Data

Logical Element Header ZLIB

I16 : PMI Version Number

MV Property Count

PMI Property

Polygon Data

I32: Font Count

String: Font Name

VecI32: Character Set

PMI Polygon Data

Version Number > 1

 JT File Format Reference Version 9.5 Rev-A Page 167

I16: Version Number

Version Number is the version identifier for this PMI Manager Element. Version numbers 0x0001 and 0x0002 are currently

supported.

I16 : PMI Version Number

Version Number is the version identifier for the PMI. There are several PMI versions that must be supported for JT File

format 8.1. This is because if an older JT File format containing PMI is read and then re-exported to JT File Format 8.1, the

exported PMI data must be maintained in the version format originally read from the initial JT file (i.e. PMI data read from a

JT File is not migrated to new version format when re-exported to another JT File format).

The valid PMI version numbers are as follows:

= 3 Version-3

= 4 Version-4

= 5 Version-5

= 6 Version-6

= 7 Version-7

= 8 Version-8

I16 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

U32 : CAD Tags Flag

CAD Tags Flag is a flag indicating whether CAD Tag data exist for the PMI.

I32: MV Property Count

Number of ModelViews in the PMI segment.

I32: Font Count

Number of sets of glyph definitions. Each set of glyphs represents a single font definition that consists of a name, a character

set and polygonal glyph definition for each character in the set.

String: Font Name

Font name specifies a representative name for the font set.

VecI32: Character Set

Integer identifiers for each character whose symbol is defined in the ensuing PolygonData segment.

 JT File Format Reference Version 9.5 Rev-A Page 168

7.2.6.2.1 PMI Entities

Figure 137: PMI Entities data collection

7.2.6.2.1.1 PMI Dimension Entities

The PMI Dimension Entities data collection defines data for a list of Dimensions.

Figure 138: PMI Dimension Entities data collection

I32 : Dimension Count

Dimension Count specifies the number of Dimension entities.

I32 : Dimension Count

Dimension

Count

PMI 2D Data

PMI Dimension Entities

PMI Note Entities

PMI Datum Feature Symbol Entities

PMI Datum Target Entities

PMI Feature Control Frame Entities

PMI Line Weld Entities

PMI Spot Weld Entities

PMI Surface Finish Entities

PMI Measurement Point Entities

PMI Locator Entities

PMI Reference Geometry Entities

PMI Design Group Entities

PMI Coordinate System Entities

 JT File Format Reference Version 9.5 Rev-A Page 169

7.2.6.2.1.1.1 PMI 2D Data

The PMI 2D Data collection defines a data format common to all 2D based PMI entities.

Figure 139: PMI 2D Data collection

I32 : Text Entity Count

Text Entity Count specifies the number of Text entities in the particular PMI entity.

7.2.6.2.1.1.1.1 PMI Base Data

The PMI Base Data collection defines the basic/common data that every 2D and 3D PMI entity contains

I32 : Text Entity Count

PMI Base Data

Text Entity

Count

2D Text Data

Non-Text Polyline Data

 JT File Format Reference Version 9.5 Rev-A Page 170

Figure 140: PMI Base Data collection

I32 : User Label

User Label specifies the particular PMI entity identifier.

U8 : 2D-Frame Flag

2D-Frame Flag is a flag specifying whether 7.2.6.2.1.1.1.1.1 2D-Reference Frame data is stored. If 2D-Frame Flag has a

non-zero value then 2D-Reference Frame data is included. If 2D-Frame Flag has a value of “2”, then dummy (i.e. all zeros)

2D-Reference Frame data is written. The “2D-Frame Flag = = 2” case is used by 7.2.6.2.6 Generic PMI Entities because for

Generic PMI Entities all the 7.2.6.2.1.1.1.3 Non-Text Polyline Data is already in 3D form (i.e. XYZ coordinate data).

F32 : Text Height

Text Height specifies the PMI text height in WCS.

U8 : Symbol Valid Flag

Symbol Valid Flag is a flag specifying whether the particular PMI entity is valid. If Symbol Valid Flag has a non-zero value

then PMI entity is valid. This flag is only stored if the Version Number as defined in 7.2.6.2PMI Manager Meta Data

Element is greater than “4.”

7.2.6.2.1.1.1.1.1 2D-Reference Frame

The 2D-Reference Frame data collection defines a reference frame (2D coordinate system) where the PMI entity is displayed

in 3D space. All the PMI entity‟s 2D and 3D polyline data is assumed to lie on the defined plane.

I32 : User Label

2D-Reference Frame

U8 : 2D-Frame Flag

2D-Frame Flag != 0

F32 : Text Height

PMI Version Number > 4

U8 : Symbol Valid Flag

 JT File Format Reference Version 9.5 Rev-A Page 171

Figure 141: 2D-Reference Frame data collection

CoordF32 : Origin

Origin defines the origin (min-corner) of the 2D coordinate system

CoordF32 : X-Axis Point

X-Axis Point defines a point along the X-Axis of the 2D coordinate system.

CoordF32 : Y-Axis Point

Y-Axis Point defines a point along the Y-Axis of the 2D coordinate system.

7.2.6.2.1.1.1.2 2D Text Data

The 2D Text Data collection defines a 2D text entity/primitive.

Figure 142: 2D Text Data collection

I32 : String ID

String ID specifies the identifier for the character string. This identifier is an index to a particular character string in the PMI

String Table as defined in 7.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no string.

I32 : String ID

I32 : Font

I32 : Reserved Field

F32 : Reserved Field

Text Box

Text Polyline Data

CoordF32 : Origin

CoordF32 : X-Axis Point

CoordF32 : Y-Axis Point

 JT File Format Reference Version 9.5 Rev-A Page 172

I32 : Font

Font identifies the font to be used for this text. Valid values include the following:

= 1 Simplex

= 2 Din

= 3 Military

= 4 ISO

= 5 Lightline

= 6 IGES 1001

= 7 Century

= 8 IGES 1002

= 9 IGES 1003

= 101 Japanese JISX 0208 coded character set

= 102 Japanese Extended Unix Codes JISX 0208 coded character set

= 103 Chinese GB 2312.1980 Simplified coded character set

= 104 Korean KSC 5601 coded character set

= 105 Chinese Big5 Traditional coded character set

I32 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

F32 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

7.2.6.2.1.1.1.2.1 Text Box

The Text Box data collection specifies a 2D box that particular text fits within. All values are with respect to 2D-Reference

Frame documented in 7.2.6.2.1.1.1.1.1 2D-Reference Frame.

 JT File Format Reference Version 9.5 Rev-A Page 173

Figure 143: Text Box data collection

F32 : Origin X-Coord

Origin X-Coord defines the 2D X-coordinate of the text origin with respect to 2D-Reference Frame.

F32 : Origin Y Coord

Origin Y-Coord defines the 2D Y-coordinate of the text origin with respect to 2D-Reference Frame.

F32 : Lower Right Corner X-Coord

Lower Right Corner X-Coord defines the 2D X-coordinate of the lower right corner of the text with respect to 2D-Reference

Frame.

F32 : Lower Right Corner Y-Coord

Lower Right Corner Y-Coord defines the 2D Y-coordinate of the lower right corner of the text with respect to 2D-Reference

Frame.

F32 : Upper Left Corner X-Coord

Upper Left Corner X-Coord defines the 2D X-coordinate of the upper left corner of the text with respect to 2D-Reference

Frame.

F32 : Upper Left Corner Y Coord

Upper Left Corner Y-Coord defines the 2D Y-coordinate of the upper left corner of the text with respect to 2D-Reference

Frame.

7.2.6.2.1.1.1.2.2 Text Polyline Data

The Text Polyline Data collection defines any polyline segments which are part of the text representation. This existence of

this polyline data is conditional (i.e. not all text has it) and is made up of an array of indices into an array of polyline

segments packed as 2D vertex coordinates, specifying where each polyline segment begins and ends. Polylines are

constructed from these arrays of data as follows:

F32 : Origin X-Coord

F32 : Origin Y Coord

F32 : Lower Right Corner X-Coord

F32 : Lower Right Corner Y-Coord

F32 : Upper Left Corner X-Coord

F32 : Upper Left Corner Y Coord

 JT File Format Reference Version 9.5 Rev-A Page 174

Figure 144: Constructing Text Polylines from data arrays

 This data is represented in JT file in the following format:

Figure 145: Text Polyline Data collection

I32 : Polyline Segment Index Count

Polyline Segment Index Count specifies the number of polyline segment indices.

I16 : Polyline Segment Index

Polyline Segment Index is an index into the Polyline Vertex Coords array specifying where polyline segment begins or ends.

This index is a vertex coordinate index so the absolute index into the Polyline Vertex Coords array is computed by

multiplying the index value by “2” (i.e. for 2D coordinates).

I32 : Polyline Segment Index Count

Polyline Segment Index Count > 0

I16 : Polyline Segment Index
Polyline Segment

Index Count

VecF32 : Polyline Vertex Coords

0

2

6

10

Array of Indices Array of Polyline Segments

(packed as 2D coords)

80.609

5.42

65.08

5.42

65.61

5.42

72.84

6.62

72.84

4.21

65.61

5.42

80.60

5.42

73.37

4.21

73.37

6.62

80.60

5.42

Polyline 1 Vertices

Polyline 2 Vertices

Polyline 3 Vertices

X, Y Vertex 1

X, Y Vertex 2

X, Y Vertex 3

.

.

.

 JT File Format Reference Version 9.5 Rev-A Page 175

VecF32 : Polyline Vertex Coords

Polyline Vertex Coords is an array of polyline segments packed as 2D point coordinates. These 2D point coordinates are

with respect to the 2D-Reference Frame documented in 7.2.6.2.1.1.1.1.1 2D-Reference Frame.

7.2.6.2.1.1.1.3 Non-Text Polyline Data

The Non-Text Polyline Data collection contains all the non-text polylines making up the particular PMI entity. Examples of

non-text polylines include line attachments, text boxes, symbol box dividers, etc. The Non-Text Polyline Data collection is

made up of an array of indices into an array of polyline segments packed as either 2D or 3D vertex coordinates, specifying

where each polyline segment begins and ends. Whether vertex coordinates are 2D or 3D is dependent upon the PMI entity

type using this data collection. If it is a 7.2.6.2.6 Generic PMI Entities type then the packed coordinate data is 3D; for all

other PMI entity types the packed coordinate data is 2D. Also for Version Number, as defined in 7.2.6.2 PMI Manager Meta

Data Element, greater than “4” an array of values that sequentially specify the polyline type in the polyline segments array is

included.

Figure 146 below shows how Polylines are constructed from these arrays of data for the packed 2D coordinates case. The

packed 3D coordinates case is interpreted the same except that the coordinates array includes a Z component and is thus

packed as “[XYZ][XYZ][XYZ]…”

Figure 146: Constructing Non-Text Polylines from packed 2D data arrays

This data is represented in the JT format as follows:

0

2

6

10

Array of Indices Array of Polyline Segments

(packed as 2D coords)

80.609

5.42

65.08

5.42

65.61

5.42

72.84

6.62

72.84

4.21

65.61

5.42

80.60

5.42

73.37

4.21

73.37

6.62

80.60

5.42

Polyline 1 Vertices

Polyline 2 Vertices

Polyline 3 Vertices

X, Y Vertex 1

X, Y Vertex 2

X, Y Vertex 3

.

.

.

Array of Polyline

Type Values

2

0

4

1

 JT File Format Reference Version 9.5 Rev-A Page 176

Figure 147: Non-Text Polyline Data collection

I32 : Polyline Segment Index Count

Polyline Segment Index Count specifies the number of polyline segment indices.

I16 : Polyline Segment Index

Polyline Segment Index is an index into the Polyline Vertex Coords array specifying where polyline segment begins or ends.

This index is a vertex/coordinate index so the absolute index into the Polyline Vertex Coords array is computed by

multiplying the index value by “2” (i.e. for 2D coordinates).

I32 : Polyline Type Count

Polyline Type Count specifies the number of polyline type values.

I16 : Polyline Type

Polyline Type specifies the type of polyline segment in Polyline Vertex Coords array. See Figure 146: Constructing Non-

Text Polylines from packed 2D data arrays for interpretation of this array of type values relative to the defined polylines.

Valid values include the following:

= 0 General line

= 1 General arrow

= 2 General circle

= 3 General arc

= 4 Extended line 1

= 5 Extended line 2

= 6 Extended arc

= 7 Extended circle

= 8 Text line (used in text boxes and symbol box dividers)

= 9 Text string

I32 : Polyline Segment Index Count

I16 : Polyline Segment Index
Polyline Segment

Index Count

VecF32 : Polyline Vertex Coords

I32 : Polyline Type Count

PMI Version Number > 4

I16 : Polyline Type
Polyline Type

Count

 JT File Format Reference Version 9.5 Rev-A Page 177

VecF32 : Polyline Vertex Coords

Polyline Vertex Coords is an array of polyline segments packed as 2D point coordinates. These 2D point coordinates are

with respect to the 2D-Reference Frame documented in 7.2.6.2.1.1.1.1.1 2D-Reference Frame.

7.2.6.2.1.2 PMI Note Entities

The PMI Note Entities data collection defines data for a list of Notes. Notes are used to connect textual information to

specific Part entities.

Figure 148: PMI Note Entities data collection

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.

I32 : Note Count

Note Count specifies the number of Note entities.

U32 : URL Flag

URL Flag specifies whether Note is an URL. This data field is only present if Version Number, as defined in 7.2.6.2 PMI

Manager Meta Data Element, is greater than “5”. The URL is the actual text of the note as specified in PMI 2D Data.

7.2.6.2.1.3 PMI Datum Feature Symbol Entities

The PMI Datum Feature Symbol Entities data collection defines data for a list of Datum Feature Symbols. A Datum Feature

Symbol is a Geometric Dimensioning and Tolerancing (GD&T) symbol that provides a “label” for a part feature which is

referenced by a Feature Control Frame.

I32 : Note Count

Note

Count

PMI 2D Data

PMI Version Number > 5

U32 : URL Flag

 JT File Format Reference Version 9.5 Rev-A Page 178

Figure 149: PMI Datum Feature Symbol Entities data collection

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.

I32 : DFS Count

DFS Count specifies the number of Datum Feature Symbol entities.

7.2.6.2.1.4 PMI Datum Target Entities

The PMI Datum Target Entities data collection defines data for a list of Datum Targets. A Datum Target is a Geometric

Dimensioning and Tolerancing (GD&T) symbol that specifies a point, a line, or an area on a part to define a “datum” for

manufacturing and inspection operations.

Figure 150: PMI Datum Target Entities data collection

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.

I32 : Datum Target Count

Datum Target Count specifies the number of Datum Target entities.

7.2.6.2.1.5 PMI Feature Control Frame Entities

The PMI Feature Control Frame Entities data collection defines data for a list of Feature Control Frames. A Feature Control

Frame is a Geometric Dimensioning and Tolerancing (GD&T) symbol used for expressing the geometric characteristics,

form tolerance, runout or location tolerance, and relationships between the geometric features of a part. If necessary, Datum

Feature and/or Datum Target references may be included in the Feature Control Frame symbol.

I32 : Datum Target Count

Datum Target

Count

PMI 2D Data

I32 : DFS Count

 DFS Count

PMI 2D Data

 JT File Format Reference Version 9.5 Rev-A Page 179

Figure 151: PMI Feature Control Frame Entities data collection

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.

I32 : FCF Count

FCF Count specifies the number of Feature Control Frame entities.

7.2.6.2.1.6 PMI Line Weld Entities

The PMI Line Weld Entities data collection defines data for a list of Line Weld symbols. A Line Weld symbol describes the

specifications for welding a joint.

Figure 152: PMI Line Weld Entities data collection

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.

I32 : Line Weld Count

Line Weld Count specifies the number of Line Weld entities.

7.2.6.2.1.7 PMI Spot Weld Entities

The PMI Spot Weld Entities data collection defines data for a list of Spot Weld Symbols. Spot Weld symbols describe the

specifications for welding sheet metal.

Several data fields of the PMI Spot Weld Entities data collection are only present if Version Number, as defined in

7.2.6.2PMI Manager Meta Data Element, is greater than or equal to “4”.

I32 : Line Weld Count

Line Weld

Count

PMI 2D Data

I32 : FCF Count

FCF Count

PMI 2D Data

 JT File Format Reference Version 9.5 Rev-A Page 180

Figure 153: PMI Spot Weld Entities data collection

I32 : Spot Weld Count

Spot Weld Count specifies the number of Spot Weld entities.

CoordF32 : Weld Point

Weld Point specifies the coordinates of the weld point.

DirF32 : Approach Direction

Approach Direction specifies the components of the direction vector from which the weld gun approaches the part.

DirF32 : Clamping Direction

Clamping Direction specifies the components of the clamping force direction vector.

DirF32 : Normal Direction

Normal Direction specifies the components of the direction vector normal to the actual spot weld.

7.2.6.2.1.7.1 PMI 3D Data

The PMI 3D Data collection defines a data format common to all 3D based PMI entities.

Along with the PMI Base Data and String identifier, this data collection also includes non-text polyline data defined by an

array of indices into an array of polyline segments packed as 2D/3D vertex coordinates, specifying where each polyline

I32 : Spot Weld Count

Spot Weld

Count

PMI 3D Data

CoordF32 : Weld Point

DirF32 : Approach Direction

DirF32 : Clamping Direction

DirF32 : Normal Direction

PMI Version Number >= 4

 JT File Format Reference Version 9.5 Rev-A Page 181

segment begins and ends. How polylines are constructed from this index array and packed vertex coordinates array is the

same as that illustrated in Figure 144 of 7.2.6.2.1.1.1.2.2 Text Polyline Data.

Figure 154: PMI 3D Data collection

Complete description for PMI Base Data can be found in 7.2.6.2.1.1.1.1 PMI Base Data.

I32 : String ID

String ID specifies the identifier for the character string. This identifier is an index to a particular character string in the PMI

String Table as defined in 7.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no string.

I16 : Polyline Dimensionality

Polyline Dimensionality specifies the dimensionality of the polyline coordinates packed in Polyline Vertex Coords. Valid

values include the following:

= 2 Indicates 2-dimensioanl (xyxy…) data packing..

= 3 Indicates 3-dimensional (xyzxyz…) data packing.

I32 : Polyline Segment Index Count

Polyline Segment Index Count specifies the number of polyline segment indices.

I16 : Polyline Segment Index

Polyline Segment Index is an index into the Polyline Vertex Coords array specifying where polyline segment begins or ends.

This index is a vertex coordinate index so the absolute index into the Polyline Vertex Coords array is computed by

multiplying the index value by Polyline Dimensionality.

VecF32 : Polyline Vertex Coords

Polyline Vertex Coords is an array of polyline segments packed as Polyline Dimensionality point coordinates.

PMI Base Data

I32 : String ID

I16 : Polyline Dimensionality

I32 : Polyline Segment Index Count

I16 : Polyline Segment Index
Polyline Segment

Index Count

VecF32 : Polyline Vertex Coords

 JT File Format Reference Version 9.5 Rev-A Page 182

7.2.6.2.1.8 PMI Surface Finish Entities

The PMI Surface Finish Entities data collection defines data for a list of Surface Finish symbols. Surface Finish symbols

indicate surface quality and generally are only specified where finish quality affects function (e.g. bearings, pistons, gears).

Figure 155: PMI Surface Finish Entities data collection

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.

I32 : SF Count

SF Count specifies the number of Surface Finish symbol entities.

7.2.6.2.1.9 PMI Measurement Point Entities

The PMI Measurement Point Entities data collection defines data for a list of Measurement Point symbols. Measurement

Points are predefined locations (i.e. geometric entities or theoretical, but measurable points, such as surface locations) which

are measured on manufactured parts to verify the accuracy of the manufacturing process.

Several data fields of the PMI Measurement Point Entities data collection are only present if Version Number, as defined in

7.2.6.2PMI Manager Meta Data Element, is greater than or equal to “4”.

I32 : SF Count

 SF Count

PMI 2D Data

 JT File Format Reference Version 9.5 Rev-A Page 183

Figure 156: PMI Measurement Point Entities data collection

Complete description for PMI 3D Data can be found in 7.2.6.2.1.7.1 PMI 3D Data.

I32 : MP Count

MP Count specifies the number of Measurement Point entities.

CoordF32 : Location

Location specifies the coordinates of the Measurement Point.

DirF32 : Measurement Direction

Measurement Direction specifies the components of the direction vector from which a CCM (Coordinate Measuring

Machine) approaches when taking a measurement.

DirF32 : Coordinate Direction

Coordinate Direction specifies the components of the direction vector another Measurement Point on a mating part would

like to align with a Measurement Point on the first part.

DirF32 : Normal Direction

Normal Direction specifies the components of the direction vector normal to the actual Measurement Point.

I32 : MP Count

 MP Count

PMI 3D Data

CoordF32 : Location

DirF32 : Measurement Direction

DirF32 : Coordinate Direction

DirF32 : Normal Direction

PMI Version Number >= 4

 JT File Format Reference Version 9.5 Rev-A Page 184

7.2.6.2.1.10 PMI Locator Entities

The PMI Locator Entities data collection defines data for a list of Locator symbols. Locator symbols are used to accurately

locate components with respect to each other and the manufacturing tooling.

Figure 157: PMI Locator Entities data collection

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.

I32 : Locator Count

Locator Count specifies the number of Locator symbol entities.

7.2.6.2.1.11 PMI Reference Geometry Entities

The PMI Reference Geometry Entities data collection defines data for a list of Reference Geometry. Reference Geometry

can be thought of as user-definable datums, which are positioned relative to the topology of an existing entity. Each reference

geometry type (point, polyline, polygon) can be implicitly determined by the value of Polyline Segment Index[1] (see

7.2.6.2.1.7.1 PMI 3D Data) as follows:

Polyline Segment Index[1] Implied Reference Geometry

Type

= = 1 Point

= = 2 Polyline

> 2 Polygon

Figure 158: PMI Reference Geometry Entities data collection

Complete description for PMI 3D Data can be found in 7.2.6.2.1.7.1 PMI 3D Data.

I32 : Reference Geometry Count

Reference Geometry Count specifies the number of Reference Geometry entities.

I32 : Reference Geometry Count

Reference

Geometry Count

PMI 3D Data

I32 : Locator Count

Locator

Count

PMI 2D Data

 JT File Format Reference Version 9.5 Rev-A Page 185

7.2.6.2.1.12 PMI Design Group Entities

The PMI Design Group Entities data collection defines data for a list of Design Groups. Design Groups are collections of

PMI created to organize a model into smaller subsets of information. This organization is achieved via PMI Associations

(see 7.2.6.2.2 PMI Associations), where specific PMI entities are associated as “destinations” to a “source” PMI Design

Group.

Figure 159: PMI Design Group Entities data collection

I32 : Design Group Count

Design Group Count specifies the number of Design Group entities.

I32 : Group Name String ID

Group Name String ID specifies the identifier for the group name character string. This identifier is an index to a particular

character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no

string.

I32 : Attribute Count

Attribute Count specifies the number of Design Group Attribute data collections

7.2.6.2.1.12.1 Design Group Attribute

The Design Group Attribute data collection defines a group property/attribute.

I32 : Design Group Count

Design Group

Count

I32 : Attribute Count

PMI Version Number >= 3

I32 : Group Name String ID

Attribute

Count

Design Group Attribute

 JT File Format Reference Version 9.5 Rev-A Page 186

Figure 160: Design Group Attribute data collection

I32 : Attribute Type

Attribute Type specifies the attribute type. Valid types include the following:

= 1 Integer

= 2 Double

= 3 String

I32 : Integer Value

Integer Value specifies the value for “integer” Attribute Types.

F64 : Double Value

Double Value specifies the value for “double” Attribute Types.

I32 : Attribute Type

Attribute Type = = 1

I32 : Integer Value

Attribute Type = = 2

F64 : Double Value

Attribute Type = = 3

I32 : String Value String ID

I32 : Label String ID

I32 : Description String ID

 JT File Format Reference Version 9.5 Rev-A Page 187

I32 : String Value String ID

String Value String ID specifies the string identifier value for “string” Attribute Types. This identifier is an index to a

particular character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table. An identifier value of “-1”

indicates no string.

I32 : Label String ID

Label String ID specifies the string identifier for the attribute label. This identifier is an index to a particular character string

in the PMI String Table as defined in 7.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no string.

I32 : Description String ID

Description String ID specifies the string identifier for the attribute description. This identifier is an index to a particular

character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no

string.

7.2.6.2.1.13 PMI Coordinate System Entities

The PMI Coordinate System Entities data collection defines data for a list of Coordinate Systems.

Figure 161: PMI Coordinate System Entities data collection

I32 : Coord Sys Count

Coord Sys Count specifies the number of Coordinate System entities.

I32 : Name String ID

Name String ID specifies the string identifier for the Coordinate System name. This identifier is an index to a particular

character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no

string.

CoordF32 : Origin

Origin defines the origin of the coordinate system.

I32 : Coord Sys Count

Coord Sys

Count

I32 : Name String ID

CoordF32 : Origin

CoordF32 : X-Axis Point

CoordF32 : Y-Axis Point

 JT File Format Reference Version 9.5 Rev-A Page 188

CoordF32 : X-Axis Point

X-Axis Point defines a point along the X-Axis of the coordinate system.

CoordF32 : Y-Axis Point

Y-Axis Point defines a point along the Y-Axis of the coordinate system.

7.2.6.2.2 PMI Associations

The PMI Associations data collection defines data for a list of associations. An association defines a link (“relationship”)

between two PMI, B-Rep, or Wireframe Rep entities where one entity is defined as the “source” and the other entity is

defined as the “destination”.

Figure 162: PMI Associations data collection

I32 : Association Count

Association Count specifies the number of associations.

I32 : Source Data

Source Data is a collection of source entity information encoded/packed within a single I32 using the following bit allocation.

All undocumented bits are reserved.

I32 : Association Count

Association

Count

I32 : Source Data

I32 : Destination Data

I32 : Reason Code

I32 : Source Owning Entity String ID

I32 : Destination Owning Entity String ID

PMI Version Number > 5

 JT File Format Reference Version 9.5 Rev-A Page 189

Bits 0 - 23 Source Entity Identifier. The interpretation of this identifier data is dependent upon the

value of Bit 31 documented below.

Bits 24 -30 Source Entity PMI or B-Rep type. Valid types include the following:

= 0 PMI - Dimension

= 1 PMI - Note

= 2 PMI - Datum Feature Symbol

= 3 PMI - Datum Target

= 4 PMI - Feature Control Frame

= 5 PMI - Line Weld

= 6 PMI - Spot Weld

= 7 PMI - Measurement Point

= 8 PMI - Surface Finish

= 9 PMI - Locator Designator

= 10 PMI - Reference Geometry

= 11 PMI - Coordinate System

= 12 PMI - Design Group

= 13 PMI - User Attribute

= 14 B-Rep - Vertex

= 15 B-Rep - Edge

= 16 B-Rep - Face

= 17 PMI - Model View

= 18 PMI - Generic

= 19 Wireframe Rep - Edge

= 20 PMI - Unspecified type

= 21 Part Instance

Bit 31 Indirect Identifier Flag

= 0 – Value in Bits 0-23 is not the actual CAD identifier, instead Bits 0-23 is an index

into the source type‟s PMI array or index of the edge/face in B-Rep or Wireframe Rep

for the source entity.

= 1 – Value in Bits 0-23 is not the actual CAD identifier; instead Bits 0-23 is an index

into the list of CAD Tags (as documented in 7.2.6.2.7 PMI CAD Tag Data) identifying

the CAD Tag belonging to the particular source entity.

I32 : Destination Data

Destination Data is a collection of destination entity information encoded/packed within a single I32. The encoding schema

and interpretation of this data is the same as that documented in Source Data.

I32 : Reason Code

Reason Code specifies the “reason” for the association. Valid Reason Codes include the following:

 JT File Format Reference Version 9.5 Rev-A Page 190

= 0 Association is to the primary entity being dimensioned

= 1 Association is to the secondary entity being dimensioned

= 2 Association is to the dimension plane

= 5 Association is to the entity used to specify the Z-Axis of a coordinate system

= 10 Association is to an entity "associated" to or "included in" a PMI symbol

= 11 Association is to an entity used to "attach" a PMI symbol.

= 12 Association is to first entity used to “attach” a PMI symbol

= 13 Association is to second entity used to “attach” a PMI symbol

= 14 Specifying PMI grouping, source is PMI/B-Rep entity and destination is design group.

= 15 Association is to a weld line entity

= 16 Association is to a “hot spot”

= 17 Association is to a child in a PMI stack

= 72 Association is for PMI miscellaneous relation.

= 73 Association is for PMI related entity.

= 98 Association is to show the PMI when associated Model View is selected. Source is the

PMI, and destination is Model View.

= 99 Association is to show/select PMI B, if showing/selecting PMI A. Source is PMI A, and

destination is PMI B. This is different from an “attached” PMI , where the convention is

to show the PMI visibly linked to one another.

= 100 Association is to show all parts except the associated part instance. Source is the part

instance, and destination is Model View

I32 : Source Owning Entity String ID

Source Owning Entity String ID specifies the string identifier for the string which contains the unique CAD identifier of the

component (part or assembly) that owns the source PMI or B-Rep entity. This identifier is an index to a particular character

string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no string and

implies that the entity is to be found on the current node„s PMI/B-Rep/Wireframe-Rep segment. It is valid for the source

owning entity to be the same as the destination owning entity (i.e. an association between two PMI or B-Rep entities in the

same part/assembly). This data field is only present if Version Number, as defined in 7.2.6.2 PMI Manager Meta Data

Element, is greater than “5”.

I32 : Destination Owning Entity String ID

Destination Owning Entity String ID specifies the string identifier for the string which contains the unique CAD identifier of

the component (part or assembly) that owns the destination PMI or B-Rep entity. This identifier is an index to a particular

character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no

string and implies that the entity is to be found on the current node„s PMI/B-Rep/Wireframe-Rep segment. It is valid for the

source owning entity to be the same as the destination owning entity (i.e. an association between two PMI or B-Rep entities

in the same part/assembly). This data field is only present if Version Number, as defined in 7.2.6.2 PMI Manager Meta Data

Element, is greater than “5”.

7.2.6.2.3 PMI User Attributes

The PMI User Attributes collection defines data for a list of user attributes. PMI User Attributes are used to add attribute

data to a part/assembly. Each user attribute is composed of key/value pair of strings.

 JT File Format Reference Version 9.5 Rev-A Page 191

Figure 163: PMI User Attributes data collection

I32 : User Attribute Count

User Attribute Count specifies the number of user attributes.

I32 : Key String ID

Key String ID specifies the string identifier for the user attribute key. This identifier is an index to a particular character

string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no string.

I32 : Value String ID

Value String ID specifies the string identifier for the user attribute value. This identifier is an index to a particular character

string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no string.

7.2.6.2.4 PMI String Table

The PMI String Table data collection defines data for a list of character strings and serves as a central repository for all

character strings used by other PMI Entities within the same PMI Manager Meta Data Element. PMI Entities reference into

this list/array of character strings to define usage of a particular character string using a simple list/array “index” (i.e. String

ID).

Figure 164: PMI String Table data collection

I32 : String Count

String Count specifies the number of character strings in the string table.

String : PMI String

PMI String specifies the character string.

I32 : String Count

String Count

String : PMI String

I32 : User Attribute Count

User Attribute

Count

I32 : Key String ID

I32 : Value String ID

 JT File Format Reference Version 9.5 Rev-A Page 192

7.2.6.2.5 PMI Model Views

The PMI Model Views data collection defines data for a list of Model Views. A fully annotated part/assembly may contain

so much PMI information, that it becomes very difficult to interpret the design intent when viewing a 3D Model (with PMI

visible) of the part/assembly. Model Views provide a means to capture and organize PMI information about a 3D model so

that the design intent can be clearly interpreted and communicated to others in later stages of the Product Lifecycle

Management (PLM) process (e.g. manufacturing, inspection, assembly). This organization is achieved via PMI Associations

(see 7.2.6.2.2 PMI Associations), where specific PMI entities are associated as “destinations” to a “source” PMI Model

View.

Figure 165: PMI Model Views data collection

I32 : Model View Count

Model View

Count

DirF32 : Eye Direction

F32 : Angle

CoordF32 : Eye Position

CoordF32 : Target Point

CoordF32 : View Angle

F32 : Viewport Diameter

F32 : Reserved Field

I32 : Reserved Field

I32 : Active Flag

I32 : View ID

I32 : View Name String ID

 JT File Format Reference Version 9.5 Rev-A Page 193

I32 : Model View Count

Model View Count specifies the number of Model Views.

DirF32 : Eye Direction

Eye Direction specifies the camera direction vector.

F32 : Angle

Angle specifies the camera rotation angle (in degrees where positive is counter-clockwise) about the Eye Direction. So this

Angle in combination with the Eye Direction is equivalent to specifying a rotation using axis-angle representation.

CoordF32 : Eye Position

Eye Position specifies the WCS coordinates of the eye/camera “look from” position.

CoordF32 : Target Point

Target Point specifies the WCS coordinates of the eye/camera “look at” position.

CoordF32 : View Angle

View angle specifies the X, Y, Z rotation angles (in degrees) of the model‟s axis. The rotations are defined with respect to an

initial orientation where the model‟s axis are aligned with the screen‟s axis (i.e. +X axis points to right, +Y axis points up, +Z

axis points out at you).

F32 : Viewport Diameter

Viewport Diameter specifies the diameter in WCS coordinates of the largest possible circle that could be inscribed within

viewport. If a large diameter value is specified, the model appears very small in relation to the viewport; whereas if a small

diameter value is specified a close-up (“zoomed-in)” view of the model results.

F32 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

I32 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion

I32 : Active Flag

Active Flag is a flag specifying whether this Model View is the “active” view. Valid values include the following:

= 0 Is not the active Model View.

= 1 Is the active Model View

I32 : View ID

View ID specifies the Model View unique identifier.

I32 : View Name String ID

View Name String ID specifies the string identifier for the Model View‟s name. This identifier is an index to a particular

character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no

string.

7.2.6.2.6 Generic PMI Entities

The Generic PMI Entities data collection provides a “generic” format for defining various PMI entity types, including user

defined types. The generic format defines the data making up the PMI Entity through a combination of the PMI 2D Data

collection and a list of PMI Property data collections.

 JT File Format Reference Version 9.5 Rev-A Page 194

Figure 166: Generic PMI Entities data collection

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.

I32 : Generic Entity Count

Generic Entity Count specifies the number of Generic PMI Entities.

I32 : Property Count

Property Count specifies the number of PMI Properties.

I32 : Entity Type Name String ID

Entity Type Name String ID specifies the string identifier for the name of the Generic PMI Entity Type. This identifier is an

index to a particular character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table. An identifier value of

“-1” indicates no string.

I32 : Generic Entity Count

Generic

Entity Count

I32 : Property Count

PMI 2D Data

I32 : Parent Type Name String ID

Property

Count

I32 : Entity Type Name String ID

PMI Property

U16 : Entity Type

U16 : Parent Type

U16 : User Flags

PMI Version Number > 6

 JT File Format Reference Version 9.5 Rev-A Page 195

I32 : Parent Type Name String ID

Parent Type Name String ID specifies the string identifier for the name of the parent Generic PMI Entity Type. This

identifier is an index to a particular character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table. An

identifier value of “-1” indicates no string.

U16 : Entity Type

Entity Type specifies the Generic PMI Entity Type. The valid Entity Type values (in hexadecimal format) are documented in

the following table. Note that for “user defined” Generic PMI Entities a hexadecimal value of “0x0114” (as documented in

table below) should be used.

0x0001 PMI (generally only used as a Parent Type)

0x0002 Weld

0x0004 Spot Weld

0x0008 Line Weld

0x0010 Groove Weld

0x0011 Fillet Weld

0x0012 Slot Weld

0x0014 Edge Weld

0x0018 Arc Spot Weld

0x0020 Resistance Spot Weld

0x0021 Resistance Seam Weld

0x0022 Structural Adhesive Bead Shaped

0x0024 Structural Adhesive Tape Shaped

0x0028 Structural Adhesive Dollop Shaped

0x0040 Mechanical Clinch Connector

0x0041 Surface Finish

0x0042 Measurement Point

0x0044 Datum Locator

0x0048 Certification Point

0x0080 Geometric Dimensioning and Tolerancing

0x0081 Feature Control Frame

0x0082 Dimension

0x0084 Datum Feature Symbol

0x0088 Datum Target

0x0100 Note

0x0101 Face Attribute Note

0x0102 Model View Label Note

0x0104 Coordinate System

 JT File Format Reference Version 9.5 Rev-A Page 196

0x0108 Reference Geometry

0x0110 Reference Point

0x0111 Reference Axis

0x0112 Reference Plane

0x0114 User Defined

0x0118 Measurement Locator

0x0120 Datum Point

0x0121 Surface Vector Measurement Point

0x0122 Hole Vector Measurement Point

0x0124 Trimmed Sheet Vector Measurement Point

0x0128 Hem Vector Measurement Point

U16 : Parent Type

Parent Type specifies the parent Generic PMI Entity Type. The valid Parent Type values are the same as that documented

above for Entity Type. The Parent Type is used to create a class hierarchy of PMI when presenting the PMI contents from a

JT file.

U16 : User Flags

User Flags is a collection of flags. The flags are combined using the binary OR operator and store various state information

for the Generic PMI Entity. All undocumented bits are reserved.

0x0001 Show PMI Entity “flat to screen only” flag

= 0 – Allow PMI display plane to rotate with model.

= 1 – Display PMI entity in the plane of the screen, so that it does not rotate with model.

7.2.6.2.6.1 PMI Property

A PMI Property data collection consists of a key/value pair and is used to describe attributes of Generic PMI Entity or other

specific data.

Figure 167: PMI Property data collection

Both Key PMI Property Atom and Value PMI Property Atom have the same format as that documented in 7.2.6.2.6.1.1 PMI

Property Atom.

Although there is no reference compliant requirements for what the PMI Property key/value pairs must be for each Generic

PMI Entity type, there are some common PMI Property keys and corresponding value formats that appear in JT File. The

below table documents these common PMI Property keys (i.e. the keys encoded string value) and what the format of the

value data is in the values encoded string (see 7.2.6.2.6.1.1 PMI Property Atom for an explanation of what is meant by

“encoded string value” for the “key” and “value” data).

Key PMI Property Atom

Value PMI Property Atom

 JT File Format Reference Version 9.5 Rev-A Page 197

Table 7: Common Property Keys and Their Value Encoding formats

“Key” Property Atom

Value String

“Value”

Property Atom

Value String

Encoding

Format

Decoding Notes

“PMI_PROP_ANCHOR_POINT" “Px Py Pz” Each Px, Py, Pz is a F32 value using “%f” format

“PMI_PROP_NOTE_HAS_URL” “0” or “1” 0 = = False; 1 = = True

“PMI_PROP_NORMAL_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format

“PMI_PROP_APPROACH_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format

“PMI_PROP_CLAMPING_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format

“PMI_PROP_MEAS_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format

“PMI_PROP_COORD_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format

“PMI_PROP_MEAS_LEVEL” “#” Integer representing level number

“PMITextForegroundColor” “#” Hexadecimal integer representing RGB color where

value has “0x00bbggrr” form. The low-order byte

contains a value for the relative intensity of red; the

second byte contains a value for the relative

intensity of green; and the third byte contains a

value for the relative intensity of blue. The high-

order byte must be zero. The maximum value for a

single byte is 0xFF (i.e. intensity value is in the

range [0:255]).

“PMITextBackgroundColor” “#” Same as “PMITextForegroundColor”

“PMITextBackgroundOpacity” “#” Unsigned decimal integer representing opacity

percentage. Actual opacity is: decoded# / 100.0

“PMITextShowBorder” “#” Unsigned decimal integer: 0 = = False; 1 = = True

“PMITextSize” “#” Unsigned decimal integer representing text size in

units of pixels.

“PMITextInPlane” “#” Unsigned decimal integer: 0 = = False; 1 = = True

where “1” indicates that text should be displayed in

the plane of the entity so that it rotates with view.

“PMIGeometryColor” “#” Same as “PMITextForegroundColor”

“PMIGeometryWidth” “#” Unsigned decimal integer representing line width in

units of pixels.

CLIP_NORMAL “#,#,#” Used for Entity Type = “0x0114” and Entity Type

Name String = “Section” to specify the normal to

the clipping plane. The clipping normal points

toward the piece of the model that will be clipped

away. Each # is a F64 value using “%lf” format.

CLIP_POSITION “#,#,#” Used for Entity Type = “0x0114” and Entity Type

Name String = “Section” to specify one point on the

clipping plane. Each # is a F64 value using “%lf”

format.

 JT File Format Reference Version 9.5 Rev-A Page 198

“Key” Property Atom

Value String

“Value”

Property Atom

Value String

Encoding

Format

Decoding Notes

TRANSFORMATION_MATRIX “#,#,#,#,#,#,#,#,

#,#,#,#,#,#,#,#”

Used for Entity Type = “0x0114” and Entity Type

Name String = “Part Transform” to specify a

transformation matrix. Each # is a F32 value using

“%f” format.

7.2.6.2.6.1.1 PMI Property Atom

PMI Property Atom data collection represents the data format for both the key and value data of a PMI Property key/value

pair.

Figure 168: PMI Property Atom data collection

MbString : Value

Value specifies the property atom value encoded into a String. See Table 7: Common Property Keys and Their Value

Encoding formats above for encoding formats of the Value string.

U32 : Hidden Flag

Hidden Flag specifies if the property is “hidden” or not. A JT file reader could use this flag to control whether read

properties should be exposed to the end user of the application reading the JT file. Valid values include the following:

= 0 Property is not hidden.

= 1 Property is hidden.

7.2.6.2.7 PMI CAD Tag Data

The PMI CAD Tag Data collection contains the list of persistent IDs, as defined in the CAD System, to uniquely identify

individual PMI entities. The existence of this PMI CAD Tag Data collection is dependent upon the value of previously read

data field CAD Tags Flag as documented in 7.2.6.2 PMI Manager Meta Data Element.

If PMI CAD Tag Data collection is present, there will be a CAD Tag for each PMI entity as specified by the below

documented CAD Tag Index Count formula.

MbString : Value

PMI Version Number > 6

U32 : Hidden Flag

 JT File Format Reference Version 9.5 Rev-A Page 199

Figure 169: PMI CAD Tag Data collection

Complete description for Compressed CAD Tag Data can be found in 8.1.16 Compressed CAD Tag Data.

I32 : CAD Tag Index Count

CAD Tag Index Count specifies the total number of CAD Tag indices. This value must be equal to the summation of the

previously read count values for all the PMI entities supporting CAD Tags. The formula is the sum of the following:

 Line Weld Count

 Spot Weld Count

 SF Count

 MP Count

 Reference Geometry Count

 Datum Target Count

 FCF Count

 Locator Count

 Dimension Count

 DFS Count

 Note Count

 Model View Count

 Design Group Count

 Coord Sys Count

 Generic Entity Count

I32 : CAD Tag Index

CAD Tag Index specifies an index into a list of CAD Tags, identifying the CAD Tag belonging to a particular PMI entity.

There will be a total of CAD Tag Index Count number of CAD Tag Indices and the order of the indices will be as defined by

the above documented CAD Tag Index Count formula (i.e. Line Weld CAD Tag Indices are first, followed by the Spot Weld

CAD Tag Indices, followed by the Surface Finish CAD Tag Indices, etc.)

7.2.6.2.8 PMI Polygon Data

The PMI Polygon Data collection contains a list of vertices classified as polygonal primitives. Its composition is shown in the

figure 177. Each block of PMI PolygonData contains a list of 0 or more PolygonData elements. Empty PolygonData elements

are written with 0 vertices and no additional fields.

I32 : CAD Tag Index CAD Tag Index

Count

I32 : CAD Tag Index Count

Compressed CAD

Tag Data

 JT File Format Reference Version 9.5 Rev-A Page 200

Figure 170: PMI Polygon Data

I16: Version Number

I32: Reserved Field

VecI32: vNumVerts

VecF32: Colors

ColorBinding == 1

Length Of

vNumVerts

NormalBinding == 1

I16 : Reserved Field

TextureBinding == 1

iNumVerts > 0

I32: NormalBinding

I32: ColorBinding

I32: TextureBinding

I32: PolygonDimension

VecI32: PrimTypes

VecI32: PrimIndices

VecI32: VertIndices

VecF32: Vertices

VecF32: Vertices

 JT File Format Reference Version 9.5 Rev-A Page 201

I16: Version Number

Version number is the version identifier for this PMI Polygon Data Element. V9.5 format only supports version 1 of the PMI

Polygon data

I32: Reserved Field

Reserved Field is a data field reserved for future JT format expansion

VecI32: vNumVerts

An integer vector used to record the number of vertices in each polygon data element. The length of this vector is equal to the

number of PolygonData elements written in this block of PMI PolygonData. The presence of additional data fields in each

PolygonData element is hinged upon that element having more than 0 vertices recorded in this vector.

Retrieve next vertCount from vNumVerts

If the next element in the vNumVerts vector is non-zero, proceed to read other fields that make up a single PMI PolygonData

element. Otherwise, skip reading more data for this element and loop back to seek the next element in the vector.

iNumVerts

Number of vertices for the i
th

 PolygonData element.

Length Of vNumVerts

Number of Polygon Data elements.

I32: NormalBinding

A Boolean value that indicates if there are normals present along with the list of coordinates at each vertex.

I32: ColorBinding

A Boolean value that indicates if there are colors present along with the list of coordinates at each vertex.

I32: TextureBinding

A Boolean value that indicates if there are Texture Coordinates present along with the list of coordinates at each vertex.

I32: PolygonDimension

Indicates the dimension of vertex coordinates.

VecI32: PrimTypes

An array indicating the type of each of the primitive stored in the PrimIndices array. Adjacent numbers in the array form

tuples of the form [PrimIndex, PrimType]. All primitives to the left of the PrimIndex are of type PrimType unless they are

already to the left of an earlier PrimIndex in this array.

VecI32: PrimIndices

Indices of vertices that form a single primitive. The difference between two adjacent values in this array determines the

length of the primitive. An extra element is stored at the end of this array to identify the length of the last primitive. Values in

this array are indices into the VertIndices array.

VecI32: VertIndices

An array of indices into the Vertices array. This index array eliminates the need to duplicate floating point vertices that are

shared by multiple primitives.

VecF32: Vertices

The list of vertex coordinates. Each vertex is made of PolygonDimension coordinates. The length of this list is equal to

number of vertices multiplied by PolygonDimension.

 JT File Format Reference Version 9.5 Rev-A Page 202

VecF32: Normals

An optional list of Normals for each vertex. Presence of this list is indicated by the NormalBinding flag. Each normal

consists of PolygonDimension components. The size of this list is equal to number of vertices multiplied by

PolygonDimension.

VecF32: Colors

An optional list of Colors for each vertex. Presence of this list is indicated by the ColorBinding flag. Each color consists of

PolygonDimension components. The size of this list is equal to number of vertices multiplied by PolygonDimension.

VecF32: Texture Coords

An optional list of Texture coordinates for each vertex. Presence of this list is indicated by the TexCoordBinding flag. Each

TexCoord consists of 2 components. The size of this list is equal to number of vertices multiplied by 2.

7.2.7 PMI Data Segment

The PMI Manager Meta Data Element (as documented in 7.2.6.2 PMI Manager Meta Data Element) can sometimes also be

represented in a PMI Data Segment. This can occur when a pre JT 8 version file is migrated to JT 9.5 version file. So from a

parsing point of view a PMI Data Segment should be treated exactly the same as a 7.2.6 Meta Data Segment.

7.2.8 JT ULP Segment

JT ULP Segment contains an Element that defines the semi-precise geometric Boundary Representation data for a particular

Part in JT ULP format. Note that there is also two other Boundary Representation formats (i.e. JT B-Rep and XT B-Rep)

supported by the JT file format within a different file Segment Type. Complete description for the JT B-Rep and the XT B-

Rep can be found in 7.2.3 JT B-Rep Segment and

7.2.4 XT B-Rep Segment respectively.

JT ULP Segments are typically referenced by Part Node Elements (see 7.2.1.1.1.5Part Node Element) using Late Loaded

Property Atom Elements (see 0 Late Loaded Property Atom Element). The JT ULP Segment type supports ZLIB

compression on all element data, so all elements in JT ULP Segment use the Logical Element Header ZLIB form of element

header data.

Figure 171: JT ULP Segment data collection

Complete description for Segment Header can be found in 7.1.3.1Segment Header.

7.2.8.1 JT ULP Element

Object Type ID: 0xf338a4af, 0xd7d2, 0x41c5, 0xbc, 0xf2, 0xc5, 0x5a, 0x88, 0xb2, 0x1e, 0x73

JT ULP Element represents a particular Part‟s ultra-lightweight semi-precise B-Rep data. Like JT B-Rep Element or XT B-

Rep Element, JT ULP Element contains all the topological and geometric information that describes the shape of a part. The

difference is that the size of JT ULP Element is typically around 10% of a typical JT file with B-Rep and LODs, and this is

achieved by sophisticated compression techniques. In addition, JT ULP Element is semi-precise meaning that its geometric

description is not as precise as either JT B-Rep Element or XT B-Rep Element. The precision loss of JT ULP Element,

however, is carefully controlled to be equal to or better than 0.01% of the part size or 0.1mm, whichever is smaller.

Segment Header

JT ULP Element

 JT File Format Reference Version 9.5 Rev-A Page 203

Figure 172: JT ULP Element data collection

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.

I16:Version Number

Version Number is the version identifier for this JT ULP Element. Version numbers “1” and “2” are currently supported.

I32:Material Attribute Element Count

Material Attribute Element Count is the number of material attribute elements.

Complete description for Material Attribute Element can be found in 7.2.1.1.2.2 Material Attribute Element.

Logical Element Header ZLIB

I16:Version Number

I32:Material Attribute Element Count

Material Attribute Element

Topology Data

Geometric Data

Material Attribute Element Count

Version Number > 1

Material Attribute Element Properties

Material Attribute Element Count

Information Recovery

 JT File Format Reference Version 9.5 Rev-A Page 204

7.2.8.1.1 Topology Data

Figure 173: Topology Data collection

7.2.8.1.1.1 Topological Entity Counts

Topological Entity Counts data collection defines the counts for each of the various topological entities within a ULP.

Topological Entity Counts

Regions Topology Data

Shells Topology Data

Faces Topology Data

Loops Topology Data

CoEdges Topology

Data

Edges Topology Data

Vertices Topology Data

Region Count > 1

Shell Count > 1

Face Count > 0

Loop Count > 0

CoEdge Count > 0

Edge Count > 0

Vertex Count > 0

 JT File Format Reference Version 9.5 Rev-A Page 205

Figure 174: Topological Entity Counts data collection

I32 : Region Count

Region Count indicates the number of topological region entities in the ULP.

I32 : Shell Count

Shell Count indicates the number of topological shell entities in the ULP.

I32 : Face Count

Face Count indicates the number of topological face entities in the ULP.

I32 : Loop Count

Loop Count indicates the number of topological loop entities in the ULP.

I32 : CoEdge Count

CoEdge Count indicates the number of topological coedge entities in the ULP.

I32 : Edge Count

Edge Count indicates the number of topological edge entities in the ULP.

I32 : Vertex Count

Vertex Count indicates the number of topological vertex entities in the ULP.

7.2.8.1.1.2 Combined Predictor Type

A predictor type may be combined with additional processing. When Combined Predictor Type is used, the additional

processing step is encoded. For example, combined predictor type Combined:NULL means that the data collection follows

the logical diagram in Figure 175 with ePredictorType set to be NULL.

I32 : Region Count

I32 : Shell Count

I32 : Face Count

I32 : Loop Count

I32 : CoEdge Count

I32 : Edge Count

I32 : Vertex Count

 JT File Format Reference Version 9.5 Rev-A Page 206

Figure 175: Combined Predictor Type data collection

VecI32{Int32CDP2, ePredictorType}: BasicArray

BasicArray is an integer array, compressed and encoded using the Int32 version of second generation CODEC.

U8: ProcessingType

Two bits of this value are currently used. If bit 0x02 is set, then the integer array is a list of elements with unique values and

Element Mapping step is needed to recover the original values. If bit 0x01 is set, then the some elements in the integer array

may be repeated, and Multiplicity Expansion is used to recover the original values.

VecI32{Int32CDP2, ePredictorType}: MapArray

MapArray is an integer array, where each element represents the index mapping information. MapArray is compressed and

encoded using the Int32 version of second generation CODEC.

Element Mapping

Element Mapping recovers the original array from BasicArray and MapArray, using relationship
 . After Element Mapping, the value of is updated with .

VecI32{Int32CDP2, ePredictorType}: MultiplicityArray

MultiplicityArray is an integer array, where each element represents the multiplicity of each element in BasicArray.

MultiplicityArray is compressed and encoded using the Int32 version of second generation CODEC.

Multiplicity Expansion

Multiplicity Expansion recovers the original array from BasicArray and MultiplicityArray. The original array is an

expansion of the BasicArray. If the corresponding multiplicity value is greater than 1, the element in BasicArray is

contiguously repeated in the original array according to multiplicity value.

VecI32{Int32CDP2, ePredictorType}: BasicArray

 U8: ProcessingType

VecI32{Int32CDP2, ePredictorType}: MapArray

ProcessingType & 0x02 != 0

Element Mapping

VecI32{Int32CDP2, ePredictorType}: MultiplicityArray

Multiplicity Expansion

ProcessingType & 0x01 != 0

 JT File Format Reference Version 9.5 Rev-A Page 207

7.2.8.1.1.3 Regions Topology Data

Regions Topology Data defines the disjoint set of non-overlapping Shells making up each Region. Each Region is defined

by one or more non-overlapping Shells. The volume of a Region is that volume lying inside each “anti-hole Shell” and

outside each simply-contained “hole Shell” belonging to the particular Region. A Region is analogous to a dimensionally

elevated face where Region corresponds to Face and Shell corresponds to Trim Loop.

Each Region‟s defining Shells are identified in a list of Shells by an index for both the first Shell and the last Shell in each

Region (i.e. all Shells inclusive between the specified first and last Shell list index define the particular Region). In addition,

the indices of all the shells in a single Region are contiguous. The first shell index of the first region is 0, and the first shell

index of other regions is one greater than the last shell index of the previous region. Therefore only the number of shells of

each region is stored. In the special case when the number of regions is 1, no information needs be stored since its last Shell

index is known to be Shell Count-1.

Figure 176: Regions Topology Data collection

VecI32{Int32CDP2, Combined:NULL}: Shell Index Difference

Shell Index Difference is a vector of indices representing the integer value by subtracting first shell index from last shell

index in each region, encoded using Combined Predictor Type. Shell Index Difference is compressed and encoded using the

Int32 version of second generation CODEC.

Recover First and Last Shell Indices

The first shell index of the first region is 0, and the last shell index of the first region is element 0 of Shell Index Difference.

The first shell index of region equals to the last shell index of region plus 1. The last shell index of region

 equals to the first shell index of region plus element of Shell Index Difference array.

7.2.8.1.1.4 Shells Topology Data

Shells Topology Data defines the set of topological adjacent Faces making up each Shell. A Shell‟s set of topological

adjacent Faces define a single (usually closed) two manifold solid that in turn defines the boundary between the finite volume

of space enclosed within the Shell and the infinite volume of space outside the Shell. In addition, each Shell has a flag that

denotes whether the Shell refers to the finite interior volume (i.e. a “hole Shell”) or the infinite exterior volume (i.e. an “anti-

hole Shell”).

Each Shell‟s defining Faces are identified in a list of Faces by an index for both the first Face and the last Face in each Shell

(i.e. all Faces inclusive between the specified first and last Face list index define the particular Shell). In addition, the indices

of all the faces in a single Shell are contiguous. The first face index of the first shell is 0, and the first face index of other

shells is one greater than the last face index of the previous shell. Therefore only the number of faces of each shell is stored.

In the special case when the number of shells is 1, no information needs be stored since its last face index is known to be

Face Count-1.

VecI32{Int32CDP2, Combined:NULL}: Shell Index Difference

Recover First and Last Shell

Indices

 JT File Format Reference Version 9.5 Rev-A Page 208

Figure 177: Shells Topology Data collection

VecI32{Int32CDP2, Combined:NULL}: Face Index Difference

Face Index Difference is a vector of indices representing the integer value by subtracting first face index from last face index

in each shell, encoded using Combined Predictor Type. Face Index Difference is compressed and encoded using the Int32

version of second generation CODEC.

Recover First and Last Face Indices

The first face index of the first shell is 0, and the last face index of the first shell is element 0 of Face Index Difference. The

first face index of shell equals to the last face index of shell plus 1. The last face index of shell

equals to the first face index of shell plus element of Face Index Difference array.

VecI32{Int32CDP2, NULL}: Shell Anti-Hole Flags

Each Shell has a flag identifying whether the Shell is an anti-hole Shell. Shell Anti-Hole Flags is a vector of anti-hole flags

for a set of Shells.

In an uncompressed/decoded form the flag values have the following meaning:

= 0 Shell is not an anti-hole Shell

= 1 Shell is an anti-hole Shell

Shell Anti-Hole Flags uses the Int32 version of the CODEC to compress and encode data.

7.2.8.1.1.5 Faces Topology Data

A Face must be trimmed with at least one “anti-hole” Trim Loop and may be trimmed with one or more “hole” Trim Loops.

The complete description of face and its relation to the trim loops can be found in 7.2.3.1.3.3 Faces Topology Data.

Each Face‟s defining Trim Loops are identified in a list of trim Loops by an index for both the first Trim Loop and the last

Trim Loop in each Face (i.e. all Trim Loops inclusive between the specified first and last Trim Loop list index define the

particular Face). In addition, the indices of all the loops in a single Face are contiguous. The first loop index of the first face

is 0, and the first loop index of other faces is one greater than the last loop index of the previous face. Therefore only the

number of loops of each face is stored. In the special case when the number of faces is 1, no information needs be stored

since its last loop index is known to be Loop Count-1.

Each Face‟s underlying Geometric Surface is identified by an index into a list of Geometric Surfaces. Each face‟s material is

identified by an index into the list of Material Attribute Elements.

VecI32{Int32CDP2, Combined:NULL}: Face Index Difference

Recover First and Last Face

Indices

VecI32{Int32CDP2, NULL}: Shell Anti-Hole Flags

 JT File Format Reference Version 9.5 Rev-A Page 209

Figure 178: Faces Topology Data collection

U8: Face Array Flag

Face Array Flag indicates which arrays of face topology data are not trivial and therefore encoded.

VecI32{Int32CDP2, Combined:NULL}: Index Difference Array

Index Difference Array is a combined vector of indices encoded using Int32 version of CODEC and Combined Predictor

Type, with its content decided by the value of Face Array Flag. If Face Array Flag has bit 0x01 set, then the vector of integer

values obtained by subtracting first loop index from last loop index in each face is appended to the end of Index Difference

Array. If Face Array Flag has bit 0x02 set, then the vector of integer values obtained by subtracting surface index from face

index in each face is appended to the end of Index Difference Array. If Face Array Flag has bit 0x04 set, then the vector of

integer values representing the material index of each face is appended to the end of Index Difference Array.

U8: Face Array Flag

Face Array Flag & 0x07 != 0

VecI32{Int32CDP2, Combined:NULL}: Index Difference

Array

Recover First and Last Loop

Indices

Recover Surface Indices

Recover Material Indices

Face Array Flag & 0x08 != 0

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array

Recover Flag Bits

Compressed CAD

Tag Data

 JT File Format Reference Version 9.5 Rev-A Page 210

Recover First and Last Loop Indices

The first loop index of the first face is 0, and the last loop index of the first face is element 0 of Index Difference Array if the

array is encoded, or 0 if bit 0x01 of Face Array Flag is not set. The first loop index of face equals to the last loop

index of face plus 1. The last loop index of face equals to the first loop index of face plus element of

Index Difference Array, or 0 if bit 0x01 of Face Array Flag is not set.

Recover Surface Indices

The surface index of each face equals to the face index if bit 0x02 of Face Array Flag is not set. Otherwise the surface index

of face is obtained by substracting element of Index Difference Array from face index , where is

equal to Face Count if bit 0x01 of Face Array Flag is set and 0 if the bit is not set.

Recover Material Indices

The material index of each face equals to 0 if bit 0x04 of Face Array Flag is not set. Otherwise the material index of face

equals to the element of Index Difference Array, where is equal to twice of Face Count if both bit 0x01

and bit 0x02 of Face Array Flag are set, is equal to Face Count if either bit 0x01 or bit 0x02 of Face Array Flag is set, and is

equal to 0 if neither bit is set.

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array

Only the lower 24 bits of the four integer indices, namely first loop index, last loop index, surface index, and material index,

are used as integer identifiers. The other bits of these integers are either used to encode additional information, or reserved

for future usage.

 24 25 26 27 28 29 30 31

First Loop Index Surface Type U Knot Type V Knot Type isNormalReversed

Last Loop Index isIsolated Reserved

Surface Index Reserved

Material Index Reserved

Each element of Flag Bit Array is a 32 bit integer obtained by combining all 32 flag bits from four different integers. More

specifically:

 Bits 0~7 of Flag Bit Array are equal to bits 24~31 of First Loop Index

 Bits 8~15 of Flag Bit Array are equal to bits 24~31 of Last Loop Index

 Bits 16~23 of Flag Bit Array are equal to bits 24~31 of Surface Index

 Bits 24~31 of Flag Bit Array are equal to bits 24~31 of Material Index

Supported Surface Type

In an uncompressed/decoded form, the supported surface types are listed below.

0 Nurbs

1 Plane

2 Cylinder

3 Cone

4 Sphere

5 Torus

6 Reserved

7 Reserved

 JT File Format Reference Version 9.5 Rev-A Page 211

Supported Knot Type

In an uncompressed/decoded form, the supported knot types are listed below. The knot type of the underlying surface along

both U and V parameter directions are encoded.

0 No Pattern

1
No knot value in between the clamped end

knots

2
All knot values in between the end knots

increase with an even interval

3

All knot values in between the end knots repeat

exactly once, and the distinct values increase

with an even interval

In an uncompressed/decoded form, the Face Reverse Normal Flag has the following meaning:

= 0 Face normal is not reversed

= 1 Face normal is reversed.

Recover Flag Bits

If Face Array Flag & 0x08 is equal to 0, then each element in Flag Bit Array is set to have value 0. The flag bits are

recovered by assigning bits 0~7 of Flag Bit Array to bits 24~31 of First Loop Index, bits 8~15 of Flag Bit Array to bits 24~31

of Last Loop Index, bits 16~23 of Flag Bit Array to bits 24~31 of Surface Index, and bits 24~31 of Flag Bit Array to bits

24~31 of Material Index.

7.2.8.1.1.6 Loops Topology Data

A Loop (often called Trimming Loop) defines in parameter space a 1D boundary around which geometric surfaces are

trimmed to form a Face. Loops Topology Data specifies the CoEdges making up each Loop along with an anti-hole flag and

identifier tag for each Loop. The complete description of loop and its relation to the CoEdges can be found in 7.2.3.1.3.4

Loops Topology Data.

 JT File Format Reference Version 9.5 Rev-A Page 212

Figure 179: Loops Topology Data collection

U8: Loop Array Flag

Loop Array Flag indicates which arrays of loop topology data are not trivial and therefore encoded.

VecI32{Int32CDP2, Combined:NULL}: CoEdge Index Difference

CoEdge Index Difference is a vector of indices representing the integer value by subtracting first CoEdge index from last

CoEdge index in each loop, encoded using Combined Predictor Type. CoEdge Index Difference is compressed and encoded

using the Int32 version of second generation CODEC.

Recover First and Last CoEdge Indices

The first CoEdge index of the first loop is 0, and the last CoEdge index of the first loop is element 0 of CoEdge Index

Difference. The first CoEdge index of loop equals to the last CoEdge index of loop plus 1. The last CoEdge

index of loop equals to the first CoEdge index of loop plus element of CoEdge Index Difference array.

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array

Only the lower 24 bits of the two integer indices, namely first CoEdge index and last CoEdge index are used as integer

identifiers. The other bits of these integers are either used to encode additional information, or reserved for future usage.

 24 25 26 27 28 29 30 31

First CoEdge Index Reserved isAntiHoleLoop

Last CoEdge Index Reserved

Bits 0~7 of Flag Bit Array are equal to bits 24~31 of First CoEdge Index

Bits 8~15 of Flag Bit Array are equal to bits 24~31 of Last CoEdge Index

Bits 16~31 of Flag Bit Array are set to be 0

U8: Loop Array Flag

Loop Array Flag & 0x01 != 0

VecI32{Int32CDP2, Combined:NULL}: CoEdge Index Difference

Recover First and Last CoEdge Indices

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array

Recover Flag Bits

Loop Array Flag & 0x02 != 0

 JT File Format Reference Version 9.5 Rev-A Page 213

In an uncompressed/decoded form, the AntiHole Loop Flag has the following meaning:

= 0 Loop is not an anti-hole Loop

= 1 Loop is an anti-hole Loop

Recover Flag Bits

The flag bits are recovered by assigning bits 0~7 of Flag Bit Array to bits 24~31 of First CoEdge Index, and bits 8~15 of Flag

Bit Array to bits 24~31 of Last CoEdge Index.

7.2.8.1.1.7 CoEdges Topology Data

A CoEdge defines a parameter space edge trim Loop segment (i.e. the projection of an Edge into the parameter space of the

Face). CoEdges Topology Data specifies the underlying Edge and PCS Curve making up each CoEdge along with a MCS

curve reversed flag and tag for each CoEdge. The complete description of CoEdge and its relation to the Edge can be found

in 7.2.3.1.3.5 CoEdges Topology Data.

 JT File Format Reference Version 9.5 Rev-A Page 214

Figure 180: CoEdges Topology Data collection

U8: CoEdge Array Flag

CoEdge Array Flag indicates which arrays of coedge topology data are not trivial and therefore encoded.

VecI32{Int32CDP2, Combined:NULL}: Edge Index Difference

Edge Index Difference is a vector of indices representing the integer value by subtracting the Edge index from the CoEdge

index for each CoEdge, encoded using Combined Predictor Type. Edge Index Difference is compressed and encoded using

the Int32 version of second generation CODEC.

U8: CoEdge Array

Flag

CoEdge Array Flag & 0x01 != 0

VecI32{Int32CDP2, Combined:NULL}: Edge Index Difference

Recover Flag Bits

CoEdge Array Flag & 0x02 != 0

VecI32{Int32CDP2, Combined:NULL}: PCS Curve Index

Difference

Recover Edge Indices

Recover PCS Curve Indices

CoEdge Array Flag & 0x04 != 0

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array

 JT File Format Reference Version 9.5 Rev-A Page 215

Recover Edge Indices

If CoEdge Array Flag & 0x01 is equal to 0, then the Edge index of each CoEdge is equal to the CoEdge index. Otherwise,

the Edge index of CoEdge with index can be computed by substracting element of Edge Index Difference array from ,

the CoEdge index.

VecI32{Int32CDP2, Combined:NULL}: PCS Curve Index Difference

PCS Curve Index Difference is a vector of indices representing the integer value by subtracting the PCS Curve index from

the CoEdge index for each CoEdge, encoded using Combined Predictor Type. PCS Curve Index Difference is compressed

and encoded using the Int32 version of second generation CODEC.

Recover PCS Curve Indices

If CoEdge Array Flag & 0x02 is equal to 0, then the PCS Curve index of each CoEdge is equal to the CoEdge index.

Otherwise, the PCS Curve index of CoEdge with index can be computed by substracting element of PCS Curve Index

Difference array from , the CoEdge index.

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array

Only the lower 24 bits of the two integer indices, namely Edge index and PCS Curve index, are used as integer identifiers.

The other bits of these integers are either used to encode additional information, or reserved for future usage.

 24 25 26 27 28 29 30 31

Edge Index Knot Type Domain Type PCS Curve Type isXYZReversed

PCS Curve Index isUvInc Reserved

Bits 0~7 of Flag Bit Array are equal to bits 24~31 of Edge Index

Bits 8~15 of Flag Bit Array are equal to bits 24~31 of PCS Curve Index

Bits 16~31 of Flag Bit Array are set to be 0

The Knot Type, defined in Supported Knot Type, is an integer with its value between 0 and 3.

 JT File Format Reference Version 9.5 Rev-A Page 216

Domain Type

Figure 181: Surface Domain Classification

In an uncompressed/decoded form, the supported PCS Curve types are listed below.

0 General

1 PCS curve is coincident with iso-umin curve in the surface parameter domain

2 PCS curve is coincident with iso-umax curve in the surface parameter domain

3 PCS curve is coincident with iso-vmin curve in the surface parameter domain

4 PCS curve is coincident with iso-vmax curve in the surface parameter domain

5 Reserved

6 Reserved

7 PCS curve is to be derived from MCS curve and surface geometry

PCS Curve Type

In an uncompressed/decoded form, the supported PCS Curve types are listed below.

0 Nurbs

1 Line

2 Circle

3 Reserved

In an uncompressed/decoded form, the XYZReversed Flag has the following meaning:

= 0 Directional sense of associated edges MCS curve should not be interpreted as opposite the

direction its parameterization implies.

Surface Parameter Domain

iso-vmin

iso-umax

iso-vmax

iso-umin

u

v

 JT File Format Reference Version 9.5 Rev-A Page 217

= 1 Directional sense of associated edges MCS curve should be interpreted as opposite the

direction its parameterization implies.

In an uncompressed/decoded form, the isUVInc Flag has the following meaning:

= 0 PCS Curve is iso-parameteric in surface parameter domain in one direction and the

parameter increases in the other direction

= 1 PCS Curve is iso-parameteric in surface parameter domain in one direction and the

parameter decreases in the other direction

The isUVInc flag is set only if the Domain Type of this CoEdge has value between 1 and 4 inclusive.

Recover Flag Bits

If CoEdge Array Flag & 0x04 is equal to 0, then each element in Flag Bit Array is set to have value 0. The flag bits are

recovered by assigning bits 0~7 of Flag Bit Array to bits 24~31 of Edge Index, and bits 8~15 of Flag Bit Array to bits 24~31

of PCS Curve Index.

7.2.8.1.1.8 Edges Topology Data

An Edge defines a model space trim Loop segment. Edges Topology Data specifies the underlying MCS Curve and start and

end Vertex making up each Edge along with an identification tag for each Edge. The complete description of Edge can be

found in 7.2.3.1.3.6 Edges Topology Data.

 JT File Format Reference Version 9.5 Rev-A Page 218

Figure 182: Edges Topology Data collection

U8: Edge Array Flag

Edge Array Flag indicates which arrays of edge topology data are not trivial and therefore encoded.

VecI32{Int32CDP2, Combined:NULL}: Vertex Index Array

Vertex Index Array is a vector of indices representing the start and end vertex indices of each Edge, encoded using Combined

Predictor Type. Vertex Index Array is compressed and encoded using the Int32 version of second generation CODEC.

U8: Edge Array Flag

Edge Array Flag & 0x01 != 0

VecI32{Int32CDP2, Combined:NULL}: Vertex Index Array

Recover Flag Bits

Edge Array Flag & 0x02 != 0

VecI32{Int32CDP2, Combined:NULL}: MCS Curve Index Difference

Recover Vertex Indices

Recover MCS Curve Indices

Edge Array Flag & 0x04 != 0

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array

Compressed CAD

Tag Data

 JT File Format Reference Version 9.5 Rev-A Page 219

Recover Vertex Indices

If Edge Array Flag & 0x01 is equal to 0, then all the vertex indices of each edge are set to be 0. Otherwise, the start vertex

index of Edge with index is set to be equal to element of Vertex Index Array, while the end vertex index of this Edge

is set to be equal to element of Vertex Index Array.

VecI32{Int32CDP2, Combined:NULL}: MCS Curve Index Difference

MCS Curve Index Difference is a vector of indices representing the integer value by subtracting the MCS Curve index from

the Edge index for each Edge, encoded using Combined Predictor Type. MCS Curve Index Difference is compressed and

encoded using the Int32 version of second generation CODEC.

Recover MCS Curve Indices

If Edge Array Flag & 0x02 is equal to 0, then the MCS Curve index of each Edge is equal to the Edge index. Otherwise, the

MCS Curve index of Edge with index can be computed by substracting element of MCS Curve Index Difference array

from , the Edge index.

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array

Only the lower 24 bits of the three integer indices, namely MCS Curve index, Start Vertex index, and End Vertex index, are

used as integer identifiers. The other bits of these integers are either used to encode additional information, or reserved for

future usage.

 24 25 26 27 28 29 30 31

MCS Curve Index Knot Type MCS Curve Type Reserved

Start Vertex Index Reserved

End Vertex Index Reserved

The Knot Type, defined in Supported Knot Type, is an integer with its value between 0 and 3.

MCS Curve Type

In an uncompressed/decoded form, the supported MCS Curve types are listed below.

0 Nurbs

1 Line

2 Circle

3
Projection: MCS curve geometry is to be computed from

surface geometry and/or PCS curve geometry

Recover Flag Bits

If Edge Array Flag & 0x04 is equal to 0, then each element in Flag Bit Array is set to have value 0. The flag bits are

recovered by assigning bits 0~7 of Flag Bit Array to bits 24~31 of MCS Curve Index.

7.2.8.1.1.9 Vertices Topology Data

A Vertex is the simplest topological entity and is basically made up of a geometric Point. Vertices Topology Data specifies

the underlying geometric Point making up each Vertex. A Vertex is usually shared/referenced by two or more Edges (e.g. if

the corners of four rectangular Faces touches at a common point, this point is represented by a Vertex and is shared by four

Edges).

 JT File Format Reference Version 9.5 Rev-A Page 220

Figure 183: Vertices Topology Data collection

U8: Vertex Array Flag

Vertex Array Flag indicates which arrays of vertex topology data are not trivial and therefore encoded.

VecI32{Int32CDP2, Combined:NULL}: Point Index Difference

Point Index Difference is a vector of indices representing the integer value obtained by subtracting point index from vertex

index, encoded using Combined Predictor Type. Point Index Difference is compressed and encoded using the Int32 version

of second generation CODEC.

Recover Point Indices

If Vertex Array Flag & 0x01 is equal to 0, then the point index of each vertex is equal to the vertex index. Otherwise, the

point index of vertex is recovered by substrating element of Point Index Difference array from , the vertex index.

U8: Vertex Array Flag

Vertex Array Flag & 0x01 != 0

VecI32{Int32CDP2, Combined:NULL}: Point Index Difference

Recover Point Indices

 JT File Format Reference Version 9.5 Rev-A Page 221

7.2.8.1.2 Geometric Data

Figure 184: Geometric Data collection

CoordF64 : Translation Vector

Translation Vector is a 3-dimensional vector that represents how the ULP geometry is defined w.r.t. the original B-Rep

definition from which ULP geometry is derived. If the Translation Vector is not zero vector, then the ULP geometry read

from disk is translated from original B-Rep definition by the amount of Translation Vector. This is usually done by the JT

writer implementation to improve numerical accuracy of floating point numbers in the ULP geometry. It is important for all

the JT readers to take this Translation Vector into consideration when consuming ULP geometry. For example if a LOD is

generated from ULP geometry, e.g. by tessellation, then the LOD geometry must be translated to undo the effect of

U32: Geometric Tabe
Flag

Geometric Tabe Flag indicates

which geometric tables are not

trivial and therefore encoded.

Geometric Entity Counts

Degree Table

Number of Control Points Table

Dimension Table

3D Unit Vector Table

2D Unit Vector Table

3D MCS Point Table

Knot Vector Table

Geometric Tabe Flag & 0x0001 != 0

U32: Geometric Tabe Flag

1D MCS Table

Geometric Tabe Flag & 0x0002 != 0

Geometric Tabe Flag & 0x0004 != 0

Geometric Tabe Flag & 0x0008 != 0

Geometric Tabe Flag & 0x0010 != 0

Geometric Tabe Flag & 0x0020 != 0

Geometric Tabe Flag & 0x0040 != 0

Geometric Tabe Flag & 0x0080 != 0

PCS Value Table

Radian Table

Geometric Tabe Flag & 0x0100 != 0

Geometric Tabe Flag & 0x0200 != 0

Weight Table

Geometric Tabe Flag & 0x0400 != 0

CoordF64 : Translation Vector

 JT File Format Reference Version 9.5 Rev-A Page 222

Translation Vector for it be consistent with the original B-Rep definition. In other words, if we denote the Translation Vector

as , then the LOD geometry from ULP must be translated by – .

U32: Geometric Tabe Flag

Geometric Tabe Flag indicates which geometric tables are not trivial and therefore encoded.

7.2.8.1.2.1 Geometric Entity Counts

U32: Geometric Tabe Flag

Geometric Tabe Flag indicates which geometric tables are not trivial and therefore encoded.

Geometric Entity Counts data collection defines the counts for each of the various geometric entities within a ULP.

Figure 185: U32: Geometric Tabe Flag

Geometric Tabe Flag indicates which geometric tables are not trivial and therefore encoded.

Geometric Entity Counts data collection

I32 : Surface Count

Surface Count indicates the number of distinct geometric surface entities in the ULP

I32 : MCS Curve Count

MCS Curve Count indicates the number of distinct geometric (Model Coordinate Space) curves (i.e. XYZ curve) entities in

the ULP.

I32 : PCS Curve Count

PCS Curve Count indicates the number of distinct geometric Parameter Coordinate Space curves (i.e. UV curve) entities in

the ULP

I32 : Point Count

Point Count indicates the number of distinct geometric point entities in the ULP.

7.2.8.1.2.2 Degree Table

Degree Table stores a vector of integers that represent the degree information of Nurbs surfaces and/or curves. If the ULP

does not contain any Nurbs entity, then the table is empty and bit 0x0001 in Geometric Tabe Flag is set to be 0.

I32 : Surface Count

I32 : MCS Curve Count

I32 : PCS Curve Count

I32 : Point Count

 JT File Format Reference Version 9.5 Rev-A Page 223

Figure 186: Degree Table data collection

VecI32{Int32CDP2, Combined:NULL}: Degree Array

Degree Array is a vector of integers that stores the degree information for all the Nurbs entities in the ULP, encoded using

Combined Predictor Type. Degree Array is compressed and encoded using the Int32 version of second generation CODEC.

Recover Nurbs Degree

The logic diagram to recover degree information for all the Nurbs entities in the ULP from the Degree Array is shown below.

VecI32{Int32CDP2, Combined:NULL}: Degree Array

Recover Nurbs Degree

 JT File Format Reference Version 9.5 Rev-A Page 224

Figure 187: Recover Nurbs Degree

Surface k is of

Nurbs type

k=0, idx=0

N

Y

Set U degree to be array[idx]

and V degree to be array[idx+1]

k = k +1 idx = idx + 2

Any surface left?

Y

N

k=0

MCS Curve k is of

Nurbs type

MCS Curve Type is

3

Y

Any MCS Curve left?

Set curve degree to

be array[idx]

idx = idx + 1

N Y

N

k = k +1

Y

N

k=0

PCS Curve k is of

Nurbs type

Domain Type is 1,

2, 3, 4, or 7

Y

Any PCS Curve left?

Set curve degree to

be array[idx]

idx = idx + 1

N Y

N

k = k +1

Y

N

Start

End

 JT File Format Reference Version 9.5 Rev-A Page 225

7.2.8.1.2.3 Number of Control Points Table

Number of Control Points Table stores a vector of integers that represent the number of control points information of Nurbs

surfaces and/or curves. If the ULP does not contain any Nurbs entity, then the table is empty and bit 0x0002 in Geometric

Tabe Flag is set to be 0.

Figure 188: Number of Control Points Table data collection

VecI32{Int32CDP2, Combined:NULL}: Number of Control Points Array

Number of Control Points Array is a vector of integers that stores the number of control points information for all the Nurbs

entities in the ULP, encoded using Combined Predictor Type. Number of Control Points Array is compressed and encoded

using the Int32 version of second generation CODEC.

Recover Number of Control Points

The logic diagram to recover number of control points information for all the Nurbs entities in the ULP from the Number of

Control Points Array is shown below.

VecI32{Int32CDP2, Combined:NULL}: Number of Control Points

Array

Recover Number of Control Points

 JT File Format Reference Version 9.5 Rev-A Page 226

Figure 189: Recover Number of Control Points

7.2.8.1.2.4 Dimension Table

Dimension Table stores a vector of integers that represent the dimension information of Nurbs surfaces and/or curves. If the

ULP does not contain any Nurbs entity, then the table is empty and bit 0x0004 in Geometric Tabe Flag is set to be 0.

Surface k is of

Nurbs type

k=0, idx=0

N

Y

Set number of control points along U direction

to be array[idx] and number of control points

along V direction to be array[idx+1]

k = k +1 idx = idx + 2

Any surface left?

Y

N

k=0

MCS Curve k is of

Nurbs type

MCS Curve Type is

3

Y

Any MCS Curve left?

Set number of control points

of the curve to be array[idx]

idx = idx + 1

N Y

N

k = k +1

Y

N

k=0

PCS Curve k is of

Nurbs type

Domain Type is 1,

2, 3, 4, or 7

Y

Any PCS Curve left?

idx = idx + 1

N Y

N

k = k +1

Y

N

Start

End

Set number of control points

of the curve to be array[idx]

 JT File Format Reference Version 9.5 Rev-A Page 227

Figure 190: Dimension Table data collection

VecI32{Int32CDP2, Combined:NULL}: Dimension Array

Dimension Array is a vector of integers that stores the dimension information for all the Nurbs entities in the ULP, encoded

using Combined Predictor Type. Dimension Array is compressed and encoded using the Int32 version of second generation

CODEC.

Recover Dimension

The logic diagram to recover dimension information for all the Nurbs entities in the ULP from the Dimension Array is shown

below.

VecI32{Int32CDP2, Combined:NULL}: Dimension Array

Recover Dimension

 JT File Format Reference Version 9.5 Rev-A Page 228

Figure 191: Recover Dimension

7.2.8.1.2.5 3D Unit Vector Table

3D Unit Vector Table stores an array of unit vectors in 3D that form part of the analytic surface or curve representation in

ULP. If the ULP does not contain any analytic entity, then the table is empty and bit 0x0008 in Geometric Tabe Flag is set

to be 0. The supported analytic surface types include plane, cylinder, cone, sphere, and torus, and the supported analytic

Surface k is of

Plane type

k=0, idx=0

N

Y

Set surface dimension to be

array[idx]

k = k +1 idx = idx + 1

Any surface left?

Y

N

k=0

MCS Curve k is of

Nurbs type

MCS Curve Type is

3

Y

Any MCS Curve left?

Set curve dimension to be

array[idx]

idx = idx + 1

N Y

N

k = k +1

Y

N

k=0

PCS Curve k is of

Nurbs type

Domain Type is 1,

2, 3, 4, or 7

Y

Any PCS Curve left?

idx = idx + 1

N Y

N

k = k +1

Y

N

Start

End

Set curve dimension to be

array[idx]

 JT File Format Reference Version 9.5 Rev-A Page 229

curve types include line and circle for both parameter space and model space curves. The analytic representation of ULP

follows Parasolid convention as detailed in Appendix F: Parasolid XT Format Reference.

Similar to the coding of 8.1.5 Compressed Vertex Normal Array, each 3D unit vector is encoded as a single 32 bit integer

using 8.2.4 Deering Normal CODEC.

Figure 192: 3D Unit Vector Table data collection

U8 : Quantization Bits

The number of bits used for the Deering Normal CODEC if quantization is enabled. A value of 0 denotes that quantization is

disabled.

VecI32{Int32CDP2, Combined:NULL}: 3D Unit Vector Integer Array

3D Unit Vector Integer Array is a vector of integers that stores the encoded 3D unit vector from all analytic entities in the

ULP, encoded using Combined Predictor Type. 3D Unit Vector Integer Array is compressed and encoded using the Int32

version of second generation CODEC.

Recover 3D Unit Vector

The logic diagram to recover 3D unit vector information for all the analytic entities in the ULP from the 3D Unit Vector

Integer Array is shown below.

The recovery of a unit vector from an element in the 3D Unit Vector Integer Array is done as part of Deering Normal

CODEC.

As described in Appendix F: Parasolid XT Format Reference, the representation of an analytic surface of types plane,

cylinder, cone, sphere, or torus, includes two 3D unit vectors. One is called “axis” and the other is called “x_axis”. These

two unit vectors of each analytic surface are recovered for each analytic surface. In addition, the “normal” vector to the plane

containing a 3D circle is also recovered.

VecI32{Int32CDP2, Combined:NULL}: 3D Unit Vector Integer Array

Recover 3D Unit Vector

U8 : Quantization Bits

 JT File Format Reference Version 9.5 Rev-A Page 230

Figure 193: Recover Dimension

7.2.8.1.2.6 2D Unit Vector Table

2D Unit Vector Table stores an array of unit vectors in 2D that form part of PCS analytic circle representation in ULP. If the

ULP does not contain any analytic circle in the PCS, then the table is empty and bit 0x0010 in Geometric Tabe Flag is set to

be 0. The analytic curve representation of ULP follows Parasolid convention as detailed in Appendix F: Parasolid XT

Format Reference.

Similar to the coding of 8.1.5 Compressed Vertex Normal Array, each 2D unit vector is treated as a 3D unit vector with z

component set to be 0.0, and encoded as a single 32 bit integer using 8.2.4 Deering Normal CODEC. In addition, the

Quantization Bits information of Deering Normal CODEC used to encode 2D Unit Vector Table is always the same as the

one used for 3D Unit Vector Table.

Type of surface k is

analytic

k=0, idx=0

N

Y

Decode array[idx] and set axis

vector to be the decoded vector

k = k +1

idx = idx + 2

Any surface left?

Y

N

k=0

Type of MCS

Curve k is 2 (circle)
MCS Curve Type is

3

Y

Any MCS Curve left?

Decode array[idx] and set

normal vector to be the

decoded vector

idx = idx + 1

N Y

N

k = k +1

Y

N

Start

End

Decode array[idx+1] and set

x_axis vector to be the decoded

vector

 JT File Format Reference Version 9.5 Rev-A Page 231

Figure 194: 2D Unit Vector Table data collection

VecI32{Int32CDP2, Combined:NULL}: 2D Unit Vector Integer Array

2D Unit Vector Integer Array is a vector of integers that stores the encoded 2D unit vector from all analytic entities in the

ULP.

Recover 2D Unit Vector

The logic diagram to recover 2D unit vector information for all the analytic entities in the ULP from the 2D Unit Vector

Integer Array is shown below.

The recovery of a unit vector from an element in the 2D Unit Vector Integer Array is done as part of Deering Normal

CODEC. The Quantization Bits read from 3D Unit Vector Table should be used for Deering Normal CODEC to decode

the vector information from each element in 2D Unit Vector Integer Array.

The “x_axis” vector to the circle in the PCS, as described in Appendix F: Parasolid XT Format Reference, is recovered.

Figure 195: Recover 2D Unit Vector

7.2.8.1.2.7 3D MCS Point Table

3D MCS Point Table stores the quantization representation of an array of 3D MCS points in ULP. If the ULP does not

contain 3D MCS points, then the table is empty and bit 0x0020 in Geometric Tabe Flag is set to be 0.

Each point coordinate is first encoded into an integer with uniform quantizer (see 8.1.12 Uniform Quantizer Data) and then

all the integers from each coordinate are grouped into an integer array, which is then encoded using the Int32 version of

second generation CODEC with Combined Predictor Type.

k=0, idx=0

Type of PCS Curve

k is 2 (circle)

Y

Any PCS Curve left?

Decode array[idx] and set

x_axis vector to be the

decoded vector

idx = idx + 1

N

k = k +1

Y

N

Start

End

VecI32{Int32CDP2, Combined:NULL}: 2D Unit Vector Integer Array

Recover 2D Unit Vector

 JT File Format Reference Version 9.5 Rev-A Page 232

Figure 196: 3D MCS Point Table data collection

VecI32{Int32CDP2, Combined: Lag1}: X-Point Coord Codes

X-Point Coord Codes is a vector of quantizer “codes” for all the X-components of an array of point coordinates. X-Point

Coord Codes uses the Int32 version of the second generation CODEC to compress and encode data.

VecI32{Int32CDP2, Combined: Lag1}: Y-Point Coord Codes

Y-Point Coord Codes is a vector of quantizer “codes” for all the Y-components of an array of point coordinates. Y-Point

Coord Codes uses the Int32 version of the second generation CODEC to compress and encode data.

VecI32{Int32CDP2, Combined: Lag1}: Z-Point Coord Codes

Z-Point Coord Codes is a vector of quantizer “codes” for all the Z-components of an array of point coordinates. Z-Point

Coord Codes uses the Int32 version of the second generation CODEC to compress and encode data.

Recover 3D MCS Points

The logic diagram to recover 3D MCS points information in the ULP from the three arrays, X-Point Coord Codes, Y-Point

Coord Codes, and Z-Point Coord Codes, is shown below. Note that the point coordinates are decoded from the integer

elements with Uniform Quantizer (see 8.1.12 Uniform Quantizer Data).

X Uniform Quantizer Data

VecI32{Int32CDP2, Combined: Lag1}: X-Point Coord Codes

Recover 3D MCS Points

VecI32{Int32CDP2, Combined: Lag1}: Y-Point Coord Codes

VecI32{Int32CDP2, Combined: Lag1}: Z-Point Coord Codes

Y Uniform Quantizer Data

Z Uniform Quantizer Data

 JT File Format Reference Version 9.5 Rev-A Page 233

Figure 197: Recover 3D MCS Points

Type of surface k is

0 (nurbs)

k=0, idx=0

N Y

Decode array[idx] and set the coordinate of

the control point with index idx_v*nu+idx_u

to be the decoded value, for X, Y, and Z

coordinate componentsk = k +1

Any surface left?

N
k=0

Type of MCS

Curve k is 0 (nurbs)

Any MCS Curve left?

N

N

Start

End

idx_u=0

idx_v=0

idx_v < nv?
idx_v=idx_v+1,

idx = idx+1

Y

N

idx_u = idx_u + 1

idx_u < nu?

N Y

Type of surface k is

1~5(plane,

cylinder, cone,

sphere, or torus)

Decode array[idx] and set

pvec field to be the decoded

value, for X, Y, and Z

coordinate components

Y

idx = idx + 1

Y

N

Y

idx_u=0

Decode array[idx] and set the

coordinate of the control point with

index idx_u to be the decoded value,

for X, Y, and Z coordinate components

idx_u=idx_u+1,

idx = idx+1idx_u < nu?

Y

N

k = k +1

Y

Type of MCS

Curve k is 2 (circle)

Y

Decode array[idx] and set

pvec field to be the decoded

value, for X, Y, and Z

coordinate components

idx = idx + 1

N

N

k=0

Decode array[idx] and set the

coordinate of the point array with index

k to be the decoded value, for X, Y,

and Z coordinate components

Any point left?

Y

N

k = k +1

idx = idx + 1

7.2.8.1.2.8 Knot Vector Table

Knot Vector Table stores the quantization representation of knot vectors in ULP. If the ULP does not contain any knot vector

that needs be stored, then the table is empty and bit 0x0040 in Geometric Tabe Flag is set to be 0.

In ULP every knot vector starts with 0.0 and ends with 1.0 and is always clamped at both ends. The encoding of knot vector

depends on its classified knot type. The knot values in the middle of a knot vector need be written only if the knot type is 0

 JT File Format Reference Version 9.5 Rev-A Page 234

(see Supported Knot Type). For all the knot values that need be written, each of them is encoded into an integer with

uniform quantizer (see 8.1.12 Uniform Quantizer Data) and then all the integers are grouped into an integer array. The

integer array is then encoded using the Int32 version of second generation CODEC with Combined Predictor Type.

Figure 198: Knot Vector Table data collection

VecI32{Int32CDP2, Combined:NULL}: Knot Vector Codes

Knot Vector Codes is a vector of quantizer “codes” for all the knot vectors. Knot Vector Codes uses the Int32 version of the

second generation CODEC with Combined Predictor Type to compress and encode data.

Recover Knot Vectors

The logic diagram to recover knot vector information in the ULP from the Knot Vector Codes is shown below. Note that

each integer element in the Knot Vector Codes array is decoded with Uniform Quantizer.

Uniform Quantizer Data

VecI32{Int32CDP2, Combined:NULL}: Knot Vector Codes

Recover Knot Vectors

 JT File Format Reference Version 9.5 Rev-A Page 235

Figure 199: Recover Knot Vectors

Type of surface k is

0 (nurbs)

k=0, idx=0

Y

k = k +1

k=0

Type of MCS

Curve k is 0 (nurbs)

Any MCS Curve left?

N

Start

End

N

Y

Initialize both U and V

knot vectors to be

clamped at 0.0 at one

end and 1.0 at the other

U knot vector

processed?

N

Set active knot vector to be

U knot vector
Set active knot vector to be

V knot vector

Y V knot vector

processed?

N

Any surface left?
Y

Y

Type of knot vector

is 0, 2, or 3?

Y

N

N

k = k +1

N

N

N

Y

Decode

active knot
Type of knot vector

is 0, 2, or 3?

Y

Decode

active knot

k=0

Type of PCS Curve

k is 0 (nurbs)

Any PCS Curve left?

N

Y

Y

Type of knot vector

is 0, 2, or 3?

Y

N

N

Decode

active knot

k = k +1

Refer to the other picture

for the diagram of

“Decode active knot”

 JT File Format Reference Version 9.5 Rev-A Page 236

Decode contiguous run of elements

starting at array[idx] and set the middle

values of the active knot vector to be the

decoded value.

Type of active knot

vector is 0?

Y

Type of active knot

vector is 2?

N

Compute the values of middle values of the

active knot vector as they are evenly

distributed

Y

Type of active knot

vector is 3?

N

Y
Compute the values of middle values of the

active knot vector as each value repeats

exactly once and the distinct middle values

are evenly distributed

idx = idx + N(number of

the middle values of the

active knot vector)

Decode

active knot

7.2.8.1.2.9 1D MCS Table

1D MCS Table stores the quantization representation of floating point values in MCS. If the ULP does not contain any such

value, then the table is empty and bit 0x0080 in Geometric Tabe Flag is set to be 0. Each floating point value is encoded into

an integer with uniform quantizer (see 8.1.12 Uniform Quantizer Data) and then all the integers are grouped into an integer

array. The integer array is then encoded using the Int32 version of second generation CODEC with Combined Predictor

Type.

Figure 200: 1D MCS Table data collection

Uniform Quantizer Data

VecI32{Int32CDP2, Combined:Lag1}: 1D MCS Codes

Recover 1D MCS Table

 JT File Format Reference Version 9.5 Rev-A Page 237

VecI32{Int32CDP2, Combined:Lag1}: 1D MCS Codes

1D MCS Codes is a vector of quantizer “codes” for all the 1D floating point values in MCS . 1D MCS Codes uses the Int32

version of the second generation CODEC with Combined Predictor Type to compress and encode data.

Recover 1D MCS Table

The representation of each surface or curve in ULP includes information that describes the extent of the surface or curve in

the parameter domain. For curves the extent information is represented by two numbers, umin and umax, while for surfaces

it is represented by two additional numbers for the other parametric direction, vmin and vmax. For surfaces or curves of

NURBS type such extent information is implied by the knot vector information. For surfaces or curves of other types the

extent information needs be read from 1D MCS Table if the parameter value represents value in MCS, or Radian Table if the

parameter value represents angle information. The detailed information about how the parameter domain information of

different entities should be read is listed in Table 8.

Table 8: Parameter Domain

Entity Type umin umax vmin vmax

NURBS Surface n/a (from knot) n/a (from knot)) n/a (from knot) n/a (from knot)

Plane n/a (always 0) 1D MCS Table n/a (always 0) 1D MCS Table

Cylinder n/a (always 0) Radian Table n/a (always 0) 1D MCS Table

Cone n/a (always 0) Radian Table n/a (always 0) 1D MCS Table

Sphere n/a (always 0) Radian Table Radian Table Radian Table

Torus n/a (always 0) Radian Table Radian Table Radian Table

XYZ NURBS Curve n/a (from knot) n/a (from knot) n/a n/a

XYZ Line n/a (always 0) n/a (from vertex geometry) n/a n/a

XYZ Circle n/a (always 0) Radian Table n/a n/a

UV NURBS Curve n/a (from knot) n/a (from knot) n/a n/a

UV Line n/a (always 0) n/a (from next uv curve) n/a n/a

UV Circle Radian Table Radian Table n/a n/a

 JT File Format Reference Version 9.5 Rev-A Page 238

Figure 201: Recover 1D MCS Table

The logic diagram to recover 1D MCS table information in the ULP from the 1D MCS Codes is shown in igure 200: 1D

MCS Table data collectionFigure 201. Note that each integer element in the 1D MCS Codes array is decoded with Uniform

Quantizer.

Type of surface k is

nurbs

k=0, idx=0

N

Y

k = k +1

Any surface left?

N

Type of curve c

nurbs

Start

End

Type is plane

Y

idx = idx + 2

N

Any PCS curve left

in face k?

N

Decode array[idx] and

array[idx+1], and set as

value of umax and vmax

respectively. modelX =

true, modelY = true.

Type is cylinder

or cone

Decode array[idx] and

array[idx+1], and set as

value of vmax and radius

respectively. modelX =

false, modelY = true

N

Y

Y

Type is sphere

Decode array[idx] set as

value of radius. modelX =

false, modelY = false

N

Y

Any surface left?
YType is torus

Decode array[idx] and

array[idx+1], and set as

value of major radius and

minor radius respectively.

modelX = false, modelY =

false

Y

idx = idx + 2

idx = idx + 1

idx = idx + 2

For all the PCS curves

associated with face k,

starting with c=0

Domain type of

curve c is 0
c = c + 1

Y

For each control point, except the

last one, decode next array

element and set as X coordinate

if modelX is true, decode next

array element and set as Y

coordinate if modelY is true

increment idx by

number of

decoded elements

Y

Type of curve c

is line

If modelX is true, decode next

array element and set as X

coordinate of pvec, if modelY is

true decode next array element

and set as Y coordinate of pvec

increment idx by

number of

decoded elements

Y

N

Type of curve c

is circle
Decode array[idx] and set as

value of radius

increment idx by

number of

decoded elements

Y

N

Y

N

Any surface left?

 JT File Format Reference Version 9.5 Rev-A Page 239

7.2.8.1.2.10 PCS Value Table

PCS Value Table stores the quantization representation of floating point values in PCS. If the ULP does not contain any such

value, then the table is empty and bit 0x0100 in Geometric Tabe Flag is set to be 0. Each floating point value is encoded into

an integer with uniform quantizer (see 8.1.12 Uniform Quantizer Data) and then all the integers are grouped into an integer

array. The integer array is then encoded using the Int32 version of second generation CODEC with Combined Predictor

Type.

Figure 202: PCS Value Table data collection

VecI32{Int32CDP2, Combined:NULL}: PCS Value Codes

PCS Value Codes is a vector of quantizer “codes” for all the floating point values in PCS . PCS Value Codes uses the Int32

version of the second generation CODEC with Combined Predictor Type to compress and encode data.

Recover PCS Value Table

The logic diagram to recover PCS Value Table information in the ULP from the PCS Value Codes is shown in Figure 203.

Note that each integer element in the PCS Value Codes array is decoded with Uniform Quantizer.

Uniform Quantizer Data

VecI32{Int32CDP2, Combined:NULL}: PCS Value Codes

Recover PCS Value Table

 JT File Format Reference Version 9.5 Rev-A Page 240

Figure 203: Recover PCS Value Table

Figure 204: Radian Table data collection

7.2.8.1.2.11 Radian Table

Radian Table stores the quantization representation of angular values. If the ULP does not contain any such angular value,

then the table is empty and bit 0x0200 in Geometric Tabe Flag is set to be 0. Each angular value is encoded into an integer

with uniform quantizer (see 8.1.12 Uniform Quantizer Data) and then all the integers are grouped into an integer array. The

integer array is then encoded using the Int32 version of second generation CODEC with Combined Predictor Type.

Uniform Quantizer Data

VecI32{Int32CDP2, Combined:NULL}: Radian Codes

Recover Radian Table

Type of surface k is

nurbs

k=0, idx=0

N

Y

k = k +1

N

Type of curve c

nurbs

Start

End

Any PCS curve left

in face k?

N

For all the PCS curves

associated with face k,

starting with c=0

Domain type of

curve c is 0
c = c + 1

Y

For each control point, except the

last one, decode array[idx] and

array[idx+1], and set as its X

coordinate and Y coordinate

respectively

Idx = idx + 2*(n-1),

where n is the

number of control

points

Y

Type of curve c

is line

Decode array[idx] and

array[idx+1], and set as X

coordinate and Y coordinate of

pvec respecively

idx = idx + 2

Y

N

Y

N

Any surface left?

 JT File Format Reference Version 9.5 Rev-A Page 241

VecI32{Int32CDP2, Combined:NULL}: Radian Codes

Radian Codes is a vector of quantizer “codes” for all the angular values. Radian Codes uses the Int32 version of the second

generation CODEC with Combined Predictor Type to compress and encode data.

Recover Radian Table

The logic diagram to recover Radian Table information in the ULP from the Radian Codes is shown in Figure 205. Note that

each integer element in the Radian Codes array is decoded with Uniform Quantizer.

Figure 205: Recover Radian Table

Type of surface k is

nurbs or plane

k=0, idx=0

N

Y

k = k +1

Any surface left?

N

Type of curve c

nurbs

Start

End

Type is cylinder

Y

idx = idx + 1

Any PCS curve left

in face k?

N

Decode array[idx], and set

as value of umax. radianX

= true, radianY = false.

Type is cone

Decode array[idx] and

array[idx+1], and set as

value of umax and

semi_angle respectively.

radianlX = true, radianlY =

false

N

Y

Y

Type is sphere

or torus

Decode array[idx],

array[idx+1], and

array[idx+2], a set as value

of umax, vmin, and vmax

respectively. radianX =

true, radianlY = true

N

Y

idx = idx + 2

idx = idx + 3

For all the PCS curves

associated with face k,

starting with c=0

Domain type of

curve c is 0
c = c + 1

Y

For each control point,

except the last one, decode

next array element and set

as X coordinate if radianX is

true, decode next array

element and set as Y

coordinate if radianlY is true

increment idx by

number of

decoded elements

Y

Type of curve c

is line

If radianlX is true, decode

next array element and set

as X coordinate of pvec, if

radianY is true decode next

array element and set as Y

coordinate of pvec

increment idx by

number of

decoded elements

Y

N

Type of curve c

is circle
Decode array[idx] and set

as value of radius

increment idx by

number of

decoded elements

Y

N

Y

N

Any surface left?

k=0, idx=0

Type of xyzcurve k

is circle

N

Any xyzcurve left?

Y

Decode

array[idx], and

set as value of

umax.

k = k +1

N

Y

k=0, idx=0

idx = idx + 1

Type of uvcurve k

is circle

N

Any uvcurve left?

Y

Decode array[idx]

and array[idx+1],

and set as value of

umin and umax

respectively.

k = k +1

Y

idx = idx + 2

N

 JT File Format Reference Version 9.5 Rev-A Page 242

Figure 206: Weight Table data collection

7.2.8.1.2.12 Weight Table

Weight Table stores the quantization representation of weight values. If the ULP does not contain any such weight value,

then the table is empty and bit 0x0400 in Geometric Tabe Flag is set to be 0. Each weight value is encoded into an integer

with uniform quantizer (see 8.1.12 Uniform Quantizer Data) and then all the integers are grouped into an integer array. The

integer array is then encoded using the Int32 version of second generation CODEC with Combined Predictor Type.

VecI32{Int32CDP2, Combined:NULL}:Weight Codes

Weight Codes is a vector of quantizer “codes” for all the weight values. Weight Codes uses the Int32 version of the second

generation CODEC with Combined Predictor Type to compress and encode data.

Recover Weight Table

The logic diagram to recover Weight Table information in the ULP from the Weight Codes is shown in Figure 207. Note

that each integer element in the Weight Codes array is decoded with Uniform Quantizer.

Uniform Quantizer Data

VecI32{Int32CDP2, Combined:NULL}:Weight Codes

Recover Weight Table

 JT File Format Reference Version 9.5 Rev-A Page 243

Figure 207: Recover Weight Table

7.2.8.1.3 Material Attribute Element Properties

The properties attached to material attribute are standard JT properties, and the logic diagram to read the properties attached a

material attribute is shown in Figure 208.

Type of surface k is

nurbs

k=0, idx=0

Y

N

k = k +1

Start

End

Dimension is 4

idx = idx + nu*nv

N

For each control point,

decode next array element

and set as weight value

Y

N

Any surface left?

k=0, idx=0

Y

Type of xyzcurve k

is nurbs

Y

N

k = k +1

Dimension is 4

idx = idx + nu

N

For each control point,

decode next array element

and set as weight value

Y

N

Any xyzcurve left?

k=0, idx=0

Y

Type of uvcurve k

is nurbs

Y

N

k = k +1

Dimension is 3

idx = idx + nu

N

For each control point,

decode next array element

and set as weight value

Y

N

Any uvcurve left?
Y

 JT File Format Reference Version 9.5 Rev-A Page 244

Figure 208: Material Attribute Element Properties

I32 : Property Count

Property count is the number of properties attached.

Property Entry

Standard JT property entry, consisting of key and value pair.

7.2.8.1.4 Information Recovery

The information in ULP is classified as “essential information” that is explicitly written on disk, and “derivative information”

that can be computed from the “essential information”. How “essential information” of ULP can be read from disk was

covered in previous sections, and this section focuses on the logic to recover “derivative information” from “essential

information”.

The derivative information consists of curve information either in the parameter or model space. For example, the PCS

curves associated with an untrimmed face can be inferred from the parameter domain of the surface, or an MCS curve may be

computed from vertex information and/or the combination of corresponding PCS curve geometry and surface geometry, etc..

Shown in Figure 209 is the high level diagram to recover “derivative information”. First, all the PCS line geometry are

recovered from the associated surface domain information if the domain type of those PCS curves, stored in its associated

coedge, are of value 1, 2, 3, 4 meaning that the PCS curve is identical to one of the parameter boundaries of the surface.

Second, the MCS curve geometry is recovered depending on its type. If the MCS curve type is 0, 1, or 2, then the geometry

of its two end vertices is used to compute the curve geometry. If the MCS curve type is 3, then its geometry is computed by

projecting PCS curve onto the surface geometry. After all the MCS curve geometry is computed, all the PCS curves of type

7 is computed by projecting MCS curve onto the parameter domain. Some part of PCS curve definition may still be missing

after all these steps. At the end, all the information that is still missing in some of the PCS curves is recovered by leveraging

the knowledge that all PCS curves within the same loop are connected in a head to tail fashion. The logical steps that are

displayed with dark color indicate steps that will be elaborated in more detail later.

I32 : Property CountI32

: Entry Count

Property Entry
Property Count

 JT File Format Reference Version 9.5 Rev-A Page 245

Figure 209: Information Recovery

Domain type of

coedge k is 1, 2, 3,

or 4

k=0

Y

N

Start

N

Recover PCS line

geometry from surface

parameter domain

Any coedge left?

Y

k=0

Curve type of edge

k is 0 (Nurbs)

Y Recover two end

control points from end

vertex geometry

N

Curve type of edge

k is 1 (Line)

Recover line

geometry from end

vertex geometry

N

Curve type of edge

k is 2 (Circle)

Recover radius and

x_axis information

from end vertex

geometry

Y

Y

N

Curve type of edge

k is 3 (Projection)

Recover MCS curve

geometry from end

vertex geometry and

associated PCS

curve and surface

geometry

Y

Any edge left?
Y

k = k +1

k = k +1

N
k=0

Domain type of

coedge k is 7

Y

N

Recover PCS curve

geometry from

associated MCS curve

and surface geometry

N

Any coedge left?
Y

k = k +1

k=0, idx=0

If PCS curve type of

coedge idx in loop k is 0

(nurbs) or 1 (line), then

set its end point to be the

start point of next PCS

curve in the same loop

idx = idx +1

Any coedge left in

loop k?

Y

Any loop left ?

Y

End

N

k = k +1

N

7.2.8.1.4.1 PCS Curve Recovery from Surface Domain

Shown in Figure 210 is the diagram illustrating how the PCS curve geometry is recovered from surface parameter domain

information.

 JT File Format Reference Version 9.5 Rev-A Page 246

Figure 210: PCS Curve Recovery from Surface Domain

Domain type is 1?

Start

Get the parameter domain of the parent

surface, defined by UminVmin, UminVmax,

UmaxVmin, UmaxVmax

Get the isUVInc flag of

this coedge

isUVInc is true?
Construct PCS line from

UminVmin to UminVmax

Construct PCS line from

UminVmax to UminVmin

Domain type is 2? isUVInc is true?
Construct PCS line from

UmaxVmin to UmaxVmax

Construct PCS line from

UmaxVmax to UmaxVmin

Domain type is 3? isUVInc is true?
Construct PCS line from

UminVmin to UmaxVmin

Construct PCS line from

UmaxVmin to UminVmin

isUVInc is true?
Construct PCS line from

UminVmax to UmaxVmax

Construct PCS line from

UmaxVmax to UminVmax

End

Y
Y

Y
Y

Y Y

Y

N N

NN

NN

N

7.2.8.1.4.2 MCS Curve Recovery

Shown in Figure 211 is the diagram illustrating how MCS curve geometry is recovered from its end vertex geometry, and/or

its associated PCS curve geometry and surface geometry. If the associated PCS curve is coincident with one of the parameter

boundaries of the parent surface, then the MCS curve can be recovered from parent surface geometry. Otherwise, if the

surface type is planar and PCS curve is of type NURBS, then the MCS curve geometry can be recovered by projecting the

PCS curve from parameter domain to model space onto the planar surface.

 JT File Format Reference Version 9.5 Rev-A Page 247

Figure 211: MCS Curve Recovery

Start

Get end vertex points vStart and

vEnd

Get the parent coedges

k=0

Domain type of

coedge k is 1, 2, 3,

or 4

Recover MCS

curve from parent

surface geometry

Parent surface type

is 0, 2, 3, 4, or 5

N

Any parent coedge

left?

Y
k = k +1

k=0

Domain type of

coedge k is 0

Parent surface type

is 1 and PCS curve

type is 0

Construct NURBS MCS

curve, with vStart and

vEnd as two end control

points. All the other

control points are

computed by evaluating

PCS NURBS curve

control points. Reverse

the order if flag

XYZReversed is true

End

Any parent coedge

left?

Y
k = k +1

Y

N N

Y

Y

N

Y

N

N

Shown in Figure 212 is the detailed description of how MCS curve can be recovered from surface geometry.

 JT File Format Reference Version 9.5 Rev-A Page 248

Figure 212: MCS Curve Recovery from Surface Geometry

If parent surface is

cylinder (type 2)

Start

Construct PCS circle curve

based on cylinder

geometry

Construct PCS line based

on cylinder geometry

End

Y
Y

N N

Domain type of

coedge k is 3 or 4

If parent surface is

cone (type 3)

Construct PCS circle curve

based on cone geometry

Construct PCS line based

on cone geometry

Y
Y

N N

Domain type of

coedge k is 3 or 4

If parent surface is

sphere (type 4)

Construct PCS circle curve

based on sphere geometry

Y

N

If parent surface is

torus (type 5)

Construct PCS circle curve

based on torus geometry

Y

N

Construct PCS NURBS

curve based on NURBS

surface geometry

7.2.8.1.4.3 PCS Curve Recovery from MCS Curve and Surface Geometry

Shown in Figure 213 is the diagram illustrating how PCS curve geometry can be recovered from the combination of MCS

curve and surface geometry.

 JT File Format Reference Version 9.5 Rev-A Page 249

Figure 213: PCS Curve Recovery from MCS Curve and Surface Geometry

If parent surface is

of type 2,3,4, or 5

Start

Construct PCS line

between two

projected points

End

Y

N

Project two end

vertex points onto

parent surface.

Curve type of edge

k is 0 (Nurbs)

Project all the control

points of MCS Nurbs curve

onto the planar parent

surface.

N

Curve type of edge

k is 1 (Line)

Project two end

vertex points onto the

planar parent surface.

Y

Y

N

Curve type of edge

k is 2 (Circle)

Y

Construct PCS Nurbs

curve based on the

projected control points

Construct PCS line

between two

projected points

Project two end vertex

points and the center

point of MCS circle onto

the planar surface

Construct PCS circle

based on the

projected points

7.2.9 JT LWPA Segment

JT LWPA Segment contains an Element that defines light weight precise analytic data for a particular part. More specifically

LWPA contains the collection of analytic surfaces in the B-Rep definition of the part.

JT LWPA Segments are typically referenced by Part Node Elements (see 7.2.1.1.1.5Part Node Element) using Late Loaded

Property Atom Elements (see 0Second specifies the date Second value. Valid values are [0, 59] inclusive.

Late Loaded Property Atom Element Late Loaded Property Atom ElementLate Loaded Property Atom Element). The JT

LWPA Segment type supports ZLIB compression on all element data, so all elements in JT LWPA Segment use the Logical

Element Header ZLIB form of element header data.

Figure 214: JT LWPA Segment data collection

Complete description for Segment Header can be found in 7.1.3.1Segment Header.

7.2.9.1 JT LWPA Element

Object Type ID: 0xd67f8ea8, 0xf524, 0x4879, 0x92, 0x8c, 0x4c, 0x3a, 0x56, 0x1f, 0xb9, 0x3a

Segment Header

JT LWPA Element

 JT File Format Reference Version 9.5 Rev-A Page 250

JT LWPA Segment represents a particular Part‟s precise analytic surfaces. It can be viewed as a subset of B-Rep

representation where the subset refers to the complete collection of all the surfaces that are of one of the analytic types shown

in the Supported Surface Type table, i.e., plane, cylinder, cone, sphere, or torus. Unlike JT B-Rep Element or XT B-Rep

Element, JT LWPA Element does not contain any B-Rep topology information, nor does it contain geometric curve or point

information. LWPA is designed to represent most essential part geometry information with much lighter weight on disk and

much faster to load than B-Rep. Typically LWPA is less than 2 percent of B-Rep size on disk, and takes less than 5 percent

time to load into memory. The analytic representation of LWPA follows Parasolid convention as detailed in Appendix F:

Parasolid XT Format Reference.

Figure 215: JT LWPA Element data collection

I16:Version Number

Version Number is the version identifier for this JT LWPA Element. Version numbers “1” is currently supported.

I32 : Surface Count

Surface Count indicates the number of surface entries in LWPA. The number of surface entries is equal to the number of

surfaces in the B-Rep representation. The surface entry does not contain any information if the corresponding B-Rep surface

is not of analytic type.

I32 : Analytic Surface Count

Analytic Surface Count indicates the number of analytic surface entries in LWPA.

7.2.9.1.1 Analytic Surface Geometry

Analytic Surface Geometry defines a collection of analytic surfaces and their mapping to the original B-Rep surfaces.

Logical Element Header ZLIB

I16:Version Number

Analytic Surface Geometry

Analytic Surface Count> 0

I32 : Surface Count

I32 : Analytic Surface Count

 JT File Format Reference Version 9.5 Rev-A Page 251

Figure 216: Analytic Surface Geometry data collection

VecI32{Int32CDP2, Lag1}: Analytic Surface Indices

Analytic Surface Indices is an integer array with its length equal to the number of analytic surfaces in the LWPA. The value

of each element in this array represents the index of this analytic surface in the original B-Rep representation.

VecI32{Int32CDP2, NULL}: Analytic Surface Type

Analytic Surface Type is an integer array with its length equal to the number of analytic surfaces in the LWPA. The value of

each element in this array represents the type of each analytic surface, as defined in table Supported Surface Type

VecF64: Coordinate Array

Coordinate Array contains an array of double precision floating point numbers that represent the collection of point

coordinate information in the definition of the analytic surface entities. The composite type VecF64 is defined in Table 2.

Each floating point number in the array is written in binary form.

VecF64: Axis Array

Axis Array contains an array of double precision floating point numbers that represent the collection of unit vector

information in the definition of the analytic surface entities. The composite type VecF64 is defined in Table 2. Each floating

point number in the array is written in binary form.

VecF64: Radius Array

Radius Array contains an array of double precision floating point numbers that represent the collection of radius information

in the definition of the analytic surface entities. The composite type VecF64 is defined in Table 2. Each floating point

number in the array is written in binary form.

VecI32{Int32CDP2, Lag1}: Analytic Surface Indices

VecI32{Int32CDP2, NULL}: Analytic Surface Type

VecF64: Coordinate Array

VecF64: Axis Array

 VecF64: Radius Array

VecF64: Radian Array

Analytic Surface

Creation

 JT File Format Reference Version 9.5 Rev-A Page 252

VecF64: Radian Array

Radian Array contains an array of double precision floating point numbers that represent the collection of radian information

in the definition of the analytic surface entities. The composite type VecF64 is defined in Table 2. Each floating point

number in the array is written in binary form.

Analytic Surface Creation

Analytic surfaces in LWPA is constructed based on the information of the above arrays, as illustrated by logical diagram in

Figure 217.

Figure 217: Analytic Surface Creation

If surface k is

cylinder

Start

Set pvec to be the

next three elements of

Coordinate_Array.

Advance to the next

coordinate point

End

Y

N

If surface k is cone

Y

N

If surface k is

sphere

Y

N

If surface k is torus

Y

k=0, initialize current

element to be the first

element for all four float

point arrays

Y

Set axis to be the

next three

elements of Axis

Array. Advance to

the next axis vector

Any surface left

Set radius to be

the next element

of Radius Array.

Advance to the

next array element

Set x_axis to be the

next three

elements of Axis

Array. Advance to

the next axis vector

Set radius to be

the next element

of Radius Array.

Advance to the

next array element

Set semi_angle to

be the next

element of Radian

Array. Advance to

the next array

element

Set radius to be

the next element

of Radius Array.

Advance to the

next array element

Set major radius to be

the next element of

Radius Array.

Advance to the next

array element

Set minor radius to be

the next element of

Radius Array.

Advance to the next

array element

k = k +1

Y

N

 JT File Format Reference Version 9.5 Rev-A Page 253

8 Data Compression and Encoding

The JT File format utilizes best-in-class compression and encoding algorithms to produce compact and efficient

representations of data. The types of compression algorithms supported by the JT format vary from standard data type

agnostic ZLIB deflation to advanced arithmetic algorithms that exploit knowledge of the characteristics of the data types they

are compressing. Some of the JT format data collections are always stored in a compressed format, whereas other data

collections support multiple compression storage formats that qualitatively vary from “Lossless” compression to more

aggressive strategies that employ “lossy” compression. This support by the JT format of varying qualitative levels of

compression allows producers of JT data to fine tune the tradeoff between compression ratio and fidelity of the data.

In some instances, data may be encoded/compressed using multiple techniques applied on top of one another in a serial

fashion (i.e. encoding applied to the output of another encoder). One common example of this multiple encoding is when an

array/vector of floating point data is first quantized into some integer codes and then these resulting integer codes are further

compressed/encoded using an Arithmetic or BitLength CODEC (see 8.2 Encoding Algorithms).

Beyond the data collection specific compression/encoding, some JT format Data Segment types (see 7.1.3 Data Segment)

also support having a ZLIB compression conditionally applied to all the bytes of information persisted within the segment.

So individual fields or collections of data may first have data type specific encoding/compression algorithms applied to them,

and then if their Data Segment type supports it, the resulting data may be additionally compressed using a ZLIB deflation

algorithm.

Whether, and at what qualitative level, a particular Data Segment‟s data is compressed/encoded is indicated through

compression related data values stored as part of the particular Data Segment storage format. In general, aggressive

application of advanced compression/encoding techniques is reserved for the heavy-weight renderable geometric data (e.g.

triangles and wireframe lines) which can exist in a JT File.

The following sections document the format of the data compression/encoding within the JT file. Along with documenting

the format, a technical description of the various compression/encoding algorithms is included and an example

implementation of the decoding portion of the algorithms can be found within Appendix C: Decoding Algorithms – An

Implementation.

8.1 Common Compression Data Collection Formats

For convenience and brevity in documenting the JT format, this section of the reference documents the format for several

common “data compression/encoding” related data collections that can exist in the JT format. You will find references to

these common compression data collections in the 7.2 Data Segments section of the document.

8.1.1 Int32 Compressed Data Packet

The Int32 Compressed Data Packet collection represents the format used to encode/compress a collection of data into a series

of Int32 based symbols. Note that the Int32 Compressed Data Packet collection can in itself contain another Int32

Compressed Data Packet collection if there are any “Out-Of-Band data.” In the context of the JT format data compression

algorithms and Int32 Compressed Data Packet, “out-of-band data” has the following meaning.

CODECs (e.g. Arithmetic, see 8.2 Encoding Algorithms for technical description) exploit the statistics present in the relative

frequencies of the values being encoded. Values that occur frequently enough allow these methods to encode each of the

values as a “symbol” in fewer bits that it would take to encode the value itself. Values that occur too infrequently to take

advantage of this property are written aside into the “out-of-band data” array to be encoded separately. An “escape” symbol

is encoded in their place as a placeholder in the primal CODEC (note, see “Symbol” data field definition in 8.1.1.1.1 Int32

Probability Context Table Entry for further details on the representation of “escape” symbol).

Essentially the “out-of-band data” is the high-entropy residue left over after the CODECs have squeezed all the advantage out

of the original data stream that they can. However, this “out-of-band data” is sent back around for another pass because

sometimes there are different statistics to be taken advantage of. When all other coding options have been exhausted, the

Bitlength CODEC is invoked. The Bitlength CODEC directly encodes all values given to it, does not require a probability

context, and hence never produces additional “out-of-band data”. The byte stops there, in other words.

In some cases, all values may be written as "out of band" when the Codec cannot perform any useful compression. In this

case, the encoded I32 : CodeText Length field will be 0, and the I32 : Out-Of-Band Value Count will be equal to I32 : Value

 JT File Format Reference Version 9.5 Rev-A Page 254

Element Count. The implied action in this case is to merely copy the Out-Of-Band value data into the output Value Element

array instead of invoking the Codec.

Figure 218: Int32 Compressed Data Packet data collection

U8 : CODEC Type

CODEC Type specifies the algorithm used to encode/decode the data. See 8.2 Encoding Algorithms for complete

explanation of each of the encoding algorithms.

= 0 Null CODEC

= 1 Bitlength CODEC

= 3 Arithmetic CODEC

= 4 Chopper CODEC

U8 : CODEC Type

Int32 Probability Contexts

I32 : Out-Of-Band Value Count

Arithmetic CODEC Type

Int32 Compressed

Data Packet

Out-Of-Band Value

Count > 0

I32 : CodeText Length

CODEC Type not equal to

“Null Codec”.

I32 : Value Element Count

VecU32 : CodeText

I32 : Symbol Count

Probability Context

Table Count > 1

 JT File Format Reference Version 9.5 Rev-A Page 255

I32 : Out-Of-Band Value Count

Out-Of-Band Value Count specifies the number of values that are “Out-Of-Band.” This data field is only present for the

Arithmetic CODEC Type.

I32 : CodeText Length

CodeText Length specifies the total number of bits of CodeText data (CodeText data field is described below). This data

field is only present if CODEC Type is not equal to “Null CODEC.”

I32 : Value Element Count

Value Element Count specifies the number of values that the CODEC is expected to decode (i.e. it‟s like the “length” field

written if you‟re just writing out a vector of integers). This data field is only present if CODEC Type is not equal to “Null

CODEC.” Upon completion of decoding the CodeText data field below, the number of decoded Values should be equal to

Value Element Count. When only a single Probability Context Table is used, Value Element Count will also be equal to the

number of Symbols decoded upon completion of decoding.

I32 : Symbol Count

When two Probability Context Tables are being used, Symbol Count specifies the number of Symbols to be decoded by the

Arithmetic CODEC. There is a subtlety present in the method CodecDriver::addOutputSymbol() when it is passed an Escape

symbol. Only if the Codec is using Probability Context Table 0 when it receives an Escape symbol does it emit a Value from

the "Out-Of-Band" data array. Because of this subtlety, the number of Symbols decoded can be larger than the number of

Values produced, thus the reason for writing this field distinct from Value Element Count.

VecU32 : CodeText

CodeText is the array/vector of encoded symbols. For CODEC Type not equal to “Null CODEC”, the total number of bits of

encoded data in this array is indicated by the previously described CodeText Length data field.

8.1.1.1 Int32 Probability Contexts

Int32 Probability Contexts data collection is a list of Probability Context Tables. The Int32 Probability Contexts data

collection is only present for the Arithmetic CODEC Type. A Probability Context Table is a trimmed and scaled histogram

of the input values. It tallies the frequencies of the several most frequently occurring values. It is central to the operation of

the arithmetic CODEC.

 JT File Format Reference Version 9.5 Rev-A Page 256

Figure 219: Int32 Probability Contexts data collection

U8 : Probability Context Table Count

Probability Context Table Count specifies the number of Probability Context Tables to follow and will always have a value

of either “1” or “2”.

U32{32} : Probability Context Table Entry Count

Probability Context Table Entry Count specifies the number of entries in this Probability Context Table.

U32{6} : Number Symbol Bits

Number Symbol Bits specifies the number of bits used to encode the Symbol range.

U8 : Probability Context Table Count

U32{32} : Probability Context

Table Entry Count

U32{6} : Number Symbol Bits

U32{6} : Number Occurrence

Count Bits

U32{6} : Number Value Bits

U32{6} : Number Next Context

Bits

U32{32} : Min Value

U32{6} : Number Symbol Bits

U32{6} : Number Occurrence

Count Bits

U32{6} : Number Next

Context Bits

For First Probability

Context Table in List

Probability

Context Table

Entry Count

Int32 Probability

Context Table Entry

Probability

Context Table

Count

U32{variable}: Alignment Bits

 JT File Format Reference Version 9.5 Rev-A Page 257

U32{6} : Number Occurrence Count Bits

Number Occurrence Count Bits specifies the number of bits used to encode the Occurrence Count range.

U32{6} : Number Value Bits

Number Value Bits specifies the number of bits used to encode the Associated Value range. Note that Number Value Bits is

only specified in the JT file for the first Probability Context Table. If a second Probability Context Table is present, the

Number Value Bits from the first should be used for the second as well.

U32{6} : Number Next Context Bits

Number Next Context Field Bits specifies the number of bits used for the Next Context Field in 8.1.1.1.1 Int32 Probability

Context Table Entry.

U32{32} : Min Value

Min Value specifies the minimum of all Associated Values (i.e. one per table entry) stored in this Probability Context Table.

This value is used to compute the real Associated Value for a Probability Context Table Entry. See Associated Value

description in 8.1.1.1.1 Int32 Probability Context Table Entry.

U32{variable}: Alignment Bits

Alignment Bits represents the number of additional padding bits stored to arrive at the next even multiple of 8 bits. Values of

“0” are stored in the alignment bits.

Note: Data written into the JT file is always aligned on bytes. Therefore after reading in a block of bit data such as the

probability context tables it is necessary to discard any remaining bits on the last byte that is read in. This is represented by

the “Alignment Bits” entry.

8.1.1.1.1 Int32 Probability Context Table Entry

Figure 220: Int32 Probability Context Table Entry data collection

U32{Number Symbol Bits} : Symbol

Symbol is a small integer number associated with a specific value in the context table. It serves only to impose an order on

the entries in the Probability Context Table. The symbol is stored with a “+2” added to the value and thus a reader must

subtract “2” from the read value to get the true symbol value. Complete description for Number Symbol Bits can be found in

8.1.1.1 Int32 Probability Contexts.

Note: Even though the symbol is written as a U32{Number Symbol Bits} it is possible to end up with a negative number after

subtracting “2” from the read in value. One example that will occur frequently is the escape symbol used for out-of-band

data which will have the value “0” in the file, however it will become “-2”, its true symbol value, after subtracting “2” from

the read in “0” value.

U32{Number Symbol Bits} : Symbol

U32{Number Occurrence Count Bits} : Occurrence Count

U32{Number Value Bits} : Associated Value

U32{Number Next Context Bits} : Next Context

 JT File Format Reference Version 9.5 Rev-A Page 258

U32{Number Occurrence Count Bits} : Occurrence Count

Occurrence Count specifies the relative frequency of the value. Complete description for Number Occurrence Count Bits can

be found in 8.1.1.1 Int32 Probability Contexts.

Note: Occurrence Counts for all symbols are normalized (converted to a relative frequency) during the write process in order

to ensure the minimum amount of bits possible is used to write them. This has several implications the reader should be

aware of:

 The sum of all Occurrence Counts is not guaranteed to equal the number of symbols to be decoded (see Value Element

Count in section 8.1.1 for number of symbols to be decoded).

During Arithmetic decoding as described in Appendix C: 3.2.

pDriver->numSymbolsToRead() – Refers to the total number of symbols to be decoded (i.e. Value Element Count in section

8.1.1 when the number of Probability Context Tables is equal to 1, or Symbol Count when the number of Probability Context

Tables is 2).

pCurrContext->totalCount() – Refers to the sum of the “Occurrence Count” values for all the symbols associated with a

Probability Context.

U32{Number Value Bits} : Associated Value

Associated Value is the value (from the input data) that the symbol represents. The CODECs don‟t directly encode values,

they encode symbols. Symbols, then, are associated with specific values, so when the CODEC decodes an array of symbols,

you can reconstruct the array of values that was intended by looking up the symbols in the Probability Context Table. This

value is stored with “Min Value” subtracted from the value. Complete descriptions for “Min Value” and Number Value Bits

can be found in 8.1.1.1 Int32 Probability Contexts.

Note: The associated value for an escape symbol is undefined and therefore can be any valid U32 number.

U32{Number Next Context Bits} : Next Context

Next Context field specifies which Probability Context Table to use when decoding the next symbol. The value of this field

will be greater than or equal to 0, and less than Probability Context Table Count.

8.1.2 Int32 Compressed Data Packet Mk. 2

The Int32 Compressed Data Packet Mk. 2 collection represents an enhanced form of the original Int32 Compressed Data

Packet. Note that the Int32 Compressed Data Packet Mk. 2 collection can in itself contain another Int32 Compressed Data

Packet Mk. 2 collection if there are any “Out-Of-Band data.” In the context of the JT format data compression algorithms and

Int32 Compressed Data Packet Mk. 2, “out-of-band data” has the meaning described below.

Entropy CODECs (e.g. Arithmetic) exploit the statistics present in the relative frequencies of the values being encoded.

Values that occur frequently enough allow these methods to encode each of the values as a “symbol” in fewer bits that it

would take to encode the value itself. Values that occur too infrequently to take advantage of this property are written aside

into the “out-of-band data” array to be encoded separately. An “escape” symbol is encoded in their place as a placeholder in

the primal CODEC (note, see “Symbol” data field definition in 8.1.2.1.1 Int32 Probability Context Table Entry Mk. 2 for

further details on the representation of “escape” symbol).

Essentially the “out-of-band data” is the high-entropy residue left over after the CODEC has squeezed all the advantage out

of the original data stream that it can. However, this “out-of-band data” is sent back around for another pass because

sometimes there are new or different statistics to be exploited.

The Int32 Compressed Data Packet Mk. 2 brings the new Chopper pseudo-CODEC to the table. Its job is to identify fields of

bits in a sequence of otherwise incompressible data that may be hiding low-entropy statistics that can be profitably exploited.

In other words, it "chops" the input data up into bit fields, and then encodes them separately using the Arithmetic or

BitLength CODECs, or in some cases, another round of chopping. The Chopper also removes value bias from the original

input data array. Some input data arrays may contain values that are clustered around a certain central value. In these cases,

it is profitable to first subtract out a bias value from the original input data. In some cases, this simple expedient may

dramatically reduce the apparent field width necessary to code the variation in the original sequence.

 JT File Format Reference Version 9.5 Rev-A Page 259

In some cases, all values may be written as "out of band" when the Codec cannot perform any useful compression. In this

case, the encoded I32 : CodeText Length field will be 0, and the I32 : Out-Of-Band Value Count will be equal to I32 : Value

Element Count. The implied action in this case is to merely copy the Out-Of-Band value data into the output Value Element

array instead of invoking the Codec.

When all other coding options have been exhausted, the Bitlength CODEC is invoked. The Bitlength CODEC directly

encodes all values given to it, does not require a probability context, and hence never produces additional “out-of-band data”.

The byte stops there, in other words.

Note that in the diagram below, encoding can loop back recursively for Out-Of-Band data and chopper fields. For JT v9

files, the maximum recursion depth may not exceed three.

Figure 221: Int32 Compressed Data Packet Mk. 2 data collection

Chopper

CODEC Type
U8 : CODEC Type

Int32 Probability Contexts

Mk. 2

Arithmetic CODEC Type

Int32 Compressed

Data Packet Mk. 2 :

OOB Data Values

I32 : CodeText Length

I32 : Value Count

 Number Expected Values > 0

VecU32 : CodeText

U8 : Chop Bits

I32 : Value Bias

U8 : Value Span Bits

B
it

L
en

g
th

 C
O

D
E

C
 T

y
p

e

Int32 Compressed

Data Packet Mk. 2 :

Chopped MSB Data

Int32 Compressed

Data Packet Mk. 2 :

Chopped LSB Data

B
it

L
en

g
th

 a
n

d
 N

u
ll

 C
O

D
E

C
 T

y
p

e

Chop Bits == 0

 JT File Format Reference Version 9.5 Rev-A Page 260

I32 : Value Count

Value Count specifies the number of values that the CODEC is expected to decode (i.e. it‟s like the “length” field written if

you‟re just writing out a vector of integers). Upon completion of decoding the CodeText data field below, the number of

decoded Values should be equal to Value Count. When only a single Probability Context Table is used, Value Element

Count will also be equal to the number of Symbols decoded upon completion of decoding.

U8 : CODEC Type

CODEC Type specifies the algorithm used to encode/decode the data. See 8.2 Encoding Algorithms for complete

explanation of each of the encoding algorithms.

= 0 Null CODEC

= 1 Bitlength CODEC

= 3 Arithmetic CODEC

= 4 Chopper CODEC

I32 : CodeText Length

CodeText Length specifies the total number of bits of CodeText data (CodeText data field is described below).

VecU32 : CodeText

CodeText is the array/vector of encoded symbols. For CODEC Type not equal to “Null CODEC”, the total number of bits of

encoded data in this array is indicated by the previously described CodeText Length data field.

U8 : Chop Bits

Chop Bits specifies the number of high-order bits "chopped off" from the biased input data array and coded separately from

the low-order bits. Repeated applications of the Chopper pseudo-CODEC can expose low-entropy bit fields that would be

inaccessible by directly coding the data array. Chop Bits is the number of bits coded into the Chopped MSB Data field.

I32 : Value Bias

Value Bias is the (signed) number that is subtracted from the original input data array elements before computing Value Span

Bits and Chop Bits. See Chopped LSB Data below for a full explanation of how to reconstitute the original data values using

Value Bias and the two chopped fields.

U8 : Value Span Bits

Value Span Bits specifies the total bit width of the biased input data array. Note that Value Span Bits minus Chop Bits is the

number of low-order bits present in the Chopped LSB Data field.

Int32 Compressed Data Packet Mk. 2 : Chopped MSB Data

This field contains the separately compressed most significant bits of the biased input data array, whose elements contain

Value Span Bits bits of significance. In other words, this field contains the bit field from the biased data array beginning at

bit number ValueSpan-ChopBits and ending at bit number ValueSpan-1 inclusive. This field may contain negative numbers.

Int32 Compressed Data Packet Mk. 2 : Chopped LSB Data

This field contains the separately compressed most significant bits of the original input data array, whose elements contain

Value Span Bits bits of significance. In other words, this field contains the bit field from the original data array beginning at

bit number 0 and ending at bit number ValueSpan-ChopBits-1 inclusive. This field may only contain positive numbers; all

bits above this range must encode to 0. A pseudo-code representation of the re-constituting the original data values is as

follows:

OrigValue[i] = (LSBValue[i] | (MSBValue[i] << (ValSpanBits - ChopBits))) + ValueBias;

 JT File Format Reference Version 9.5 Rev-A Page 261

Int32 Compressed Data Packet Mk. 2 : OOB Data Values

This field encodes the out-of-band values associated with the Arithmetic CODEC.

8.1.2.1 Int32 Probability Contexts Mk. 2

Int32 Probability Contexts Mk. 2 data collection encodes a Probability Context Table, and is present only for the Arithmetic

CODEC Type. A Probability Context Table is a trimmed and scaled histogram of the input values. It tallies the frequencies

of the several most frequently occurring values. It is central to the operation of the Arithmetic CODEC.

Figure 222: Int32 Probability Contexts Mk. 2 data collection

U32{16} : Probability Context Table Entry Count

Probability Context Table Entry Count specifies the number of entries in this Probability Context Table.

U32{6} : Number Symbol Bits

Number Symbol Bits specifies the number of bits used to encode the Symbol range.

U32{6} : Number Occurrence Count Bits

Number Occurrence Count Bits specifies the number of bits used to encode the Occurrence Count range.

U32{16} : Probability Context

Table Entry Count

U32{6} : Number Symbol Bits

U32{6} : Number Occurrence

Count Bits

U32{6} : Number Value Bits

U32{32} : Min Value

Probability

Context Table

Entry Count
262Int32 Probability

Context Table Entry Mk. 2

U32{variable}: Alignment Bits

 JT File Format Reference Version 9.5 Rev-A Page 262

U32{6} : Number Value Bits

Number Value Bits specifies the number of bits used to encode the Associated Value range. Note that Number Value Bits is

only specified in the JT file for the first Probability Context Table. If a second Probability Context Table is present, the

Number Value Bits from the first should be used for the second as well.

U32{32} : Min Value

Min Value specifies the minimum of all Associated Values (i.e. one per table entry) stored in this Probability Context Table.

This value is used to compute the real Associated Value for a Probability Context Table Entry. See Associated Value

description in 8.1.1.1.1 Int32 Probability Context Table Entry.

U32{variable}: Alignment Bits

Alignment Bits represents the number of additional padding bits stored to arrive at the next even multiple of 8 bits. Values of

“0” are stored in the alignment bits.

Note: Data written into a JT file is always aligned on bytes. Therefore after reading in a block of bit data such as the

probability context tables it is necessary to discard any remaining bits on the last byte that is read in. This is represented by

the “Alignment Bits” entry.

8.1.2.1.1 Int32 Probability Context Table Entry Mk. 2

Figure 223: Int32 Probability Context Table Entry Mk. 2 data collection

U32{Number Symbol Bits} : Symbol

Symbol is a small integer number associated with a specific value in the context table. It serves only to impose an order on

the entries in the Probability Context Table. The symbol is stored with a “+2” added to the value and thus a reader must

subtract “2” from the read value to get the true symbol value. Complete description for Number Symbol Bits can be found in

8.1.2.1 Int32 Probability Contexts Mk. 2.

Note: Even though the symbol is written as a U32{Number Symbol Bits} it is possible to end up with a negative number after

subtracting “2” from the read in value. One example that will occur frequently is the escape symbol used for out-of-band

data which will have the value “0” in the file, however it will become “-2”, its true symbol value, after subtracting “2” from

the read in “0” value.

U32{Number Occurrence Count Bits} : Occurrence Count

Occurrence Count specifies the relative frequency of the value. Complete description for Number Occurrence Count Bits can

be found in 8.1.2.1 Int32 Probability Contexts Mk. 2.

Note: Occurrence Counts for all symbols are normalized (converted to a relative frequency) during the write process in order

to ensure the minimum amount of bits possible is used to write them while closely approximating their actual frequency.

This has several implications the reader should be aware of:

U32{Number Symbol Bits} : Symbol

U32{Number Occurrence Count Bits} : Occurrence Count

U32{Number Value Bits} : Associated Value

 JT File Format Reference Version 9.5 Rev-A Page 263

The sum of all Occurrence Counts is not guaranteed to equal the number of symbols to be decoded (see I32 : Value Count in

section 8.1.2 for number of symbols to be decoded).

During Arithmetic decoding as described in Appendix C: 3.2.

pDriver->numSymbolsToRead() – Refers to the total number of symbols to be decoded (i.e. I32 : Value Count in section

8.1.2).

pCurrContext->totalCount() – Refers to the sum of the “Occurrence Count” values for all the symbols associated with a

Probability Context.

U32{Number Value Bits} : Associated Value

Associated Value is the value (from the input data) that the symbol represents. The CODECs don‟t directly encode values,

they encode symbols. Symbols, then, are associated with specific values, so when the CODEC decodes an array of symbols,

you can reconstruct the array of values that was intended by looking up the symbols in the Probability Context Table. This

value is stored with “Min Value” subtracted from the value. Complete descriptions for “Min Value” and Number Value Bits

can be found in 8.1.2.1 Int32 Probability Contexts Mk. 2.

Note: The associated value for an escape symbol is undefined and therefore can be any valid U32 number.

8.1.3 Float64 Compressed Data Packet

The Float64 Compressed Data Packet collection represents the format used to encode/compress a collection of data into a

series of Float64 based symbols. This compression format also uses the concept of “out-of-band data” in its data contents

definition. In the context of the JT format data compression algorithms and Float64 Compressed Data Packet, “out-of-band

data” has the following meaning.

The Arithmetic CODEC (see 8.2 Encoding Algorithms for technical description) can exploit the statistics present in the

relative frequencies of the values being encoded. Values that occur frequently enough allow the CODEC to encode each of

the values as a “symbol” in fewer bits that it would take to encode the value itself. Values that occur too infrequently to take

advantage of this property are written aside into the “out-of-band data” array. An “escape” symbol (i.e. value of “-2”) is

encoded in their place as a marker in the primal CODEC. Essentially the “out-of-band data” is the high-entropy

junk/residue/slag left over after the CODECs have squeezed all the advantage out that it can.

Whereas the Int32 Compressed Data Packet (see 8.1.1 Int32 Compressed Data Packet) then sends this “out-of-band data”

back around through a new CODEC looking for different statistics to be taken advantage of, the Float64 Compressed Data

Packet simply writes out the “out-of-band data” array with no additional encoding attempted.

In some cases, all values may be written as "out of band" when the Codec cannot perform any useful compression. In this

case, the encoded I32 : CodeText Length field will be 0, and the I32 : Out-Of-Band Value Count will be equal to I32 : Value

Element Count. The implied action in this case is to merely copy the Out-Of-Band value data into the output Value Element

array instead of invoking the Codec.

 JT File Format Reference Version 9.5 Rev-A Page 264

Figure 224: Float64 Compressed Data Packet data collection

U8 : CODEC Type

CODEC Type specifies the algorithm used to encode/decode the data. See 8.2 Encoding Algorithms for complete

explanation of each of the encoding algorithms.

= 0 Null CODEC

= 1 Bitlength CODEC

= 3 Arithmetic CODEC

= 4 Chopper CODEC

U8 : CODEC Type

Float64 Probability Contexts

F64 : Value Range Min

F64 : Value Range Max

I32 : Out-Of-Band Value Count

VecF64 : Out-Of-Band Values

I32 : CodeText Length

CODEC Type not equal to

“Null Codec”.

I32 : Value Element
Count

VecU32 : CodeText

Probability Context

Table Count > 1

I32 : Symbol Count

 JT File Format Reference Version 9.5 Rev-A Page 265

F64 : Value Range Min

Value Range Min specifies the minimum of the value range used to encode the values. This data field is only present if

CODEC Type is not equal to “Null CODEC.”

F64 : Value Range Max

Value Range Max specifies the maximum of the value range used to encode the values. This data field is only present if

CODEC Type is not equal to “Null CODEC.”

I32 : Out-Of-Band Value Count

Out-Of-Band Value Count specifies the number of values that are “Out-Of-Band.” This data field is only present if CODEC

Type is not equal to “Null CODEC.”

VecF64 : Out-Of-Band Values

Out-Of-Band Values specifies the vector/list of “Out-Of-Band” values. This data field is only present if CODEC Type is not

equal to “Null CODEC.”

I32 : CodeText Length

CodeText Length specifies the total number of bits of CodeText data (described below). This data field is only present if

CODEC Type is not equal to “Null CODEC.”

I32 : Value Element Count

Value Element Count specifies the number of values that the CODEC is expected to decode (i.e. it‟s like the “length” field

written if you‟re just writing out a vector of integers). This data field is only present if CODEC Type is not equal to “Null

CODEC.” Upon completion of decoding the CodeText data field below, the number of decoded symbol values should be

equal to Value Element Count.

I32 : Symbol Count

When two Probability Context Tables are being used, Symbol Count specifies the number of Symbols to be decoded by the

Arithmetic CODEC. There is a subtlety present in the method CodecDriver::addOutputSymbol() when it is passed an Escape

symbol. Only if the Codec is using Probability Context Table 0 when it receives an Escape symbol does it emit a Value from

the "Out-Of-Band" data array. Because of this subtlety, the number of Symbols decoded can be larger than the number of

Values produced, thus the reason for writing this field distinct from Value Element Count.

VecU32 : CodeText

CodeText is the array/vector of encoded symbols. For CODEC Type not equal to “Null CODEC”, the total number of bits of

encoded data in this array is indicated by the previously described CodeText Length data field.

8.1.3.1 Float64 Probability Contexts

Float64 Probability Contexts data collection is a list of Probability Context Tables. A Probability Context Table is a trimmed

and scaled histogram of the input values. It tallies the frequencies of the several most frequently occurring values. It is

central to the operation of the arithmetic CODEC.

 JT File Format Reference Version 9.5 Rev-A Page 266

Figure 225: Float64 Probability Contexts data collection

I32 : Probability Context Table Count

Probability Context Table Count specifies the number of Probability Context Tables to follow and will always have a value

of either “1” or “2”.

I32 : Probability Context Table Entry Count

Probability Context Table Entry Count specifies the number of entries in this Probability Context Table.

8.1.3.1.1 Float64 Probability Context Table Entry

Figure 226: Float64 Probability Context Table Entry data collection

I32 : Symbol

Symbol is a small integer number associated with a specific value in the context table. It serves only to impose an order on

the entries in the Probability Context Table. Note that a value of “-2” represents the “escape” symbol placeholder encoded

for “out-of-band data” (see 8.1.3 Float64 Compressed Data Packet for additional details).

I32 : Occurrence Count

Occurrence Count specifies the relative frequency of the value.

I32 : Occurrence Count

I32 : Symbol

F64 : Associated Value

I32 : Reserved Field

I32 : Probability Context Table Count

I32 : Probability Context Table Entry Count

Probability

Context Table

Entry Count

Float64 Probability

Context Table Entry

Probability

Context Table

Count

 JT File Format Reference Version 9.5 Rev-A Page 267

F64 : Associated Value

Associated Value is the value (from the input data) that the symbol represents. The CODECs don‟t directly encode values,

they encode symbols. Symbols, then, are associated with specific values, so when the CODEC decodes an array of symbols,

you can reconstruct the array of values that was intended by looking up the symbols in the Probability Context Table.

I32 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

8.1.4 Compressed Vertex Coordinate Array

The Compressed Vertex Coordinate Array data collection contains the quantization data/representation for a set of vertex

coordinates.

Figure 227: Compressed Vertex Coordinate Array data collection

Complete description for Point Quantizer Data can be found in 8.1.4 Point Quantizer Data.

I32 : Unique Vertex Count

Vertex Count specifies the count (number of unique) vertices in the Vertex Codes arrays. Identical values are only stored

once therefore it may be necessary to smear out the vertices as described in TopoMesh Compressed Rep Data V1 and

TopoMesh Topologically Compressed LOD Data.

U8 : Number Components

Number Components specifies the number of vertex components present for each vertex record in the set of vertex records.

U8 : Number Components

I32 : Unique Vertex Count

QuantBits = 0

VecU32{Int32CDP2, Lag1} : Vertex Coord Exponents

I32 : Vertex Coordinate Hash

VecU32{Int32CDP2, Lag1} : Vertex Coord Mantissae

VecU32{Int32CDP2, Lag1} : Vertex Coord Codes

QuantBits > 0

Number Components

Number Components

Point Quantizer Data

 JT File Format Reference Version 9.5 Rev-A Page 268

VecU32{Int32CDP2, Lag1} : Vertex Coord Exponents

Vertex Coord Exponents is a vector of Floating Point Exponents and Sign for all the ith component values of a set of vertex

coordinates. Vertex Coord Exponents uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP2, Lag1} : Vertex Coord Mantissae

Vertex Coord Mantissae is a vector of Floating Point Mantissae for all the ith component values of a set of vertex

coordinates. Vertex Coord Mantissae uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP2, Lag1} : Vertex Coord Codes

Vertex Coord Codes is a vector of quantizer “codes” for all the ith component values of a set of vertex coordinates. Vertex

Coord Codes uses the Int32 version of the CODEC to compress and encode data.

I32 : Vertex Coordinate Hash

The Vertex Coordinate Hash is the combined hash of the unique vertex coordinate records. If the number of quantization

bits is equal to zero the hash value is equal to the combined hash of the vertex coordinate values for each of the component

arrays. If the number of quantization bits is greater than 0 the hash value is equal to the combined hash of the vertex

coordinates codes for each of the component arrays. Refer to section 9.5 for a more detailed description on hashing.

UInt32 uHash = 0;

uInt32 nUniqVtx = 0;

vecF32 vCoord[nUniqVtx][3];

vecU32 vCodes[3];

...

if (uQuantBits == 0) {

 for (int i=0 ; i<nComp ; i++) {

 for (int j=0 ; j<nUniqVtx ; j++) {

 uHash = hash32((UInt32*)(&vCoord[j][i]), 1, uHash);

 }

 }

} else {

 for (int i=0 ; i<nComp ; i++) {

 uHash = hash32(&vCodes[i], nUniqVtx, uHash);

 }

}

8.1.5 Compressed Vertex Normal Array

The Compressed Vertex Normal Array data collection contains the compressed data/representation for a set of vertex

normals. Compressed Vertex Normal Array data collection is only present if previously read vertex bindings denote normals

are presents (See Vertex Shape LOD Data U64 : Vertex Bindings for complete explanation of the vertex bindings).

A variation of the CODEC developed by Michael Deering at Sun Microsystems is used to encode the normals when

quantization is enabled. The variation being that the “Sextants” are arranged differently than in Deering‟s scheme [6], for

better delta encoding. See 8.2.4 Deering Normal CODEC for a complete explanation on the Deering CODEC used.

 JT File Format Reference Version 9.5 Rev-A Page 269

Figure 228: Compressed Vertex Normal Array data collection

I32 : Normal Count

Normal count specifies the number of normals. This number should equal the total number of vertex records.

U8 : Number Components

Number Components specifies the number of normal components present for each vertex record in the set of vertex records.

U8 : Quantization Bits

The number of bits used when the Deering Normal CODEC if quantization is enabled. A value of 0 denotes that quantization

is disabled.

VecU32{Int32CDP2} : Vertex Normal Exponents

Vertex Normal Components is a vector of Floating Point Exponents for all the ith component values of a set of vertex

coordinates. Vertex Normal Components uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP2} : Vertex Normal Mantissae

Vertex Normal Components is a vector of Floating Point Mantissae for all the ith component values of a set of vertex

coordinates. Vertex Normal Components uses the Int32 version of the CODEC to compress and encode data.

U8 : Number Components

I32 : Normal Count

QuantBits = 0

VecU32{Int32CDP2} : Vertex Normal Exponents

U32 : Vertex Normal Hash

VecU32{Int32CDP2} : Vertex Normal Mantissae

QuantBits > 0

Number Components VecU32{Int32CDP2} : Sextant Codes

VecU32{Int32CDP2} : Octant Codes

VecU32{Int32CDP2} : Theta Codes

VecU32{Int32CDP2} : Psi Codes

U8 : Quantization Bits

 JT File Format Reference Version 9.5 Rev-A Page 270

VecU32{Int32CDP2} : Sextant Codes

Sextant Codes is a vector of “codes” (one per normal) for a set of normals identifying which Sextant of the corresponding

sphere Octant each normal is located in. Sextant Codes uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP2} : Octant Codes

Octant Codes is a vector of “codes” (one per normal) for a set of normals identifying which sphere Octant each normal is

located in. Octant Codes uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP2} : Theta Codes

Theta Codes is a vector of “codes” (one per normal) for a set of normals representing in Sextant coordinates the quantized

theta angle for each normal‟s location on the unit radius sphere; where theta angle is defined as the angle in spherical

coordinates about the Y-axis on a unit radius sphere. Theta Codes uses the Int32 version of the CODEC to compress and

encode data.

VecU32{Int32CDP2} : Psi Codes

Psi Codes is a vector of “codes” (one per normal) for a set of normals representing in Sextant coordinates the quantized Psi

angle for each normal‟s location on the unit radius sphere; where Psi angle is defined as the longitudinal angle in spherical

coordinates from the y = 0 plane on the unit radius sphere. Psi Codes uses the Int32 version of the CODEC to compress and

encode data

U32 : Vertex Normal Hash

The Vertex Normal Hash is the combined hash of the vertex normals. If the number of quantization bits is equal to zero the

hash value is equal to the combined hash of the vertex normal values for each of the component arrays. If the number of

quantization bits is greater than 0 the hash value is equal to the combined hash of the Sextant, Octant, Theta, and Psi Codes

for all vertex records. Refer to section 9.5 for a more detailed description on hashing.

UInt32 uHash = 0;

uInt32 nVtxRec = 0;

vecF32 vNorm[nVtxRec][3];

vecU32 vSextant, vOctant. vTheta, vPsi;

...

if (uQuantBits == 0) {

 for (int i=0 ; i<nComp ; i++) {

 for (int j=0 ; j<nVtxRec ; j++) {

 uHash = hash32((UInt32*)(&vNorm[j][i]), 1, uHash);

 }

 }

} else {

 uHash = hash32(&vSextant, nVtxRec, uHash);

 uHash = hash32(&vOctant, nVtxRec, uHash);

 uHash = hash32(&vTheta, nVtxRec, uHash);

 uHash = hash32(&vPsi, nVtxRec, uHash);

}

8.1.6 Compressed Vertex Texture Coordinate Array

The Compressed Vertex Texture Coordinate Array data collection contains the quantization data/representation for a set of

vertex texture coordinates. Compressed Vertex Texture Coordinate Array data collection is only present if previously read

vertex bindings denote texture coordinates are presents (See Vertex Shape LOD Data U64 : Vertex Bindings for complete

explanation of the vertex bindings).

 JT File Format Reference Version 9.5 Rev-A Page 271

Figure 229: Compressed Vertex Texture Coordinate Array data collection

 Complete description for Texture Quantizer Data can be found in 8.1.10 Texture Quantizer Data.

I32 : Texture Coord Count

Color count specifies the number of Texture Coordinates. This number should equal the total number of vertex records.

U8 : Number Components

Number Components specifies the number of Texture Coordinate components present for each vertex record in the set of

vertex records.

U8 : Quantization Bits

Number of Bits specifies the quantized size (i.e. the number of bits of precision) for each of the components. The actual

number of quantization bits used is specified within Texture Quantizer Data. Value must be within range [0:24] inclusive.

VecU32{Int32CDP2} : Vertex Texture Coord Exponents

Vertex Texture Coordinate Components is a vector of Floating Point Exponents for all the ith component values of a set of

vertex coordinates. Vertex Texture Coordinate Components uses the Int32 version of the CODEC to compress and encode

data.

U8 : Number Components

U8 : Quantization Bits

I32 : Texture Coord Count

QuantBits = 0

VecU32{Int32CDP2} : Vertex Texture Coord Exponents

U32 : Vertex Texture Coord Hash

VecU32{Int32CDP2} : Vertex Texture Coord Mantissae

Number Components

VecU32{Int32CDP2, Lag1} : Texture Coord Codes

QuantBits = 0

Number Components

Texture Quantizer Data

 JT File Format Reference Version 9.5 Rev-A Page 272

VecU32{Int32CDP2} : Vertex Texture Coord Mantissae

Vertex Texture Coordinate Components is a vector of Floating Point Mantissae for all the ith component values of a set of

vertex coordinates. Vertex Texture Coordinate Components uses the Int32 version of the CODEC to compress and encode

data.

VecU32{Int32CDP2, Lag1} : Texture Coord Codes

V-Texture Coord Codes is a vector of quantizer “codes” for all the nth-component of a set of vertex texture coordinates. V-

Texture Coord Codes uses the Int32 version of the CODEC to compress and encode data.

U32 : Vertex Texture Coord Hash

The Vertex Texture Coord Hash is the combined hash of the Vertex Texture Coordinates. If the number of quantization bits

is equal to zero the hash value is equal to the combined hash of the vertex texture coordinate values for each of the

component arrays. If the number of quantization bits is greater than 0 the hash value is equal to the combined hash of the

vertex texture coordinates codes for each of the component arrays. Refer to section 9.5 for a more detailed description on

hashing.

UInt32 uHash = 0;

uInt32 nVtxRec = 0;

vecF32 vTexCoord[nVtxRec][4];

vecU32 vCodes[4];

...

if (uQuantBits == 0) {

 for (int i=0 ; i<nComp ; i++) {

 for (int j=0 ; j<nVtxRec ; j++) {

 uHash = hash32((UInt32*)(&vTexCoord[j][i]), 1, uHash);

 }

 }

} else {

 for (int i=0 ; i<nComp ; i++) {

 uHash = hash32(&vCodes[i], nVtxRec, uHash);

 }

}

8.1.7 Compressed Vertex Color Array

The Compressed Vertex Color Array data collection contains the quantization data/representation for a set of vertex colors.

Compressed Vertex Color Array data collection is only present if previously read Color Binding value is not equal to zero

(See Vertex Shape LOD Data for complete explanation of Color Binding data field).

 JT File Format Reference Version 9.5 Rev-A Page 273

Figure 230: Compressed Vertex Color Array data collection

Complete description for Color Quantizer Data can be found in 8.1.11 Color Quantizer Data.

I32 : Color Count

Color count specifies the number of color records. This number should equal the total number of vertex records.

U8 : Number Components

Number Components specifies the number of Color components present for each vertex record in the set of vertex records.

U8 : Quantization Bits

Number of Bits specifies the quantized size (i.e. the number of bits of precision) for each of the 3 or 4 color components.

This value must satisfy the following condition: “0 <= Number Of Bits <= 8”.

U8 : Number Components

U8 : Quantization Bits

I32 : Color Count

QuantBits = 0

VecU32{Int32CDP2} : Vertex Color Exponents

U32 : Vertex Color Hash

VecU32{Int32CDP2} : Vertex Color Mantissae

Number Components

VecU32{Int32CDP2, Lag1} : Sat/Green Codes

VecU32{Int32CDP2, Lag1} : Value/Blue Codes

VecU32{Int32CDP2, Lag1} : Hue/Red Codes

VecU32{Int32CDP2, Lag1} : Alpha Codes

QuantBits = 0

Color Quantizer Data

 JT File Format Reference Version 9.5 Rev-A Page 274

VecU32{Int32CDP2} : Vertex Color Exponents

Vertex Normal Components is a vector of Floating Point Exponents for all the ith component values of a set of vertex

coordinates. Vertex Normal Components uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP2} : Vertex Color Mantissae

Vertex Normal Components is a vector of Floating Point Mantissae for all the ith component values of a set of vertex

coordinates. Vertex Normal Components uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP2, Lag1} : Hue/Red Codes

Hue/Red Codes is a vector of quantizer “codes” for all the Hue/Red color components of a set of vertex colors. Hue/Red

Codes uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP2, Lag1} : Sat/Green Codes

Sat/Green Codes is a vector of quantizer “codes” for all the Saturation/Green color components of a set of vertex colors.

Sat/Green Codes uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP2, Lag1} : Value/Blue Codes

Value/Blue Codes is a vector of quantizer “codes” for all the Value/Blue color components of a set of vertex colors.

Value/Blue Codes uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP2, Lag1} : Alpha Codes

Alpha Codes is a vector of quantizer “codes” for all the Alpha color components of a set of vertex colors. Alpha Codes uses

the Int32 version of the CODEC to compress and encode data.

U32 : Vertex Color Hash

The Vertex Color Hash is the combined hash of the vertex colors. If the number of quantization bits is equal to zero the hash

value is equal to the combined hash of the vertex color values for each of the component arrays. If the number of

quantization bits is greater than 0 the hash value is equal to the combined hash of the Hue/Red, Sat/Green, Value/Blue, and

Alpha Codes for all vertex records. Refer to section 9.5 for a more detailed description on hashing.

UInt32 uHash = 0;

uInt32 nVtxRec = 0;

vecF32 vCol[nVtxRec][3];

vecU32 vHue, vSat, vVal, vAlp;

...

if (uQuantBits == 0) {

 for (int i=0 ; i<nComp ; i++) {

 for (int j=0 ; j<nVtxRec ; j++) {

 uHash = hash32((UInt32*)(&vCol[j][i]), nVtxRec, uHash);

 }

 }

} else {

 uHash = hash32(&vHue, nVtxRec, uHash);

 uHash = hash32(&vSat, nVtxRec, uHash);

 uHash = hash32(&vVal, nVtxRec, uHash);

 uHash = hash32(&vAlp, nVtxRec, uHash);

}

8.1.8 Compressed Vertex Flag Array

The Compressed Vertex Flag Array data collection contains the quantization data/representation for per vertex flags.

Compressed Vertex Flag Array data collection is only present if previously read Vertex Flag Binding value is not equal to

zero.

 JT File Format Reference Version 9.5 Rev-A Page 275

Figure 231: Compressed Vertex Flag Array data collection

I32 : Vertex Flag Count

Vertex flag count specifies the number of vertex flags. This number should be equal to the total number of vertex records.

VecU32{Int32CDP2} : Vertex Flags

Vertex Flags is a vector of per vertex bit flags encoded as integers with valid values of either 0 (false) or 1 (true). Vertex

Flags uses the Int32 version of the CODEC to compress and encode data.

8.1.9 Point Quantizer Data

A Point Quantizer Data collection is made up of three Uniform Quantizer Data collections; there is a separate Uniform

Quantizer Data collection for the X, Y, and Z values of point coordinates.

Figure 232: Point Quantizer Data collection

Complete description for X Uniform Quantizer Data, Y Uniform Quantizer Data and Z Uniform Quantizer Data can be found

in 8.1.12 Uniform Quantizer Data.

8.1.10 Texture Quantizer Data

A Texture Quantizer Data collection is made up of n Uniform Quantizer Data collections; there is a separate Uniform

Quantizer Data collection for each component of the texture coordinates. The number of components is not specified within

the quantizer, but rather is determined by the number of texture components present in the underlying data (See Compressed

Vertex Texture Coordinate Arrays U8 : Number Components).

X Uniform Quantizer Data

Y Uniform Quantizer Data

Z Uniform Quantizer Data

I32 : Vertex Flag Count

VecU32{Int32CDP2} : Vertex Flags

 JT File Format Reference Version 9.5 Rev-A Page 276

Figure 233: Texture Quantizer Data collection

Complete description for U Uniform Quantizer Data, and V Uniform Quantizer Data can be found in 8.1.12 Uniform

Quantizer Data.

8.1.11 Color Quantizer Data

A Color Quantizer Data collection contains the quantizer information for each of the color components. The Color Quantizer

utilizes a separate Uniform Quantizer Data collection for each of the 4 color components, but if the HSV color model is being

used, then it is not necessary to store a complete Uniform Quantizer Data Collection.

For the HSV model, since the range values for each color component are constant, only the Number of Bits of precision for

each color component‟s Uniform Quantizer is stored. The Uniform Quantizer range values for the HSV color components

should always be assumed to be the following:

Component
Quantizer Range

Min Max

Hue
0.0 6.0

Saturation
0.0 1.0

Value
0.0 1.0

Alpha
0.0 1.0

i
th

 Comp Uniform Quantizer Data

Number of Components

 JT File Format Reference Version 9.5 Rev-A Page 277

Figure 234: Color Quantizer Data collection

Complete descriptions for Red Uniform Quantizer Data, Green Uniform Quantizer Data, Blue Uniform Quantizer Data, and

Alpha Uniform Quantizer Data can be found in 8.1.12 Uniform Quantizer Data. These four Uniform Quantizer Data

collections are only present when data field HSV Flag = = 0.

U8 : HSV Flag

HSV Flag is a flag indicating whether color component data is stored in HSV color model form.

= 0 Color component data stored in RGB color model form.

= 1 Color component data stored in HSV color model form.

U8 : Number of Hue Bits

Number of Hue Bits specifies the quantized size (i.e. the number of bits of precision) for the Hue component of the color.

Number of Hue Bits data is only present when data field HSV Flag = = 1.

U8 : Number of Saturation Bits

Number of Saturation Bits specifies the quantized size (i.e. the number of bits of precision) for the Saturation component of

the color. Number of Saturation Bits data is only present when data field HSV Flag = = 1.

U8 : Number of Value Bits

Number of Value Bits specifies the quantized size (i.e. the number of bits of precision) for the Value component of the color.

Number of Value Bits data is only present when data field HSV Flag = = 1.

Red Uniform Quantizer Data

Green Uniform Quantizer Data

Blue Uniform Quantizer Data

U8 : HSV Flag

U8 : Number of Hue Bits

U8 : Number of Saturation Bits

U8 : Number of Value Bits

U8 : Number of Alpha Bits

Alpha Uniform Quantizer Data

HSV Flag = = 1

 JT File Format Reference Version 9.5 Rev-A Page 278

U8 : Number of Alpha Bits

Number of Alpha Bits specifies the quantized size (i.e. the number of bits of precision) for the Alpha component of the color.

Number of Alpha Bits data is only present when data field HSV Flag = = 1.

8.1.12 Uniform Quantizer Data

The Uniform Quantizer Data collection contains information that defines a scalar quantizer/dequantizer (encoder/decoder)

whose range is divided into levels of equal spacing.

Figure 235: Uniform Quantizer Data collection

F32 : Min

Min specifies the minimum of the quantized range.

F32 : Max

Max specifies the maximum of the quantized range.

U8 : Number Of Bits

Number of Bits specifies the quantized size (i.e. the number of bits of precision). In general, this value must satisfy the

following condition: “0 <= Number Of Bits <= 32”.

8.1.13 Compressed Entity List for Non-Trivial Knot Vector

Compressed Entity List for Non-Trivial Knot Vector data collection specifies index identifiers (i.e. indices to particular

entities within a list of entities) for a set of entities that contain Non-Trivial Knot Vectors. The entity types which can

contain non-trivial knot vectors include:

JT B-Rep NURBS Surfaces

JT B-Rep PCS NURBS Curves

JT B-Rep MCS NURBS Curves

Wireframe MCS NURBS Curves

Note that any one occurrence of Compressed Entity List for Non-Trivial Knot Vector data collection will only contain index

identifiers for one particular type of the above listed entities. The entity type is inferred based on the data collection which

includes/references the Compressed Entity List for Non-Trivial Knot Vector.

A trivial knot vector is one which completely satisfies all conditions of at least one of the following cases:

Case-1 for trivial knot vector

Number of knots is an even number

Knot vector has a [0:1] knot range

There are no interior knots (i.e. NumberKnots = = 2 * (NurbsEntityDegree + 1)

U8 : Number Of Bits

F32 : Max

F32 : Min

 JT File Format Reference Version 9.5 Rev-A Page 279

Case-2 for trivial knot vector

Number of knots is an even number.

Knot vector has a [0:1] knot range

NurbsEntityDegree < 3

Difference between successive non-repeating knots (i.e. KnotDelta) is:

KnotDelta = 2.0 / (NumberKnots – (2.0 * NurbsEntityDegree))

Any knot vector which does not satisfy one of the above cases for “trivial knot vector” is classified as a “non-trivial knot

vector.”

Figure 236: Compressed Entity List for Non-Trivial Knot Vector data collection

VecI32 : Entities of Knot Type Exist Flags

Entities of Knot Type Exist Flags[0] = = 1

VecI32{Int32CDP, Stride1} : Entity Index Codes

Entities of Knot Type Exist Flags[1] = = 1

VecI32{Int32CDP, Stride1} : Entity Index Codes

Entities of Knot Type Exist Flags[2] = = 1

VecI32{Int32CDP, Stride1} : Entity Index Codes

Entities of Knot Type Exist Flags[3] = = 1

VecI32{Int32CDP, Stride1} : Entity Index Codes

 JT File Format Reference Version 9.5 Rev-A Page 280

VecI32 : Entities of Knot Type Exist Flags

Entities of Knot Type Exist Flags, is a vector of flags indicating for each knot vector type whether Entity Index ID data

collections exist/follow for that knot vector type. Knot Vectors are categorized into types based on the following

characteristics: whether internal knots occur in adjacent pairs and whether the knot range is [0:1] or some other [x1:x2] range.

Currently there are four knot vector types, so this Entities of Knot Type Exist Flags vector should be of length four. The four

flags have the following meaning:

[0]
Flag indicating whether Entity IDs data collection exists for “Even Count [0:1] Range” knot

type. Knots in this category have their knot range on [0:1], internal knots occur in adjacent

pairs, except when there are no internal knots, in which case Type = 1 instead.

= 0 – No Entity IDs data collection exists.

= 1 – Entity IDs data collection exists.

[1] Flag indicating whether Entity IDs data collection exists for “Even Count [x1:x2] Range”

knot type. Knots in this category have their knot range on [x1:x2], and internal knots occur in

adjacent pairs.

= 0 – No Entity IDs data collection exists.

= 1 – Entity IDs data collection exists.

[2] Flag indicating whether Entity IDs data collection exists for “Odd Count [0:1] Range” knot

type. Knots of this type have their knot range on [0:1], and are not Type 0.

= 0 – No Entity IDs data collection exists.

= 1 – Entity IDs data collection exists.

[3] Flag indicating whether Entity IDs data collection exists for “Odd Count [x1:x2] Range” knot

type. Knots of this type have their knot range on [x1:x2], and are not Type 1.

= 0 – No Entity IDs data collection exists.

= 1 – Entity IDs data collection exists.

Examples of knot vectors of Type 0:

 0 0 X X 1 1

 0 0 X X Y Y 1 1

 0 0 X X Y Y Z Z 1 1

Examples of knot vectors of Type 1:

 0 0 1 1 (Note: This is the exception to Type 0)

 X X Y Y

 X X Y Y Z Z

 X X Y Y Z Z W W

Examples of knot vectors of Type 2:

 0 0 X 1 1

 0 0 X Y 1 1

 0 0 X Y Z 1 1

 0 0 X X X 1 1

 0 0 X X Y Z Z 1 1

Examples of knot vectors of Type 3:

 X X Y Z Z

 X X Y Z W W

With this information in hand, the reader is able to reconstruct complete knot vectors in the following manner. When

reconstructing the knot vector, you only take just enough values from the decoded knot value array. This may be as few as

one. All the other values are inferred. Here's a sketch of the reconstruction algorithm:

// Number of knots in the knot vector

cNumKnots = numCtlPts + degree + 1;

// Necessary knot multiplicity at both ends of the knot vector

cClamping = degree + 1;

switch (knotType) {

 JT File Format Reference Version 9.5 Rev-A Page 281

 // Clamping is 0..1, internal knots occur in ADJACENT PAIRS

 // *EXCEPT* when there are no internal knots, in which case

 // Type = 1 instead.

 case 0: numVals = (cNumKnots - 2 * cClamping)/2;

 // Clamping is X1..X2, internal knots occur in ADJACENT PAIRS

 case 1: numVals = (cNumKnots - 2 * cClamping)/2 + 2;

 // Clamping is 0..1, and not Type 0

 case 2: numVals = (cNumKnots - 2 * cClamping);

 // Clamping is X1..X2, and not Type 1

 case 3: numVals = (cNumKnots - 2 * cClamping) + 2;

}

// numVals is the number of non-inferrable knot values needed

// Let vVals be the knot vector value array

// vKnot will be the final output knot vector

if (knotType is either 0 or 2)

 Set vKnot[0 .. cClamping-1] to 0

 Set vKnot[cNumKnots-cClamping .. cNumKnots-1] to 1

else

 Set vKnot[0 .. cClamping-1] to vVals[0]

 Set vKnot[cNumKnots-cClamping .. cNumKnots-1] to vVals[numVals-1]

Set vKnot[cClamping .. cNumKnots-cClamping-1] from vVals[1 .. numVals-2]

VecI32{Int32CDP, Stride1} : Entity Index Codes

Entity Index Codes is a vector of quantizer “codes” representing entity index identifiers for a set of entities (i.e. indices to

particular entities within a list of entities). Entity Index Codes uses the Int32 version of the CODEC to compress and encode

data.

8.1.14 Compressed Control Point Weights Data

Compressed Control Point Weights Data collection is the compressed and/or encoded representation of weight data for some

set of Control Points. All NURBS based geometry use this data collection to compress/encode Control Point Weight data.

Figure 237: Compressed Control Point Weights Data collection

I32 : Weights Count

Weights Count specifies the total number of Weights. This count can differ from the Control Point count (see 7.2.3.1.4.1.3

NURBS Surface Control Point Counts) because if the Control Point Dimensionality is non-rational (see data field NURBS

Surface Control Point Dimensionality in 7.2.3.1.4.1 Surfaces Geometric Data), then no Weight values are stored for the

particular Control Point. Weights Count value also does not necessarily equate to the actual number of Weights stored, since

if a particular Control Point‟s Weight values is “1”, then no actual Weight value is stored (i.e. JT file loaders/readers can infer

that the Weight Value is “1” for Control Points that don‟t have a Weight value stored).

VecI32{Int32CDP, Stride1} : Weight Indices

Weight Indices is a vector of indices representing the index identifiers for the conditional set of weights for which an actual

Weight Values is stored in Weight Values. Weight Indices uses the Int32 version of the CODEC to compress and encode

data.

I32 : Weights Count

VecI32{Int32CDP, Stride1} : Weight Indices

VecF64{Float64CDP, NULL} : Weight Values

 JT File Format Reference Version 9.5 Rev-A Page 282

VecF64{Float64CDP, NULL} : Weight Values

Weight Values is a vector of weight values for the conditional set of weights. Weight Values uses the Float64 version of the

CODEC to compress and encode data.

8.1.15 Compressed Curve Data

Compressed Curve Data collection contains JT B-Rep or Wireframe Rep compressed/encoded geometric Curve data.

Currently only NURBS Curve types are supported as part of this data collection. Complete documentation for JT B-Rep and

Wireframe Rep can be found in sections 7.2.3.1 JT B-Rep Element and 7.2.5.1 Wireframe Rep Element respectively.

Figure 238: Compressed Curve Data collection

Non-Trivial Knot Vector

NURBS Curve Indices

NURBS Curve Control

Point Weights

NURBS Curve Control

Points

VecI32{Int32CDP, Lag1} : Curve Base Types

VecI32{Int32CDP, Lag1} : NURBS Curve Degrees

VecI32{Int32CDP, Lag1} : NURBS Curve Control Point Counts

VecI32{Int32CDP, Lag1} : NURBS Curve Control Point Dimensionality

VecI32{Int32CDP, Lag1} : NURBS Curve Reserved Fields

VecF64{Float64CDP, NULL} : NURBS Curve Knot Vectors

 JT File Format Reference Version 9.5 Rev-A Page 283

VecI32{Int32CDP, Lag1} : Curve Base Types

Each Curve is assigned a base type identifier. Curve Base Types is a vector of base type identifiers for each Curve in a list of

Curves. Currently only NURBS Curve Base Type is supported, but a type identifier is still included in the specification to

allow for future expansion of the JT Format to support other curve types.

 In an uncompressed/decoded form the Curves base type identifier values have the following meaning:

= 1 Curve is a NURBS curve

Curve Base Types uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : NURBS Curve Degrees

NURBS Curve Degrees is a vector of Curve degree values for each NURBS Curve in a list of Curves (there is a stored value

for each NURBS Curve in the list). NURBS Curve Degrees uses the Int32 version of the CODEC to compress and encode

data.

VecI32{Int32CDP, Lag1} : NURBS Curve Control Point Counts

NURBS Curve Control Point Counts is a vector of control point counts for each NURBS Curve in a list of curves (there is a

stored value for each NURBS Curve in the list). NURBS Curve Control Point Counts uses the Int32 version of the CODEC

to compress and encode data.

VecI32{Int32CDP, Lag1} : NURBS Curve Control Point Dimensionality

NURBS Curve Control Point Dimensionality is a vector of control point dimensionality values for each NURBS Curve in a

list of Curve s(i.e. there is a stored values for each NURBS Curve in the list).

In an uncompressed/decoded form the control point dimensionality values meaning is dependent upon the NURBS Entity

type.

For NURBS UV Curve entities the dimensionality value has the following definition:

= 2 Non-Rational (each control point has 2 coordinates)

= 3 Rational (each control point has 3 coordinates)

For NURBS XYZ Curve entities the dimensionality value has the following definition:

= 3 Non-Rational (each control point has 3 coordinates)

= 4 Rational (each control point has 4 coordinates)

NURBS Curve Control Point Dimensionality uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : NURBS Curve Reserved Fields

NURBS Curve Reserved Fields is a vector of data reserved for future expansion of the JT format. Each NURBS Curve in a

list of Curves has one reserved data field entry in this NURBS Curve Reserved Fields vector. NURBS Curve Reserved

Fields uses the Int32 version of the CODEC to compress and encode data

VecF64{Float64CDP, NULL} : NURBS Curve Knot Vectors

NURBS Curve Knot Vectors is a list of knot vector values for each NURBS Curve having non-trivial knot vectors in a list of

Curves (i.e. there are stored values for each non-trivial knot vector NURBS Curve in the list). All these NURBS Curve non-

trivial knot vectors are accumulated into this single list in the same order as the Curve appears in the Curve list (i.e. Curve-N

Non-Trivial Knot Vector, Curve-M Non-Trivial Knot Vector, etc.). The NURBS Curves for which knot vectors are stored

(i.e. those containing non-trivial knot vectors) are identified in data collection Non-Trivial Knot Vector NURBS Curve

 JT File Format Reference Version 9.5 Rev-A Page 284

Indices documented in 8.1.15.1 Non-Trivial Knot Vector NURBS Curve Indices. NURBS Curve Knot Vectors uses the

Float64 version of the CODEC to compress and encode data.

8.1.15.1 Non-Trivial Knot Vector NURBS Curve Indices

Non-Trivial Knot Vector NURBS Curve Indices data collection specifies the Curve index identifiers (i.e. indices to particular

NURBS Curves within a list of Curves) for all NURBS Curves containing non-trivial knot vectors. A description/definition

for “non-trivial knot vector” can be found in 8.1.13 Compressed Entity List for Non-Trivial Knot Vector.

This Curve index data is stored in a compressed format.

Figure 239: Non-Trivial Knot Vector NURBS Curve Indices data collection

Complete description for Compressed Entity List for Non-Trivial Knot Vector can be found in 8.1.13 Compressed Entity List

for Non-Trivial Knot Vector.

8.1.15.2 NURBS Curve Control Point Weights

NURBS Curve Control Point Weights data collection defines the Weight values for a conditional set of Control Points for a

list of NURBS Curves. The storing of the Weight value for a particular Control Point is conditional, because if NURBS

Curve Control Point Dimension is “non-rational” or the actual Control Point‟s Weight value is “1”, then no Weight value is

stored for the Control Point (i.e. Weight value can be inferred to be “1”).

The NURBS Curve Control Point Weights data is stored in a compressed format.

Figure 240: NURBS Curve Control Point Weights data collection

Complete description for Compressed Control Point Weights Data can be found in 8.1.14 Compressed Control Point Weights

Data.

8.1.15.3 NURBS Curve Control Points

NURBS Curve Control Points is the compressed and/or encoded representation of the Control Point coordinates for each

NURBS Curve in a list of Curves (i.e. there are stored values for each NURBS Curve in the list). Note that these are non-

homogeneous coordinates (i.e. Control Point coordinates have been divided by the corresponding Control Point Weight

values).

Figure 241: NURBS Curve Control Points data collection

VecF64{Float64CDP, NULL} : Control Points

Control Points is a vector of Control Point coordinates for all the NURBS Curves in a list of Curves. All the NURBS Curve

Control Point coordinates are accumulated into this single vector in the same order as the Curve appears in the Curve list (i.e.

Curve-1 Control Points, Curve-2 Control Points, etc.). Control Points uses the Float64 version of the CODEC to compress

and encode data in a “lossless” manner.

VecF64{Float64CDP, NULL} : Control Points

Compressed Control

Point Weights Data

Compressed Entity List

for Non-Trivial Knot

Vector

 JT File Format Reference Version 9.5 Rev-A Page 285

8.1.16 Compressed CAD Tag Data

The Compressed CAD Tag Data collection contains the persistent IDs, as defined in the CAD System, to uniquely identify

individual CAD entities (e.g. Faces and Edges of a JT B-Rep, PMI, etc.). Exactly what CAD entity types have CAD Tags

and what order they are stored in Compressed CAD Tag Data is defined by users of this data collection (e.g. 7.2.3.1.6 B-Rep

CAD Tag Data, 7.2.6.2.7 PMI CAD Tag Data)

 What constitutes a CAD Tag is outside the scope of the JT File format and is indeed part of the CAD system. The JT File

format simply provides a way to store any kind of CAD Tag as provided by the CAD system which produced the CAD

entity.

Figure 242: Compressed CAD Tag Data collection

I32 : Data Length

I32 : Version Number

I32 : CAD Tag Count

CAD Tag Count > 0

If “Type-1” CAD Tags exist

in I32 : Surface Count data.

Compressed CAD Tag

Type-2 Data

If “Type-2” CAD Tags exist

in I32 : Surface Count data.

VecI32{Int32CDP2, Lag1} : CAD Tag

Types

I16:Version Number

I16:Version Number

 JT File Format Reference Version 9.5 Rev-A Page 286

I16:Version Number

Version Number is the version identifier for the CADTag element. Only version number 0x001 is currently supported.

I32 : Data Length

Data Length specifies the length in bytes of the Compressed CAD Tag Data collection. A JT file loader/reader may use this

information to compute the end position of the Compressed CAD Tag Data within the JT file and thus skip reading the

remaining Compressed CAD Tag Data.

I32 : Version Number

Version Number is the version identifier for the Compressed CAD Tag Data. Version number “1” is currently the only valid

value.

I32 : CAD Tag Count

CAD Tag Count specifies the number of CAD Tags

VecI32{Int32CDP2, Lag1} : CAD Tag Types

CAD Tag Types is a vector of type identifiers for a list of CAD Tags (where each CAD Tag in the list has a type identifier

value).

In an uncompressed/decoded form the CAD Tag type identifier values have the following meaning:

= 1 32 Bit Integer CAD Tag Type

= 2 64 Bit Integer CAD Tag Type

CAD Tag Types uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP2, Lag1} : CAD Tags Type-1

CAD Tags Type-1 is a vector of the Type-1 (i.e. 32 Bit Integer Type) CAD Tags for a list of CAD Tags. CAD Tags Type-1

uses the Int32 version of the CODEC to compress and encode data. CAD Tags Type-1 is only present if there are Type-1

CAD Tags in the CAD Tag Types vector. Thus a loader/reader of JT file must first uncompress/decode and evaluate the

previously read CAD Tag Types to determine if there are any Type-1 CAD Tags and if so, then the CAD Tags Type-1 data

vector is present.

8.1.16.1 Compressed CAD Tag Type-2 Data

Compressed CAD Tag Type-2 Data collection contains the Type-2 (i.e. 64 Bit integer Type) CAD Tag data for a list of CAD

Tags.

The Compressed CAD Tag Type-2 Data collection is only present if there are Type-2 CAD Tags in the CAD Tag Types

vector. Thus a loader/reader of JT file must first uncompress/decode and evaluate the previously read CAD Tag Types vector

to determine if there are any Type-2 CAD Tags and if so, then the Compressed CAD Tag Type-2 Data collection is present.

Figure 243: Compressed CAD Tag Type-2 Data collection

VecI32{Int32CDP2, Lag1} : First I32 of Type-2 CAD Tags

VecI32{Int32CDP2, Lag1} : Second I32 of Type-2 CAD

Tags

 JT File Format Reference Version 9.5 Rev-A Page 287

VecI32{Int32CDP2, Lag1} : First I32 of Type-2 CAD Tags

First I32 of Type-2 CAD Tags is a vector of the first 32 bits of each Type-2 CAD Tag in the list of CAD Tags. First I32 Of

Type-2 CAD Tags uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP2, Lag1} : Second I32 of Type-2 CAD Tags

Second I32 of Type-2 CAD Tags is a vector of the second 32 bits of each Type-2 CAD Tag in the list of CAD Tags. Second

I32 Of Type-2 CAD Tags uses the Int32 version of the CODEC to compress and encode data.

8.2 Encoding Algorithms

The following sections give a brief technical overview/descriptions of the various encoding algorithms used in the JT format.

Additional information on each of the algorithms can be found within references listed in 3 References and Additional

Information section of this document. Also, a sample implementation of the decoding portion of each algorithm can be found

in Appendix C: Decoding Algorithms – An Implementation.

8.2.1 Uniform Data Quantization

Uniform Data Quantization is a lossy encoding algorithm in which a continuous set of input values (floating point data) is

approximated with integral multiples (i.e. integers) of a common factor. How close the quantization output approximates the

original input data is dependent upon the quantization data range and the number of bits specified to hold the resulting integer

value.

The quantization is considered “uniform” because the algorithm divides the data input range into levels of equal spacing (i.e.

a uniform scale). The form of Uniform Data Quantization used by the JT format is also considered scalar in nature, in that

each input value is treated separately in producing the output integer value.

Given the following definitions:

inputVal: Input floating point data to quantize

outputval: Resulting quantized output integer value

minInputRange: Specified minimum value of input data range

maxInputRange: Specified maximum value of input data range

nBits: Specified number of bits of precision (quantized size)

The basic algorithm (using C++ style syntax) for Uniform Data Quantization is as follows:

UInt32 iMaxCode = (nBits < 32) ? (0x1 << nBits) - 1 : 0xffffffff;

Float64 encodeMultiplier = Float64(iMaxCode) / (maxInputRange – minInputRange);

UInt32 outputVal = UInt32((inputVal - minInputRange) * encodeMultiplier + 0.5);

Note: For reasons of robustness, “outputVal” must also be explicitly clamped to the range [0,iMaxCode]. This is because

floating-point roundoff error in the calculation of “encodeMultiplier” can otherwise cause “outputVal” to sometimes come

out equal to “iMaxCode + 1”.

Note that all compression algorithms in the following sections operate on quantized integer data.

8.2.2 Bitlength CODEC

This is a very simple compression algorithm that runs an adaptive-width bit field encoding for each value. As each input

value is encountered, the number of bits needed to represent it is calculated and compared to the current "field width". The

current field width is then adjusted upwards or downwards by a constant “step_size” number of bits (i.e. 2 bits for the JT

format) to accommodate the input value storage. This increment or decrement of the current field width is indicated for each

encoded value by a prefix code stored with each value.

The prefix code will be one of the following two forms:

A single '0' bit to denote the same (i.e. current) field width is to be used for the next value.

A '1' bit followed by a series of one or more bits where each bit indicates whether the field width is to be incremented (a '1'

bit) or decremented (a '0' bit) by the field step_size, followed by a single terminator bit (which is complement of the previous

increment/decrement bit). Note that there can only be increments or decrements in a given prefix code, never both, and that

 JT File Format Reference Version 9.5 Rev-A Page 288

is why the prefix code terminator bit can be recognized as bits are read by simply looking for the complement of the previous

increment/decrement bit.

Some examples of prefix codes and their interpretation are as follows:

Example 1: Prefix code to maintain same (current) field width.

Example 2: Prefix code to increment field width four times (8 bits).

Example 3: Prefix code to decrement field width two times.

A pseudo-code sample implementation of bit length decoding is available in Appendix C: Decoding Algorithms – An

Implementation.

8.2.3 Arithmetic CODEC

In 1948, Claude Shannon of Bell Laboratories published his seminal paper “A mathematical theory of communication” that

launched the new field of Information Theory. In that same year, two Doctoral students at the Massachusetts Institute of

Technology (MIT) made breakthroughs in the coding of information. The first to press was David Huffman, whose coding

scheme we now know as Huffman Coding. In that same class with Huffman was Peter Elias who reportedly developed the

first articulation of arithmetic coding, but it lay unpublished until 1976, when Jorma Rissanen and Richard Pasco, of IBM,

refined it into a practically useful algorithm.

Arithmetic encoding is a lossless compression algorithm that replaces an input stream of symbols or bytes with a single fixed

point output number (i.e. only the mantissa bits to the right of the binary point are output from MSB to LSB). The total

number of bits needed in the output number is dependent upon the length/complexity of the input message (i.e. the longer the

input message the more bits needed in the output number). This single fixed point number output from an arithmetic

encoding process must be uniquely decodable to create the exact stream of input symbols that were used to create it.

Initially all symbols being encoded have a probability value assigned to them based on the likelihood that the symbol will

occur next in the input stream (i.e. the frequency of the symbol in the input stream). Given probability value assignments,

each individual symbol is then assigned an interval range along a nominal 0 to 1 “probability line”, where the size of each

range corresponds to the symbol‟s probability value. Note that a particular symbol owns all values within its assigned range

up to, but not including, the range high value, and that it does not matter which symbols are assigned which segment of the

range as long it is done in the same manner by both the encoder and the decoder.

Given the above described input stream probability and interval range assignments, a high level description of the arithmetic

encoding process is as follows:

1001
Indicates bit field width change

Indicates decrement width by step_size

Indicates decrement width by step_size

Termination bit

111110
Indicates bit field width change

Indicates increment width by step_size

Indicates increment width by step_size

Indicates increment width by step_size

Indicates increment width by step_size

Termination bit

0
Indicates no bit field width change

 JT File Format Reference Version 9.5 Rev-A Page 289

Begin with a “current interval” initialized to [0,1). Note, that in interval range notation (i.e. “[0,1)”), the “[“ symbol indicates

inclusive of the interval low limit and “)” symbol indicates exclusive of the interval high limit.

Sequentially for each symbol of the input stream, perform two steps

Subdivide the current interval into subintervals based on the input stream symbol probability values as described above.

Select the subinterval corresponding to the current input stream symbol being sequentially processed and make it the new

“current interval”.

After all input stream symbols have been sequentially processed; output enough bits to distinguish the final “current interval”

from all other possible final intervals.

In pseudo code form, the algorithm to accomplish the above described arithmetic encoding for an input stream message of

any length could look as follows:

Set low to 0.0

Set high to 1.0

While there are still input symbols do

 cur_symbol = get next input symbol

 range = high – low

 high = low + range * high_range(cur_symbol)

 low = low + range * low_range(cur_symbol)

End of While

Output low

So the arithmetic encoding process is simply one in which we narrow the range of possible numbers with every new

sequentially processed input symbol; where the new narrowed range is proportional to the predefined probability values

assigned to each symbol in the input stream.

The arithmetic decoding process is the inverse procedure; where the range is expanded in proportion to the probability of

each symbol as it is extracted. For the arithmetic decoding process we find the first symbol in the message by seeing which

symbol owns the interval range that our encoded message falls in. Then, since we know the low and high range limit values

of the first symbol we can remove their effects by reversing the process that put them in.

In pseudo code form, the algorithm for decoding the incoming number could look as follows:

Get encoded_number

Do

 find symbol whose range straddles the encoded_number

 output the symbol

 range = symbol_high_value – symbol_low_value

 encoded_number = encoded_number – symbol_low_value

 encoded_number = encoded_number / range

until no more symbols

8.2.3.1 Example

Following is an example to demonstrate in practice the basic principles of arithmetic coding.

Suppose you want to compress, using arithmetic coding, the following sequence/array of integer data:

{2, 9, 12, 12, 0, 7, 1, 20, 5, 19}

For this input stream of data, the assigned probability values will be as follows:

Number Probability

0 1/10

1 1/10

2 1/10

5 1/10

 JT File Format Reference Version 9.5 Rev-A Page 290

Number Probability

7 1/10

9 1/10

12 2/10

19 1/10

20 1/10

Then based on each input numbers probability value, an interval range along a 0 to 1 “probability line” can be assigned to

each input number as follows:

Number Probability Range

0 1/10 [0.00, 0.10)

1 1/10 [0.10, 0.20)

2 1/10 [0.20, 0.30)

5 1/10 [0.30, 0.40)

7 1/10 [0.40, 0.50)

9 1/10 [0.50, 0.60)

12 2/10 [0.60, 0.80)

19 1/10 [0.80, 0.90)

20 1/10 [0.90, 1.00)

Now proceeding with encoding the example input integer sequence {2, 9, 12, 12, 0, 7, 1, 20, 5, 19}, the first number to be

encoded is “2”; so the final encoded value will be a number that is greater than or equal to 0.20 and less than 0.30. Now as

each subsequent number in the input stream is sequentially processed for encoding, the possible range of the output number is

further restricted. In our example the next number to be encoded is “9” which owns the range [0.50, 0.60) within the new

sub-range of [0.20, 0.30); which now further restricts our output number to the range [0.25, 0.26). If we continue this logic

for the complete input integer sequence we end up with the following:

New integer

number

Low value High value

 0.0 1.0

2 0.2 0.3

9 0.25 0.26

12 0.256 0.258

12 0.2572 0.2576

0 0.25720 0.25724

7 0.257216 0.257220

1 0.2572164 0.2572168

20 0.25721676 0.2572168

5 0.257216772 0.257216776

19 0.2572167752 0.2572167756

From the above table, are final low values is “0.2572167752” which is the output number that uniquely encodes the integer

number sequence {2, 9, 12, 12, 0, 7, 1, 20, 5, 19}.

Given this encoding scheme, the decoding would simply follow the process previously described. We find the first number in

the sequence by looking up in the probability range for the value, whose range, our encoded number “0.2572167752” falls

 JT File Format Reference Version 9.5 Rev-A Page 291

within. In our example this equates to the value “2” and so our first decoded value must be “2”. Then we apply the

previously described decoding subtraction and division steps to arrive at a new encoded value of “0.572167752”. Using this

new “0.572167752” encoded value and the same logic of the first step, the second decoded value will be “9”. We continue

this process until there are no more numbers to decode.

In practice, due to floating point size (i.e. number of bits) restrictions and possible differences in floating point formats on

machines, arithmetic encoding is best implemented using 16 bit or 32 bit integer math. Using 16 bit or 32 bit integer math,

an incremental transmission scheme can be implemented, where fixed size integer state variables receive new bits in at the

low end and shift them out the high end, forming a single number that can be as many bits long as are available on the

computer‟s storage medium.

Using our example as a guide, define the starting range [0.0, 1.0) to instead be 0 to 0.999 (which is .111 in binary). Then in

order to use integer registers to store these numbers, justify the values so that the implied decimal point is at the left hand side

of the word. Now load the initial range values based on the word size we are using. In the case of a 16 bit implementation

the initial range values will be low equals 0x0000 and high equals 0xFFFF. Since we know these values will go on forever

(e.g. 0.999… will continue with FFs) we can shift those extra bits in as needed with no detrimental effects.

Going back to our example and using a 5 digit register, we start with the range:

High: 99999

Low: 00000

Applying the previously described encoding algorithm we first calculate the range between the low and high values; which in

this case is 100000 (not 9999 since we assume the high value has an infinite number of 9‟s). Next, we calculate the new high

value which in this example will be 30000. But before we store the new high value we must decrement it to account for the

implied digits appended to it; so new high value will be 29999. Applying similar logic to computing the new low value

results in a new range of:

 High: 29999 (999…)

Low: 20000 (000…)

In looking at the newly computed high and low range values, it can be seen that the most significant digits of high and low

match. A property of arithmetic coding is that as this encoding process continues, the high and low values will continue to

get closer, but will never match exactly. Given this property, once the most significant digit of high and low match, it will

never change, and thus we can output this most significant digit as the first number in the coded word and continue working

with just 16 bit high and low values. This output process is accomplished by shifting both the high and low values left by

one digit and shifting in a “9” in the least significant digit of the high value.

Applying the previously described encoding algorithm and continuing the above described process of shifting out most

significant digit into the coded word as high and low continually grow closer together looks as follows for encoding our

example integer number sequence {2, 9, 12, 12, 0, 7, 1, 20, 5, 19}:

 High Low Range Cumulative

output

Initial State 99999 00000 100000

Encode “2” [0.2, 0.3) 29999 20000

Shift out 2 99999 00000 100000
.2

Encode “9” [0.5, 0.6) 59999 50000
 .2

Shift out 5 99999 00000 100000
.25

Encode “12” [0.6, 0.8) 79999 60000 20000
.25

Encode “12” [0.6, 0.8) 75999 72000
 .25

Shift out 7 59999 20000 40000
.257

Encode “0” [0.0, 0.1) 23999 20000
 .257

 JT File Format Reference Version 9.5 Rev-A Page 292

 High Low Range Cumulative

output

Shift out 2 39999 00000 40000
.2572

Encode “7” [0.4, 0.5) 19999 16000
 .2572

Shift out 1 99999 60000 40000
.25721

Encode “1” [0.1, 0.2) 67999 64000
 .25721

Shift out 6 79999 40000 40000
.257216

Encode “20” [0.9, 1.0) 79999 76000
 .257216

Shift out 7 99999 60000 40000
.2572167

Encode “5” [0.3, 0.4) 75999 72000
 .2572167

Shift out 7 59999 20000 40000
.25721677

Encode “19” [0.8, 0.9) 55999 52000
 .25721677

Shift out 5 59999 20000 40000
.257216775

Shift out 2
 .2572167752

Shift out 0
 .25721677520

As can be seen in the above table, after all values in the input stream have been encoded and any final matching most

significant digit has been output, the arithmetic coding algorithm requires that two extra digits be shifted out of either the

high or low value to finish up the cumulative output word.

Although the above example incrementally encodes very nicely with the arithmetic coding algorithm, there are certain cases

where the computed high and low values get closer, but never actually converge to one value in the most significant digit

(e.g. High = 0.300001, Low = 0.29992). Thus after a few iterations the difference between high and low becomes so small

that 16 bits is not sufficient to represent any difference between the values (i.e. all calculations return the same values). This

conditions is known as “underflow” and special logic must added to the arithmetic coding algorithm to recognize that

“underflow” is occurring and thus head it off before the computations reach an impasse.

The additional logic for recognizing that “underflow” is occurring would be executed after each recalculation of High and

Low value set, and in pseudo code form this logic would look as follows:

underflow = FALSE

if((High and Low value‟s significant digits don‟t match but are on adjacent numbers) &&

 (2
nd

 most significant digit of High is “0” and the 2
nd

 most significant digit of low is “9”))

{

underflow = TRUE

}

When/If it is identified that “underflow” is occurring, the encoding algorithm must perform the following steps to stop the

current “underflow”:

Delete the 2
nd

 most significant digit from both the High and Low value.

Shift the other digits (those to the right of the deleted 2
nd

 digit) to the left to fill up the space (note that the most significant

digit stays in place).

Increment a counter to remember that we threw away a digit and don‟t know whether it was going to converge to “0” or “9”.

A before and after example of performing the above steps to the High and Low values when „underflow” occurs is as

follows:

 JT File Format Reference Version 9.5 Rev-A Page 293

 Before After

High 40344 43449

Low 39810 38100

Underflow_counter 0 1

Now as the encoding algorithm continues and the most significant digit of High and Low values once again converge to a

common value, then that value must be output to the coded word along with “Underflow_counter” number of “underflow”

digits that were previously deleted. The underflow digits output to the coded word will either be all 9s or 0s, depending on

whether the High and Low value converged to the higher or lower value.

A pseudo-code sample implementation of arithmetic decoding is available in Appendix C: Decoding Algorithms – An

Implementation.

8.2.4 Deering Normal CODEC

Michael Deering first published his work on geometry compression in 1995 [5] and later helped present a course on the

subject at SIGGRAPH‟99 [6]. Although Deering‟s approach to geometric compression involves compression of vertices,

colors and normals, the description detailed here will focus solely on compression of normals since this is the only

component of Deering‟s approach used in the JT format.

Through both theoretical examination and empirical testing, Deering found that an angular density of 0.01 radians between

normals (about 100,000 normalized normals distributed over unit sphere) gave results that were not visually distinguishable

from results obtained from finer normal representations. This observation reduced the problem of having to “exactly”

represent any general surface normal, to only having to represent about 100,000 specific normals (i.e. general surface normal

replaced by the appropriate one of the 100,000 specific normals).

If there were no run-time memory concerns and no concerns for on disk footprint size, these specific 100,000 normals could

be simply represented in a table that is indexed into, to reference a particular normal. Instead, Deering‟s approach leverages

symmetrical properties of the unit sphere to reduce the size of the table and allow any normal to be represented by, at max, an

18 bit index as summarized below:

 All normals are normalized (i.e. can be represented as points on the surface of the unit sphere).

 Unit sphere is divided into eight symmetrical octants based on sign bits of normal‟s X,Y,Z rectilinear

representation (see Figure 244). Using three bits to represent the three sign bits of the normals XYZ components

reduces the problem space to one eighth of the unit sphere

 Each octant of the unit sphere is divided into six identical sextants by folding about the planes of symmetry; x=y,

x=z, and y=z (see Figure 244). The particular sextant can be encoded using another three bits. So now unit

sphere is divided into 48 identically shaped triangle patches reducing the normal look-up table to about 2000

entries (i.e. 100000/48).

 Then, a local rectangular orthogonal two dimensional grid is created on the sextant and all normals within the

sextant are represented as two n-bit angular addresses (i.e. a quantization of two angular values along the unit

sphere) where “n” is in the range from 0 to 6 bits.

 Resulting in a max grand total of 18 bits (3 + 3 + 6 + 6) to represent any normal on the unit sphere.

In the figure below, the sphere is divided into eight octants and each octant is divided into six sextants. Each sextant is

assigned an identifying three bit code.

 JT File Format Reference Version 9.5 Rev-A Page 294

Figure 244: Sextant Coding on the Sphere

Note that the sextant three bit code assignments used by the JT format (as seen in Figure 244) are slightly modified from the

original assignments as specified by Deering.

The representation of all normals within a sextant by two n-bit angular addresses, as summarized above, is based on the

following:

 In spherical coordinates, points on a unit sphere can be parameterized by two angles, θ and φ; where θ is the

angle about the y axis and φ is the longitudinal angle from the y=0 plane.

 Mapping between rectangular and spherical coordinates is:

 x = cosθ * cosφ y = sinφ z = sinθ * cosφ

 All encoding takes place in the positive octant.

 Angles θ and φ can be quantized into two n-bit integers θ‟n and φ‟n (where “n” is in the range of 0 to 6) and the

relationship between these n-bit integers and angles θ and φ for a given “n” is:

 θ (θ‟n) = asin tan (φmax * (n – θ‟n) / 2n)

 φ (φ‟n) = φmax * φ‟n / 2n

Thus to encode (i.e. quantize) a given normal N into θ‟n and φ‟n:

 N must be first represented (see Figure 244) in the positive octant and appropriate sextant within that octant,

resulting in N‟.

 Then N‟ must be dotted with all quantized normals in the sextant.

 For a fixed “n”, the corresponding θ‟n and φ‟n values of the quantized sextant normal that result in the largest

(nearest unity) dot product defines the proper θ‟n and φ‟n encoding of N.

With this encoding of normal N into θ‟n and φ‟n n-bit integers the complete bit representation of normal N can now be

defined as follows:

 Uppermost three bits specify the octant.

 Next three bits specify the sextant code as defined in Figure 244.

 Next two n-bit fields specify θ‟n and φ‟n values respectively.

8.3 ZLIB Compression

ZLIB compression is a lossless data compression algorithm and is essentially the same as that in gzip and Zip. Zlib‟s

compression method, called deflation, creates compressed data as a sequence of blocks. The JT format uses Version 1.1.2 of

the ZLIB compression library.

9 Best Practices

The proceeding sections of this document specify the mandatory clauses for creating a reference compliant Version 9.5 JT

file. This “Best Practices” section focusing on documenting format conventions that although not required to have a

X = Z

X

Y

Z

X = Y Y = Z

000 001

010

011 100

101

X < Y

X > Y

X > Z X < Z

Y > Z

Y < Z

 JT File Format Reference Version 9.5 Rev-A Page 295

reference compliant JT file, have become commonplace within JT format translators to the point where these conventions are

considered best practices for constructing JT files.

9.1 Late-Loading Data

The JT format was designed and structured to load entities from a JT file on a deferred or as-needed basis.. This concept is

referred to within this JT Format Reference document as “late-loading data”. The JT format has many structures in support

of this and it is recommended as a best practice that writers/loaders of JT data leverage these capabilities.

Initial loading only requires the Table of Contents and the LSG. All Meta Data Node Elements, JT B-Rep Elements, XT B-

Rep Elements, Wireframe Rep Elements, PMI Manager Meta Data Elements, JT ULP Elements, JT LWPA Elements, and

Shape LOD Elements may be ignored until they are actually needed. These Late-Loaded data containers are accessed via a

Late Loaded Property Atom Element which appears in a LSG Node's Property list. Contained in this Property is the GUID

associated with the segment to be loaded. This GUID can be looked up in the TOC Segment, which will give the location in

the JT from which to load the actual Element via the Data Segment convention.

9.2 Bit Fields

In the 7 File Format section of this reference many bit field data descriptions (e.g. 7.2.1.1.1.1.1 Base Node Data “Node

Flags” field) contain the words “All undocumented bits are reserved.” These words should be interpreted to mean that these

undocumented bits should be set to “0” when writing the bit field data to a JT file.

9.3 Reserved Field

In the 7 File Format section of this reference some data fields may be named/documented “Reserved Field” (e.g.

7.2.1.1.1.7.1LOD Node Data ”Reserved Field” field). A “Reserved Field” exists for potential future expansion of the Format

and best practices suggests that these fields should be treated as follows:

If you are writing a JT file whose data did not originate from reading a previous JT file, then Reserved Fields should be set to

a value a “0” when writing the field to a JT file.

If you are writing a JT file whose data originated from reading a previous JT file (i.e. rewriting a JT File), then “Reserved

Fields” should be written with the same value that was read from the originating JT file.

9.4 Local Version

The local version values seen throughout the data collections provides a simple means by which those data collections can be

extended within current and future minor versions of the 9.x file format. The standard convention followed by each data

collection, unless explicitly specified otherwise, is to write the data from each local version in order. This allows readers to

read up to the maximum local version they support and then use the segment length that was read in the Segment Header to

skip over any data they may not understand.

9.5 Hash Value

Hashing is a means by which a large chunk of values can be represented by single value through the use of a mathematical

function that provides a distinctive value for each unique set of ordered values. The hash function used within the v9.x

format was published by Bob Jenkins in Dr Dobbs back in 1997 and its implementation is provided in Appendix D: .

The hash function takes a pointer to a set of values, the number of values, and a seed hash value. It returns the resulting

hash value. Initially the seed value is set to 0, however when hashing multiple data fields together the hash of previous data

field is used as the seed hash value of the next data field:

UInt32 uHash = 0;

uHash = hash32(pVal0, nVal0, uHash);

uHash = hash32(pVal1, nVal1, uHash);

The order that individual fields are hashed is extremely important since v9.x readers are strongly encouraged to assert that the

stored hash value matches the calculated hash value of the corresponding fields after reading in all the corresponding data. To

this end each hash value stored within the v9.x format carefully documents which fields it encompasses and the order in

which they should be hashed.

 JT File Format Reference Version 9.5 Rev-A Page 296

9.6 Metadata Conventions

Although there are really no restrictions/limits/requirements on what metadata (i.e. properties) can/must be attached to nodes

in the LSG in order to have a reference compliant JT file, there are some conventions that have been generally followed in the

industry when translating CAD data to the JT file format. See 7.2.1.2 Property Atom Elements section of this document for

complete description of the file Elements used to attach this property information to nodes.

9.6.1 CAD Properties

The following table lists the conventions that CAD data translators typically (although not always) follow in placing CAD

information in a JT file as properties on various LSG nodes. Some of these properties are considered required in order for the

data in the file to be interpreted correctly while other properties are optional. See flowing sub-sections for additional

information on required versus optional properties.

The convention is to place these Units properties on every Part and Assembly grouping node in the LSG. By following this

convention, JT file format readers/writers are provided maximum flexibility in understanding/indicating the appropriate JT

data unit processing for both, monolithic and shattered JT file Assembly structures.

JT Property Key Meaning

JT File

Data

Type

Encoded

Data Type

Valid

Values

Required /

Optional

JT_PROP_MEASUREMENT_UNITS Model Units MbString MbString millimeters

centimeters

meters

inches

feet

yards

micrometers

decimeters

kilometers

mils

miles

Required

CAD_MASS_UNITS Units of mass MbString MbString micrograms

milligrams

grams

kilograms

ounces

pounds

Required

CAD_SURFACE_AREA Surface area of solids

within part.
MbString F64 numeric Optional

CAD_VOLUME Volume of solids

within part
MbString F64 numeric Optional

CAD_DENSITY Density of solids

within part (6)
MbString F64 numeric Optional

CAD_MASS Mass or weight of

solids within part
MbString F64 numeric Optional

CAD_CENTER_OF_GRAVITY Center of gravity of

solids within part
MbString 3 space

separated

F64

3 numeric

values
Optional

CAD_PROP_MATERIAL_THICKNESS Sheet thickness within

part
MbString F64 numeric Optional

CAD_PART_NAME Component name from

translator
MbString MbString <string> Optional

CAD_SOURCE CAD program the Part

originated from

MbString MbString <string> Optional

 JT File Format Reference Version 9.5 Rev-A Page 297

Table 9: CAD Property Conventions

9.6.1.1 Required Properties

The required unit properties are really necessary for viewers of JT file data to properly interpret numeric data for analysis

operations (e.g. measure) and support the building of assemblies through the reading of multiple JT files in disparate units.

There are two units of measure that are relevant, units of distance and units of weight.

The JT_PROP_MEASURMENT_UNITS property is used to specify units of distance. The CAD_MASS_UNITS property is

used to specify units for weight. JT_PROP_MEASURMENT_UNITS property is strictly required, while

CAD_MASS_UNITS property is "optionally required". By “optionally required”, we mean, it is required if other optional

metadata intends to specify properties that would depend on these units of measure (e.g. CAD_DENSITY and

CAD_MASS). Notice that the Mass units are specified, instead of the Density units, since Density is a derived unit of

Mass/Volume.

9.6.1.2 Optional Properties

Optional properties can be provided, but if the property is a units based value, then the value must be in units that are

consistent with the JT_PROP_MEASURMENT_UNITS and CAD_MASS_UNITS properties. Thus the units for the

optional units based properties must be as follows:

Optional Property Units

CAD_SURFACE_AREA (JT_PROP_MEASUREMENT_UNITS)
2

CAD_VOLUME (JT_PROP_MEASUREMENT_UNITS)
3

CAD_DENSITY CAD_MASS_UNITS/(JT_PROP_MEASUREMENT_UNITS)
3

CAD_MASS CAD_MASS_UNITS

CAD_CENTER_OF_GRAVITY JT_PROP_MEASUREMENT_UNITS

CAD_PROP_MATERIAL_THICKNESS JT_PROP_MEASUREMENT_UNITS

Table 10: CAD Optional Property Units

Note of caution regarding the node placement for the CAD_DENSITY property. Following the recommended convention for

the placing of CAD properties (see description in 9.6.1CAD Properties) implies that all solids within a single JT part are of a

uniform density, which may not be true in all cases.

9.6.2 Tessellation Properties

When dealing with facetted graphical representations (i.e. LODs) of precise models (e.g. JT B-Rep), depending on the

desired use it is often useful/necessary to know what tessellation tolerances were used to generate the facetted representation.

To that end, two properties are typically stored on Part Node Elements (if part also has precise model) to indicate the

tessellation tolerances used to generate each LOD. These two tessellation properties are as follows

JT

Property

Key

Meaning

JT File

Data

Type

Encoded

Data

Type

Valid

Values

Chordal:: Chordal deviation tessellation tolerance in MCS units

for each LOD. Measure of maximum allowable

distance a linear approximation for a curve/surface may

deviate from the true curve/surface. Encoded value

string would look as follows for the case of two LODs:

MbString space

separated

F32 values

Numeric

 JT File Format Reference Version 9.5 Rev-A Page 298

JT

Property

Key

Meaning

JT File

Data

Type

Encoded

Data

Type

Valid

Values

“0.045603 0.069245”
Angular:: Angular tessellation tolerance for each LOD in degrees.

Two consecutive segments in a linear approximation of

a curve/surface form an angle; this value specifies the

maximum angle allowed. Encoded value string would

look as follows for the case of two LODs:

“30.000000 40.000000”

MbString space

separated

F32 values

Numeric

9.6.3 Miscellaneous Properties

The below table documents some miscellaneous properties often placed on various nodes in the LSG to communicate

specific information about the node or its contents.

JT Property Key Meaning

JT File

Data

Type

Encoded

Data

Type

Valid Values

PMI_TYPE_TABLE May be attached to Part Node

Element to indicate the list of PMI

type values and associated names for

all PMI types (basically equivalent to

the Entity Type field documented in

Generic PMI Entities). The string is a

“.” and “,” delimited string of the

following form:

“10.Groove Weld,11.Fillet

Weld,12.Plug/Slot Weld,14.Edge

Weld”

MbString <string>

JT_PROP_SHAPE_DATA_TYPE May be attached to Shape Node

Elements to indicate what geometry

type the shape data represents.

MbString <string> “Surface”

“Wire”

JT_PROP_TRISTRIP_DATA_LAYOUT This property is deprecated, and is no

longer used.

JT_PROP_ORIGINATING_BREPTYPE May be attached to Part Node

Element to indicate the type of B-Rep

associated with the Part.

MbString <string> “None”

“JtBrep”

“XTBrep”

JT_PROP_NAME May be attached to any form of node

or attribute with which one wants to

associate a textual name (e.g.

Part/Assembly/Instance name,

Material name, Light Set name, etc.).

For Part/Assembly/Instance names

this string has the following encoded

form where “;” is a delimiter and “:‟

is a terminator:

MbString <string>

 JT File Format Reference Version 9.5 Rev-A Page 299

JT Property Key Meaning

JT File

Data

Type

Encoded

Data

Type

Valid Values

For attribute names this string has the

following encoded form:

9.7 LSG Attribute Accumulation Semantics

For applications producing or consuming JT format data, it is important that the JT format semantics of how attributes are

meant to be applied and accumulated down the LSG are followed. If not followed, then consistency between the applications

in terms of 3D positioning and rendering of LSG model data will not be achieved.

Although each attribute type defines its own application and accumulation LSG semantics (the details of which can be found

in each attribute type sub-section under 7.2.1.1.2 Attribute Elements), there are some general rules which apply:

Attributes at lower level in the LSG take precedence and replace or accumulate with attributes set at higher levels. When

multiple Attributes of the same type are present on a Node, they accumulate in the order they are specified (i.e. from the front

of the Attribute list toward the back).

Nodes with no associated attributes inherit those of their parents.

Attributes are inherited only from a node's parents. Thus a given node‟s attributes do not affect those on the node's siblings.

The root of a partition inherits the attributes in effect at the referring partition node.

Attributes can be marked “final”, which terminates accumulation of that attribute type at that marked attribute and propagates

the accumulated value at that point to all descendants of the associated node. Descendants can override a "final” attribute

using the “force” flag. Note that “force” does not turn OFF “final” – it is simply a one-shot override of “final” for the

specific attribute marked as “forcing.” Multiple attributes of the same type may be marked as "forcing" and in this case, the

last one wins. Both of these flags are OFF by default. An analogy for this “force” and “final” interaction is that “final” is a

back-door in the attribute accumulation semantics, and that “force” is the doggy-door in the back-door!

9.8 LSG Part Structure

The JT Format Reference does not mandate that a particular node hierarchy be used for modeling physical Parts within a

LSG structure. In fact there are many node hierarchies for representing Parts in LSG that will function correctly in most JT

enabled applications. Still, there is a convention that most JT translators follow (and some JT enabled applications may

assume exists) for modeling Parts within a LSG. The convention is to model each Part within a LSG structure with the

following node hierarchy:

“Chrome material”

Name

“AlignmentPin.part;0;1:”

Name

Version #

Instance #

 JT File Format Reference Version 9.5 Rev-A Page 300

Figure 245: JT Format Convention for Modeling each Part in LSG

9.9 Range LOD Node Alternative Rep Selection

Best practices suggest that LSG traversers apply the following strategy, at Range LOD Nodes (see 7.2.1.1.1.8 Range LOD

Node Element), when making alternative representation selection decisions based on Range Limits: The first alternate

representation is valid when the world coordinate distance between the center and the eye point is less than or equal to the

first range limit (and when no range limits are specified). The second alternate representation is valid when the distance is

greater than the first limit and less than or equal to the second limit, and so on. The last alternate representation is valid for all

distances greater than the last specified limit.

9.10 Brep Face Group Associations

The original purpose of the face group concept was to provide associativity between Brep faces and geometry. Exactly how a

Brep face associates to a face group number is the topic of this section. An implicit scheme has been chosen for face group

associativity, rather than storing some kind of explicit data on either the Vertex Shape LOD Data or the Brep. The primary

motivation for this implicit scheme is to keep the JT files simple and small; additional association information would not only

be redundant, but also wasteful. Tessellators must exercise this policy when producing Vertex Shape LOD Data from Breps,

grouping the triangles into face groups according to its rules. Tristrips may not cross face groups. Applications must be

able to count on this policy so that, for example, they can map a picking action back to its corresponding Brep face reliably.

JTBrep/ULP: In the case of JtBrep and ULP reps, the mapping is simple. These Reps have a consistent, sequential, index

origin-0 numbering scheme for their regions, shells, and faces. So the Brep faces are simply assigned sequentially to face

group by increasing region and shell. For example, suppose we have a JTBrep with 2 regions, each with 2 shells, each with 2

faces. The Face Group  Region/Shell/Face mapping will be as follows:

FG0  R0 S0 F0

FG1  R0 S0 F1

FG2  R0 S1 F0

FG3  R0 S1 F1

FG4  R1 S0 F0

FG5  R1 S0 F1

FG6  R1 S1 F0

FG7  R1 S1 F1

Part

Node

Element

 Group

Node

Element

Shape

Node

Shape

Node

...

 Group

Node

Element

Shape

Node

Shape

Node

...

Range

LOD Node

Element

LOD-0 LOD-N ...

 JT File Format Reference Version 9.5 Rev-A Page 301

JtXTBrep: In the case of JtXTBrep, the mapping is based on Parasolid identifier of each XT face that is persisted on disk.

The identifier is unique within each Parasolid body, but it is not an index. XTBrep maintains a zero-based contiguous index

of XT face based on increasing identifier value within the same XT body. If XTBrep contains multiple XT bodies, then the

sequence of those XT bodies are fixed across different Parasolid releases and therefore the index of each XT body is implied.

 In the case when multiple bodies are present in JtXTBrep, face index is assigned sequentially by increasing XT body index.

For example, suppose we have a JtXTBrep with 2 bodies, each with 2 faces, then the Face Group to Body/Face mapping will

be as follows:

FG0  B0 F0

FG1  B0 F1

FG2  B1 F0

FG3  B1 F1

 JT File Format Reference Version 9.5 Rev-A Page 302

Appendix A: Object Type Identifiers

All objects stored in a JT file are classified by type and thus include an object type identifier as part of their persisted data.

The data format for these Object Type identifiers is a GUID. These Object Type identifiers are consistent for all objects, of a

particular type, in all Version 8.1 JT files.

Table 11: Object Type Identifiers lists the assigned identifier for each Object Type that can exist in a Version 9.5 JT file.

GUID Object Type

0xffffffff, 0xffff, 0xffff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff Identifier to signal End-Of-Elements.

Types Stored Within LSG Segment (Segment Type = 1)

0x10dd1035, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Base Node Element

0x10dd101b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

 Group Node Element

0x10dd102a, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Instance Node Element

0x10dd102c, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

LOD Node Element

0xce357245, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6,

0xe1

Meta Data Node Element

0xd239e7b6, 0xdd77, 0x4289, 0xa0, 0x7d, 0xb0, 0xee, 0x79, 0xf7,

0x94, 0x94

NULL Shape Node Element

0xce357244, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6,

0xe1

Part Node Element

0x10dd103e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Partition Node Element

0x10dd104c, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Range LOD Node Element

0x10dd10f3, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Switch Node Element

0x10dd1059, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Base Shape Node Element

0x98134716, 0x0010, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83,

0x5d, 0x5a

Point Set Shape Node Element

0x10dd1048, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Polygon Set Shape Node Element

0x10dd1046, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Polyline Set Shape Node Element

0xe40373c1, 0x1ad9, 0x11d3, 0x9d, 0xaf, 0x0, 0xa0, 0xc9, 0xc7, 0xdd,

0xc2

Primitive Set Shape Node Element

 JT File Format Reference Version 9.5 Rev-A Page 303

GUID Object Type

0x10dd1077, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Tri-Strip Set Shape Node Element

0x10dd107f, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Vertex Shape Node Element

0x10dd1001, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Base Attribute Data

0x10dd1014, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Draw Style Attribute Element

0xad8dccc2, 0x7a80, 0x456d, 0xb0, 0xd5, 0xdd, 0x3a, 0xb, 0x8d, 0x21,

0xe7

Fragment Shader Attribute Element

0x10dd1083, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Geometric Transform Attribute Element

0x10dd1028, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Infinite Light Attribute Element

0x10dd1096, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Light Set Attribute Element

0x10dd10c4, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Linestyle Attribute Element

0x10dd1030, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Material Attribute Element

0x10dd1045, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Point Light Attribute Element

0x8d57c010, 0xe5cb, 0x11d4, 0x84, 0xe, 0x00, 0xa0, 0xd2, 0x18, 0x2f,

0x9d

Pointstyle Attribute Element

0xaa1b831d, 0x6e47, 0x4fee, 0xa8, 0x65, 0xcd, 0x7e, 0x1f, 0x2f, 0x39,

0xdb

Shader Effects Attribute Element

0x10dd1073, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Texture Image Attribute Element

0x2798bcad, 0xe409, 0x47ad, 0xbd, 0x46, 0xb, 0x37, 0x1f, 0xd7, 0x5d,

0x61

Vertex Shader Attribute Element

0xad8dccc2, 0x7a80, 0x456d, 0xb0, 0xd5, 0xdd, 0x3a, 0xb, 0x8d, 0x21,

0xe7

Fragment Shader Attribute Element

0xaa1b831d, 0x6e47, 0x4fee, 0xa8, 0x65, 0xcd, 0x7e, 0x1f, 0x2f, 0x39,

0xdc

Texture Coordinate Generator

Attribute Element

0xa3cfb921, 0xbdeb, 0x48d7, 0xb3, 0x96, 0x8b, 0x8d, 0xe, 0xf4, 0x85,

0xa0

Mapping Plane Element

0x3e70739d, 0x8cb0, 0x41ef, 0x84, 0x5c, 0xa1, 0x98, 0xd4, 0x0, 0x3b,

0x3f

Mapping Cylinder Element

0x72475fd1, 0x2823, 0x4219, 0xa0, 0x6c, 0xd9, 0xe6, 0xe3, 0x9a,

0x45, 0xc1

Mapping Sphere Element

 JT File Format Reference Version 9.5 Rev-A Page 304

GUID Object Type

0x92f5b094, 0x6499, 0x4d2d, 0x92, 0xaa, 0x60, 0xd0, 0x5a, 0x44,

0x32, 0xcf

Mapping TriPlanar Element

0x10dd104b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Base Property Atom Element

0xce357246, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6,

0xe1

Date Property Atom Element

0x10dd102b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Integer Property Atom Element

0x10dd1019, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Floating Point Property Atom Element

0xe0b05be5, 0xfbbd, 0x11d1, 0xa3, 0xa7, 0x00, 0xaa, 0x00, 0xd1,

0x09, 0x54

Late Loaded Property Atom

ElementSecond specifies the date

Second value. Valid values are [0, 59]

inclusive.

Late Loaded Property Atom Element

0x10dd1004, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

JT Object Reference Property Atom

Element

0x10dd106e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

String Property Atom Element

Types Stored Within JT B-Rep Segment (Segment Type = 2)

0x873a70c0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

JT B-Rep Element

Types Stored Within Meta Data Segment (Segment Type = 4)

0xce357249, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6,

0xe1

PMI Manager Meta Data Element

0xce357247, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6,

0xe1

Property Proxy Meta Data Element

Types Stored Within Shape LOD Segment (Segment Type = 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16)

0x3e637aed, 0x2a89, 0x41f8, 0xa9, 0xfd, 0x55, 0x37, 0x37, 0x3, 0x96,

0x82

Null Shape LOD Element

0x98134716, 0x0011, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83,

0x5d, 0x5a

Point Set Shape LOD Element

0x10dd10a1, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Polyline Set Shape LOD Element

0xe40373c2, 0x1ad9, 0x11d3, 0x9d, 0xaf, 0x0, 0xa0, 0xc9, 0xc7, 0xdd,

0xc2

Primitive Set Shape Element

0x10dd10ab, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Tri-Strip Set Shape LOD Element

 JT File Format Reference Version 9.5 Rev-A Page 305

GUID Object Type

0x10dd10b0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Vertex Shape LOD Element

Types Stored Within XT B-Rep Segment (Segment Type = 17)

0x873a70e0, 0x2ac9, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

XT B-Rep Element

Types Stored Within Wireframe Segment (Segment Type = 18)

0x873a70d0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb,

0x59, 0x97

Wireframe Rep Element

Types Stored Within JT ULP Segment (Segment Type = 20)

0xf338a4af, 0xd7d2, 0x41c5, 0xbc, 0xf2, 0xc5, 0x5a, 0x88, 0xb2, 0x1e,

0x73
JT ULP Element

 Types Stored Within JT LWPA Segment (Segment Type = 24)

0xd67f8ea8, 0xf524, 0x4879, 0x92, 0x8c, 0x4c, 0x3a, 0x56, 0x1f, 0xb9,

0x3a
JT LWPA Element

Table 11: Object Type Identifiers

 JT File Format Reference Version 9.5 Rev-A Page 306

Appendix B: Semantic Value Class Shader Parameter Values

7.2.1.1.2.12 Vertex Shader Attribute Element and 7.2.1.1.2.13 Fragment Shader Attribute Element contain shader parameters.

These shader parameters can be of a “Semantic” Value Class which indicates that the shader parameter is implicitly

tied/bound to a piece of either OpenGL or JT graphics system state. Table 12 below documents all the possible “Semantic”

Value Class shader parameter Values (i.e. the graphics system state the parameter is bound to).

Table 12: Semantic Value Class Shader Parameter Values

Value Description of Semantically Bound Graphics State Notes

= 0  Unknown

Related to Current OpenGL State
= 30  View Transform Matrix Cg only

= 31  Combined Model-View Transform Matrix Cg only

= 32  Projection Transform Matrix Cg only

= 33  Texture Transform Matrix Cg only

= 34  Combined Model-View-Projection Transform Matrix Cg only

= 35  View Matrix Transposed Cg only

= 36  Combined Model-View Transform Matrix Transposed Cg only

= 37  Projection Transform Matrix Transposed Cg only

= 38  Texture Transform Matrix Transposed Cg only

= 39  Combined Model-View-Projection Transform Matrix Transposed Cg only

= 40  View Transform Matrix Inverse Cg only

= 41  Combined Model-View Transform Matrix Inverse Cg only

= 42  Projection Transform Matrix Inverse Cg only

= 43  Texture Transform Matrix Inverse Cg only

= 44  Combined Model-View-Projection Transform Matrix Inverse Cg only

= 45  View Transform Matrix Inverse Transposed Cg only

= 46  Combined Model-View Transform Matrix Inverse Transposed Cg only

= 47  Projection Transform Matrix Inverse Transposed Cg only

= 48  Texture Transform Matrix Inverse Transposed Cg only

= 49  Combined Model-View-Projection Transform Matrix Inverse

Transposed

Cg only

Related to Current JT State
= 70  Current Model Transform

= 71  Current Model Transform Transposed

= 72  Current Model Transform Inverse

= 73  Current Model Transform Inverse Transposed

= 75  Current Material Emissive Color

= 76  Current Material Diffuse Color

= 77  Current Material Specular Color

= 78  Current Material Ambient Color

= 79  Current Material Shininess

= 80  Current Fog Color

= 81  Separate Specular Color Flag

= 82  Global Ambient Light Color

= 83  Exposure

= 84  Bumpiness

= 85  Environment Reflectivity

= 86  Depth Peeling Texture 0

 JT File Format Reference Version 9.5 Rev-A Page 307

= 87  Depth Peeling Texture 1

= 99  Number of VPCS Lights

= 101  VPCS Light-0 Specular Color

= 102  VPCS Light-0 Ambient Color

= 103  VPCS Light-0 Attenuation

= 104  VPCS Light-0 Position

= 105  VPCS Light-0 Direction

= 106  VPCS Light-0 Spot Direction

= 107  VPCS Light-0 Spot Cone Angle

= 108  VPCS Light-0 Cosine of Spot Cone Angle

= 109  VPCS Light-0 Spot Exponent

= 110  VPCS Light-0 Shadow Opacity

= 120 → 130  Same as values 100 → 110 except for VPCS Light-1

= 140 → 150  Same as values 100 → 110 except for VPCS Light-2

= 160 → 170  Same as values 100 → 110 except for VPCS Light-3

= 180 → 190  Same as values 100 → 110 except for VPCS Light-4

= 200 → 210  Same as values 100 → 110 except for VPCS Light-5

= 220 → 230  Same as values 100 → 110 except for VPCS Light-6

= 240 → 250  Same as values 100 → 110 except for VPCS Light-7

= 499  Number of MCS Lights

= 500 → 510  Same as values 100 → 110 except for MCS Light-0

= 520 → 530  Same as values 100 → 110 except for MCS Light-1

= 540 → 550  Same as values 100 → 110 except for MCS Light-2

= 560 → 570  Same as values 100 → 110 except for MCS Light-3

= 580 → 590  Same as values 100 → 110 except for MCS Light-4

= 600 → 610  Same as values 100 → 110 except for MCS Light-5

= 620 → 630  Same as values 100 → 110 except for MCS Light-6

= 640 → 650  Same as values 100 → 110 except for MCS Light-7

= 899  Number of WCS Lights

= 900 → 910  Same as values 100 → 110 except for WCS Light-0

= 920 → 930  Same as values 100 → 110 except for WCS Light-1

= 940 → 950  Same as values 100 → 110 except for WCS Light-2

= 960 → 970  Same as values 100 → 110 except for WCS Light-3

= 980 → 990  Same as values 100 → 110 except for WCS Light-4

= 1000 → 1010  Same as values 100 → 110 except for WCS Light-5

= 1020 → 1030  Same as values 100 → 110 except for WCS Light-6

= 1040 → 1050  Same as values 100 → 110 except for WCS Light-7

= 1500  Current Texture Object-0 Cg only

= 1501  Current Texture Object-1 Cg only

= 1502  Current Texture Object-2 Cg only

= 1503  Current Texture Object-3 Cg only

= 1504  Current Texture Object-4 Cg only

= 1505  Current Texture Object-5 Cg only

= 1506  Current Texture Object-6 Cg only

= 1507  Current Texture Object-7 Cg only

 JT File Format Reference Version 9.5 Rev-A Page 308

= 1600  Current Texture Unit-0 GLSL only

= 1601  Current Texture Unit-1 GLSL only

= 1602  Current Texture Unit-2 GLSL only

= 1603  Current Texture Unit-3 GLSL only

= 1604  Current Texture Unit-4 GLSL only

= 1605  Current Texture Unit-5 GLSL only

= 1606  Current Texture Unit-6 GLSL only

= 1607  Current Texture Unit-7 GLSL only

= 1700  Texture Channel-0 VCS Texture Coordinate Generation S-Plane

= 1701  Texture Channel-0 VCS Texture Coordinate Generation T-Plane

= 1702  Texture Channel-0 VCS Texture Coordinate Generation R-Plane

= 1703  Texture Channel-0 VCS Texture Coordinate Generation Q-Plane

= 1710 → 1713  Same as 1700 → 1703 except for Chanel-1 VCS

= 1720 → 1723  Same as 1700 → 1703 except for Chanel-2 VCS

= 1730 → 1733  Same as 1700 → 1703 except for Chanel-3 VCS

= 1740 → 1743  Same as 1700 → 1703 except for Chanel-4 VCS

= 1750 → 1753  Same as 1700 → 1703 except for Chanel-5 VCS

= 1760 → 1763  Same as 1700 → 1703 except for Chanel-6 VCS

= 1770 → 1773  Same as 1700 → 1703 except for Chanel-7 VCS

= 2000 → 2003  Same as 1700 → 1703 except for Chanel-0 MCS

= 2010 → 2013  Same as 1700 → 1703 except for Chanel-1 MCS

= 2020 → 2023  Same as 1700 → 1703 except for Chanel-2 MCS

= 2030 → 2033  Same as 1700 → 1703 except for Chanel-3 MCS

= 2040 → 2043  Same as 1700 → 1703 except for Chanel-4 MCS

= 2050 → 2053  Same as 1700 → 1703 except for Chanel-5 MCS

= 2060 → 2063  Same as 1700 → 1703 except for Chanel-6 MCS

= 2070 → 2073  Same as 1700 → 1703 except for Chanel-7 MCS

= 3000  Texture Channel-0 Matrix

= 3001  Texture Channel-1 Matrix

= 3002  Texture Channel-2 Matrix

= 3003  Texture Channel-3 Matrix

= 3004  Texture Channel-4 Matrix

= 3005  Texture Channel-5 Matrix

= 3006  Texture Channel-6 Matrix

= 3007  Texture Channel-7 Matrix

= 3100  Texture Channel-0 Map Resolution

= 3101  Texture Channel-1 Map Resolution

= 3102  Texture Channel-2 Map Resolution

= 3103  Texture Channel-3 Map Resolution

= 3104  Texture Channel-4 Map Resolution

= 3105  Texture Channel-5 Map Resolution

= 3106  Texture Channel-6 Map Resolution

= 3107  Texture Channel-7 Map Resolution

= 3200  Texture Channel-0 Map Resolution Inverses (i.e. 1.0 /”Map Resolution”)

= 3201  Texture Channel-1 Map Resolution Inverses

 JT File Format Reference Version 9.5 Rev-A Page 309

= 3202  Texture Channel-2 Map Resolution Inverses

= 3203  Texture Channel-3 Map Resolution Inverses

= 3204  Texture Channel-4 Map Resolution Inverses

= 3205  Texture Channel-5 Map Resolution Inverses

= 3206  Texture Channel-6 Map Resolution Inverses

= 3207  Texture Channel-7 Map Resolution Inverses

= 3300  Texture Channel-0 Blend Color

= 3301  Texture Channel-1 Blend Color

= 3302  Texture Channel-2 Blend Color

= 3303  Texture Channel-3 Blend Color

= 3304  Texture Channel-4 Blend Color

= 3305  Texture Channel-5 Blend Color

= 3306  Texture Channel-6 Blend Color

= 3307  Texture Channel-7 Blend Color

 JT File Format Reference Version 9.5 Rev-A Page 310

Appendix C: Decoding Algorithms – An Implementation

This Appendix provides a sample C++ implementation for the decoding portion of the various compression CODECs (as

detailed in 8.2 Encoding Algorithms) used in the JT format. This sample code is not intended to be fully functional decoder

class implementations, but is instead intended to demonstrate the fundamentals of implementing the decoding portion of the

CODEC algorithms used in the JT format.

1 Common classes

The following sub-sections define some general classes used by all the decoding algorithms.

1.1 CntxEntry class

//

// Type used to build probability context tables.

// Used by ProbabilityContext class.

//

class CntxEntry

{

public:

 Int32 iSym; // Symbol

 Int32 cCount; // Number of occurrences

 Int32 cCumCount; // Cumulative number of occurrences

 Int32 iNextCntx = 0; // Next context if this symbol seen

};

1.2 ProbabilityContext class

//

// Type used to build probability context tables.

// Used by CodecDriver class.

//

class ProbabilityContext

{

public:

 // Returns total cumulative count for all context entries

 Int32 totalCount();

 // Returns number of context entries

 Int32 numEntries();

 // Returns context entry of index iEntry

 Bool getEntry(Int32 iEntry, CntxEntry& rpEntry);

 // Looks up the next context field given by the context entry

 // with input symbol „iSymbol‟

 Bool lookupNextContext(Int32 iSymbol, Int32& iNextContext);

 // Looks up the index of the context entry for the given

 // input symbol „iSymbol‟

 Bool lookupSymbol(Int32 iSymbol, Int32& iOutEntry);

 // Looks up the index of the context entry that falls just above

 // the accumulated count.

 Bool lookupEntryByCumCount(Int32 iCount, Int32& iOutEntry);

};

1.3 CodecDriver class

//

// A class that deals with the conversions from SYMBOL to VALUE and

// provides end-consumer APIs for using the codecs.

//

class CodecDriver

 JT File Format Reference Version 9.5 Rev-A Page 311

{

public:

 // ---------- Codec Decoding Interface ----------

 // Returns the number of symbols to be read

 Int32 numSymbolsToRead();

 // Returns index of the first context entry and total number of bits

 Bool getDecodeData(Int32& iFirstContext, Int32& nTotalBits);

 // Returns the next 32 bits of CodeText

 Bool getNextCodeText(UInt32& uCodeText, Int32& nBits);

 // Adds the decoded symbol back to the driver

 Bool addOutputSymbol(Int32 iSymbol, Int32& iNextContext) ;

 // ---------- Symbol Probability Context Interface ----------

 Bool clearAllContexts();

 // Retrieves a new probability context

 Bool getNewContext(ProbabilityContext& rpCntx);

 // Returns the total number of contexts

 Int32 numContexts();

 // Returns the probability context for a given index

 Bool getContext(Int32 iSymContext, ProbabilityContext& rpCntx);

 // ---------- Predictor Type Residual Unpacking ----------

 typedef enum

 {

 PredLag1 = 0,

 PredLag2 = 1,

 PredStride1 = 2,

 PredStride2 = 3,

 PredStripIndex = 4,

 PredRamp = 5,

 PredXor1 = 6,

 PredXor2 = 7,

 PredNULL = 8

 } PredictorType;

 // Returns the original values from the predicted residual values.

 static Bool unpackResiduals(Vector<Int32>& rvResidual,

 Vector<Int32>& rvVals,

 PredictorType ePredType);

 static Bool unpackResiduals(Vector<Float64>& rvResidual,

 Vector<Float64>& rvVals,

 PredictorType ePredType);

 // Predict values

 static Int32 predictValue(Vector<Int32>& vVal,

 Int32 iIndex,

 PredictorType ePredType);

 static Float64 predictValue(Vector<Float64>& vVal,

 Int32 iIndex,

 PredictorType ePredType);

}

Bool CodecDriver::unpackResiduals(Vector<Int32>& rvResidual,

 Vector<Int32>& rvVals,

 PredictorType ePredType)

{

 Int32 iPredicted;

 Int32 len = rvResidual.length();

 rvVals.setLength(len);

 Int32* aVals = (Int32 *) rvVals;

 Int32* aResidual = (Int32 *) rvResidual;

 JT File Format Reference Version 9.5 Rev-A Page 312

 for(Int32 i = 0; i < len; i++)

 {

 if(i < 4)

 {

 // The first four values are just primers

 aVals[i] = aResidual[i];

 }

 else

 {

 // Get a predicted value

 iPredicted = predictValue(rvVals, i, ePredType);

 if(ePredType == PredXor1 || ePredType == PredXor2)

 {

 // Decode the residual as the current value XOR predicted

 aVals[i] = aResidual[i] ^ iPredicted;

 }

 else

 {

 // Decode the residual as the current value plus predicted

 aVals[i] = aResidual[i] + iPredicted;

 }

 }

 }

 return True;

}

Bool CodecDriver::unpackResiduals(Vector<Float64>& rvResidual,

 Vector<Float64>& rvVals,

 PredictorType ePredType)

{

 if(ePredType == PredXor1 || ePredType == PredXor2)

 return False;

 if(ePredType == PredNULL)

 {

 rvVals = rvResidual;

 return True;

 }

 Float64 iPredicted;

 Int32 len = rvResidual.length();

 rvVals.setLength(len);

 for(Int32 i = 0; i < len; i++)

 {

 if(i < 4)

 {

 // The first four values are just primers

 rvVals[i] = rvResidual[i];

 }

 else

 {

 // Get a predicted value

 iPredicted = predictValue(rvVals, i, ePredType);

 // Decode the value as the residual plus predicted

 rvVals[i] = rvResidual[i] + iPredicted;

 }

 }

 return True;

}

Int32 CodecDriver::predictValue(Vector<Int32>& vVal,

 Int32 iIndex,

 PredictorType ePredType)

{

 Int32* aVals = (Int32 *) rvVals;

 JT File Format Reference Version 9.5 Rev-A Page 313

 JtInt32 iPredicted,

 v1 = aVals[iIndex-1],

 v2 = aVals[iIndex-2],

 v3 = aVals[iIndex-3],

 v4 = aVals[iIndex-4];

 switch(ePredType)

 {

 default:

 case PredLag1:

 case PredXor1:

 iPredicted = v1;

 break;

 case PredLag2:

 case PredXor2:

 iPredicted = v2;

 break;

 case PredStride1:

 iPredicted = v1 + (v1 - v2);

 break;

 case PredStride2:

 iPredicted = v2 + (v2 - v4);

 break;

 case PredStripIndex:

 if(v2 - v4 < 8 && v2 - v4 > -8)

 iPredicted = v2 + (v2 - v4);

 else

 iPredicted = v2 + 2;

 break;

 case PredRamp:

 iPredicted = iIndex;

 break;

 }

 return iPredicted;

}

Float64 CodecDriverBase::predictValue(Vector<Float64>& vVal,

 Int32 iIndex,

 PredictorType ePredType)

{

 Float64* aVals = (Float64 *) rvVals;

 Float64 iPredicted,

 v1 = aVals[iIndex-1],

 v2 = aVals[iIndex-2],

 v3 = aVals[iIndex-3],

 v4 = aVals[iIndex-4];

 switch(ePredType)

 {

 default:

 case PredLag1:

 iPredicted = v1;

 break;

 case PredLag2:

 iPredicted = v2;

 break;

 case PredStride1:

 iPredicted = v1 + (v1 - v2);

 break;

 case PredStride2:

 iPredicted = v2 + (v2 - v4);

 JT File Format Reference Version 9.5 Rev-A Page 314

 break;

 case PredStripIndex:

 if(v2 - v4 < 8 && v2 - v4 > -8)

 iPredicted = v2 + (v2 - v4);

 else

 iPredicted = v2 + 2;

 break;

 case PredRamp:

 iPredicted = iIndex;

 break;

 }

 return iPredicted;

}

1.4 CodecDriver2 class

2 Bitlength decoding classes

The following sub-sections contain a sample implementation of the decoding portion of the Bitlength CODEC algorithm. A

summary technical explanation of the Bitlength CODEC can be found in 8.2.2 Bitlength CODEC.

2.1 BitLengthCodec class

class BitLengthCodec

{

public:

 // This method decodes a given stream of symbols into their values.

 // The stream is described by the codec driver

 Bool decode(CodecDriver* pDriver);

 Int32 cStepBits = 2;

};

Bool BitLengthcodec::decode(CodecDriver* pDriver)

{

 Int32 iBit; // Codetext bit number

 Int32 nBits = 0; // Number of codetext bits decoded so far

 Int32 nTotalBits = 0; // Total number of codetext bits expected

 Int32 nValBits = 0; // Number of accumulated value bits

 Int32 iContext = 0; // Probability context number

 Int32 iSymbol; // Decoded symbol value

 UInt32 uVal = 0; // Current chunk of codetext bits

 UInt32 uAccVal = 0; // Number of valid bits returned from

 // getNextCodeText

 UInt32 uLastIncBit = 0; // Used to calculate whether terminator bit

 // is 0 or 1

 Int32 cNumCurBits = 0; // Current field width in bits

 Int32 nAccBits = 0; // Number of bits accum'ed in uAccVal

 Int32 iDecodeState = 0; // State of decoder; see below

 // Get codetext from the driver and loop over it until it's gone!

 pDriver->getDecodeData(iContext, nTotalBits);

 while(nBits < nTotalBits)

 {

 // Get the next 32 bits from the input stream

 pDriver->getNextCodeText(uVal, nValBits);

 // Scan through each bit either walking the Huffman code

 // tree or accumulating escaped bit values.

 Int32 n = min(32, min(nValBits, nTotalBits - nBits));

 for(iBit = 0; iBit < n ; iBit++)

 {

 // Code-accumulation mode is handled is this block

 // as many bits at a time as possible.

 JT File Format Reference Version 9.5 Rev-A Page 315

 if(iDecodeState == 2)

 {

 // Slice off as many bits as we can all at once.

 Int32 m = min(n - iBit, cNumCurBits - nAccBits);

 if(m < 32)

 {

 uAccVal <<= m;

 uAccVal |= ((uVal >> (32 - m)) & ((1 << m) - 1));

 nAccBits += m;

 iBit += m - 1;

 // Advance the bit-marching counters

 uVal <<= m;

 nBits += m;

 nValBits -= m;

 }

 else

 {

 uAccVal = uVal;

 nAccBits += m;

 iBit += m - 1;

 // Advance the bit-marching counters

 uVal = 0;

 nBits += m;

 nValBits -= m;

 }

 if(nAccBits >= cNumCurBits)

 {

 // Convert and sign-extend the symbol

 iSymbol = Int32(uAccVal);

 iSymbol <<= (32 - cNumCurBits);

 iSymbol >>= (32 - cNumCurBits);

 // Output the symbol and restart

 pDriver->addOutputSymbol(iSymbol, iContext);

 iDecodeState = 0;

 uAccVal = 0;

 nAccBits = 0;

 }

 }

 else

 {

 // All other decode states are handled one bit at a time

 // inside this block.

 // Get the next bit

 uAccVal = (uVal >> 31);

 switch(iDecodeState)

 {

 // DecodeState = 0: Recognize prefix bit (0=Same size

 // code, 1=Different size code).

 case 0:

 // Recognize "same length" prefix code

 if(uAccVal == 0)

 iDecodeState = 2;

 else

 {

 // Recognize "different length" prefix code

 iDecodeState = 1;

 uLastIncBit = 2;

 }

 uAccVal = 0;

 break;

 case 1: // Length adjustment mode

 // Recognize the terminator bit

 JT File Format Reference Version 9.5 Rev-A Page 316

 if(uLastIncBit != 2 && (uAccVal ^ uLastIncBit))

 {

 iDecodeState = 2;

 uLastIncBit = 2;

 }

 else

 {

 // Recognize the "increment" prefix code

 if(uAccVal == 1)

 {

 cNumCurBits += cStepBits;

 }

 else

 {

 // Recognize the "decrement" prefix code

 cNumCurBits -= cStepBits;

 }

 uLastIncBit = uAccVal;

 }

 uAccVal = 0;

 break;

 }

 // Advance the bit-marching counters that keep track of the

 // "current codetext bit", and how many bits are left.

 uVal <<= 1;

 nBits++;

 nValBits--;

 }

 }

 }

 // If the last symbol was zero and the current bit length

 // is also zero, then the above loop terminated before

 // actually decoding the last zero-valued symbol. Test

 // for that condition here and decode it if necessary.

 if(iDecodeState == 2 && cNumCurBits == 0)

 {

 // Output the symbol and restart

 iSymbol = Int32(0);

 pDriver->addOutputSymbol(iSymbol, iContext);

 }

 return True;

}

3 Arithmetic decoding classes

The following sub-sections contain a sample implementation of the decoding portion of the Arithmetic CODEC algorithm.

A summary technical explanation of the Arithmetic CODEC can be found in 8.2.3 Arithmetic CODEC.

3.1 ArithmeticProbabilityRange class

class ArithmeticProbabilityRange

{

public:

 UInt16 low_count;

 UInt16 high_count;

 UInt16 scale;

}

3.2 ArithmeticCodec class

ArithmeticCodec class is the class that decodes arithmetic encoded data.

class ArithmeticCodec

{

 JT File Format Reference Version 9.5 Rev-A Page 317

public:

 ArithmeticCodec() :

 code = 0x0000,

 low = 0x0000,

 high = 0xffff,

 nUnderflowBits = 0,

 bitBuffer =0x00000000,

 nBits = 0

 {

 }

 // Decodes a list of symbols. The codecDriver provides the range

 // info for the symbols to decode. It also stores the symbols as

 // they are decoded.

 Bool decode(CodecDriver* pDriver);

private:

 // Remove the most recently decoded symbol from the front of the

 // list of encoded symbols.

 Bool removeSymbolFromStream(ArithmeticProbabilityRange& sym,

 CodecDriver* pDriver);

 //State variables used in decoding.

 UInt16 code; // Present input code value, for decoding only

 UInt16 low; // Start of the current code range

 UInt16 high; // End of the current code range

 UInt32 bitBuffer; // Temporary i/o buffer

 Int32 nBits; // Number of bits in _bitBuffer

};

Bool ArithmeticCodec::decode(CodecDriver* pDriver)

{

 ArithmeticProbabilityRange newSymbolRange;

 Int32 iCurrContext, nDummyTotalBits, cSymbolsCurrCtx, iCurrEntry;

 Int32 nSymbols = pDriver->numSymbolsToRead();

 ProbabilityContext* pCurrContext = NULL;

 CntxEntry* pCntxEntry = NULL;

 // Initialize decoding process

 Int32 nBitsRead = -1;

 pDriver->getNextCodeText(bitBuffer, nBitsRead);

 low = 0;

 high = 0xffff;

 code = (bitBuffer >> 16);

 bitBuffer <<= 16;

 nBits = 16;

 // Begin decoding

 pDriver->getDecodeData(iCurrContext, nDummyTotalBits);

 for(Int32 ii = 0; ii < nSymbols; ii++)

 {

 pDriver->getContext(iCurrContext, pCurrContext);

 cSymbolsCurrCtx = pCurrContext->totalCount();

 UInt16 rescaledCode =

 ((((UInt32)(code - low) + 1) * (UInt32) cSymbolsCurrCtx - 1) /

 ((UInt32)(high - low) + 1));

 pCurrContext->lookupEntryByCumCount((Int32)rescaledCode,

 iCurrEntry);

 pCurrContext->getEntry(iCurrEntry, pCntxEntry);

 newSymbolRange.high_count = pCntxEntry->cCumCount +

 pCntxEntry.cCount;

 newSymbolRange.low_count = pCntxEntry->cCumCount;

 JT File Format Reference Version 9.5 Rev-A Page 318

 newSymbolRange.scale = cSymbolsCurrCtx;

 removeSymbolFromStream(newSymbolRange, pDriver);

 pDriver->addOutputSymbol(pCntxEntry);

 iCurrContext = pCntxEntry->iNextCntx;

 }

 return True;

}

Bool ArithmeticCodec::removeSymbolFromStream(

 ArithmeticProbabilityRange& sym,

 CodecDriver* pDriver)

{

 // First, the range is expanded to account for the symbol removal.

 UInt32 range = UInt32(high - low) + 1;

 high = low + (UInt32)((range * sym.high_count) / sym.scale - 1);

 low = low + (UInt32)((range * sym.low_count) / sym.scale);

 //Next, any possible bits are shipped out.

 for (;;)

 {

 // If the most signif digits match, the bits will be shifted out.

 if((~(high^low)) & 0x8000)

 {

 }

 else if((low & 0x4000) && !(high & 0x4000))

 {

 // Underflow is threatening, shift out 2nd most signif digit.

 code ^= 0x4000;

 low &= 0x3fff;

 high |= 0x4000;

 }

 else

 {

 // Nothing can be shifted out, so return.

 return True;

 }

 low <<= 1;

 high <<= 1;

 high |= 1;

 code <<= 1;

 if(nBits == 0)

 {

 // The returned nBits here will always be 32

 pDriver->getNextCodeText(bitBuffer, nBits);

 }

 code |= (UInt16)(bitBuffer >> 31);

 bitBuffer <<= 1;

 nBits--;

 }

}

4 Deering Normal decoding classes

The following sub-sections contain a sample implementation of the decoding portion of the Deering Normal CODEC

algorithm. A summary technical explanation of the Deering Normal CODEC can be found in 8.2.4 Deering Normal

CODEC.

 JT File Format Reference Version 9.5 Rev-A Page 319

4.1 DeeringNormalLookupTable class

The DeeringNormalLookupTable class represents a lookup table used by the DeeringNormalCodec class for faster

conversion from the compressed normal representation to the standard 3-float representation. The tables hold precomputed

results of the trig functions called during conversion.

class DeeringNormalLookupTable

{

public:

 DeeringNormalLookupTable();

 // Lookup and return the result of converting iTheta and iPsi to

 // real angles and taking the sine and cosine of both. This gives

 // a slight speedup for normal decoding.

 Bool lookupThetaPsi(Int32 iTheta,

 Int32 iPsi,

 UInt32 numberBits,

 Float32 outCosTheta,

 Float32 outSinTheta,

 Float32 outCosPsi,

 Float32 outSinPsi);

 UInt32 numBitsPerAngle() {return nBits;}

private:

 UInt32 nBits;

 Vector vCosTheta;

 Vector vSinTheta;

 Vector vCosPsi;

 Vector vSinPsi;

};

DeeringNormalLookupTable::DeeringNormalLookupTable()

{

 UInt32 numberbits = 8;

 nBits = min(numberbits, (UInt32)31);

 Int32 tableSize = (1 << nBits);

 vCosTheta.setLength(tableSize+1);

 vSinTheta.setLength(tableSize+1);

 vCosPsi.setLength(tableSize+1);

 vSinPsi.setLength(tableSize+1);

 Float32 fPsiMax = 0.615479709;

 Float32 fTableSize = (Float32)tableSize;

 for(Int32 ii = 0; ii <= tableSize; ii++)

 {

 Float32 fTheta =

 asin(tan(fPsiMax * Float32(tableSize - ii) / fTableSize));

 Float32 fPsi = fPsiMax * (((Float32)ii) / fTableSize);

 vCosTheta[ii] = cos(fTheta);

 vSinTheta[ii] = sin(fTheta);

 vCosPsi[ii] = cos(fPsi);

 vSinPsi[ii] = sin(fPsi);

 }

}

Bool DeeringNormalLookupTable::lookupThetaPsi(Int32 iTheta,

 Int32 iPsi,

 UInt32 numberBits,

 Float32 outCosTheta,

 Float32 outSinTheta,

 Float32 outCosPsi,

 Float32 outSinPsi)

{

 Int32 offset = nBits - numberBits;

 JT File Format Reference Version 9.5 Rev-A Page 320

 outCosTheta = vCosTheta[iTheta << offset];

 outSinTheta = vSinTheta[iTheta << offset];

 outCosPsi = vCosPsi[iPsi << offset];

 outSinPsi = vSinPsi[iPsi << offset];

 return True;

}

4.2 DeeringNormalCodec class

The DeeringNormalCodec class converts a normal vector to and from the standard 3-float representation and a lower-

precision representation. The precision can be adjusted using the nbits parameter.

class DeeringNormalCodec

{

public:

 DeeringNormalCodec(Int32 numberbits = 6)

 {

 numBits = numberbits;

 }

 // Converts a compressed normal into a vector.

 Bool convertCodeToVec(UInt32 code, Vector& outVec);

 // Converts a compressed normal into a vector.

 Bool convertCodeToVec(UInt32 iSextant,

 UInt32 iOctant,

 UInt32 iTheta,

 UInt32 iPsi,

 Vector& outVec);

 // Separates an encoded normal into its 4 pieces

 Bool unpackCode(UInt32 code,

 UInt32& outSextant,

 UInt32& outOctant,

 UInt32& outTheta,

 UInt32& outPsi);

 private:

 Int32 numBits;

}

Bool DeeringNormalCodec::convertCodeToVec(UInt32 code, Vector& outVec)

{

 UInt32 s=0, o=0, t=0, p=0;

 unpackCode(code, s, o, t, p);

 convertCodeToVec(s, o, t, p, outVec);

 return True;

}

Bool DeeringNormalCode::convertCodeToVec(UInt32 iSextant,

 UInt32 iOctant,

 UInt32 iTheta,

 UInt32 iPsi,

 Vector& outVec)

{

 // Size of code = 6+2*numBits, and max code size is 32 bits,

 // so numBits must be <= 13.

 // Code layout: [sextant:3][octant:3][theta:numBits][psi:numBits]

 outVec.setValues(0,0,0);

 Float32 fPsiMax = 0.615479709;

 UInt32 iBitRange = 1<<numBits;

 Float32 fBitRange = Float32(iBitRange);

 // For sextants 1, 3, and 5, iTheta needs to be incremented

 JT File Format Reference Version 9.5 Rev-A Page 321

 iTheta += (iSextant & 1);

 Float32 fCosTheta, fSinTheta, fCosPsi, fSinPsi;

 DeeringNormalLookupTable LookupTable;

 if((LookupTable.numBitsPerAngle() < (UInt32)numBits) ||

 !LookupTable.lookupThetaPsi(iTheta, iPsi, numBits,

 fCosTheta, fSinTheta,

 fCosPsi, fSinPsi))

 {

 Float32 fTheta = asin(tan(fPsiMax * Float32(iBitRange - iTheta) /

 fBitRange));

 Float32 fPsi = fPsiMax * (iPsi / fBitRange);

 fCosTheta = cos(fTheta);

 fSinTheta = sin(fTheta);

 fCosPsi = cos(fPsi);

 fSinPsi = sin(fPsi);

 }

 Float32 x,y,z;

 Float32 xx = x = fCosTheta * fCosPsi;

 Float32 yy = y = fSinPsi;

 Float32 zz = z = fSinTheta * fCosPsi;

 //Change coordinates based on the sextant

 switch(iSextant)

 {

 case 0: // No op

 break;

 case 1: // Mirror about x=z plane

 z = xx;

 x = zz;

 break;

 case 2: // Rotate CW

 z = xx;

 x = yy;

 y = zz;

 break;

 case 3: // Mirror about x=y plane

 y = xx;

 x = yy;

 break;

 case 4: // Rotate CCW

 y = xx;

 z = yy;

 x = zz;

 break;

 case 5: // Mirror about y=z plane

 z = yy;

 y = zz;

 break;

 };

 //Change some more based on the octant

 //if first bit is 0, negate x component

 if(!(iOctant & 0x4))

 x = -x;

 //if second bit is 0, negate y component

 if(!(iOctant & 0x2))

 y = -y;

 //if third bit is 0, negate z component

 JT File Format Reference Version 9.5 Rev-A Page 322

 if(!(iOctant & 0x1))

 z = -z;

 outVec.setValues(x,y,z);

 return True;

}

Bool DeeringNormalCodec::unpackCode(UInt32 code,

 UInt32& outSextant,

 UInt32& outOctant,

 UInt32& outTheta,

 UInt32& outPsi)

{

 UInt32 mask = (1<<numBits)-1;

 outSextant = (code >> (numBits+numBits+3)) & 0x7;

 outOctant = (code >> (numBits+numBits)) & 0x7;

 outTheta = (code >> (numBits)) & mask;

 outPsi = (code) & mask;

 return True;

}

 JT File Format Reference Version 9.5 Rev-A Page 323

Appendix D: Hashing – An Implementation

This Appendix provides a sample C++ implementation for the creation of hash values (as detailed in 8.2 Encoding

Algorithms) used in the JT format.

unsigned int hash32(const unsigned int *pWords,

 int nWords,

 unsigned int uSeedHashValue)

{ return hash2(pWords, nWords, uSeedHashValue); }

unsigned int jthash16(const unsigned short *pBytes,

 int nShort,

 unsigned int uSeedHashValue)

{ return hash3(pBytes, nShort, uSeedHashValue); }

//--

// mix -- mix 3 32-bit values reversibly.

// For every delta with one or two bit set, and the deltas of all three

// high bits or all three low bits, whether the original value of a,b,c

// is almost all zero or is uniformly distributed,

// * If mix() is run forward or backward, at least 32 bits in a,b,c

// have at least 1/4 probability of changing.

// * If mix() is run forward, every bit of c will change between 1/3 and

// 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)

// mix() was built out of 36 single-cycle latency instructions in a

// structure that could supported 2x parallelism, like so:

// a -= b;

// a -= c; x = (c>>13);

// b -= c; a ^= x;

// b -= a; x = (a<<8);

// c -= a; b ^= x;

// c -= b; x = (b>>13);

// ...

// Unfortunately, superscalar Pentiums and Sparcs can't take advantage

// of that parallelism. They've also turned some of those single-cycle

// latency instructions into multi-cycle latency instructions. Still,

// this is the fastest good hash I could find. There were about 2^^68

// to choose from. I only looked at a billion or so.

--

#define mix(a,b,c) \

{ \

 a -= b; a -= c; a ^= (c>>13); \

 b -= c; b -= a; b ^= (a<<8); \

 c -= a; c -= b; c ^= (b>>13); \

 a -= b; a -= c; a ^= (c>>12); \

 b -= c; b -= a; b ^= (a<<16); \

 c -= a; c -= b; c ^= (b>>5); \

 a -= b; a -= c; a ^= (c>>3); \

 b -= c; b -= a; b ^= (a<<10); \

 c -= a; c -= b; c ^= (b>>15); \

}

--

// hash() -- hash a variable-length key into a 32-bit value

// k : the key (the unaligned variable-length array of bytes)

// len : the length of the key, counting by bytes

// level : can be any 4-byte value

// Returns a 32-bit value. Every bit of the key affects every bit of

// the return value. Every 1-bit and 2-bit delta achieves avalanche.

// About 36+6len instructions.

// The best hash table sizes are powers of 2. There is no need to do

// mod a prime (mod is sooo slow!). If you need less than 32 bits,

// use a bitmask. For example, if you need only 10 bits, do

// h = (h & hashmask(10));

// In which case, the hash table should have hashsize(10) elements.

//

 JT File Format Reference Version 9.5 Rev-A Page 324

// If you are hashing n strings (JtUInt8 **)k, do it like this:

// for (i=0, h=0; i<n; ++i) h = hash(k[i], len[i], h);

//

// By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this

// code any way you wish, private, educational, or commercial. It's free.

//

// See http://burtleburtle.net/bob/ // 2010/02/12

// See http://burtleburtle.net/bob/hash/doobs.html // 2010/02/12

//

// Use for hash table lookup, or anything where one collision in 2^32 is

// acceptable. Do NOT use for cryptographic purposes.

//--

//--

// This works on all machines. hash2() is identical to hash() on

// little-endian machines, except that the length has to be measured

// in ub4s instead of bytes. It is much faster than hash(). It

// requires

// -- that the key be an array of UInt32's, and

// -- that all your machines have the same endianness, and

// -- that the length be the number of UInt32's in the key

// --

unsigned int hash(const usigned char *k, // key

 unsigned int length, // length of the key

 unsigned int initval) // prev hash, or an arbitrary value

{

 register unsigned int a,b,c,len;

 /* Set up the internal state */

 len = length;

 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */

 c = initval; /* the previous hash value */

 /*-- handle most of the key */

 while (len >= 12) {

 a += (k[0] +((UInt32)k[1]<<8) +((UInt32)k[2]<<16) +((UInt32)k[3]<<24));

 b += (k[4] +((UInt32)k[5]<<8) +((UInt32)k[6]<<16) +((UInt32)k[7]<<24));

 c += (k[8] +((UInt32)k[9]<<8) +((UInt32)k[10]<<16)+((UInt32)k[11]<<24));

 mix(a,b,c);

 k += 12; len -= 12;

 }

 /*------------------------------------- handle the last 11 bytes */

 c += length;

 switch(len) { /* all the case statements fall through */

 case 11: c+=((UInt32)k[10]<<24);

 case 10: c+=((UInt32)k[9]<<16);

 case 9 : c+=((UInt32)k[8]<<8);

 /* the first byte of c is reserved for the length */

 case 8 : b+=((UInt32)k[7]<<24);

 case 7 : b+=((UInt32)k[6]<<16);

 case 6 : b+=((UInt32)k[5]<<8);

 case 5 : b+=k[4];

 case 4 : a+=((UInt32)k[3]<<24);

 case 3 : a+=((UInt32)k[2]<<16);

 case 2 : a+=((UInt32)k[1]<<8);

 case 1 : a+=k[0];

 /* case 0: nothing left to add */

 }

 mix(a,b,c);

 /*-- report the result */

 return c;

}

unsigned int hash3(const unsigned short *k, /* the key */

 unsigned int length, /* the length of the key */

 unsigned int initval) /* the previous hash, or an arbitrary value */

{

 unsigned int a,b,c,len;

 /* Set up the internal state */

 len = length;

 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */

 JT File Format Reference Version 9.5 Rev-A Page 325

 c = initval; /* the previous hash value */

 /*-- handle most of the key */

 while (len >= 6)

 {

 a += (k[0] + (UInt32(k[1]) << 16));

 b += (k[2] + (UInt32(k[3]) << 16));

 c += (k[4] + (UInt32(k[5]) << 16));

 mix(a,b,c);

 k += 6; len -= 6;

 }

 /*-------------------------------------- handle the last 2 uint32s */

 c += length;

 switch(len) /* all the case statements fall through */

 {

 case 5 : c+=(UInt32(k[4]) << 16);

 /* c is reserved for the length */

 case 4 : b+=(UInt32(k[3]) << 16);

 case 3 : b+=k[2];

 case 2 : a+=(UInt32(k[1]) << 16);

 case 1 : a+=k[0];

 /* case 0: nothing left to add */

 }

 mix(a,b,c);

 /*-- report the result */

 return c;

}

 JT File Format Reference Version 9.5 Rev-A Page 326

Appendix E: Polygon Mesh Topology Coder

The topology coding algorithm described here is used to code the dual of the desired mesh. Thus, for example, the reader

will need to take the dual of the decoded mesh in order to obtain the original primal mesh. Presented below are classes

suitable for representing the dual of a polygon mesh and the dual topology decoding algorithm.

At a high level, the topology coder works by traversing the dual mesh to be encoded one vertex and one face at a time. The

coder maintains a queue of faces to be processed; the initial queue is created using the valence of an arbitrary vertex of the

mesh followed by the degrees of the faces adjacent to that vertex, and adds the adjacent faces to the face queue. Each time it

visits a face, it encodes the degree of that face and emits any incident vertices that have not yet been visited. Each time the

coder visits a vertex, it encodes the valence of the vertex (usually 3 in the current case), and emits any incident faces that

have not yet been visited. It works its way through the mesh in this fashion until all vertices and faces have been encoded.

Thus, the primary output from the topology coder is a list of vertex valences and face degrees. These two fields plus two

more encoding so-called split faces, coupled with the exact coder implementation completely encode the mesh topology in a

very compact manner
1
.

In addition to these two basic fields are added a number of other fields that organize the dual vertices into vertex groups, and

also encode the vertex attributes (e.g. normals, colors, and texture coordinates) around each dual face's degree ring.

The topological coder can only encode closed, manifold meshes. It cannot encode boundaries; it can only encode edges with

exactly two incident faces. But, as we know, real-world data is chock full of meshes with boundaries. In order to encode

these types of meshes, it is necessary to add cover faces incident to all boundary loops whose sole job is to turn the mesh into

a closed mesh. It is the dual of this closed, manifold mesh that is actually encoded. Thus, most meshes encoded in JT files

contain a few cover faces. These faces may be of arbitrarily high degree, and they represent the only exceptions to the

general rule that the numbers in the dual vertex valence array are usually three. It is necessary to flag all such artificially

introduced cover faces so that they can be removed by the loader. These flags are encoded below in the Face Flags array.

Primal faces are flagged with zero, while cover faces are flagged with one.

Now, let us make the connection between topological vertices and how vertex attributes relate to them. Several faces may be

incident on the same topological mesh vertex. While this topological vertex has only a single 3D coordinate, it may have a

different set of vertex attributes for each incident face. Vertex attributes include color, normal, and texture coordinates. An

important observation in real-world data is that adjacent faces tend to share the same vertex attributes. Thus, a natural way to

encode which vertex attributes map to which faces within a given valence ring (the counter-clockwise ordered set of faces

incident on a given vertex) is by way of a bit vector. The bit vector begins at the first face the coder encounters that is

incident to the vertex, and proceeds counter clockwise around the vertex, allocating one bit per incident face. A value of 0 is

assigned to the bit if all vertex attributes for the face are the same as the face immediately clockwise. A value of 1 is

assigned if the vertex attributes for the face are different. Recall that these bits from the original primal mesh are encoded as

face attributes in the dual mesh.

Thus, at the end of the coding process, there will be one such bit vector per topological vertex in the mesh. These bit vectors

will be of disparate lengths because all vertex valences are not the same. Though there is no theoretical limit to the valence

of any given vertex, in practice, the vertex valences seldom rise above six, and only rarely rise into the dozens. As a matter

of practicality, then, we break this list of bit vectors into those of length 64 and smaller into one group, and all others into a

list of so-called “high-valence” bit vectors. The low-valence bit vectors are encoded into three fields of 30, 30, and 4 bits

respectively. The high-valence bit vectors are adjoined end-to-end into a single long bit vector, and encoded as a single array

of integers. As an additional optimization, the low-valence bit vectors are grouped into 8 “context groups” depending on the

valence of the vertex being coded. This is done in order to improve compression performance because the valence bit vectors

in each of the most common groups typically share similar statistics. Context group number 8 is the only one that encodes

valence rings up to valence 64. Again, recall that these attribute bits from the original primal mesh are encoded as face

attribute bits in the dual mesh.

1
 Similar methods of topology coding are described in [18] and US patent # 7,098,916. The topology coding algorithm

described herein differs from such methods in that while they utilize a queue of active vertices, the instant algorithm utilizes a

queue of active faces. Other differences include the tracking of face group numbers and per-vertex attributes such as

normals, colors, and texture coordinates.

 JT File Format Reference Version 9.5 Rev-A Page 327

1 DualVFMesh

The DualVFMesh (Dual Vertex-Facet Mesh) is a support class paired with the topology decoder itself, and represents a

closed two-manifold polygon mesh. The topology decoder reconstructs the encoded dual mesh into a DualVFMesh, building

it one vertex and one facet at a time. When the decoder is finished, it will have visited each vertex and each face of the dual

mesh exactly once. DualVFMesh is not intended as a work horse in-memory storage container because its way of encoding

the topological connections between faces and vertices is memory-intensive.

class DualVFMesh

{

 public:

 // ========== Housekeeping Interface ==========

 DualVFMesh();

 DualVFMesh (const DualVFMesh &rhs);

 DualVFMesh &operator=(const DualVFMesh &rhs);

 // ========== Topology Interface ==========

 // Vtx creation

 bool isValidVtx (Int32 iVtx) const;

 bool newVtx (Int32 iVtx,

 Int32 iValence,

 UInt16 uFlags = 0);

 bool setVtxFlags(Int32 iVtx,

 UInt16 uFlags);

 bool setVtxGrp (Int32 iVtx,

 Int32 iVGrp);

 UInt16 vtxFlags (Int32 iVtx) const;

 Int32 vtxGrp (Int32 iVtx) const;

 // Face creation

 bool isValidFace (Int32 iFace) const;

 bool newFace (Int32 iFace,

 Int32 cDegree,

 Int32 cFaceAttrs = 0,

 UInt64 uFaceAttrMask = 0,

 UInt16 uFlags = 0);

 bool newFace (Int32 iFace,

 Int32 cDegree,

 Int32 cFaceAttrs,

 const BitVec *pvbFaceAttrMask,

 UInt16 uFlags);

 bool setFaceFlags (Int32 iFace,

 UInt16 uFlags);

 UInt16 faceFlags (Int32 iVtx) const;

 bool setFaceAttr (Int32 iFace,

 Int32 iAttrSlot,

 Int32 iFaceAttr);

 Int32 faceAttr (Int32 iFace,

 Int32 iAttrSlot) const;

 // Topology connection

 bool setVtxFace(Int32 iVtx,

 Int32 iFaceSlot,

 Int32 iFace);

 bool setFaceVtx(Int32 iFace,

 Int32 iVtxSlot,

 Int32 iVtx);

 // Queries

 Int32 valence (Int32 iVtx) const

 { return _vVtxEnts[iVtx].cVal; }

 Int32 degree (Int32 iFace) const

 { return _vFaceEnts[iFace].cDeg; }

 Int32 face (Int32 iVtx,

 Int32 iFaceSlot) const

 { return _viVtxFaceIndices[(_vVtxEnts[iVtx]).iVFI + iFaceSlot]; }

 Int32 vtx (Int32 iFace,

 Int32 iVtxSlot) const

 JT File Format Reference Version 9.5 Rev-A Page 328

 { return _viFaceVtxIndices[_vFaceEnts[iFace].iFVI + iVtxSlot]; }

 Int32 numVts () const

 { return _vVtxEnts.length(); }

 Int32 numFaces () const

 { return _vFaceEnts.length(); }

 Int32 numAttrs () const

 { return _viFaceAttrIndices.length(); }

 Int32 numAttrs (Int32 iFace) const

 { return _vFaceEnts[iFace].cFaceAttrs; }

 UInt64 attrMask (Int32 iFace) const

 { return _vFaceEnts[iFace].u.uAttrMask; }

 const BitVec *attrMaskV (Int32 iFace) const

 { return _vFaceEnts[iFace].u.pvbAttrMask; }

 Int32 findVtxSlot (Int32 iFace,

 Int32 iTargVtx) const;

 Int32 findFaceSlot (Int32 iVtx,

 Int32 iTargFace) const;

 Int32 emptyFaceSlots (Int32 iFace) const

 { return _vFaceEnts[iFace].cEmptyDeg; }

 // ========== VFMesh Data Members ==========

 public:

 class VtxEnt {

 public:

 VtxEnt() : cVal(0), uFlags(0), iVGrp(-1), iVFI(-1) {}

 UInt16 cVal; // Vtx valence

 UInt16 uFlags; // User flags

 Int32 iVGrp; // Vtx group

 Int32 iVFI; // Idx into _viVtxFaceIndices of cVal incident faces

 };

 // Number of optimized mask bits.

 static const Int32 cMBits = 64;

 class FaceEnt {

 public:

 FaceEnt() : cDeg(0), uFlags(0), cEmptyDeg(0),

 cFaceAttrs(0), iFVI(-1), iFAI(-1) { u.uAttrMask = 0; }

 FaceEnt(const FaceEnt &rhs) : cDeg(rhs.cDeg), cEmptyDeg(rhs.cEmptyDeg),

 cFaceAttrs(rhs.cFaceAttrs), iFVI(rhs.iFVI),

 iFAI(rhs.iFAI)

 {

 if (cDeg <= cMBits)

 u.uAttrMask = rhs.u.uAttrMask;

 else

 JtWrapNew(u.pvbAttrMask, new BitVec(*rhs.u.pvbAttrMask));

 }

 ~FaceEnt() { if (cDeg > cMBits && u.pvbAttrMask) delete u.pvbAttrMask; }

 UInt16 cDeg; // Face degree

 UInt16 cEmptyDeg; // Empty degrees (opt for emptyFaceSlots())

 UInt16 cFaceAttrs; // Number of face attributes

 UInt16 uFlags; // User flags

 union {

 UInt64 uAttrMask; // Degree-ring attr mask as a UInt64

 BitVec *pvbAttrMask; // Degree-ring attr mask as a BitVec

 } u;

 Int32 iFVI; // Idx into _viFaceVtxIndices of cDeg incident vts

 Int32 iFAI; // Idx into _viFaceAttrIndices of cAttr attributes

 };

 protected:

 // Subscripted by atom number, the entry contains the vtx valence and

 // points to the location in _viVtxFaceIndices of valence consecutive

 // integers that in turn contain the indices of the incident faces

 // in _vFaceRecs to the vtx.

 JtVec<VtxEnt> _vVtxEnts;

 // Subscripted by unique vertex record number, the entry contains the

 // face degree and points to the location in _viFaceVtxIndices of

 // cDeg consecutive integers that in turn contain the indices of the

 // vertices indicent upon the face, in CCW order, in _vVtxRecs.

 JT File Format Reference Version 9.5 Rev-A Page 329

 JtVec<FaceEnt> _vFaceEnts;

 // Combined storage for all vtxs.

 JtVeci _viVtxFaceIndices;

 // Combined storage for all faces.

 JtVeci _viFaceVtxIndices;

 // Combined storage for all face attribute record identifiers

 JtVeci _viFaceAttrIndices;

};

bool

DualVFMesh::isValidVtx(Int32 iVtx) const

{

 bool bRet = JtFalse;

 if (iVtx >= 0 && iVtx < _vVtxEnts.length()) {

 const VtxEnt &rFE = _vVtxEnts[iVtx];

 bRet = (rFE.cVal != 0);

 }

 return bRet;

}

bool

DualVFMesh::newVtx(Int32 iVtx,

 Int32 iValence,

 UInt16 uFlags)

{

 VtxEnt &rFE = _vVtxEnts[iVtx];

 if (rFE.cVal != iValence) {

 rFE.cVal = iValence;

 rFE.uFlags = uFlags;

 rFE.iVFI = _viVtxFaceIndices.length();

 _viVtxFaceIndices.verify(rFE.iVFI + iValence - 1);

 for (Int32 i = rFE.iVFI ; i < rFE.iVFI + iValence ; i++)

 _viVtxFaceIndices[i] = -1;

 }

 return true;

}

bool

DualVFMesh::setVtxGrp(Int32 iVtx,

 Int32 iVGrp)

{

 VtxEnt &rFE = _vVtxEnts[iVtx];

 rFE.iVGrp = iVGrp;

 return true;

}

bool

DualVFMesh::setVtxFlags(Int32 iVtx,

 UInt16 uFlags)

{

 VtxEnt &rFE = _vVtxEnts[iVtx];

 rFE.uFlags = uFlags;

 return true;

}

Int32

DualVFMesh::vtxGrp (Int32 iVtx) const

{

 Int32 u = -1;

 if (iVtx >= 0 && iVtx < _vVtxEnts.length()) {

 const VtxEnt &rFE = _vVtxEnts[iVtx];

 u = rFE.iVGrp;

 }

 return u;

}

UInt16

DualVFMesh::vtxFlags (Int32 iVtx) const

 JT File Format Reference Version 9.5 Rev-A Page 330

{

 UInt16 u = 0;

 if (iVtx >= 0 && iVtx < _vVtxEnts.length()) {

 const VtxEnt &rFE = _vVtxEnts[iVtx];

 u = rFE.uFlags;

 }

 return u;

}

bool

DualVFMesh::isValidFace(Int32 iFace) const

{

 bool bRet = JtFalse;

 if (iFace >= 0 && iFace < _vFaceEnts.length()) {

 const FaceEnt &rVE = _vFaceEnts[iFace];

 bRet = (rVE.cDeg != 0);

 }

 return bRet;

}

bool

DualVFMesh::newFace(Int32 iFace,

 Int32 cDegree,

 Int32 cFaceAttrs,

 UInt64 uFaceAttrMask,

 UInt16 uFlags)

{

 FaceEnt &rVE = _vFaceEnts[iFace];

 if (rVE.cDeg != cDegree) {

 rVE.cDeg = cDegree;

 rVE.cEmptyDeg = cDegree;

 rVE.cFaceAttrs = cFaceAttrs;

 rVE.uFlags = uFlags;

 rVE.u.uAttrMask = uFaceAttrMask;

 rVE.iFVI = _viFaceVtxIndices.length();

 rVE.iFAI = _viFaceAttrIndices.length();

 _viFaceVtxIndices.verify(rVE.iFVI + cDegree - 1);

 if (cFaceAttrs > 0)

 _viFaceAttrIndices.verify(rVE.iFAI + cFaceAttrs - 1);

 for (Int32 i = rVE.iFVI ; i < rVE.iFVI + cDegree ; i++)

 _viFaceVtxIndices[i] = -1;

 for (Int32 i = rVE.iFAI ; i < rVE.iFAI + cFaceAttrs ; i++)

 _viFaceAttrIndices[i] = -1;

 }

 return true;

}

bool

DualVFMesh::newFace(Int32 iFace,

 Int32 cDegree,

 Int32 cFaceAttrs,

 const BitVec *pvbFaceAttrMask,

 UInt16 uFlags)

{

 FaceEnt &rVE = _vFaceEnts[iFace];

 if (rVE.cDeg != cDegree) {

 rVE.cDeg = cDegree;

 rVE.cEmptyDeg = cDegree;

 rVE.cFaceAttrs = cFaceAttrs;

 rVE.uFlags = uFlags;

 rVE.u.pvbAttrMask = new BitVec(*pvbFaceAttrMask);

 rVE.iFVI = _viFaceVtxIndices.length();

 rVE.iFAI = _viFaceAttrIndices.length();

 _viFaceVtxIndices.verify(rVE.iFVI + cDegree - 1);

 if (cFaceAttrs > 0)

 _viFaceAttrIndices.verify(rVE.iFAI + cFaceAttrs - 1);

 for (Int32 i = rVE.iFVI ; i < rVE.iFVI + cDegree ; i++)

 _viFaceVtxIndices[i] = -1;

 for (Int32 i = rVE.iFAI ; i < rVE.iFAI + cFaceAttrs ; i++)

 _viFaceAttrIndices[i] = -1;

 JT File Format Reference Version 9.5 Rev-A Page 331

 }

 return true;

}

bool

DualVFMesh::setFaceFlags(Int32 iFace,

 UInt16 uFlags)

{

 FaceEnt &rVE = _vFaceEnts[iFace];

 rVE.uFlags = uFlags;

 return true;

}

UInt16

DualVFMesh::faceFlags (Int32 iFace) const

{

 UInt16 u = 0;

 if (iFace >= 0 && iFace < _vFaceEnts.length()) {

 const FaceEnt &rVE = _vFaceEnts[iFace];

 u = rVE.uFlags;

 }

 return u;

}

bool

DualVFMesh::setFaceAttr(Int32 iFace,

 Int32 iAttrSlot,

 Int32 iFaceAttr)

{

 FaceEnt &rVE = _vFaceEnts[iFace];

 Int32 *paiFAI = _viFaceAttrIndices.ptr();

 paiFAI[rVE.iFAI + iAttrSlot] = iFaceAttr;

 return true;

}

Int32

DualVFMesh::faceAttr(Int32 iFace,

 Int32 iAttrSlot) const

{

 Int32 u = 0;

 if (iFace >= 0 && iFace < _vFaceEnts.length()) {

 const FaceEnt &rVE = _vFaceEnts[iFace];

 if (iAttrSlot >= 0 && iAttrSlot < rVE.cDeg) {

 const Int32 *paiFAI = _viFaceAttrIndices.ptr();

 u = paiFAI[rVE.iFAI + iAttrSlot];

 }

 }

 return u;

}

// Attaches VF face iFace to VF vertex iVtx in the vertex's

// face slot iFaceSlot

bool

DualVFMesh::setVtxFace(Int32 iVtx,

 Int32 iFaceSlot,

 Int32 iFace)

{

 VtxEnt &rFE = _vVtxEnts[iVtx];

 _viVtxFaceIndices[rFE.iVFI + iFaceSlot] = iFace;

 return true;

}

// Attaches VF vertex iVtx to VF face iFace in the face's

// vertex slot iVtxSlot

bool

DualVFMesh::setFaceVtx(Int32 iFace,

 Int32 iVtxSlot,

 Int32 iVtx)

{

 FaceEnt &rVE = _vFaceEnts[iFace];

 Int32 *paiFVI = _viFaceVtxIndices.ptr();

 JT File Format Reference Version 9.5 Rev-A Page 332

 rVE.cEmptyDeg -= (paiFVI[rVE.iFVI + iVtxSlot] != iVtx);

 paiFVI[rVE.iFVI + iVtxSlot] = iVtx;

 return true;

}

// Searches the list of incident vts to face iFace for

// iTargVtx and returns the vtx slot at which it is found

// or -1 if iTargVtx is not found.

Int32

DualVFMesh::findVtxSlot(Int32 iFace,

 Int32 iTargVtx) const

{

 const FaceEnt &rVE = _vFaceEnts[iFace];

 const Int32 *const pFaceVtxIndices = _viFaceVtxIndices.ptr() + rVE.iFVI;

 Int32 cDeg = rVE.cDeg;

 Int32 iSlot = -1;

 for (Int32 iVtxSlot = 0 ; iVtxSlot < cDeg ; iVtxSlot++) {

 if (pFaceVtxIndices[iVtxSlot] == iTargVtx) {

 iSlot = iVtxSlot;

 break;

 }

 }

 return iSlot;

}

// Searches the list of incident faces to vertex iVtx for

// iTargFace and returns the face slot at which it is found

// or -1 if iTargFace is not found.

Int32

DualVFMesh::findFaceSlot (Int32 iVtx,

 Int32 iTargFace) const

{

 const VtxEnt &rFE = _vVtxEnts[iVtx];

 const Int32 *const pVtxFaceIndices = _viVtxFaceIndices.ptr() + rFE.iVFI;

 for (Int32 iFaceSlot = 0 ; iFaceSlot < rFE.cVal ; iFaceSlot++) {

 if (pVtxFaceIndices[iFaceSlot] == iTargFace) {

 return iFaceSlot;

 }

 }

 return -1;

}

2 Topology Decoder

Partial implementations of three classes are given here for MeshCoderDriver, MeshCodec, and MeshDecoder. MeshCodec

contains the abstract implementation of the topology coder. MeshDecoder implements the functionality needed to decode a

mesh from the input data read from a JT file (see 7.2.2.1.2.5 Topologically Compressed Rep Data). MeshCoderDriver

manages the input data, the output VFMesh, and the MeshDecoder itself, providing a simple three-step API.

2.1 MeshCoderDriver class

// This class serves as a coordinating driver for mesh coding and decoding.

class MeshCoderDriver

{

 public:

 MeshCoderDriver ();

 // ========== Operations Interface ==========

 void setInputData(const Veci vviOutValSyms[/*8*/],

 const Veci &viOutDegSyms,

 const Veci &viOutFGrpSyms,

 const Vecus &vuOutFaceFlags,

 const Veclu vvuOutAttrMasks[/*8*/],

 const Vecu &vuOutAttrMasksLrg,

 const Veci &viOutSplitVtxSyms,

 const Veci &viOutSplitPosSyms)

 { /* Copy into 22 fields below */ }

 void decode();

 VFMesh *vfm() const { return _pOutVFM; }

 JT File Format Reference Version 9.5 Rev-A Page 333

 // ========== Utility Methods ==========

 Int32 _nextDegSymbol (Int32 iCCntx);

 Int32 _nextValSymbol ();

 Int32 _nextFGrpSymbol ();

 UInt16 _nextVtxFlagSymbol();

 UInt64 _nextAttrMaskSymbol(Int32 iCCntx); // <= 64-bit attrmask

 void _nextAttrMaskSymbol(BitVec *iopvbAttrMask,

 Int32 cDegree); // > 64 bit attrmask

 Int32 _nextSplitFaceSymbol();

 Int32 _nextSplitPosSymbol();

 Int32 _faceCntxt(Int32 iVtx, JtDualVFMesh *pVFM);

 // ========== Member Data ==========

 protected:

 SharedPtr<MeshCodec> _pMC; // The mesh coder or decoder being used

 SharedPtr<JtDualVFMesh> _pOutVFM; // Back-end VFMesh built by decoder

 SharedPtr<MeshDecoder> _pMeshDecoder;

 // Coding symbols generated by encoding operation, auxiliary data such as

 // offsets, etc.

 Veci _vviOutDegSyms[8]; // Face degree + SPLIT symbols for multiple contexts

 Veci _viOutValSyms; // Vtx valence symbols

 Veci _viOutVGrpSyms; // Vtx group of each encoded vtx

 Vecus _vuOutVtxFlags; // Vtx flags; parallel to _viOutValSyms.

 Veclu _vvuOutAttrMasks[8];// Attribute bitmasks per face for multiple contexts.

 // One per non-split entry in _viOutValSyms.

 Vecu _vuOutAttrMasksLrg; // > 64-bit attrmasks

 Veci _viOutSplitFaceSyms;// Split face offsets

 Veci _viOutSplitPosSyms; // Split face vtx slots

 // The next symbol to be consumed by _next*Symbol()

 Int32 _iValReadPos[8];

 Int32 _iDegReadPos;

 Int32 _iVGrpReadPos;

 Int32 _iFFlagReadPos;

 Int32 _iAttrMaskReadPos[8];

 Int32 _iAttrMaskLrgReadPos;

 Int32 _iSplitFaceReadPos;

 Int32 _iSplitPosReadPos;

};

void MeshCoderDriver::decode()

{

 // Allocate a coder

 if (!_pMeshDecoder) {

 _pMeshDecoder = new MeshDecoder(this);

 }

 _pMC = _pMeshDecoder;

 _pMC->setTopoDualMeshCoder(this);

 // Reset the symbol counters

 for (Int32 i = 0 ; i < 8 ; i++) {

 _iValReadPos[i] = 0;

 _iAttrMaskReadPos[i] = 0;

 }

 _iDegReadPos = 0;

 _iVGrpReadPos = 0;

 _iFFlagReadPos = 0;

 _iAttrMaskLrgReadPos = 0;

 _iSplitFaceReadPos = 0;

 _iSplitPosReadPos = 0;

 // Run the decoder

 _pMC->run();

 // Assert that ALL symbols have been consumed

 for (Int32 i = 0 ; i < 8 ; i++) {

 Assert(_iValReadPos[i] == _vviOutDegSyms[i].length());

 Assert(_iAttrMaskReadPos[i] == _vvuOutAttrMasks[i].length());

 }

 JT File Format Reference Version 9.5 Rev-A Page 334

 Assert(_iDegReadPos == _viOutValSyms.length());

 Assert(_iVGrpReadPos == _viOutVGrpSyms.length());

 Assert(_iFFlagReadPos == _vuOutVtxFlags.length());

 Assert(_iAttrMaskLrgReadPos == _vuOutAttrMasksLrg.length());

 Assert(_iSplitFaceReadPos == _viOutSplitFaceSyms.length());

 Assert(_iSplitPosReadPos == _viOutSplitPosSyms.length());

 // Set output VFMesh

 _pOutVFM = _pMC->vfm();

}

Int32 MeshCoderDriver::_nextDegSymbol (Int32 iCCntx)

{

 Int32 eSym = -1;

 if (_iValReadPos[iCCntx] < _vviOutDegSyms[iCCntx].length())

 eSym = _vviOutDegSyms[iCCntx].value(_iValReadPos[iCCntx]++);

 return eSym;

}

Int32

MeshCoderDriver::_nextValSymbol ()

{

 Int32 eSym = -1;

 if (_iDegReadPos < _viOutValSyms.length())

 eSym = _viOutValSyms.value(_iDegReadPos++);

 return eSym;

}

Int32 MeshCoderDriver::_nextFGrpSymbol()

{

 Int32 eSym = -1;

 if (_iVGrpReadPos < _viOutVGrpSyms.length())

 eSym = _viOutVGrpSyms.value(_iVGrpReadPos++);

 return eSym;

}

UInt16 MeshCoderDriver::_nextVtxFlagSymbol ()

{

 UInt16 eSym = 0;

 if (_iFFlagReadPos < _vuOutVtxFlags.length())

 eSym = _vuOutVtxFlags.value(_iFFlagReadPos++);

 return eSym;

}

UInt64 MeshCoderDriver::_nextAttrMaskSymbol (Int32 iCCntx)

{

 UInt64 eSym = 0;

 if (_iAttrMaskReadPos[iCCntx] < _vvuOutAttrMasks[iCCntx].length())

 eSym = _vvuOutAttrMasks[iCCntx].value(_iAttrMaskReadPos[iCCntx]++);

 return eSym;

}

void MeshCoderDriver::_nextAttrMaskSymbol(BitVec *iopvbAttrMask, Int32 cDegree)

{

 if (_iAttrMaskLrgReadPos < _vuOutAttrMasksLrg.length()) {

 iopvbAttrMask->setLength(cDegree);

 UInt32 *pu = iopvbAttrMask->ptr();

 Int32 nWords = (cDegree + BitVec::cWordBits - 1) >> BitVec::cBitsLog2;

 memcpy(pu, &_vuOutAttrMasksLrg.value(_iAttrMaskLrgReadPos), nWords * sizeof(UInt32));

 _iAttrMaskLrgReadPos += nWords;

 }

 else {

 iopvbAttrMask->setLength(0);

 }

}

Int32 MeshCoderDriver::_nextSplitFaceSymbol ()

{

 Int32 eSym = -1;

 if (_iSplitFaceReadPos < _viOutSplitFaceSyms.length())

 eSym = _viOutSplitFaceSyms.value(_iSplitFaceReadPos++);

 JT File Format Reference Version 9.5 Rev-A Page 335

 return eSym;

}

Int32 MeshCoderDriver::_nextSplitPosSymbol ()

{

 Int32 eSym = -1;

 if (_iSplitPosReadPos < _viOutSplitPosSyms.length())

 eSym = _viOutSplitPosSyms.value(_iSplitPosReadPos++);

 return eSym;

}

// Computes a "compression context" from 0 to 7 inclusive for

// faces on vertex iVtx. The context is based on the vertex's

// valence, and the total _known_ degree of already-coded

// faces on the vertex at the time of the call.

Int32 MeshCoderDriver::_faceCntxt(JtInt32 iVtx, JtDualVFMesh *pVFM)

{

 // Here, we are going to gather data to be used to determine a

 // compression contest for the face degree.

 JtInt32 cVal = pVFM->valence(iVtx);

 JtInt32 nKnownFaces = 0;

 JtInt32 cKnownTotDeg = 0;

 for (JtInt32 i = 0 ; i < cVal ; i++) {

 JtInt32 iTmpFace = pVFM->face(iVtx, i);

 if (!pVFM->isValidFace(iTmpFace))

 continue;

 nKnownFaces++;

 cKnownTotDeg += pVFM->degree(iTmpFace);

 }

 JtInt32 iCCntxt = 0;

 if (cVal == 3) {

 // Regular tristrip-like meshes tend to have degree 6 faces

 iCCntxt = (cKnownTotDeg < nKnownFaces * 6) ? 0 :

 (cKnownTotDeg == nKnownFaces * 6) ? 1 : 2;

 }

 else if (cVal == 4) {

 // Regular quadstrip-like meshes tend to have degree 4 faces

 iCCntxt = (cKnownTotDeg < nKnownFaces * 4) ? 3 :

 (cKnownTotDeg == nKnownFaces * 4) ? 4 : 5;

 }

 else if (cVal == 5)

 // Pentagons are all lumped into context 6

 iCCntxt = 6;

 else

 // All other polygons are lumped into context 7

 iCCntxt = 7;

 return iCCntxt;

}

2.2 MeshCodec class

// This class serves as the abstract base class from which two concrete classes

// are derived to implement the core operations for a polygonal

// mesh coder or decoder. An instance of this object is used by the

// MeshCoderDriver to encode and decode polygonal meshes.

//

// This class makes extensive use of DualVFMesh objects as the primary source and

// destination mesh topology storage data structures. This mediating data

// structure is necessary because the mesh coding scheme is deeply cooperative

// with and dependent upon such a vertex-facet data structure. Please refer to

// DualVFMesh for more information.

class MeshCodec {

 public:

 // ========== Housekeeping Interface ==========

 MeshCodec (MeshCoderDriver *pTMC = NULL);

 protected:

 virtual ~MeshCodec() {}

 public:

 JT File Format Reference Version 9.5 Rev-A Page 336

 // ========== Setup and Apply Interface ==========

 void setMeshCoderDriver(MeshCoderDriver *pTMC) { _pTMC = pTMC; }

 JtDualVFMesh *vfm() const { return _pDstVFM; }

 void run();

 // ========== Generic encode/decode Driver Chain ==========

 void clear();

 void runComponent(bool &obFoundComponent);

 void initNewComponent(bool &obFoundComponent);

 void completeV(Int32 iFace);

 Int32 activateV(Int32 iVtx, Int32 iVSlot);

 Int32 activateF(Int32 iFace, Int32 iFSlot);

 void completeF(Int32 iVtx, Int32 jFSlot);

 void addVtxToFace (Int32 iVtx, Int32 iVSlot,

 Int32 iFace, Int32 iFSlot);

 // Active face list management

 void addActiveFace(Int32 iFace);

 Int32 nextActiveFace();

 void removeActiveFace(Int32 iFace);

 Int32 activeFaceOffset(Int32 iFace) const;

 private:

 // ========== Polymorphic I/O Interface ==========

 virtual Int32 ioVtxInit () = 0;

 virtual Int32 ioVtx (Int32 iFace, Int32 jFSlot) = 0;

 virtual Int32 ioFace (Int32 iVtx, Int32 iVSlot) = 0;

 virtual Int32 ioSplitFace (Int32 iVtx, Int32 iVSlot) = 0;

 virtual Int32 ioSplitPos (Int32 iVtx, Int32 iVSlot) = 0;

 // ========== Member Data ==========

 protected:

 MeshCoderDriver *_pTMC; // TopoDualMeshCoder this codec is attached to

 SharedPtr<JtDualVFMesh> _pSrcVFM; // Input VFMesh

 SharedPtr<JtDualVFMesh> _pDstVFM; // Output VFMesh

 Veci _viActiveFaces; // Stack of incomplete "active faces"

 BitVec _vbRemovedActiveFaces; // Helper bitvec parallel to above

 // Used by decoder to assign running attr indices

 Int32 _iFaceAttrCtr;

};

// Runs the mesh encoder/decoder machine.

// If decoding is being performed, it consumes the mesh

// coding symbols from pre-filled member variables to produce

// the output VFMesh _pDstVFM.

void MeshCodec::run()

{

 // Assert state is consistent and ready to co/dec

 if (!_pDstVFM)

 _pDstVFM = new JtDualVFMesh();

 Assert(_pDstVFM);

 _pDstVFM->clear();

 clear();

 // Co/dec connected mesh components one at a time

 bool bFoundComponent = JtTrue;

 while (bFoundComponent) {

 runComponent(bFoundComponent);

 }

}

void MeshCodec::clear()

{

 // Setup

 _viActiveFaces.setLength(0);

 _vbRemovedActiveFaces.setLength(0);

 _iFaceAttrCtr = 0;

}

// Decodes one "connected component" (contiguous group of polygons) into

 JT File Format Reference Version 9.5 Rev-A Page 337

// _pDstVFM. Because the polygonal model may be formed of multiple

// disconnected mesh components, it may be necessary for run() to call this

// method multiple times. This method returns obFoundComponent = True

// if it actually encoded a new mesh component, and obFoundComponent = False

// if it did not.

void MeshCodec::runComponent(bool &obFoundComponent)

{

 Int32 iFace;

 initNewComponent(obFoundComponent);

 if (!obFoundComponent)

 return;

 while ((iFace = nextActiveFace()) != -1) {

 completeF(iFace);

 removeActiveFace(iFace);

 }

}

// Locates an unencoded vertex and begins the encoding

// process for the newly-found mesh component.

void MeshCodec::initNewComponent(bool &obFoundComponent)

{

 obFoundComponent = JtTrue;

 // Call ioVtxInit() to start us off with the seed face

 // from a new "connected component" of polygons.

 Int32 iVtx, i;

 if ((iVtx = ioVtxInit()) == -1) {

 obFoundComponent = JtFalse; // All vtxs are processed

 return;

 }

 Int32 cVal = _pDstVFM->valence(iVtx);

 for (i = 0 ; i < cVal ; i++)

 activateF(iVtx, i); // Process all faces

}

// Completes the VFMesh face iFace on _pDstVFM by calling activateV() and

// completeV() for each as-yet inactive incident vertexes in the face's

// degree ring.

void MeshCodec::completeF(Int32 iFace)

{

 // While there is an empty vtx slot on the face

 Int32 jVtxSlot, iVtx;

 Int32 iVSlot = 0;

 while ((jVtxSlot = _pDstVFM->findVtxSlot(iFace, -1)) != -1) {

 // Create and return a vtx iVtx, attaching it to iFace at vtx

 // slot jVtxSlot.

 iVtx = activateV(iFace, jVtxSlot);

 // Assert FV consistency

 Assert(_pDstVFM->vtx (iFace, jVtxSlot) == iVtx &&

 _pDstVFM->face(iVtx, iVSlot) == iFace);

 // Process the faces of iVtx starting from face slot

 // jVtxSlot where iVtx is incident on iFace.

 completeV(iVtx, jVtxSlot);

 // Invariant "VF": vtx(iVtx).face(iVSlot) == iFace &&

 // face(iFace).vtx(jVtxSlot) == iVtx

 }

}

// "Activates" the VFMesh face, on _pDstVFM, at face iFace vertex slot iVSlot

// by calling ioFace() to obtain a new vertex number and hooking it up to the

// topological structure. If the face is a SPLIT face, then call

// ioSplitFace() and ioSplitPos() to get the information necessary to connect

// to an already-active face. Note that we use the term "activate" here to

// mean "read" for mesh decoding.

Int32 MeshCodec::activateF(Int32 iVtx, Int32 iVSlot)

{

 Int32 jFSlot;

 // ioFace might return -2 as an error condition

 JT File Format Reference Version 9.5 Rev-A Page 338

 Int32 iFace = ioFace(iVtx, iVSlot);

 if (iFace >= 0) { // If a new active face

 if (!_pDstVFM->setVtxFace(iVtx, iVSlot, iFace) ||

 !_pDstVFM->setFaceVtx(iFace, 0, iVtx) ||

 !addActiveFace(iFace))

 {

 return -2;

 }

 }

 else if (iFace == -1) { // Face already exists, so Split

 iFace = ioSplitFace(iVtx, iVSlot); // v's index in ActiveSet, returns v

 jFSlot = ioSplitPos(iVtx, iVSlot); // Position of iVtx in v

 _pDstVFM->setVtxFace(iVtx, iVSlot, iFace);

 addVtxToFace(iVtx, iVSlot, iFace, jFSlot);

 }

 return iFace;

}

// "Activates" the VFMesh vertex, on _pDstVFM, at face iFace vertex slot iVSlot

// by calling ioFace() to obtain a new face number and hooking it up to the

// topological structure. Note that we use the term "activate" here to

// mean "read" for mesh decoding.

Int32 MeshCodec::activateV(Int32 iFace, Int32 iVSlot)

{

 Int32 iVtx = ioVtx(iFace, iVSlot); // I/O valence; create a vtx

 _pDstVFM->setVtxFace(iVtx, 0, iFace);

 addVtxToFace (iVtx, 0, iFace, iVSlot);

 return iVtx;

}

// Completes the vertex iVtx on _pDstVFM by activating all inactive faces

// incident upon it. As an optimization, the user must also pass in iVSlot

// which is the vertex slot on face 0 of iVtx where iVtx is located. This

// method begins its examination of iVtx's faces at face 0 by working its

// way around the vertex in both CCW and CW directions, checking to see if there

// are any faces that can be hooked into iVtx without calling activateF().

// This can happen when a face is completed by a nearby vertex before coming

// here. The situation can be detected by traversing the topology of the

// _pDstVFM over to the neighboring vertex and checking if it already has a

// face number for the corresponding face entry on iVtx. If so, then

// iVtx and the already completed face are connected together, and the

// next face around iVtx is examined. When the process can go no further,

// this method calls _activateF() on the remaining unresolved span of faces

// around the vertex.

void MeshCodec::completeF(Int32 iVtx, Int32 iVSlot)

{

 JtDualVFMesh *pDstVFM = _pDstVFM;

 Int32 i, vp, vn, jp, jn,

 iVtx2,

 cVal = pDstVFM->valence(iVtx);

 // Walk CCW from face slot 0, attempting to link in as many

 // already-reachable faces as possible until we reach one

 // that is inactive.

 vp = pDstVFM->face(iVtx, 0);

 jp = iVSlot;

 i = 1;

 JtDebugOnly(_assertParallelValRings(vp);)

 while ((vn = pDstVFM->face(iVtx, i)) != -1) { // Forces "FV" in the "next" direction

 DecModN(jp, pDstVFM->degree(vp));

 iVtx2 = pDstVFM->vtx(vp, jp);

 if (iVtx2 == -1)

 break;

 jn = pDstVFM->findVtxSlot(vn, iVtx2);

 Assert(jn > -1);

 DecModN(jn, pDstVFM->degree(vn));

 addVtxToFace(iVtx, i, vn, jn);

 vp = vn;

 jp = jn;

 i++;

 if (i >= cVal)

 JT File Format Reference Version 9.5 Rev-A Page 339

 return;

 }

 // Walk CW from face slot 0, attempting to link in as many

 // already-reachable faces as possible until we reach one

 // that is inactive.

 Int32 ilast = i;

 vp = pDstVFM->face(iVtx, 0);

 jp = iVSlot;

 i = pDstVFM->valence(iVtx) - 1;

 while ((vn = pDstVFM->face(iVtx, i)) != -1) { // Forces "VF" in "prev" direction

 IncModN(jp, pDstVFM->degree(vp));

 iVtx2 = pDstVFM->vtx(vp, jp);

 if (iVtx2 == -1)

 break;

 jn = pDstVFM->findVtxSlot(vn, iVtx2);

 Assert(jn > -1);

 IncModN(jn, pDstVFM->degree(vn));

 addVtxToFace(iVtx, i, vn, jn);

 vp = vn;

 jp = jn;

 i--;

 if (i < ilast)

 return;

 }

 // Activate the remaining faces on iVtx that cannot be decuced from

 // the already-assembled topology in the destination VFMesh.

 for (; ilast <= i ; ilast++) {

 Int32 iFace = activateV(iVtx, ilast);

 JtDemandState(iFace >= -1);

 }

}

// This method connects vertex iVtx into the topology of

// _pDstVFM at and around iFace. First, it connects iVtx

// to iFace's degree ring at position iVSlot. Next, it

// will connect iVtx into the faces at the other ends of

// the shared edges between iVtx and the next vertices CS and

// CCW about iFace if necessary.

void MeshCodec::addVtxToFace (Int32 iVtx, Int32 jFSlot,

 Int32 iFace, Int32 iVSlot)

{

 Int32 iVSlotCW = iVSlot,

 iVSlotCCW = iVSlot,

 fp, ip,

 fn, in;

 JtDualVFMesh *pDstVFM = _pDstVFM;

 IncModN(iVSlotCCW, pDstVFM->degree(iFace));

 DecModN(iVSlotCW, pDstVFM->degree(iFace));

 // Connect iVtx to iFace/iVSlot

 JtRethrow(pDstVFM->setFaceVtx(iFace, iVSlot, iVtx));

 // Connect iVtx across the shared edge between iVtx and the vtx CW

 // from iVtx at iFace. Connect iVtx into the face at the other

 // end of this edge if it is not already connected there.

 if ((fp = pDstVFM->vtx(iFace, iVSlotCW)) != -1) {

 ip = pDstVFM->findFaceSlot(fp, iFace);

 Int32 iVSlotCCW = jFSlot;

 IncModN(iVSlotCCW, pDstVFM->valence (iVtx));

 if (pDstVFM->face(iVtx, iVSlotCCW) == -1) {

 DecModN(ip, pDstVFM->valence(fp));

 pDstVFM->setVtxFace(iVtx, iVSlotCCW, pDstVFM->face(fp, ip));

 }

 }

 // Connect iVtx across the shared edge between iVtx and the vtx CCW

 // from iVtx at iFace. Connect iVtx into the face at the other

 // end of this edge if it is not already connected there.

 if ((fn = pDstVFM->vtx(iFace, iVSlotCCW)) != -1) {

 JT File Format Reference Version 9.5 Rev-A Page 340

 in = pDstVFM->findFaceSlot(fn, iFace);

 Int32 iVSlotCW = jFSlot;

 DecModN(iVSlotCW, pDstVFM->valence (iVtx));

 if (pDstVFM->face(iVtx, iVSlotCW) == -1) {

 IncModN(in, pDstVFM->valence(fn));

 pDstVFM->setVtxFace(iVtx, iVSlotCW, pDstVFM->face(fn, in));

 }

 }

}

void MeshCodec::addActiveFace(Int32 iFace)

{

 JtRethrow(_viActiveFaces.pushBack(iFace));

}

// Returns a face from the active queue to be completed. This needn't be the

// one at the end of the queue, because the choice of the next active face

// can affect how many SPLIT symbols are produced. This method employs a

// fairly simple scheme of searching the most recent 16 active faces for the

// fist one with the smallest number of incomplete slots in its degree ring.

Int32 MeshCodec::nextActiveFace()

{

 Int32 iFace = -1;

 // Search the 16 face record at the end of the

 // queue for the one with lowest remaining degree.

 while (_viActiveFaces.length() > 0 && _vbRemovedActiveFaces.test(_viActiveFaces.back()))

 _viActiveFaces.popBack();

 Int32 cLowestEmptyDegree = 9999999;

 Int32 i, iFace0, cEmptyDeg;

 const Int32 cWidth = 16;

 JtDualVFMesh *pDstVFM = _pDstVFM;

 for (i = _viActiveFaces.length() - 1 ;

 i >= ::jtmax(0, _viActiveFaces.length() - cWidth) ;

 i--)

 {

 iFace0 = _viActiveFaces[i];

 if (_vbRemovedActiveFaces.test(iFace0)) {

 _viActiveFaces.remove(i); // TOXIC: O(N^2)

 continue;

 }

 cEmptyDeg = pDstVFM->emptyFaceSlots(iFace0);

 if (cEmptyDeg < cLowestEmptyDegree) {

 cLowestEmptyDegree = cEmptyDeg;

 iFace = iFace0;

 }

 }

 // Return the selected active face

 return iFace;

}

// Removes iFace from the active face queue.

void MeshCodec::removeActiveFace(Int32 iFace)

{

 _vbRemovedActiveFaces.set(iFace);

}

// Searches the active face queue for iFace and returns

// its index position from the _end_ of the queue. This is

// needed by the ioFace() method when encoding a SPLIT

// symbol.

Int32 MeshCodec::activeFaceOffset(Int32 iFace) const

{

 Int32 iOffset = -1;

 Int32 i, cLen = _viActiveFaces.length();

 const Int32 *paiActiveFaces = _viActiveFaces.ptr();

 for (i = cLen - 1 ; i >= 0 ; i--) {

 if (paiActiveFaces[i] == iFace) {

 // The offset is how far FROM THE END of the active

 // face list we found iFace. This serves the make

 // the iOffset a much smaller number, which is better

 JT File Format Reference Version 9.5 Rev-A Page 341

 // for compression!

 iOffset = cLen - i;

 break;

 }

 }

 return iOffset;

}

2.3 MeshDecoder class

// This class implements the five abstract methods from

// MeshCodec to realize a mesh decoder.

class MeshDecoder : public MeshCodec {

 public:

 // ========== Housekeeping Interface ==========

 MeshDecoder (MeshCoderDriver *pTMC = NULL);

 protected:

 virtual ~MeshDecoder() {}

 private:

 // ========== Polymorphic I/O Interface ==========

 virtual Int32 ioVtxInit () ;

 virtual Int32 ioVtx (Int32 iFace, Int32 iVSlot);

 virtual Int32 ioFace (Int32 iVtx , Int32 jFSlot);

 virtual Int32 ioSplitFace(Int32 iVtx , Int32 jFSlot);

 virtual Int32 ioSplitPos (Int32 iVtx , Int32 jFSlot);

};

// Begins decoding a new connected mesh component by calling

// ioVtx() to read the next vertex from the symbol stream.

Int32 MeshDecoder::ioVtxInit()

{

 return ioVtx(-1, -1);

}

// Read a vertex valence symbol, vertex group number, and vertex

// flags from the input symbols stream. Create a new vertex

// on _pDstVFM with this data, and return the new vertex number.

// It is this method's responsibility to detect the end of

// the input symbol stream by returning -1 when that happens.

Int32 MeshDecoder::ioVtx (Int32 /*iFace*/ , Int32 /*iVSlot*/)

{

 // Obtain a VERTEX VALENCE symbol

 Int32 eSym = _pTMC->_nextValSymbol();

 Int32 iVtxVal, iVtx = -1;

 if (eSym > -1) {

 // Create a new vtxt on the VFMesh

 iVtx = _pDstVFM->numVts();

 iVtxVal = eSym;

 _pDstVFM->newVtx (iVtx, iVtxVal);

 _pDstVFM->setVtxGrp (iVtx, _pTMC->_nextFGrpSymbol());

 _pDstVFM->setVtxFlags(iVtx, _pTMC->_nextVtxFlagSymbol());

 }

 return iVtx;

}

// Read a face degree symbol, and attribute mask bit

// vector, create a new DualVFMesh face, initialize the

// face attribute record numbers from a running counter,

// and return the new face number. If the degree symbol

// read from the input symbol stream is 0, signify this by

// returning -1.

Int32

MeshDecoder::ioFace (Int32 iVtx, Int32 /*jFSlot*/)

{

 // Obtain a FACE DEGREE symbol

 Int32 iCntxt = _pTMC->_faceCntxt(iVtx, _pDstVFM);

 Int32 eSym = _pTMC->_nextDegSymbol(iCntxt);

 Int32 cDeg, iFace = -1;

 JT File Format Reference Version 9.5 Rev-A Page 342

 if (eSym != 0) {

 // Create a new face on the VFMesh

 iFace = _pDstVFM->numFaces();

 cDeg = eSym;

 Int32 nFaceAttrs = 0;

 if (cDeg <= JtDualVFMesh::cMBits) {

 UInt64 uAttrMask = _pTMC->_nextAttrMaskSymbol(/*iCntxt*/::jtmin(7,::jtmax(0,cDeg-2)));

 for (UInt64 uMask = uAttrMask ; uMask ; nFaceAttrs += (uMask & 1), uMask >>= 1);

 _pDstVFM->newFace(iFace, cDeg, nFaceAttrs, uAttrMask);

 }

 else {

 BitVec vbAttrMask;

 _pTMC->_nextAttrMaskSymbol(&vbAttrMask, cDeg);

 for (Int32 i = 0 ; i < cDeg ; i++) {

 if (vbAttrMask.test(i))

 nFaceAttrs++;

 }

 _pDstVFM->newFace(iFace, cDeg, nFaceAttrs, &vbAttrMask, 0);

 }

 // Error check for a corrupt degree or attrmask

 if (nFaceAttrs > cDeg) {

 Assert (nFaceAttrs <= cDeg);

 return -2;

 }

 // Set up the face attributes

 for (Int32 iAttrSlot = 0 ; iAttrSlot < nFaceAttrs ; iAttrSlot++) {

 _pDstVFM->setFaceAttr(iFace, iAttrSlot, _iFaceAttrCtr++);

 }

 }

}

// Consumes a split offset symbol from the SPLIT offset

// symbol stream, and determines the face number referenced

// by the offset. Returns the referenced face number.

Int32 MeshDecoder::ioSplitFace(Int32 /*iVtx*/, Int32 /*jFSlot*/)

{

 // Obtain a SPLITFACE symbol

 Int32 eSym = _pTMC->_nextSplitFaceSymbol();

 Assert(eSym >= -1);

 Int32 iOffset = -1, iFace = -1;

 if (eSym > -1) {

 // Use the offset to index into the active face queue

 // to determine the actual face number.

 iOffset = eSym;

 Int32 cLen = _viActiveFaces.length();

 Assert(iOffset > 0 && iOffset <= cLen);

 iFace = _viActiveFaces[cLen - iOffset];

 }

 return iFace;

}

// Consumes a split position symbol from the associated symbol

// stream, and returns the vertex slot number on the current

// split face at which the topological split/merge occurred.

Int32 MeshDecoder::ioSplitPos (Int32 /*iVtx*/, Int32 /*jFSlot*/)

{

 // Obtain a SPLITVTX symbol

 Int32 eSym = _pTMC->_nextSplitPosSymbol();

 Assert(eSym >= -1);

 Int32 iVSlot = -1;

 if (eSym > -1) {

 // Return the vtx slot number

 iVSlot = eSym;

 }

 return iVSlot;

}

 JT File Format Reference Version 9.5 Rev-A Page 343

 JT File Format Reference Version 9.5 Rev-A Page 344

Appendix F: Parasolid XT Format Reference

November 2008

 JT v9.5 Format Reference

 - 345 -

Table of Contents

Introduction to the Parasolid XT Format .. 348
Types of File Documented .. 348
Text and Binary Formats ... 349
Standard File Names and Extensions .. 349
Logical Layout.. 350
Schema .. 352
Embedded schemas .. 352

Physical layout .. 353
XT format .. 353

Space compression ... 354
Field types ... 354
Point 355
Pointer classes .. 356
Variable-length nodes ... 356
Unresolved indices .. 356
Simple example ... 356
Physical Layout .. 358
Common header ... 358

Keyword Syntax .. 359

Text 360
Binary .. 361

bare binary .. 361
typed binary .. 361
neutral binary .. 361

Model Structure .. 363
Topology.. 363
General points ... 363
Entity definitions ... 363

Assembly ... 363
Instance ... 363
Body 363
Region 364
Shell 364
Face 365
Loop 365
Fin 365
Edge 366
Vertex 366
Attributes ... 366
Groups 366
Node-ids .. 367

Entity matrix .. 367
Representation of manifold bodies .. 367

Body types .. 367

 JT v9.5 Format Reference

 - 346 -

Schema Definition ... 369
Underlying types ... 369
Geometry .. 369

Curves 371
LINE.. 371
CIRCLE .. 372
ELLIPSE ... 373
B_CURVE (B-spline curve) .. 375
INTERSECTION .. 381
TRIMMED_CURVE .. 384
PE_CURVE (Foreign Geometry curve) .. 385
SP_CURVE ... 387

Surfaces ... 388
PLANE .. 389
CYLINDER... 390
CONE .. 391
SPHERE .. 393
TORUS .. 394
BLENDED_EDGE (Rolling Ball Blend) .. 395
BLEND_BOUND (Blend boundary surface) .. 397
OFFSET_SURF .. 398
B_SURFACE .. 399
SWEPT_SURF .. 404
SPUN_SURF... 405
PE_SURF (Foreign Geometry surface) ... 407

Point 408
Transform .. 408
Curve and Surface Senses ... 410
Geometric_owner .. 410

Topology.. 412
WORLD .. 412
ASSEMBLY ... 413
INSTANCE ... 415
BODY ... 416
REGION .. 420
SHELL .. 421
FACE .. 422
LOOP .. 423
FIN .. 424
VERTEX ... 425
EDGE .. 426

Associated Data .. 427
LIST .. 427
POINTER_LIS_BLOCK: ... 428
ATT_DEF_ID ... 429
FIELD_NAMES ... 429
ATTRIB_DEF ... 430
ATTRIBUTE... 433
INT_VALUES .. 435
REAL_VALUES ... 436
CHAR_VALUES .. 436
UNICODE_VALUES ... 436
POINT_VALUES ... 436
VECTOR_VALUES ... 437

 JT v9.5 Format Reference

 - 347 -

DIRECTION_VALUES .. 437
AXIS_VALUES .. 437
TAG_VALUES ... 438
GROUP ... 438
MEMBER_OF_GROUP ... 439

Node Types ... 441
Node Classes ... 444
System Attribute Definitions... 445
Hatching .. 445

Planar Hatch .. 446
Radial Hatch .. 446
Parametric Hatch ... 447

Density Attributes ... 447
Density (of a body) ... 447
Region Density .. 447
Face Density .. 448
Edge Density ... 448
Vertex Density .. 448

Region ... 449
Colour .. 450
Reflectivity .. 450
Translucency ... 450
Name ... 451
Incremental faceting ... 451
Transparency ... 451
Non-mergeable edges ... 451
Group merge behavior .. 452

 JT v9.5 Format Reference

 - 348 -

Introduction to the Parasolid
XT Format

This Parasolid
®
 Transmit File Format manual describes the formats in which Parasolid represents model

information in external files. Parasolid is a geometric modeling kernel that can represent wireframe, surface, solid,

cellular and general non-manifold models.

Parasolid stores topological and geometric information defining the shape of models in transmit files. These files

have a published format so that applications can have access to Parasolid models without necessarily using the

Parasolid kernel.

This manual documents the Parasolid transmit file format. This format will change in subsequent Parasolid

releases at which time this manual will be updated. As new versions of Parasolid can read and write older transmit

file formats these changes will not invalidate applications written based on the information herein.

Types of File Documented
There are a number of different interface routines in Parasolid for writing transmit files. Each of these routines

can write slightly different combinations of Parasolid data, the ones that are documented herein are:

 Individual components (or assemblies) written using SAVMOD

 Individual components written using PK_PART_transmit

 Lists of components written using PK_PART_transmit

 Partitions written using PK_PARTITION_transmit

The basic format used to write data in all the above cases is identical; there are a small number of node types that

are specific to each of the above file types.

 JT v9.5 Format Reference

 - 349 -

Text and Binary Formats
Parasolid can encode the data it writes out in four different formats:

1. Text (usually ASCII)

2. Neutral binary

3. Bare binary (this is not recommended)

4. Typed binary

In text format all the data is written out as human readable text, they have the advantage that they are readable but

they also have a number of disadvantages. They are relatively slow to read and write, converting to and from text

forms of real numbers introduces rounding errors that can (in extreme cases) cause problems and finally there are

limitations when dealing with multi-byte character sets. Carriage return or line feed characters can appear

anywhere in a text transmit file but other unexpected non-printing characters will cause Parasolid to reject the file

as corrupt.

Neutral binary is a machine independent binary format.

Bare binary is a machine dependent binary format. It is not a recommended format since the machine type which

wrote it must be known before it can be interpreted.

Typed binary is a machine dependent binary format, but it has a machine independent prefix describing the

machine type that wrote it and so can be read on all machine types.

Standard File Names and Extensions
Due to changing operation system restrictions on file names over the years Parasolid has used several different

file extensions to denote file contents. The recommended set of file extensions is:

 .X_T and .X_B for part files, .P_T and .P_B for partition files.

Extensions that have been used in the past are:

 xmt_txt, xmp_txt - text format files on VMS or Unix platforms

 xmt_bin, xmp_bin - binary format files on VMS or Unix platforms

 JT v9.5 Format Reference

 - 350 -

Logical Layout

The logical layout of a Parasolid transmit file is:

 A human-oriented text header.

 The initial text header is read and written by applications' Frustrums and is not accessible to Parasolid. Its

detailed format is described in the section `Physical layout'.

 A short flag sequence describing the file format, followed by modeller identification information and user

field size.

 The various flag sequences (mixtures of text and numbers) are documented under `Physical layout'; the

content of the modeller identification information is:

the modeller version used to write the file, as a text string of the form:

: TRANSMIT FILE created by modeller version 1200123

This information is used by routines such as PK_PART_ask_kernel_version.

the schema version describing the field sequences of the part nodes as a text string of the form:

SCH_1200123_12006

This example denotes a file written by Parasolid V12.0.123 using schema number 12006: there will be a

corresponding file sch_12006 in the Parasolid schema distribution.

Note that applications writing XT files should use version 1200000 and schema number 12006.

 The user field size is a simple integer.

 The objects (known as „nodes‟) in the file in an unordered sequence, followed by a terminator.

 Every node in the file is assigned an integer index from 1 upwards (some indices may not be used).

Pointer fields are output as these indices, or as zero for a null pointer.

 Each node entry begins with the node type. If the node is of variable length (see below), this is followed

by the length of the variable field. The index of the node is then output, followed by the fields of the node. If

the file contains user fields, and the node is visible at the PK interface, then the fields are followed by the user

field, in integers.

 The terminator which follows the sequence of nodes is a two-byte integer with value 1, followed by an

index with value 0. The index is output as „0‟ in a text file, and as a 2-byte integer with value 1 in a binary

file.

 The node with index 1 is the root node of the transmit file as follows:



Contents of file Type of root node

Body BODY

Assembly ASSEMBLY

Array of parts POINTER_LIS_BLOCK

Partition WORLD

 JT v9.5 Format Reference

 - 351 -

 JT v9.5 Format Reference

 - 352 -

Schema
Parasolid permanent structures are defined in a special language akin to C which generates the appropriate files

for a C compiler, the runtime information used by Parasolid, along with a schema file used during transmit and

receive. The schema file for version 12.0 is named sch_12006 and is distributed with Parasolid. It is not necessary

to have a copy of this file to understand the XT format.

For each node type, the schema file has a node specifier of the form

<nodetype> <nodename>; <description>; <transmit 1/0> <no. of fields> <variable 1/0>

e.g.

29 POINT; Point; 1 6 0

This is followed by a list of field specifiers which say what fields, and in what order, occur in the transmit file.

Field specifiers have the format:

<fieldname>; <type>; <transmit 1/0> <node class> <n_elements>

e.g.

owner; p; 1 1011 1

Nodes and fields with a transmit flag of zero are ephemeral information not written to a transmit file. Only pointer

fields have non-zero node class, in which case it specifies the set of node types to which this field is allowed to

point. The element count is interpreted as follows:

0 a scalar, a single value

1 a variable length field (see below)

n > 1 an array of n values

Note that in the schema file, fins are referred to as „halfedges‟, and groups are referred to as „features‟. These are

internal names not used elsewhere in this document.

Embedded schemas
When reading a part, partition, or delta, Parasolid converts any data that it encounters from older versions of

Parasolid to the current format using a mixture of automatic table conversion (driven by the appropriate schemas),

and explicit code for more complex algorithms.

However, backwards compatibility of file information – that is, reading data created by a newer version of

Parasolid into an application (such as data created by a subcontractor) – can never be guaranteed to work using

this method, because the older version does not contain any special-case conversion code.

From Parasolid V14 onwards, parts, partitions and deltas can be transmitted with extra information that is

intended to replace the schema normally loaded to describe the data layout. This information contains the

differences between its schema and a defined base schema (currently V13's SCH_13006).

This enables parts, partitions, and deltas to be successfully read into older versions of Parasolid without loss of

information.

The only fields that are included in this information are those which can be referenced in a cut-down version of

the schema pertaining only to the XT part data that is transmitted. Specifically, a full schema definition can

contain fields that are not relevant in the context of the transmitted data (fields relating to snapshots, for example),

and these fields are excluded.

 JT v9.5 Format Reference

 - 353 -

Fields that are included are referred to as effective fields, and are either transmittable (xmt_code == 1) or have

variable-length (n_elts == 1)

Physical layout

Most of the data are composed of integers, logical flags, and strings, but are of restricted ranges and so

transmitted specially in binary format. The binary representation is given in bold type, such as “integer (byte)”.

This is relevant to applications that attempt to read or write Parasolid data directly. Two important elements are

 short strings

These are transmitted as an integer length (byte) followed by the characters (without trailing zero).

 positive integers

These are transmitted similarly to the pointer indices which link individual objects together, i.e., small values

0..32766 are transmitted as a single short integer, larger ones encoded into two.

XT format

Presence of the new format is indicated by a change to the standard header: the archive name is extended by the

number of the base schema, e.g., SCH_1400068_14000_13006, and then the maximum number of node types is

inserted (short).

Transmission then continues as normal, except that when transmitting the first node of any particular type, extra

information is inserted between the nodetype and the variable-length, index data as follows:

 The arrays of effective fields in the base schema node and the current schema node are assembled.

 If the nodetype does not exist in the base schema then it is output as follows:

 number of fields (byte)

 name and description (short strings)

 fields one by one as

name short string

ptr_class Short

n_elts Positive integer

type short string
The field type. Allowed values are

described in “Field types”, below. Omitted

if ptr_class non-zero

xmt_code logical (byte) Omitted for fixed-length (n_elts != 1)

 JT v9.5 Format Reference

 - 354 -

 If the two arrays match (equal length and all fields match in name, xmt_code, ptr_class, n_elts and

type) then output the flag value 255 (byte 0xff).

 If the two arrays do not match, output the number of effective fields in the current schema (byte), and an edit

sequence as follows.

 Initialize pointers to the first base field and first current field, then while there are still unprocessed base

and current fields, output a sequence of Copy, Delete and Insert instructions

 If the base field matches the current field, output 'C' (char) to indicate an unchanged (Copied) field

and advance to the next base and current fields;

 If the base field does not match any unprocessed current field, output 'D' (char) to indicate a Deleted

field and advance to the next base field;

 Otherwise, output 'I' (char) to indicate an Inserted field, followed by the current field in the above

format, and advance to the next current field.

 If there are any unprocessed current fields, then output an Append sequence, each instruction being 'A'

(char) followed by the field.

 Finally, output 'Z' (char) to signal the end.

Space compression
For text data in transmit formats PK_transmit_format_text_c and PK_transmit_format_xml_c, a new escape

sequence is defined: the 2-character sequence \9 denotes a sequence of nine spaces. At V14, this applies to

attribute definition names, field names, and attribute strings.

Field types
The XT format is not itself a binary protocol, and so does not define data sizes; the only requirement is that a

runtime implementation has sufficient room for the information. The available implementations run with 8bit

ASCII characters, 8bit unsigned bytes (0..255), 16bit short integers (0..65535 or -32768..32767), 32bit integers

(0..4G-1, -2G..2G-1) and IEEE reals. The implementation used in a given binary file is specified by the

"PS<code>" at the start of the file. See the chapter on “Physical Layout” for more information.

The full list of field types used in transmit files is as follows:

u unsigned byte 0-255

c char

l unsigned byte 0-1 (i.e. logical)

 typedef char logical;

n short int

w unicode character, output as a short int

d int

p pointer-index

Small indices (less than 32767) are treated specially in binary files to save space.

See the section below on binary format.

f double

 JT v9.5 Format Reference

 - 355 -

i These correspond to a region of the real line:

 typedef struct { double low, high; }interval;

v array [3] of doubles

These correspond to a 3-space position or direction:

 typedef struct { double x,y,z; } vector;

b array [6] of doubles

These correspond to a 3-spce region:

 typedef struct { interval x,y,z; } box;

Note that the ordering is not the same as presented at Parasolid's external PK or KI

interfaces.

h array [3] of doubles

These represent points of intersection between two surfaces; only the position

vector is written to a transmit file, as Parasolid will recalculate other data as

required. The structure is documented further in the section on intersection curves.

Point
As an example, consider a POINT; its formal description is

struct POINT_s // Point

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union POINT_OWNER_u owner; // $p

struct POINT_s *next; // $p

struct POINT_s *previous; // $p

vector pvec; // $v

};

typedef struct POINT_s *POINT;

Its corresponding schema file entry is

29 POINT; Point; 1 6 0

node_id; d; 1 0 0

attributes_groups; p; 1 1019 0

owner; p; 1 1011 0

next; p; 1 29 0

previous; p; 1 29 0

 JT v9.5 Format Reference

 - 356 -

pvec; v; 1 0 0

Pointer classes
In the above example, the attributes_groups field must be of class ATTRIB_GROUP_cl, the owner must be of

class POINT_OWNER_cl, and the next and previous fields must refer to POINTs. A full list of node types and

node classes is given at the end of the document.

Each node class corresponds to a union of pointers given in the Schema Definition section.

Variable-length nodes
Variable-length nodes differ from fixed-length nodes in that their last field is of variable length, i.e. different

nodes of the same type may have different lengths. In the schema the length is notionally given as 1, e.g.

struct REAL_VALUES_s // Real values

{

Double values[1]; // $f[]

};

Its schema file entry would be

83 REAL_VALUES; Real values; 1 1 1

values; f; 1 0 1

The number of entries in each such node is indicated by an integer in the transmit file between its nodetype and

index, so an example might be

 83 3 15 1 2 3

Unresolved indices
In some cases a node will contain an index field which does not correspond to a node in the transmit file, in this

case the index is to be interpreted as zero.

Simple example
Here is a reformatted text example of a sheet circle with a color attribute on its single edge:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz**********

PARASOLID !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~0123456789**********

**PART1;MC=osf65;MC_MODEL=alpha;MC_ID=sdlosf6;OS=OSF1;OS_RELEASE=V4.0;FRU=sdl_parasolid

_test_osf64;APPL=unknown;SITE=sdl-cambridge-

u.k.;USER=davidj;FORMAT=text;GUISE=transmit;DATE=29-mar-2000;

**PART2;SCH=SCH_1200000_12006;USFLD_SIZE=0;

**PART3;

 JT v9.5 Format Reference

 - 357 -

END_OF_HEADER*

T51 : TRANSMIT FILE created by modeller version 120000017 SCH_1200000_120060

12 1 12 0 2 0 0 0 0 1e3 1e-8 0 0 0 1 0 3 1 3 4 5 0 6 7 0 body

 70 2 0 1 0 0 4 1 20 8 8 8 1 T list

13 3 3 0 1 0 9 0 0 6 9 shell

 50 4 11 0 9 0 0 0 +0 0 0 0 0 1 1 0 0 plane

 31 5 10 0 7 0 0 0 +0 0 0 0 0 1 1 0 0 1 circle

 19 6 5 0 1 0 0 3 V region

16 7 6 0 ?10 0 0 5 0 0 1 edge

 17 10 0 11 10 10 0 12 7 0 0 + fin

15 11 7 0 10 9 0 loop

 17 12 0 0 0 0 0 10 7 0 0 - fin (dummy)

14 9 2 13 ?0 0 11 3 4 +0 0 0 0 3 face

 81 1 13 12 14 9 0 0 0 0 15 attribute (variable 1)

 80 1 14 0 16 8001 0 0 0 0 3 5 0 0 FFFFTFTFFFFFF2 attrib_def (variable 1)

83 3 15 1 2 3 real_values (variable 3)

 79 15 16 SDL/TYSA_COLOUR att_def_id (variable 15)

74 20 8 1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pointer_lis_block

 1 0 terminator

Note that the tolerance fields of the face and edge are unset, and represented as „?‟ in the text transmit file and that

the annotations in the column „body‟ to „terminator‟ give the node type of each line and are not part of the actual

file. If the above file had no trailing spaces, it would be a valid XT file (the leading spaces on some of the lines

are necessary).

 JT v9.5 Format Reference

 - 358 -

Physical Layout

Parasolid transmit files have two headers:

 a textual introduction containing human-directed information about the part, written by the Frustrum and not

accessible to Parasolid, and

 an internal prefix to the part data, describing to Parasolid the format of the part data and thus not seen

explicitly by an application's Frustrum.

Common header
The Parasolid common header recommended to Frustrum writers consists of:

 A preamble containing all characters in the ASCII printing set. This is used by the KID Frustrum to detect

obvious network corruption, but could be used to attempt to translate a text file from one character set to

another.

 Part 1 data: a sequence of keyword-value pairs, separated by semicolons, of possibly interesting information.

All are optional.

MC = vax, hppa, sparc, ...

 // make of computer

 MC_MODEL = 4090, 9000/780, sun4m, ...

 // model of computer

 MC_ID = ...

 // unique machine identifier

 OS = vms, HP-UX, SunOS, ...

 // name of operating system

OS_RELEASE = V6.2, B.10.20, 5.5.1, ...

 // version of operating system

FRU = sdl_parasolid_test_vax,

 mdc_ugii_v7.0_djl_can_vrh, ...

// frustrum supplier and implementation name

 APPL = kid, unigraphics, ...

// application which is using Parasolid

 SITE = ...

// site at which application is running

 USER = ...

 // login name of user

 FORMAT = binary, text, applio

 // format of file

 GUISE = transmit, transmit_partition

 JT v9.5 Format Reference

 - 359 -

 // guise of file

 KEY = ...

 // name of key

 FILE = ...

 // name of file

 DATE = dd-mmm-yyyy

// e.g. 5-apr-1998

The „part 1‟ data is „standard‟ information which should be accessible to the Frustrum (e.g. by operating

system calls). It is the responsibility of the Frustrum to gather the relevant information and to format it as

described in this specification.

 part 2 data: a sequence of keyword-value pairs, separated by semicolons.

 SCH = SCH_m_n

// name of schema key e.g.SCH_1200000_12006

USFLD_SIZE = m

// length of user field (0 - 16 integer words)

Applications writing XT files must use a schema name of SCH_1200000_12006

 part 3 data: non-standard information, which is only comprehensible to the Frustrum which wrote it.

The „part 3‟ data is non-standard information, which is only comprehensible to the Frustrum which wrote it.

However, other Frustrum implementations must be able to parse it (in order to reach the end of the header),

and it should therefore conform to the same keyword/value syntax as for „part 1‟ and „part 2‟ data. However,

the choice and interpretation of keywords for the „part 3‟ data is entirely at the discretion of the Frustrum

which is writing the header.

 a trailer record.

An example is:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz**********

PARASOLID !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~0123456789****************

**PART1;MC=vax;MC_MODEL=4090;MC_ID=VAX14;OS=vms;OS_RELEASE=V6.2;FRU=sdl_parasolid_te

st_vax;APPL=unknown;SITE=sdl-cambridge

u.k.;USER=ALANS;FORMAT=text;GUISE=transmit;KEY=temp;FILE=TEMP.XMT_TXT;DATE=8-sep-1997;

**PART2;SCH=SCH_701169_7007;USFLD_SIZE=0;

**PART3;

END_OF_HEADER*

Keyword Syntax

All keyword definitions which appear in the three parts of data are written in the form

 <name>=<value> e.g. MC=hppa;MC_MODEL=9000/710;

where

<name> consists of 1 to 80 uppercase, digit, or underscore characters

 JT v9.5 Format Reference

 - 360 -

<value> consists of 1 or more ASCII printing characters (except space)

Escape sequences provide a way of being able to use the full (7 bit) set of ASCII printing characters and the new

line character within keyword values. Certain characters must be escaped if they are to appear in a keyword value:

 Character Escape sequence

newline ^n

space ^_

semicolon ^;

uparrow ^^

The two character escape sequences may be split by a new line character as they are written to file. They must not

cause any output lines to be longer than 80 characters.

Only those characters which belong to the ASCII (7 bit) printing sequence, plus the new line character, can be

included as part of a keyword value.

Text
Parasolid has no knowledge of how files are stored. On writing, Parasolid produces an internal bytestream which

is then split into roughly 80-character records separated by newline characters ('\n'). The newlines are not

significant.

As operating systems vary in their treatment of text data, on reading all newline and carriage return characters

('\r') are ignored, along with any trailing spaces added to the records. However, leading spaces are not ignored,

and the file must not contain adjacent space characters not at the end of a record.

Text XT files written by version 12.1 and later versions use escape sequences to output the following characters,

except for '\n' at the end of each line:

null "\0"

carriage return "\n"

line feed "\r"

backslash "\\"

These characters are not escaped by versions 12.0 and earlier.

The flag sequence is the character „T‟. This is followed by the length of the modeler version, separated by a space

from the characters of the modeler version, similarly the schema version, finally the userfield size. For example:

T

51 : TRANSMIT FILE created by modeller version 1200000

17 SCH_1200000_12006

0

NB: because of ignored layout, what Parasolid would read is

 JT v9.5 Format Reference

 - 361 -

T51 : TRANSMIT FILE created by modeller version 120000017 SCH_1200000_120060

For partition files, the modeller version string would be given as

63 : TRANSMIT FILE (partition) created by modeller version 1200000

All numbers are followed by a single space to separate them from the next entry. Fields of type c and l are not

followed by a space.

Logical values (0,1) are represented as characters F,T.

There are two special numeric values (-32764 for integral values, -3.14158e13 for floating point) which are used

inside Parasolid to mark an „unset‟ or „null‟ value, and they are represented in a text transmit file as the question

mark „?‟. If a vector has one component null, then all three components must be null, and it will be output in a

text file as a single „?‟.

Binary
There are three types of binary file: `bare' binary, typed binary, and neutral binary. They are distinguished by a

short flag sequence at the beginning of the file. In all cases, the flag sequence is followed by the length of the

modeller version as a 2-byte integer, the characters of the modeller version, the length of the schema version as a

4-byte integer, the characters of the schema version, and finally the userfield size as a 4-byte integer.

As with text files, there are two special numeric values (-32764 for integral values, -3.14158e13 for floating

point) which are used inside Parasolid to mark an „unset‟ or „null‟ value, and they are represented in a text

transmit file as the question mark „?‟.

bare binary

In bare binary, data is represented in the natural format of the machine which wrote the data. The flag

sequence is the single character 'B' (for ASCII machines, '\102'). The data must be read on a machine with

the same natural format with respect to character set, endianness and floating point format.

typed binary

In typed binary, data is represented in the natural format of the machine that wrote the data. The flag

sequence is the 4-byte sequence “PS” followed by a zero byte and a one byte, i.e., „P‟ „S‟ „\0‟ „\1‟,

followed by a 3-byte sequence of machine description.

 Byte order Double

representation

Character

representation

0 Big-endian IEEE ASCII

1 Little-endian VAX D-float EBCDIC

neutral binary

In neutral binary, data is represented in big-endian format, with IEEE floating point numbers and ASCII

characters. The flag sequence is the 4-byte sequence "PS" followed by two zero bytes, i.e., 'P' 'S' '\0' '\0'.

At Parasolid V9, the initial letters are ASCII, thus '\120' '\123'.

The nodetype at the start of a node is a 2-byte integer, the variable length which may follow it is a 4-byte integer.

Logical values (0,1) are represented as themselves in 1 byte.

 JT v9.5 Format Reference

 - 362 -

Small pointer indices (in the range 0-32766) are implemented as a 2-byte integer, larger indices are represented as

a pair, thus:

 if (index < 32767)

{ // case: small index

op_short(index + 1); // offset so is > 0

}

 else

{ // case: big index

op_short(-(index % 32767 + 1)); // remainder: add 1 so > 0

op_short(index / 32767); // nonzero quotient

}

where op_short outputs a 2-byte integer.

The inverse is performed on reading:

 short q = 0, r;

 ip_short(&r);

 if (r < 0)

{

ip_short(&q);

r = -r;

}

 index = q * 32767 + r - 1;

where ip_short reads a 2-byte integer.

 JT v9.5 Format Reference

 - 363 -

Model Structure

Topology
This section describes the Parasolid Topology model, it gives an overview of how the nodes in an XT file are

joined together. In this section the word „entity‟ means a node which is visible to a PK application – a table of

which nodes are visible at the PK interface appears in the section `Node Types'.

The topological representation allows for:

 Non-manifold solids

 Solids with internal partitions

 Bodies of mixed dimension (i.e. with wire, sheet, and solid `bits')

 Pure wire-frame bodies

 Disconnected bodies

Each entity is described, and its properties and links to other entities given.

General points
In this section a set is called finite if it can be enclosed in a ball of finite radius - not that it has a finite number of

members.

A set of points in 3-dimensional space is called open if it does not contain its boundary.

Back-pointers, next and previous pointers in a chain, and derived pointers are not described explicitly here. For

information on this see the following description of the schema-level model.

Entity definitions

Assembly

An assembly is a collection of instances of bodies or assemblies. It may also contain construction geometry. An

assembly has the following fields:

 A set of instances.

 A set of geometry (surfaces, curves and points).

Instance

An instance is a reference to a body or an assembly, with an optional transform:

 Body or assembly.

 Transform. If null, the identity transform is assumed.

Body

A body is a collection of faces, edges and vertices, together with the 3-dimensional connected regions into which

space is divided by these entities. Each region is either solid or void (indicating whether it represents material or

not).

The point-set represented by the body is the disjoint union of the point-sets represented by its solid regions, faces,

edges, and vertices. This point-set need not be connected, but it must be finite.

 JT v9.5 Format Reference

 - 364 -

A body has the following fields:

 A set of regions.

A body has one or more regions. These, together with their boundaries, make up the whole of 3-space, and do

not overlap, except at their boundaries. One region in the body is distinguished as the exterior region, which

must be infinite; all other regions in the body must be finite.

 A set of geometry (surfaces, curve and/or points).

 A body-type. This may be wire, sheet, solid or general.

Region

A region is an open connected subset of 3-dimensional space whose boundary is a collection of vertices, edges,

and oriented faces.

Regions are either solid or void, and they may be non-manifold. A solid region contributes to the point-set of its

owning body; a void region does not (although its boundary will).

Two regions may share a face, one on each side.

A region may be infinite, but a body must have exactly one infinite region. The infinite region of a body must be

void.

A region has the following fields:

 A logical indicating whether the region is solid.

 A set of shells. The positive shell of a region, if it has one, is not distinguished.

The shells of a region do not overlap or share faces, edges or vertices.

A region may have no shells, in which case it represents all space (and will be the only region in its body, which

will have no faces, edges or vertices).

Shell

A shell is a connected component of the boundary of a region. As such it will be defined by a collection of faces,

each used by the shell on one `side', or on both sides; and some edges and vertices.

A shell has the following fields:

 A set of (face, logical) pairs.

Each pair represents one side of a face (where true indicates the front of the face, i.e. the side towards which

the face normal points), and means that the region to which the shell belongs lies on that side of the face. The

same face may appear twice in the shell (once with each orientation), in which case the face is a 2-

dimensional cut subtracted from the region which owns the shell.

 A set of wireframe edges.

Edges are called wireframe if they do not bound any faces, and so represent 1-dimensional cuts in the shell's

region. These edges are not shared by other shells.

 A vertex.

This is only non-null if the shell is an acorn shell, i.e. it represents a 0-dimensional hole in its region, and has

one vertex, no edges and no faces.

A shell must contain at least one vertex, edge, or face.

 JT v9.5 Format Reference

 - 365 -

Face

A face is an open finite connected subset of a surface, whose boundary is a collection of edges and vertices. It is

the 2-dimensional analogy of a region.

A face has the following fields:

 A set of loops. A face may have zero loops (e.g. a full spherical face), or any number.

 Surface. This may be null, and may be used by other faces.

 Sense. This logical indicates whether the normal to the face is aligned with or opposed to that of the surface.

Loop

A loop is a connected component of the boundary of a face. It is the 2-dimensional analogy of a shell. As such it

will be defined by a collection of fins and a collection of vertices.

A loop has the following fields:

 An ordered ring of fins.

Each fin represents the oriented use of an edge by a loop. The sense of the fin indicates whether the loop

direction and the edge direction agree or disagree. A loop may not contain the same edge more than once in

each direction.

The ordering of the fins represents the way in which their owning edges are connected to each other via

common vertices in the loop (i.e. nose to tail, taking the sense of each fin into account).

The loop direction is such that the face is locally on the left of the loop, as seen from above the face and

looking in the direction of the loop.

 A vertex.

This is only non-null if the loop is an isolated loop, i.e. has no fins and represents a 0-dimensional hole in the

face.

Consequently, a loop must consist either of:

 A single fin whose owning ring edge has no vertices, or

 At least one fin and at least one vertex, or

 A single vertex.

Fin

A fin represents the oriented use of an edge by a loop.

A fin has the following fields:

 A logical sense indicating whether the fin's orientation (and thus the orientation of its owning loop) is the

same as that of its owning edge, or different.

 A curve. This is only non-null if the fin‟s edge is tolerant, in which case every fin of that edge will reference a

trimmed SP-curve. The underlying surface of the SP-curve must be the same as that of the corresponding

face. The curve must not deviate by more than the edge tolerance from curves on other fins of the edge, and

its ends must be within vertex tolerance of the corresponding vertices.

Note that fins are referred to as „halfedges‟ in the Schema file.

 JT v9.5 Format Reference

 - 366 -

Edge

An edge is an open finite connected subset of a curve; its boundary is a collection of zero, one or two vertices. It

is the 1-dimensional analogy of a region.

An edge has the following fields:

 Start vertex.

 End vertex. If one vertex is null, then so is the other; the edge will then be called a ring edge.

 An ordered ring of distinct fins.

The ordering of the fins represents the spatial ordering of their owning faces about the edge (with a right-hand

screw rule, i.e. looking in the direction of the edge the fin ordering is clockwise). The edge may have zero or

any number of fins; if it has none, it is called a wireframe edge.

 A curve. This will be null if the edge has a tolerance. Otherwise, the vertices must lie within vertex tolerance

of this curve, and if it is a Trimmed Curve, they must lie within vertex tolerance of the corresponding ends of

the curve. The curve must also lie in the surfaces of the faces of the edge, to within modeller resolution.

 Sense. This logical indicates whether the direction of the edge (start to end) is the same as that of the curve.

 A tolerance. If this is null-double, the edge is accurate and is regarded as having a tolerance of half the

modeller linear resolution, otherwise the edge is called tolerant.

Vertex

A vertex represents a point in space. It is the 0-dimensional analogy of a region.

A vertex has the following fields:

 A geometric point.

 A tolerance. If this is null-double, the vertex is accurate and is regarded as having a tolerance of half the

modeller linear resolution.

Attributes

An attribute is an entity which contains data, and which can be attached to any other entity except attributes, fins,

lists, transforms or attribute definitions. An attribute has the following fields:

 Definition. An attribute definition is an entity which defines the number and type of the data fields in a

specific type of attribute, which entities may have such an attribute attached, and what happens to the attribute

when its owning entity is changed. An XT document must not contain duplicate attribute definitions. Each

attribute of a given type should reference the same instance of the attribute definition for that type. It is

incorrect, for example, to create a copy of an attribute definition for each instance of the attribute of that type.

Only those attribute definitions referenced by attributes in the part occur in the transmit file.

 Owner.

 Fields. These are data fields consisting of one or more integers, doubles, vectors etc.

There are a number of system attribute definitions which Parasolid creates on startup. These are documented in

the section `System Attribute Definitions'. Parasolid applications can create user attribute definitions during a

Parasolid session. These are transmitted along with any attributes that use them.

Groups

A group is a collection of entities in the same part. Groups in assemblies may contain instances, surfaces, curves

and points. Groups in bodies may contain regions, faces, edges, vertices, surfaces, curves and points. Groups have

 JT v9.5 Format Reference

 - 367 -

 Owning part.

 A set of member entities.

 Type. The type of the group specifies the allowed type of its members, e.g. a „face‟ group in a body may only

contain faces, whereas a „mixed‟ group may have any valid members.

Node-ids

All entities in a part, other than fins, have a non-zero integer node-id which is unique within a part. This is

intended to enable the entity to be identified within a transmit file.

Entity matrix
Thus the relations between entities can be represented in matrix form as follows. The numbers represent the

number of distinct entities connected (either directly or indirectly) to the given one.

 Body Region Shell Face Loop Fin Edge Vertex

Body - >0 any any any any any any

Region 1 - any any any any any any

Shell 1 1 - any any any any any

Face 1 1-2 1-2 - any any any any

Loop 1 1-2 1-2 1 - any any any

Fin 1 1-2 1-2 1 1 - 1 0-2

Edge 1 any any any any any - 0-2

Vertex 1 any any any any any any -

Representation of manifold bodies

Body types

Parasolid bodies have a field body_type which takes values from an enumeration indicating whether the body is

 solid, representing a manifold 3-dimensional volume, possibly with internal voids. It need not be connected.

 sheet, representing a 2-dimensional subset of 3-space which is either manifold or manifold with boundary

(certain cases are not strictly manifold – see below for details). It need not be connected.

 wire, representing a 1-dimensional subset of 3-space which is either manifold or manifold with boundary, and

which need not be connected. An acorn body, which represents a single 0-dimensional point in space, also

has body-type wire.

 general - none of the above.

A general body is not necessarily non-manifold, but at the same time it is not constrained to be manifold,

connected, or of a particular dimensionality (indeed, it may be of mixed dimensionality).

Restrictions on entity relationships for manifold body types

Solid, sheet, and wire bodies are best regarded as special cases of the topological model; for convenience we call

them the manifold body types (although as stated above, a general body may also be manifold).

 JT v9.5 Format Reference

 - 368 -

In particular, bodies of these manifold types must obey the following constraints:

 An acorn body must consist of a single void region with a single shell consisting of a single vertex.

 A wire body must consist of a single void region, with one or more shells, consisting of one or more

wireframe edges and zero or more vertices (and no faces). Every vertex in the body must be used by exactly

one or two of the edges (so, in particular, there are no acorn vertices).

So each connected component will be either: closed, where every vertex has exactly two edges; or open,

where all but two vertices have exactly two edges each, and the

A wire is called open if all its components are open, and closed if all its components are closed.

 Solid and sheet bodies must each contain at least one face; they may not contain any wireframe edges or acorn

vertices.

 A solid body must consist of at least two regions; at least one of its regions must be solid. Every face in a

solid body must have a solid region on its negative side and a void region on its positive side (in other words,

every face forms part of the boundary of the solid, and the face normals always point away from the solid).

 Every edge in a solid body must have exactly two fins, which will have opposite senses. Every vertex in a

solid body must either belong to a single isolated loop, or belong to one or more edges; in the latter case, the

faces which use those edges must form a single edgewise-connected set (when considering only connections

via the edges which meet at the vertex).

These constraints ensure that the solid is manifold.

 All the regions of a sheet body must be void. It is known as an open sheet if it has one region, and a closed

sheet if it has no boundary.

 Every edge in a sheet body must have exactly one or two fins; if it has two, these must have opposite senses.

In a closed sheet body, all the edges will have exactly two fins. Every vertex in a sheet body must either

belong to a single isolated loop, or belong to one or more edges; in the latter case, the faces which use those

edges must either form a single edgewise-connected set where all the edges involved have exactly two fins, or

any number of edgewise-connected sets, each of which must involve exactly two edges with one fin each

(again, considering only connections via the edges which meet at the vertex).

Note that, although the constraints on edges and vertices in a sheet body are very similar to those which apply

to a solid, in this case they do not guarantee that the body will be manifold; indeed, the rather complicated

rules about vertices in an open sheet body specifically allow bodies which are non-manifold (such as a body

consisting of two square faces which share a single corner vertex, say).

 JT v9.5 Format Reference

 - 369 -

Schema Definition

Underlying types

union CURVE_OWNER_u

{

struct EDGE_s *edge;

struct FIN_s *fin;

struct BODY_s *body;

struct ASSEMBLY_s *assembly;

struct WORLD_s *world;

};

union SURFACE_OWNER_u

{

struct FACE_s *face;

struct BODY_s *body;

struct ASSEMBLY_s *assembly;

struct WORLD_s *world;

};

union ATTRIB_GROUP_u

{

struct ATTRIBUTE_s *attribute;

struct GROUP_s *group;

struct

MEMBER_OF_GROUP_s

*member_of_group;

};

typedef union ATTRIB_GROUP_u ATTRIB_GROUP;

Geometry

union CURVE_u

{

struct LINE_s *line;

 JT v9.5 Format Reference

 - 370 -

struct CIRCLE_s *circle;

struct ELLIPSE_s *ellipse;

struct INTERSECTION_s *intersection;

struct TRIMMED_CURVE_s *trimmed_curve;

struct PE_CURVE_s *pe_curve;

struct B_CURVE_s *b_curve;

struct SP_CURVE_s *sp_curve;

};

typedef union CURVE_u CURVE;

union SURFACE_u

{

struct PLANE_s *plane;

struct CYLINDER_s *cylinder;

struct CONE_s *cone;

struct SPHERE_s *sphere;

struct TORUS_s *torus;

struct BLENDED_EDGE_s *blended_edge;

struct BLEND_BOUND_s *blend_bound;

struct OFFSET_SURF_s *offset_surf;

struct SWEPT_SURF_s *swept_surf;

struct SPUN_SURF_s *spun_surf;

struct PE_SURF_s *pe_surf;

struct B_SURFACE_s *b_surface;

};

typedef union SURFACE_u SURFACE;

union GEOMETRY_u

{

union SURFACE_u surface;

union CURVE_u curve;

struct POINT_s *point;

struct TRANSFORM_s *transform;

};

typedef union GEOMETRY_u GEOMETRY;

 JT v9.5 Format Reference

 - 371 -

Curves

In the following field tables, „pointer0‟ means a reference to another node which may be null. „pointer‟ means a

non-null reference.

All curve nodes share the following common fields:

Field name Data type Description

node_id int Integer value unique to curve in part

attributes_groups pointer0 Attributes and groups associated with curve

owner pointer0 topological owner

next pointer0 next curve in geometry chain

previous pointer0 previous curve in geometry chain

geometric_owner pointer0 geometric owner node

sense char sense of curve: „+‟ or „-‟ (see end of Geometry

section)

struct ANY_CURVE_s // Any Curve

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union CURVE_OWNER_u owner; // $p

union CURVE_u next; // $p

union CURVE_u previous; // $p

struct

GEOMETRIC_OWNER_s

*geometric_owner; // $p

char sense; // $c

};

typedef struct ANY_CURVE_s *ANY_CURVE;

 LINE

A straight line has a parametric representation of the form:

R(t) = P + t D

where

 P is a point on the line

 JT v9.5 Format Reference

 - 372 -

 D is its direction

Field name Data type Description

pvec vector point on the line

direction vector direction of the line (a unit vector)

struct LINE_s == ANY_CURVE_s // Straight line

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union CURVE_OWNER_u owner; // $p

union CURVE_u next; // $p

union CURVE_u previous; // $p

struct

GEOMETRIC_OWNER_s

*geometric_ owner; // $p

char sense; // $c

vector pvec; // $v

vector direction; // $v

};

typedef struct LINE_s *LINE;

CIRCLE

A circle has a parametric representation of the form

R(t) = C+ r X cos(t) + r Y sin(t)

Where

 C is the centre of the circle

 r is the radius of the circle

 X and Y are the axes in the plane of the circle.

 JT v9.5 Format Reference

 - 373 -

Field

name

Data type Description

centre vector Centre of circle

normal vector Normal to the plane containing the circle (a unit vector)

x_axis vector X axis in the plane of the circle (a unit vector)

radius double Radius of circle

The Y axis in the definition above is the vector cross product of the normal and x_axis.

struct CIRCLE_s == ANY_CURVE_s // Circle

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union CURVE_OWNER_u owner; // $p

union CURVE_u next; // $p

union CURVE_u previous; // $p

struct

GEOMETRIC_OWNER_s

*geometric_owner; // $p

char sense; // $c

vector centre; // $v

vector normal; // $v

vector x_axis; // $v

double radius; // $f

};

typedef struct CIRCLE_s *CIRCLE;

 ELLIPSE

An ellipse has a parametric representation of the form

R(t) = C+ a X cos(t) + b Y sin(t)

 JT v9.5 Format Reference

 - 374 -

where

 C is the centre of the circle

 X is the major axis

 r is the major radius

 Y and b are the minor axis and minor radius respectively.

Field name Data type Description

centre Vector Centre of ellipse

normal Vector Normal to the plane containing the ellipse

(a unit vector)

x_axis Vector major axis in the plane of the ellipse (a unit vector)

major_radius Double major radius

minor_radius Double minor radius

The minor axis (Y) in the definition above is the vector cross product of the normal and x_axis.

struct ELLIPSE_s == ANY_CURVE_s // Ellipse

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union CURVE_OWNER_u owner; // $p

union CURVE_u next; // $p

union CURVE_u previous; // $p

struct GEOMETRIC_OWNER_s *geometric_owner; // $p

vector centre; // $v

char sense; // $c

 JT v9.5 Format Reference

 - 375 -

vector normal; // $v

vector x_axis; // $v

double major_radius; // $f

double minor_radius; // $f

 };

typedef struct ELLIPSE_s *ELLIPSE;

B_CURVE (B-spline curve)

Parasolid supports B spline curves in full NURBS format. The mathematical description of these curves is:

 Non Uniform Rational B-splines as (NURBS)

 and the more simple Non Uniform B-spline



 Where:

n = number of vertices (n_vertices in the PK standard form)

V0 …Vn-1 are the B-spline vertices

w0 …wn-1 are the weights

bi (t),I = 0…n-1 are the B-spline basis functions

KNOT VECTORS

The parameter t above is global. The user supplies an ordered set of values of t at specific points. The points are

called knots and the set of values of t is called the knot vector. Each successive value in the set must be greater

than or equal to its predecessor. Where two or more such values are the same we say that the knots are coincident,

or that the knot has multiplicity greater than 1. In this case it is best to think of the knot set as containing a null or

zero length span. The principal use of coincident knots is to allow the curve to have less continuity at that point

than is formally required for a spline. A curve with a knot of multiplicity equal to its degree can have a

discontinuity of first derivative and hence of tangent direction. This is the highest permitted multiplicity except at

the first or last knot where it can go as high as (degree+1) .

In order to avoid problems associated, for example with rounding errors in the knot set, Parasolid stores an array

of distinct values and an array of integer multiplicities. This is reflected in the standard form used by the PK for

input and output of B-curve data.

Most algorithms in the literature, and the following discussion refer to the expanded knot set in which a knot of

multiplicity n appears explicitly n times.

 JT v9.5 Format Reference

 - 376 -

 THE NUMBER OF KNOTS AND VERTICES

The knot set determines a set of basis functions which are bell shaped, and non zero over a span of (degree+1)

intervals. One basis function starts at each knot, and each one finishes (degree +1) knots higher. The control

vectors are the coefficients applied to these basis functions in a linear sum to obtain positions on the curve. Thus it

can be seen that we require the number of knots n_knots = n_vertices + degree + 1

THE VALID RANGE OF THE B-CURVE

So if the knot set is numbered {t0 to tn_knots-1 } it can be seen then that it is only after tdegree that sufficient (degree +

1) basis functions are present for the curve to be fully defined, and that the B-curve ceases to be fully defined after

tn_knots - 1 - degree.

The first degree knots and the last degree knots are known as the imaginary knots because their parameter values

are outside the defined range of the B-curve.

PERIODIC B-CURVES

When the end of a B-curve meets its start sufficiently smoothly Parasolid allows it to be defined to have periodic

parametrisation. That is to say that if the valid range were from tdegree to tn_knots - 1 - degree then the difference between

these values is called the period and the curve can continue to be evaluated with the same point reoccurring every

period.

The minimal smoothness requirement for periodic curves in Parasolid is tangent continuity, but we strongly

recommend C degree-1 , or continuity in the (degree-1)
th
 derivative. This in turn is best achieved by repeating the

first degree vertices at the end, and by matching knot intervals so that counting from the start of the defined range,

tdegree, the first degree intervals between knots match the last degree intervals, and similarly matching the last

degree knot intervals before the end of the defined range to the first degree intervals.

CLOSED B-CURVES

A periodic B-curve must also be closed, but is permitted to have a closed Bcurve that is not periodic.

In this case the rules for continuity are relaxed so that only C0 or positional continuity is required between the start

and end. Such closed non-periodic curves are not able to be attached to topology.

RATIONAL B-CURVE

In the rational form of the curve, each vertex is associated with a weight, which increases or decreases the effect

of the vertex without changing the curve hull. To ensure that the convex hull property is retained, the curve

equation is divided by a denominator which makes the coefficients of the vertices sum to one.

 Where w0… wn-1 are weights.

Each weight may take any positive value, and the larger the value, the greater the effect of the associated vertex.

However, it is the relative sizes of the weights which is important, as may be seen from the fact that in the

equation given above, all the weights may be multiplied by a constant without changing the equation.

 JT v9.5 Format Reference

 - 377 -

In Parasolid the weights are stored with the vertices by treating these as having an extra dimension. In the usual

case of a curve in 3-d cartesian space this means that vertex_dim is 4, the x, y, z values are multiplied through by

the corresponding weight and the 4th value is the weight itself.

B-SURFACE DEFINITION

The B-surface definition is best thought of as an extension of the B-curve definition into two parameters, usually

called u and v. Two knot sets are required and the number of control vertices is the product of the number that

would be required for a curve using each knot vector. The rules for periodicity and closure given above for curves

are extended to surfaces in an obvious way.

For attachment to topology a B-surface is required to have G1 continuity. That is to say that the surface normal

direction must be continuous.

Parasolid does not support modelling with surfaces that are self-intersecting or contain cusps. Although they can

be created they are not permitted to be attached to topology.

Field name Data type Description

nurbs Pointer Geometric definition

data Pointer0 Auxiliary information

struct B_CURVE_s == ANY_CURVE_s // B curve

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union CURVE_OWNER_u owner; // $p

union CURVE_u next; // $p

union CURVE_u previous; // $p

struct GEOMETRIC_OWNER_s *geometric_owner; // $p

char sense; // $c

struct NURBS_CURVE_s *nurbs; // $p

struct CURVE_DATA_s *data; // $p

};

typedef struct B_CURVE_s *B_CURVE;

The data stored in an XT file for a NURBS_CURVE is

 JT v9.5 Format Reference

 - 378 -

Field name Data type Description

degree Short degree of the curve

n_vertices Int number of control vertices („poles‟)

vertex_dim Short dimension of control vertices

n_knots Int number of distinct knots

knot_type Byte form of knot vector

periodic Logical true if curve is periodic

closed Logical true if curve is closed

rational Logical true if curve is rational

curve_form Byte shape of curve, if special

bspline_vertices Pointer control vertices node

knot_mult Pointer knot multiplicities node

knots Pointer knots node

The knot_type enum is used to describe whether or not the knot vector has a certain regular spacing or other

common property:

typedef enum

{

SCH_unset = 1, // Unknown

SCH_non_uniform = 2, // Known to be not special

SCH_uniform = 3, // Uniform knot set

SCH_quasi_uniform = 4, // Uniform apart from bezier ends

SCH_piecewise_bezier = 5, // Internal multiplicity of order-1

SCH_bezier_ends = 6 // Bezier ends, no other property

}

 SCH_knot_type_t;

A uniform knot set is one where all the knots are of multiplicity one and are equally spaced. A curve has bezier

ends if the first and last knots both have multiplicity „order‟.

The curve_form enum describes the geometric shape of the curve. The parameterisation of the curve is not

relevant.

typedef enum

{

SCH_unset = 1, // Form is not known

SCH_arbitrary = 2, // Known to be of no particular shape

 JT v9.5 Format Reference

 - 379 -

SCH_polyline = 3,

SCH_circular_arc = 4,

SCH_elliptic_arc = 5,

SCH_parabolic_arc = 6,

SCH_hyperbolic_arc = 7

}

 SCH_curve_form_t;

struct NURBS_CURVE_s // NURBS curve

{

short degree; // $n

int n_vertices; // $d

short vertex_dim; // $n

int n_knots; // $d

SCH_knot_type_t knot_type; // $u

logical periodic; // $l

logical closed; // $l

logical rational; // $l

SCH_curve_form_t curve_form; // $u

struct BSPLINE_VERTICES_s *bspline_vertices; // $p

struct KNOT_MULT_s *knot_mult; // $p

struct KNOT_SET_s *knots; // $p

};

typedef struct NURBS_CURVE_s *NURBS_CURVE;

The bspline vertices node is simply an array of doubles; „vertex_dim‟ doubles together define one control vertex.

Thus the length of the array is n_vertices * vertex_dim.

struct BSPLINE_VERTICES_s // B-spline vertices

{

double vertices[1]; // $f[]

};

typedef struct BSPLINE_VERTICES_s *BSPLINE_VERTICES;

The knot vector of the NURBS _CURVE is stored as an array of distinct knots and an array describing the

multiplicity of each distinct knot. Hence the two nodes

struct KNOT_SET_s // Knot set

 JT v9.5 Format Reference

 - 380 -

{

double knots[1]; // $f[]

};

typedef struct KNOT_SET_s *KNOT_SET;

and

struct KNOT_MULT_s // Knot multiplicities

{

short mult[1]; // $n[]

};

typedef struct KNOT_MULT_s *KNOT_MULT;

The data stored in an XT file for a CURVE_DATA node is:

typedef enum

{

SCH_unset = 1, // check has not been performed

SCH_no_self_intersections = 2, // passed checks

SCH_self_intersects = 3, // fails checks

SCH_checked_ok_in_old_version = 4 // see below

}

 SCH_self_int_t;

struct CURVE_DATA_s // curve_data

{

SCH_self_int_t self_int; // $u

Struct HELIX_CU_FORM_s *analytic_form // $p

};

typedef struct CURVE_DATA_s *CURVE_DATA;

The self-intersection enum describes whether or not the geometry has been checked for self-intersections, and

whether such self-intersections were found to exist:

The SCH_checked_ok_in_old_version enum indicates that the self-intersection check has been performed by a

Parasolid version 5 or earlier but not since.

If the analytic_form field is not null, it will point to a HELIX_CU_FORM node, which indicates that the curve

has a helical shape, as follows:

struct HELIX_CU_FORM_s

{

vector axis_pt // $v

 JT v9.5 Format Reference

 - 381 -

vector axis_dir // $v

vector point // $v

char hand // $c

interval turns // $i

double pitch // $f

double tol // $f

};

typedef struct HELIX_CU_FORM_s *HELIX_CU_FORM;

The axis_pt and axis_dir fields define the axis of the helix. The hand field is „+‟ for a right-handed and „-‟ for a

left-handed helix. A representative point on the helix is at turn position zero. The turns field gives the extent of

the helix relative to the point. For instance, an interval [0 10] indicates a start position at the point and an end 10

turns along the axis. Pitch is the distance travelled along the axis in one turn. Tol is the accuracy to which the

owning bcurve fits this specification.

INTERSECTION

An intersection curve is one of the branches of a surface / surface intersection. Parasolid represents these curves

exactly; the information held in an intersection curve node is sufficient to identify the particular intersection

branch involved, to identify the behavior of the curve at its ends, and to evaluate precisely at any point in the

curve. Specifically, the data is:

 The two surfaces involved in the intersection.

 The two ends of the intersection curve. These are referred to as the „limits‟ of the curve. They identify the

particular branch involved.

 An ordered array of points along the curve. This array is referred to as the „chart‟ of the curve. It defines the

parameterization of the curve, which increases as the array index increases.

The natural tangent to the curve at any point (i.e. in the increasing parameter direction) is given by the vector

cross-product of the surface normals at that point, taking into account the senses of the surfaces.

Singular points where the cross-product of the surface normals is zero, or where one of the surfaces is degenerate,

are called terminators. Intersection curves do not contain terminators in their interior. At terminators, the tangent

to the curve is defined by the limit of the curve tangent as the curve parameter approaches the terminating value.

Field name Data type Description

Surface pointer array [2] Surfaces of intersection curve

chart Pointer array of hvecs on the curve – see below

start Pointer start limit of the curve

end Pointer end limit of the curve

struct INTERSECTION_s == ANY_CURVE_s // Intersection

{

int node_id; // $d

 JT v9.5 Format Reference

 - 382 -

union ATTRIB_GROUP_u attributes_groups; // $p

union CURVE_OWNER_u owner; // $p

union CURVE_u next; // $p

union CURVE_u previous; // $p

struct GEOMETRIC_OWNER_s *geometric_owner; // $p

char sense; // $c

union SURFACE_u surface[2]; // $p[2]

struct CHART_s *chart; // $p

struct LIMIT_s *start; // $p

struct LIMIT_s *end; // $p

};

typedef struct INTERSECTION_s *INTERSECTION;

A point on an intersection curve is stored in a data structure called an „hvec‟ (hepta-vec, or 7-vector):

typedef struct hvec_s // hepta_vec

{

vector Pvec; // position

double u[2]; // surface parameters

double v[2];

vector Tangent; // curve tangent

double t; // curve parameter

} hvec;

where

 pvec is a point common to both surfaces

 u[] and v[] are the u and v parameters of the pvec on each of the surfaces.

 tangent is the tangent to the curve at pvec. This will be equal to the (normalised) vector cross product of the

surface normals at pvec, when this cross product is non-zero. These surface normals take account of the

surface sense fields.

 t is the parameter of the pvec on the curve

Note that only the pvec part of an hvec is actually transmitted.

The chart data structure essentially describes a piecewise-linear (chordal) approximation to the true curve. As well

as containing the ordered array of hvecs defining this approximation, it contains extra information pertaining to

the accuracy of the approximation:

struct CHART_s // Chart

{

double Base_parameter; // $f

 JT v9.5 Format Reference

 - 383 -

double Base_scale; // $f

int Chart_count; // $d

double Chordal_error; // $f

double Angular_error; // $f

double Parameter_error[2]; // $f[2]

hvec Hvec[1]; // $h[]

};

where

 base_parameter is the parameter of the first hvec in the chart

 base_scale determines the scale of the parameterisation (see below)

 chart_count is the length of the hvec array

 chordal_error is an estimate of the maximum deviation of the curve from the piecewise-linear approximation

given by the hvec array. It may be null.

 angular_error is the maximum angle between the tangents of two sequential hvecs. It may be null.

 parameter_error[] is always [null, null].

 hvec[] is the ordered array of hvecs.

The limits of the intersection curve are stored in the following data structure:

struct LIMIT_s // Limit

{

char type; // $c

hvec hvec[1]; // $h[]

};

The „type‟ field may take one of the following values

const char SCH_help = 'H'; // help hvec

const char SCH_terminator = 'T'; // terminator

const char SCH_limit = 'L'; // arbitrary limit

const char SCH_boundary = 'B'; // spine boundary

The length of the hvec array depends on the type of the limit.

 a SCH_help limit is an arbitrary point on a closed intersection curve. There will be one hvec in the hvec array,

locating the curve.

 a SCH_terminator limit is a point where one of the surface normals is degenerate, or where their cross-

product is zero. Typically, there will be more than one branch of intersection between the two surfaces at

these singularities. Ther will be two values in the hvec array. The first will be the exact position of the

singularity, and the second will be a point on the curve a small distance away from the terminator. This

„branch point‟ identifies which branch relates to the curve in question. The branch point is the one which

appears in the chart, at the corresponding end – so the singularity lies just outside the parameter range of the

chart.

 JT v9.5 Format Reference

 - 384 -

 a SCH_limit limit is an artificial boundary of an intersection curve on an otherwise potentially infinite branch.

The single hvec describes the end of the curve.

 a SCH_boundary limit is used to describe the end of a degenerate rolling-ball blend. It is not relevant to

intersection curves.

The parameterization of the curve is given as follows. If the chart points are Pi, i = 0 to n, with parameters ti, and

natural tangent vectors Ti, then define

 Ci = | Pi+1 – Pi |

 cos(ai) = Ti . (Pi+1 – Pi)

 cos(bi) = Ti . (Pi – Pi-1)

Then at any chart point Pi the angles ai and bi are the deviations between the tangent at the chart point and the

next and previous chords respectively.

Let f0 = base_scale

 fi = (cos(bi) / cos(ai)) fi-1

Then t0 = base_parameter

 ti = ti-1 + Ci-1 fi-1

The parameter of a point between two chart points is given by projecting the point onto the tangent line at the

previous chart point. The factors fi are chosen so that the parameterization is C1.

TRIMMED_CURVE

A trimmed curve is a bounded region of another curve, referred to as its basis curve. It is defined by the basis

curve and two points and their corresponding parameters. Trimmed curves are most commonly attached to fins

(fins) of tolerant edges in order to specify which portion of the underlying basis curve corresponds to the tolerant

edge. They are necessary since the tolerant vertices of the edge do not necessarily lie exactly on the basis curve;

the „point‟ fields of the trimmed curve lie exactly on the basis curve, and within tolerance of the relevant vertex.

The rules governing the parameter fields and points are:

 point_1 and point_2 correspond to parm_1 and parm_2 respectively.

 If the basis curve has positive sense, parm_2 > parm_1.

 If the basis curve has negative sense, parm_2 < parm_1.

In addition,

For open basis curves.

 Both parm_1 and parm_2 must be in the parameter range of the basis curve.

 point_1 and point_2 must not be equal.

For periodic basis curves

 parm_1 must lie in the base range of the basis curve.

 If the whole basis curve is required then parm_1 and parm_2 should be a period apart and point_1 = point_2.

Equality of parm_1 and parm_2 is not permitted.

 parm_1 and parm_2 must not be more than a period apart.

For closed but non-periodic basis curves

 JT v9.5 Format Reference

 - 385 -

 Both parm_1 and parm_2 must be in the parameter range of the basis curve.

 If the whole of the basis curve is required, parm_1 and parm_2 must lie close enough to each end of the valid

parameter range in order that point_1 and point_2 are coincident to Parasolid tolerance (1.0e-8 by default).

The sense of a trimmed curve is positive.

Field name Data type Description

basis_curve pointer Basis curve

point_1 vector start of trimmed portion

point_2 vector end of trimmed portion

parm_1 double parameter on basis curve corresponding to point_1

parm_2 double parameter on basis curve corresponding to point_2

struct TRIMMED_CURVE_s == ANY_CURVE_s // Trimmed Curve

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union CURVE_OWNER_u owner; // $p

union CURVE_u next; // $p

union CURVE_u previous; // $p

struct GEOMETRIC_OWNER_s *geometric_owner; // $p

char sense; // $c

union CURVE_u basis_curve; // $p

vector point_1; // $v

vector point_2; // $v

double parm_1; // $f

double parm_2; // $f

};

typedef struct TRIMMED_CURVE_s *TRIMMED_CURVE;

PE_CURVE (Foreign Geometry curve)

Foreign geometry in Parasolid is a type used for representing customers‟ in-house proprietary data. It is also

known as PE (parametrically evaluated) geometry. It can also be used internally for representing geometry

connected with this data (for example, offsets of foreign surfaces). These two types of foreign geometry usage are

referred to as „external‟ and „internal‟ PE data respectively. Internal PE curves are not used at present.

Applications not using foreign geometry will never encounter either external or internal PE data structures at Parasolid V9

or beyond.

 JT v9.5 Format Reference

 - 386 -

Field name Data type Description

type char whether internal or external

data pointer internal or external data

tf pointer0 transform applied to geometry

internal geom pointer array reference to other related geometry

union PE_DATA_u // PE_data_u

{

struct EXT_PE_DATA_s *external; // $p

struct INT_PE_DATA_s *internal; // $p

};

typedef union PE_DATA_u PE_DATA;

The PE internal geometry union defined below is used by internal foreign geometry only.

union PE_INT_GEOM_u

{

union SURFACE_u surface; // $p

union CURVE_u curve; // $p

};

typedef union PE_INT_GEOM_u PE_INT_GEOM;

struct PE_CURVE_s == ANY_CURVE_s // PE_curve

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union CURVE_OWNER_u owner; // $p

union CURVE_u next; // $p

union CURVE_u previous; // $p

struct

GEOMETRIC_OWNER_s

*geometric_owner; // $p

char sense; // $c

char type; // $c

union PE_DATA_u data; // $p

struct TRANSFORM_s *tf; // $p

union PE_INT_GEOM_u internal_geom[1]; // $p[]

 JT v9.5 Format Reference

 - 387 -

};

typedef struct PE_CURVE_s *PE_CURVE;

The type of the foreign geometry (whether internal or external) is identified in the PE curve node by means of

the char „type‟ field, taking one of the values

const char SCH_external = 'E'; // external PE geometry

const char SCH_interna = 'I'; // internal PE geometry

The PE_data union is used in a PE curve or surface node to identify the internal or external evaluator

corresponding to the geometry, and also holds an array of real and/or integer parameters to be passed to the

evaluator. The data stored corresponds exactly to that passed to the PK routine PK_FSURF_create when the

geometry is created.

struct EXT_PE_DATA_s // ext_PE_data

{

struct KEY_s *key; // $p

struct REAL_VALUES_s *real_array; // $p

struct INT_VALUES_s *int_array; // $p

};

typedef struct EXT_PE_DATA_s *EXT_PE_DATA;

struct INT_PE_DATA_s // int_PE_data

{

int geom_type; // $d

struct REAL_VALUES_s *real_array; // $p

struct INT_VALUES_s *int_array; // $p

};

typedef struct INT_PE_DATA_s *INT_PE_DATA;

The only internal pe type in use at the moment is the offset PE surface, for which the geom_type is 2.

SP_CURVE

An SP curve is the 3D curve resulting from embedding a 2D curve in the parameter space of a surface.

The 2D curve must be a 2D BCURVE; that is it must either be a rational B curve with a vertex dimensionality of

3, or a non-rational B curve with a vertex dimensionality of 2.

Field name Data type Description

surface pointer surface

b_curve pointer 2D Bcurve

 JT v9.5 Format Reference

 - 388 -

original pointer0 not used

tolerance_to_original double not used

struct SP_CURVE_s == ANY_CURVE_s // SP curve

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union CURVE_OWNER_u owner; // $p

union CURVE_u next; // $p

union CURVE_u previous; // $p

struct

GEOMETRIC_OWNER_s

*geometric_owner; // $p

char sense; // $c

union SURFACE_u surface; // $p

struct B_CURVE_s *b_curve; // $p

union CURVE_u original; // $p

double tolerance_to_original; // $f

};

typedef struct SP_CURVE_s *SP_CURVE;

Surfaces

All surface nodes share the following common fields:

Field name Data type Description

node_id int Integer value unique to surface in part

attributes_groups pointer0 Attributes and groups associated with surface

owner pointer topological owner

next pointer0 next surface in geometry chain

previous pointer0 previous surface in geometry chain

geometric_owner pointer0 geometric owner node

sense char sense of surface: „+‟ or „-‟(see end of Geometry

section)

struct ANY_SURF_s // Any Surface

{

int node_id; // $d

 JT v9.5 Format Reference

 - 389 -

union ATTRIB_GROUP_u attributes_groups; // $p

union SURFACE_OWNER_u owner; // $p

union SURFACE_u next; // $p

union SURFACE_u previous; // $p

struct

GEOMETRIC_OWNER_s

*geometric_owner; // $p

char sense; // $c

};

typedef struct ANY_SURF_s *ANY_SURF;

PLANE

A plane has a parametric representation of the form

R(u, v) = P + uX + vY

where

 P is a point on the plan

 X and Y are axes in the plane.

Field name Data type Description

pvec vector point on the plane

normal vector normal to the plane (a unit vector)

x_axis vector X axis of the plane (a unit vector)

The Y axis in the definition above is the vector cross product of the normal and x_axis.

struct PLANE_s == ANY_SURF_s // Plane

{

 JT v9.5 Format Reference

 - 390 -

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union SURFACE_OWNER_u owner; // $p

union SURFACE_u next; // $p

union SURFACE_u previous; // $p

struct

GEOMETRIC_OWNER_s

*geometric_owner; // $p

char sense; // $c

vector pvec; // $v

vector normal; // $v

vector x_axis; // $v

};

typedef struct PLANE_s *PLANE;

CYLINDER

A cylinder has a parametric representation of the form:

R(u,v) = P + rXcos(u) + rYsin(u) + vA

where

 P is a point on the cylinder axis

 r is the cylinder radius

 A is the cylinder axis

 X and Y are unit vectors such that A, X and Y form an orthonormal set

Field name Data type Description

 JT v9.5 Format Reference

 - 391 -

pvec vector point on the cylinder axis

axis vector direction of the cylinder axis (a unit vector)

radius double radius of cylinder

x_axis vector X axis of the cylinder (a unit vector)

The Y axis in the definition above is the vector cross product of the axis and x_axis.

struct CYLINDER_s == ANY_SURF_s // Cylinder

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union SURFACE_OWNER_u owner; // $p

union SURFACE_u next; // $p

union SURFACE_u previous; // $p

struct GEOMETRIC_OWNER_s *geometric_owner; // $p

char sense; // $c

vector pvec; // $v

vector axis; // $v

double radius; // $f

vector x_axis; // $v

};

typedef struct CYLINDER_s *CYLINDER;

CONE

A cone in Parasolid is only half of a mathematical cone. By convention, the cone axis points away from the half

of the cone in use. A cone has a parametric representation of the form:

R(u, v) = P - vA + (Xcos(u) + Ysin(u))(r + vtan(a))

where

 P is a point on the cone axis

 r is the cone radius at the point P

 A is the cone axis

 X and Y are unit vectors such that A, X and Y form an orthonormal set, i.e. Y = A x X.

 JT v9.5 Format Reference

 - 392 -

 a is the cone half angle.

Field name Data type Description

pvec vector point on the cone axis

axis vector direction of the cone axis (a unit vector)

radius double radius of the cone at its pvec

sin_half_angle double sine of the cone‟s half angle

cos_half_angle double cosine of the cone‟s half angle

x_axis vector X axis of the cone (a unit vector)

The Y axis in the definition above is the vector cross product of the axis and x_axis.

struct CONE_s == ANY_SURF_s // Cone

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union SURFACE_OWNER_u owner; // $p

union SURFACE_u next; // $p

union SURFACE_u previous; // $p

struct

GEOMETRIC_OWNER_s

*geometric_owner; // $p

char sense; // $c

vector pvec; // $v

vector axis; // $v

double radius; // $f

double sin_half_angle; // $f

 JT v9.5 Format Reference

 - 393 -

double cos_half_angle; // $f

vector x_axis; // $v

};

typedef struct CONE_s *CONE;

SPHERE

A sphere has a parametric representation of the form:

R(u, v) = C + (Xcos(u) + Ysin(u)) rcos(v) + rAsin(v)

where

 C is centre of the sphere

 r is the sphere radius

 A, X and Y form an orthonormal axis set.

Field name Data type Description

centre vector centre of the sphere

radius double radius of the sphere

axis vector A axis of the sphere (a unit vector)

x_axis vector X axis of the sphere (a unit vector)

The Y axis of the sphere is the vector cross product of its A and X axes.

struct SPHERE_s == ANY_SURF_s // Sphere

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union SURFACE_OWNER_u owner; // $p

union SURFACE_u next; // $p

union SURFACE_u previous; // $p

 JT v9.5 Format Reference

 - 394 -

struct

GEOMETRIC_OWNER_s

*geometric_owner; // $p

char sense; // $c

vector centre; // $v

double radius; // $f

vector axis; // $v

vector x_axis; // $v

};

typedef struct SPHERE_s *SPHERE;

TORUS

A torus has a parametric representation of the form

R(u, v) = C + (X cos(u) + Y sin(u))(a + b cos(v)) + b A sin(v)

where

 C is center of the torus

 A is the torus axis

 a is the major radius

 b is the minor radius

 X and Y are unit vectors such that A, X and Y form an orthonormal set.

In Parasolid, there are three types of torus:

Doughnut - the torus is not self-intersecting (a > b)

Apple - the outer part of a self-intersecting torus (a <= b, a > 0)

Lemon - the inner part of a self-intersecting torus (a < 0, |a| < b)

The limiting case a = b is allowed; it is called an „osculating apple‟, but there is no „lemon‟ surface corresponding

to this case.

The limiting case a = 0 cannot be represented as a torus; this is a sphere.

Field name Data type Description

centre vector centre of the torus

axis vector axis of the torus (a unit vector)

major_radius double major radius

minor_radius double minor radius

x_axis vector X axis of the torus (a unit vector)

The Y axis in the definition above is the vector cross product of the axis of the torus and the x_axis.

 JT v9.5 Format Reference

 - 395 -

struct TORUS_s == ANY_SURF_s // Torus

{

 int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union SURFACE_OWNER_u owner; // $p

union SURFACE_u next; // $p

union SURFACE_u previous; // $p

struct GEOMETRIC_OWNER_s *geometric_owner; // $p

char sense; // $c

vector centre; // $v

vector axis; // $v

double major_radius; // $f

double minor_radius; // $f

vector x_axis; // $v

};

typedef struct TORUS_s *TORUS;

BLENDED_EDGE (Rolling Ball Blend)

Parasolid supports exact rolling ball blends. They have a parametric representation of the form

R(u, v) = C(u) + rX(u)cos(v a(u)) + rY(u)sin(va(u))

where

 C(u) is the spine curve

 r is the blend radius

 X(u) and Y(u) are unit vectors such that C‟(u) . X(u) = C‟(u) . Y(u) = 0

 a(u) is the angle subtended by points on the boundary curves at the spine

X, Y and a are expressed as functions of u, as their values change with u.

The spine of the rolling ball blend is the center line of the blend; i.e. the path along which the center of the ball moves.

 JT v9.5 Format Reference

 - 396 -

Field name Data type Description

type char type of blend: „R‟ or „E‟

surface pointer[2] supporting surfaces (adjacent to original edge)

spine pointer spine of blend

range double[2] offsets to be applied to surfaces

thumb_weight double[2] always [1,1]

boundary pointer0[2] always [0, 0]

start pointer0 Start LIMIT in certain degenerate cases

end pointer0 End LIMIT in certain degenerate cases

struct BLENDED_EDGE_s == ANY_SURF_s // Blended edge

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union SURFACE_OWNER_u owner; // $p

union SURFACE_u next; // $p

union SURFACE_u previous; // $p

struct

GEOMETRIC_OWNER_s

*geometric_owner; // $p

char sense; // $c

char blend_type; // $c

union SURFACE_u surface[2]; // $p[2]

union CURVE_u spine; // $p

double range[2]; // $f[2]

double thumb_weight[2]; // $f[2]

union SURFACE_u boundary[2]; // $p[2]

struct LIMIT_s *start; // $p

struct LIMIT_s *end; // $p

};

typedef struct BLENDED_EDGE_s *BLENDED_EDGE;

.

The parameterisation of the blend is as follows. The u parameter is inherited from the spine, the constant u lines

being circles perpendicular to the spine curve. The v parameter is zero at the blend boundary on the first surface,

and one on the blend boundary on the second surface; unless the sense of the spine curve is negative, in which

case it is the other way round. The v parameter is proportional to the angle around the circle.

Transmit files can contain blends of the following types:

 JT v9.5 Format Reference

 - 397 -

const char SCH_rolling_ball = 'R'; // rolling ball blend

const char SCH_cliff_edge = 'E'; // cliff edge blend

For rolling ball blends, the spine curve will be the intersection of the two surfaces obtained by offsetting the

supporting surfaces by an amount given by the respective entry in range[]. Note that the offsets to be applied may

be positive or negative, and that the sense of the surface is significant; i.e. the offset vector is the natural unit

surface normal, times the range, times –1 if the sense is negative.

For cliff edge blends, one of the surfaces will be a blended_edge with a range of [0,0]; its spine will be the cliff

edge curve, and its supporting surfaces will be the surfaces of the faces adjacent to the cliff edge. Its type will be

R.

The limit fields will only be non-null if the spine curve is periodic but the edge curve being blended has

terminators – for example if the spine is elliptical but the blend degenerates. In this case the two LIMIT nodes, of

type „L‟, determine the extent of the spine.

BLEND_BOUND (Blend boundary surface)

A blend_bound surface is a construction surface, used to define the boundary curve where a blend becomes

tangential to its supporting surface. It is an implicit surface defined internally so that it intersects one of the

supporting surfaces along the boundary curve. It is orthogonal to the blend and the supporting surface along this

boundary curve. Since the actual shape of the surface is not significant for the blend geometry, it is not described

here.

Blend boundary surfaces are most commonly referenced by the intersection curve representing the boundary

curve of the blend.

The data stored in an XT file for a blend_bound is only that necessary to identify the relevant blend and

supporting surface:

 JT v9.5 Format Reference

 - 398 -

Field name Data type Description

boundary short index into supporting surface array

blend pointer corresponding blend surface

struct BLEND_BOUND_s == ANY_SURF_s // Blend boundary

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union SURFACE_OWNER_u owner; // $p

union SURFACE_u next; // $p

union SURFACE_u previous; // $p

struct

GEOMETRIC_OWNER_s

*geometric_owner; // $p

char sense; // $c

short boundary; // $n

union SURFACE_u blend; // $p

};

typedef struct BLEND_BOUND_s *BLEND_BOUND;

The supporting surface corresponding to the blend_bound is

blend_bound->blend.blended_edge->surface[1 - blend_bound->boundary].

OFFSET_SURF

An offset surface is the result of offsetting a surface a certain distance along its normal, taking into account the

surface sense. It inherits the parameterization of this underlying surface.

Field name Data type Description

check char check status

true_offset logical not used

surface pointer underlying surface

offset double signed offset distance

scale double for internal use only – may be set to null

struct OFFSET_SURF_s == ANY_SURF_s // Offset surface

{

int node_id; // $d

 JT v9.5 Format Reference

 - 399 -

union ATTRIB_GROUP_u attributes_groups; // $p

union SURFACE_OWNER_u owner; // $p

union SURFACE_u next; // $p

union SURFACE_u previous; // $p

struct GEOMETRIC_OWNER_s *geometric_owner; // $p

char sense; // $c

char check; // $c

logical true_offset; // $l

union SURFACE_u surface; // $p

double offset; // $f

double scale; // $f

};

typedef struct OFFSET_SURF_s *OFFSET_SURF;

The offset surface is subject to the following restrictions:

 The offset distance must not be within modeller linear resolution of zero

 The sense of the offset surface must be the same as that of the underlying surface

 Offset surfaces may not share a common underlying surface

The „check‟ field may take one of the following values:

const char SCH_valid = 'V'; // valid

const char SCH_invalid = 'I'; // invalid

const char SCH_unchecked = 'U'; // has not been checked

B_SURFACE

Parasolid supports B spline curves in full NURBS format.

Field name Data type Description

nurbs pointer Geometric definition

data pointer0 Auxiliary information

struct B_SURFACE_s == ANY_SURF_s // B surface

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union SURFACE_OWNER_u owner; // $p

 JT v9.5 Format Reference

 - 400 -

union SURFACE_u next; // $p

union SURFACE_u previous; // $p

struct GEOMETRIC_OWNER_s *geometric_owner; // $p

char sense; // $c

struct NURBS_SURF_s *nurbs; // $p

struct SURFACE_DATA_s *data; // $p

};

typedef struct B_SURFACE_s *B_SURFACE;

The data stored in an XT file for a NURBS surface is

Field name Data type Description

u_periodic logical true if surface is periodic in u parameter

v_periodic logical true if surface is periodic in v parameter

u_degree short u degree of the surface

v_degree short v degree of the surface

n_u_vertices int number of control vertices („poles‟) in u direction

n_v_vertices int number of control vertices („poles‟) in v direction

u_knot_type byte form of u knot vector – see “B curve”

v_knot_type byte form of v knot vector

n_u_knots int number of distinct u knots

n_v_knots int number of distinct v knots

rational logical true if surface is rational

u_closed logical true if surface is closed in u

v_closed logical true if surface is closed in v

surface_form byte shape of surface, if special

vertex_dim short dimension of control vertices

bspline_vertices pointer control vertices (poles) node

u_knot_mult pointer multiplicities of u knot vector

v_knot_mult pointer multiplicities of v knot vector

u_knots pointer u knot vector

v_knots pointer v knot vector

The surface form enum is defined below.

typedef enum

 JT v9.5 Format Reference

 - 401 -

{

SCH_unset = 1, // Unknown

SCH_arbitrary = 2, // No particular shape

SCH_planar = 3,

SCH_cylindrical = 4,

SCH_conical = 5,

SCH_spherical = 6,

SCH_toroidal = 7,

SCH_surf_of_revolution = 8,

SCH_ruled = 9,

SCH_quadric = 10,

SCH_swept = 11

}

 SCH_surface_form_t;

struct NURBS_SURF_s // NURBS surface

{

logical u_periodic; // $l

logical v_periodic; // $l

short u_degree; // $n

short v_degree; // $n

int n_u_vertices; // $d

int n_v_vertices; // $d

SCH_knot_type_t u_knot_type; // $u

SCH_knot_type_t v_knot_type; // $u

int n_u_knots; // $d

int n_v_knots; // $d

logical rational; // $l

logical u_closed; // $l

logical v_closed; // $l

SCH_surface_form_t surface_form; // $u

short vertex_dim; // $n

struct BSPLINE_VERTICES_s *bspline_vertices; // $p

struct KNOT_MULT_s *u_knot_mult; // $p

 JT v9.5 Format Reference

 - 402 -

struct KNOT_MULT_s *v_knot_mult; // $p

struct KNOT_SET_s *u_knots; // $p

struct KNOT_SET_s *v_knots; // $p

};

typedef struct NURBS_SURF_s *NURBS_SURF;

The „bspline_vertices‟, „knot_set‟ and „knot_mult‟ nodes and the „knot_type‟ enum are described in the

documentation for BCURVE.

The „surface data‟ field in a B surface node is a structure designed to hold auxiliary or „derived‟ data about the

surface: it is not a necessary part of the definition of the B surface. It may be null, or the majority of its individual

fields may be null. It is recommended that it only be set by Parasolid.

struct SURFACE_DATA_s // auxiliary surface data

{

interval original_uint; // $i

interval original_vint; // $i

interval extended_uint; // $i

interval extended_vint; // $i

SCH_self_int_t self_int; // $u

char original_u_start; // $c

char original_u_end; // $c

char original_v_start; // $c

char original_v_end; // $c

char extended_u_start; // $c

char extended_u_end; // $c

char extended_v_start; // $c

char extended_v_end; // $c

char analytic_form_type; // $c

char swept_form_type; // $c

char spun_form_type; // $c

char blend_form_type; // $c

void *analytic_form; // $p

void *swept_form; // $p

void *spun_form; // $p

void *blend_form; // $p

};

typedef struct SURFACE_DATA_s *SURFACE_DATA;

 JT v9.5 Format Reference

 - 403 -

The „original_‟ and „extended_‟ parameter intervals and corresponding character fields original_u_start etc. are all

connected with Parasolid‟s ability to extend B surfaces when necessary – functionality which is commonly

exploited in “local operation” algorithms for example. This is done automatically without the need for user

intervention.

In cases where the required extension can be performed by adding rows or columns of control points, then the

nurbs data will be modified accordingly – this is referred to as an „explicit‟ extension. In some rational B surface

cases, explicit extension is not possible - in these cases, the surface will be „implicitly‟ extended. When a B

surface is implicitly extended, the nurbs data is not changed, but it will be treated as being larger by allowing out-

of-range evaluations on the surface. Whenever an explicit or implicit extension takes place, it is reflected in the

following fields:

 “original_u_int” and “original_v_int” are the original valid parameter ranges for a B surface before it was

extended

 “extended_u_int” and “extended_v_int” are the valid parameter ranges for a B surface once it has been

extended.

The character fields „original_u_start‟ etc. all refer to the status of the corresponding parameter boundary of the

surface before or after an extension has taken place. For B surfaces, the character can have one of the following

values:

const char SCH_degenerate = 'D'; // Degenerate edge

const char SCH_periodic = 'P'; // Periodic parameterisation

const char SCH_bounded = 'B'; // Parameterisation bounded

const char SCH_closed = 'C'; // Closed, but not periodic

The separate fields original_u_start and extended_u_start etc. are necessary because an extension may cause the

corresponding parameter boundary to become degenerate.

If the surface_data node is present, then the original_u_int, original_v_int, original_u_start, original_u_end,

original_v_start and original_v_end fields should be set to their appropriate values. If the surface has not been

extended, the extended_u_int and extended_v_int fields should contain null, and the extended_u_start etc. fields

should contain

const char SCH_unset_char = '?'; // generic uninvestigated value

As soon as any parameter boundary of the surface is extended, all the fields should be set, regardless of whether

the corresponding boundary has been affected by the extension.

The SCH_self_int_t enum is documented in the corresponding curve_data structure under B curve.

The „swept_form_type‟, „spun_form_type‟ and „blend_form_type‟ characters and the corresponding pointers

swept_form, spun_form and blend_form, are for future use and are not implemented in Parasolid V12.0. The

character fields should be set to SCH_unset_char („?‟) and the pointers should be set to null pointer.

If the analytic_form field is not null, it will point to a HELIX_SU_FORM node, which indicates that the surface

has a helical shape. In this case the analytic_form_type field will be set to „H‟.

struct HELIX_SU_FORM_s

{

vector axis_pt // $v

 JT v9.5 Format Reference

 - 404 -

vector axis_dir // $v

char hand // $c

interval turns // $i

double pitch // $f

double gap // $f

double tol // $f

};

typedef struct HELIX_SU_FORM_s *HELIX_SU_FORM;

The axis_pt and axis_dir fields define the axis of the helix. The hand field is „+‟ for a right-handed and „-‟ for a

left-handed helix. The turns field gives the extent of the helix relative to the profile curve which was used to

generate the surface. For instance, an interval [0 10] indicates a start position at the profile curve and an end 10

turns along the axis. Pitch is the distance travelled along the axis in one turn. Tol is the accuracy to which the

owning bsurface fits this specification. Gap is for future expansion and will currently be zero. The v parameter

increases in the direction of the axis.

SWEPT_SURF

A swept surface has a parametric representation of the form:

R(u, v) = C(u) + vD

where

 C(u) is the section curve.

 D is the sweep direction (unit vector).

 C must not be an intersection curve or a trimmed curve.

Field name Data type Description

section pointer section curve

sweep vector sweep direction (a unit vector)

scale double for internal use only – may be set to null

struct SWEPT_SURF_s == ANY_SURF_s // Swept surface

 JT v9.5 Format Reference

 - 405 -

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union SURFACE_OWNER_u owner; // $p

union SURFACE_u next; // $p

union SURFACE_u previous; // $p

struct

GEOMETRIC_OWNER_s

*geometric_owner; // $p

char sense; // $c

union CURVE_u section; // $p

vector sweep; // $v

double scale; // $f

};

typedef struct SWEPT_SURF_s *SWEPT_SURF;

SPUN_SURF

A spun surface has a parametric representation of the form:

R(u, v) = Z(u) + (C(u) - Z(u))cos(v) + A X (C(u) - Z(u)) sin(v)

where

 C(u) is the profile curve

 Z(u) is the projection of C(u) onto the spin axis

 A is the spin axis direction (unit vector)

 C must not be an intersection curve or a trimmed curve

NOTE: Z(u) = P + ((C(u) - P) . A)A where P is a reference point on the axis.

 JT v9.5 Format Reference

 - 406 -

Field name Data type Description

profile pointer profile curve

base vector point on spin axis

axis vector spin axis direction (a unit vector)

start vector position of degeneracy at low u (may be null)

end vector position of degeneracy at low v (may be null)

start_param double curve parameter at low u degeneracy (may be null)

end_param double curve parameter at high u degeneracy (may be null)

x_axis vector unit vector in profile plane if common with spin axis

scale double for internal use only – may be set to null

struct SPUN_SURF_s == ANY_SURF_s // Spun surface

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union SURFACE_OWNER_u owner; // $p

union SURFACE_u next; // $p

union SURFACE_u previous; // $p

struct

GEOMETRIC_OWNER_s

*geometric_owner; // $p

char sense; // $c

union CURVE_u profile; // $p

vector base; // $v

vector axis; // $v

vector start; // $v

vector end; // $v

double start_param; // $f

double end_param; // $f

vector x_axis; // $v

double scale; // $f

};

typedef struct SPUN_SURF_s *SPUN_SURF;

The „start‟ and „end‟ vectors correspond to physical degeneracies on the spun surface caused by the profile curve

crossing the spin axis at that point. The values start_param and end_param are the corresponding parameters on

the curve. These parameter values define the valid range for the u parameter of the surface. If either value is null,

then the valid range for u is infinite in that direction. For example, for a straight line profile curve intersecting the

 JT v9.5 Format Reference

 - 407 -

spin axis at the parameter t=1, values of null for start_param and 1 for end_param would define a cone with u

parameterisation (-infinity, 1].

If the profile curve lies in a plane containing the spin axis, then x_axis must be set to a vector perpendicular to the

spin axis and in the plane of the profile, pointing from the spin axis to a point on the profile curve in the valid

range. If the profile curve is not planar, or its plane does not contain the spin axis, then x_axis should be set to

null.

PE_SURF (Foreign Geometry surface)

Foreign (or „PE‟) geometry in Parasolid is a type used for representing customers‟ in-house proprietary data. It

can also be used internally for representing geometry connected with this data (for example, offset foreign

surfaces). These two types of foreign geometry usage are referred to as „external‟ and „internal‟ respectively. The

only internal PE surface is the offset PE surface.

Applications not using foreign geometry will never encounter either external or internal PE data structures at

Parasolid V9 or beyond.

Field name Data type Description

type char whether internal or external

data pointer internal or external data

tf pointer0 transform applied to geometry

internal geom pointer array reference to other related geometry

struct PE_SURF_s == ANY_SURF_s // PE_surface

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union SURFACE_OWNER_u owner; // $p

union SURFACE_u next; // $p

union SURFACE_u previous; // $p

struct GEOMETRIC_OWNER_s *geometric_owner; // $p

char sense; // $c

char type; // $c

union PE_DATA_u data; // $p

struct TRANSFORM_s *tf; // $p

union PE_INT_GEOM_u internal_geom[1]; // $p[]

};

typedef struct PE_SURF_s *PE_SURF;

The PE_DATA and PE_INT_GEOM unions are defined under „PE curve‟.

 JT v9.5 Format Reference

 - 408 -

Point

Field name Data type Description

node_id int integer unique within part

attributes_groups pointer0 attributes and groups associated with point

owner pointer Owner

next pointer0 next point in chain

previous pointer0 previous point in chain

pvec vector position of point

union POINT_OWNER_u

{

struct VERTEX_s *vertex;

struct BODY_s *body;

struct ASSEMBLY_s *assembly;

struct WORLD_s *world;

};

struct POINT_s // Point

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union POINT_OWNER_u owner; // $p

struct POINT_s *next; // $p

struct POINT_s *previous; // $p

vector pvec; // $v

};

typedef struct POINT_s *POINT;

Transform

Field name Data type Description

node_id int integer unique within part

owner pointer owning instance or world

next pointer0 next transform in chain

 JT v9.5 Format Reference

 - 409 -

previous pointer0 previous pointer in chain

rotation_matrix double[3][3] rotation component

translation_vector vector translation component

scale double scaling factor

flag byte binary flags indicating non-trivial components

perspective_vector vector perspective vector (always null vector)

The transform acts as

 x‟ = (rotation_matrix . x + translation_vector) * scale

The „flag‟ field contains various bit flags which identify the components of the transformation:

Flag Name Binary Value Description

translation 00001 set if translation vector non-zero

rotation 00010 set if rotation matrix is not the identity

scaling 00100 set if scaling component is not 1.0

reflection 01000 set if determinant of rotation matrix is negative

general affine 10000 set if the rotation_matrix is not a rigid rotation

union TRANSFORM_OWNER_u

{

struct INSTANCE_s *instance;

struct WORLD_s *world;

};

struct TRANSFORM_s // Transformation

{

int node_id; // $d

union

TRANSFORM_OWNER_u

 owner; // $p

struct TRANSFORM_s *next; // $p

struct TRANSFORM_s *previous; // $p

double rotation_matrix[3][3]; // $f[9]

 JT v9.5 Format Reference

 - 410 -

vector translation_vector; // $v

double scale; // $f

unsigned flag; // $d

vector perspective_vector; // $v

};

typedef struct TRANSFORM_s *TRANSFORM;

Curve and Surface Senses

The „natural‟ tangent to a curve is that in the increasing parameter direction, and the „natural‟ normal to a surface

is in the direction of the cross-product of dP/du and dP/dv. For some purposes these are modified by the curve

and surfaces senses, respectively – for example in the definition of blend surfaces, offset surfaces and intersection

curves.

At the PK interface, the edge/curve and face/surface sense orientations are regarded as properties of the

topology/geometry combination. In the XT format, this orientation information resides in the curves, surfaces and

faces as follows:

The edge/curve orientation is stored in the curve->sense field. The face/surface orientation is a combination of

sense flags stored in the face->sense and surface->sense fields, so the face/surface orientation is true (i.e. the face

normal is parallel to the natural surface normal) if neither, or both, of the face and surface senses are positive.

Geometric_owner

Where geometry has dependants, the dependants point back to the referencing geometry by means of Geometric

Owner nodes. Each geometric node points to a doubly-linked ring of Geometric Owner nodes which identify its

referencing geometry. Referenced geometry is as follows:

Intersection: 2 surfaces

SP-curve: Surface

Trimmed curve: basis curve

Blended edge: 2 supporting surfaces, 2 blend_bound surfaces, 1 spine curve

Blend bound: blend surface

Offset surface: underlying surface

Swept surface: section curve

Spun surface: profile curve

Note that the 2D B-curve referenced by an SP-curve is not a dependent in this sense, and does not need a

geometric owner node.



 JT v9.5 Format Reference

 - 411 -

 Field name  Dat

a type

 Description

 owner  poin

ter

 referencing geometry

 next  poin

ter

 next in ring of geometric owners referring to the

same geometry

 previous  poin

ter

 previous in above ring

 shared_geome

try

 poin

ter

 referenced (dependent) geometry



struct GEOMETRIC_OWNER_s // geometric owner of geometry

{

union GEOMETRY_u owner; // $p

struct GEOMETRIC_OWNER_s *next; // $p

struct GEOMETRIC_OWNER_s *previous; // $p

union GEOMETRY_u shared_geometry; // $p

};

typedef struct GEOMETRIC_OWNER_s *GEOMETRIC_OWNER;

 JT v9.5 Format Reference

 - 412 -

Topology

In the following tables, „ignore‟ means this may be set to null (zero) if an XT file is created outside Parasolid. For

an XT file created by Parasolid, this may take any value, but should be ignored.

Unless otherwise stated, all chains of nodes are doubly-linked and null-terminated.

 WORLD

 Field name  Type  Description

 assembly  pointer0  Head of chain of assemblies

 attribute  pointer0  Ignore

 body  pointer0  Head of chain of bodies

 transform  pointer0  Head of chain of transforms

 surface  pointer0  Head of chain of surfaces

 curve  pointer0  Head of chain of curves

 point  pointer0  Head of chain of points

 alive  logical  True unless partition is at initial pmark

 attrib_def  pointer0  Head of chain of attribute definitions

 highest_id  int  Highest pmark id in partition

 current_id  int  Id of current pmark

 index_map_offset  int  Must be set to 0

 index_map  pointer0  Must be set to null

 schema_embedding_m

ap

 pointer0  Must be set to null



The World node is only used when a partition is transmitted. Because some of the attribute definitions may be

referenced by nodes which have been deleted, but which may reappear on rollback, the attribute definitions are

chained off the World node rather than simply being referenced by attributes.

The fields index_map_offset, index_map, and schema_embedding_map are used for Indexed Transmit;

applications writing XT data must set them to 0 and null.

struct WORLD_s // World

{

struct ASSEMBLY_s *assembly; // $p

struct ATTRIBUTE_s *attribute; // $p

 JT v9.5 Format Reference

 - 413 -

struct BODY_s *body; // $p

struct TRANSFORM_s *transform; // $p

union SURFACE_u surface; // $p

union CURVE_u curve; // $p

struct POINT_s *point; // $p

logical alive; // $l

struct ATTRIB_DEF_s *attrib_def; // $p

int highest_id; // $d

int current_id; // $d

};

typedef struct WORLD_s *WORLD;

ASSEMBLY

highest_node_id int Highest node-id in assembly

attributes_groups pointer0 Head of chain of attributes of, and groups in, assembly

attribute_chains pointer0 List of attributes, one for each attribute definition used in

the assembly

list pointer0 Null

surface pointer0 Head of construction surface chain

curve pointer0 Head of construction curve chain

point pointer0 Head of construction point chain

key pointer0 Ignore

res_size double Value of „size box‟ when transmitted (normally 1000)

res_linear double Value of modeller linear precision when transmitted

(normally 1.0e-8).

ref_instance pointer0 Head of chain of instances referencing this assembly

next pointer0 Ignore

previous pointer0 Ignore

state byte Set to 1.

owner pointer0 Ignore

type byte Always 1.

sub_instance pointer0 Head of chain of instances in assembly

The value of the „state‟ field should be ignored, as should any nodes of type „KEY‟ referenced by the assembly. If

an XT file is constructed outside Parasolid, the state field should be set to 1, and the key to null.

 JT v9.5 Format Reference

 - 414 -

The highest_node_id gives the highest node-id of any node in the assembly. Certain nodes within the assembly

(namely instances, transforms, geometry, attributes and groups) have unique node-ids which are non-zero

integers.

typedef enum

{

SCH_collective_assembly = 1,

SCH_conjunctive_assembly = 2,

SCH_disjunctive_assembly = 3

}

SCH_assembly_type;

typedef enum

{

SCH_new_part = 1,

SCH_stored_part = 2,

SCH_modified_part = 3,

SCH_anonymous_part = 4,

SCH_unloaded_part = 5

}

SCH_part_state;

struct ASSEMBLY_s // Assembly

{

int highest_node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

struct LIST_s *attribute_chains; // $p

struct LIST_s *list; // $p

union SURFACE_u surface; // $p

union CURVE_u curve; // $p

struct POINT_s *point; // $p

struct KEY_s *key; // $p

double res_size; // $f

double res_linear; // $f

struct INSTANCE_s *ref_instance; // $p

 JT v9.5 Format Reference

 - 415 -

struct ASSEMBLY_s *next; // $p

struct ASSEMBLY_s *previous; // $p

SCH_part_state state; // $u

struct WORLD_s *owner; // $p

SCH_assembly_type type; // $u

struct INSTANCE_s *sub_instance; // $p

};

typedef struct ASSEMBLY_s *ASSEMBLY;

struct KEY_s // Key

{

string[1]; char // $c[]

};

typedef struct KEY_s *KEY;

INSTANCE

Field name Type Description

node_id int Node-id

attributes_groups pointer0 Head of chain of attributes of instance and

member_of_groups of instance

type byte Always 1

part pointer Part referenced by instance

transform pointer0 Transform of instance

assembly pointer Assembly in which instance lies

next_in_part pointer0 Next instance in assembly

prev_in_part pointer0 Previous instance in assembly

next_of_part pointer0 Next instance of instance->part

prev_of_part pointer0 Previous instance of instance->part

typedef enum

{

SCH_positive_instance = 1,

SCH_negative_instance = 2

}

SCH_instance_type;

 JT v9.5 Format Reference

 - 416 -

union PART_u

{

struct BODY_s *body;

struct ASSEMBLY_s *assembly;

};

typedef union PART_u PART;

struct INSTANCE_s // Instance

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

SCH_instance_type type; // $u

union PART_u part; // $p

struct TRANSFORM_s *transform; // $p

struct ASSEMBLY_s *assembly; // $p

struct INSTANCE_s *next_in_part; // $p

struct INSTANCE_s *prev_in_part; // $p

struct INSTANCE_s *next_of_part; // $p

struct INSTANCE_s *prev_of_part; // $p

};

typedef struct INSTANCE_s *INSTANCE;

BODY

Field name Type Description

highest_node_id int Highest node-id in body

attributes_groups pointer0 Head of chain of attributes of, and groups in,

body

attribute_chains pointer0 List of attributes, one for each attribute definition

used in the body

surface pointer0 Head of construction surface chain

curve pointer0 Head of construction curve chain

point pointer0 Head of construction point chain

key pointer0 Ignore

 JT v9.5 Format Reference

 - 417 -

res_size double Value of „size box‟ when transmitted (normally

1000)

res_linear double Value of modeller linear precision when

transmitted (normally 1.0e-8)

ref_instance pointer0 Head of chain of instances referencing this part

next pointer0 Ignore

previous pointer0 Ignore

state byte Set to 1 (see below)

owner pointer0 Ignore

body_type byte Body type

nom_geom_state byte Set to 1 (for future use)

shell pointer0 For general bodies: null

For solid bodies: the first shell in one of the solid

regions

For other bodies: the first shell in one of the

regions

This field is obsolete, and should be ignored by

applications reading XT files. When writing XT

files, it must be set as above.

boundary_surface pointer0 Head of chain of surfaces attached directly or

indirectly to faces or edges or fins

boundary_curve pointer0 Head of chain of curves attached directly or

indirectly to edges or faces or fins

boundary_point pointer0 Head of chain of points attached to vertices

region pointer Head of chain of regions in body; this is the

infinite region

edge pointer0 Head of chain of all non-wireframe edges in body

vertex pointer0 Head of chain of all vertices in body

index_map_offset int Must be set to 0

index_map pointer0 Must be set to null

node_id_index_map pointer0 Must be set to null

schema_embedding_map pointer0 Must be set to null

The value of the „state‟ field should be ignored, as should any nodes of type „KEY‟ referenced by the body. If an

XT file is constructed outside Parasolid, the state field should be set to 1, and the key to null.

 JT v9.5 Format Reference

 - 418 -

The highest_node_id gives the highest node of any node in this body. Most nodes in a body which are visible at

the PK interface have node-ids, which are non-zero integers unique to that node within the body. Applications

writing XT files must ensure that node-ids are present and distinct. The details of which nodes have node ids are

given in an appendix.

The fields index_map_offset, index_map, node_id_index_map, and schema_embedding_map are used for

Indexed Transmit; applications writing XT files must ensure that these fields are set to 0 and null.

typedef enum

{

SCH_solid_body = 1,

SCH_wire_body = 2,

SCH_sheet_body = 3,

SCH_general_body = 6

}

SCH_body_type;

typedef short short enum

 {

 SCH_nom_geom_off = 1, --- Entirely off

 SCH_nom_geom_on = 2 --- Entirely on

 }

 SCH_nom_geom_state_t;

struct BODY_s // Body

{

int highest_node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

struct LIST_s *attribute_chains; // $p

union SURFACE_u surface; // $p

union CURVE_u curve; // $p

struct POINT_s *point; // $p

struct KEY_s *key; // $p

double res_size; // $f

double res_linear; // $f

struct INSTANCE_s *ref_instance; // $p

struct BODY_s *next; // $p

struct BODY_s *previous; // $p

 JT v9.5 Format Reference

 - 419 -

SCH_part_state state; // $u

struct WORLD_s *owner; // $p

SCH_body_type body_type; // $u

SCH_nom_geom_state_t nom_geom_state; // $u

struct SHELL_s *shell; // $p

union SURFACE_u boundary_surface; // $p

union CURVE_u boundary_curve; // $p

struct POINT_s *boundary_point; // $p

struct REGION_s *region; // $p

struct EDGE_s *edge; // $p

struct VERTEX_s *vertex; // $p

int index_map_offset; // $d

struct INT_VALUES_s *index_map; // $p

struct INT_VALUES_s *node_id_index_map; // $p

struct INT_VALUES_s *schema_embedding_map; // $p

};

typedef struct BODY_s *BODY;

 JT v9.5 Format Reference

 - 420 -

Attaching Geometry to Topology

The faces which reference a surface are chained together, surface->owner is the head of this chain. Similarly the

edges which reference the same curve are chained together. Fins do not share curves.

Geometry in parts may be chained into one of the three boundary geometry chains, or one of the three

construction geometry chains. A geometric node will fall into one of the following cases:

Geometry Owner Whether chained

Attached to face face In boundary_surface chain

Attached to edge or fin edge or fin In boundary_curve chain

Attached to vertex vertex In boundary_point chain

Indirectly attached to

face or edge or fin

body In boundary_surface chain or

boundary_curve chain

Construction geometry body or

assembly

In surface, curve or point chain

2D B-curve in SP-curve null Not chained

Here „indirectly attached‟ means geometry which is a dependent of a dependent of (... etc) of geometry attached to

an edge, face or fin.

Geometry in a construction chain may reference geometry in a boundary chain, but not vice-versa.

REGION

Field name Type Description

node_id int Node-id

attributes_groups pointer0 Head of chain of attributes of region and

member_of_groups of region

body pointer Body of region

next pointer0 Next region in body

prev pointer0 Previous region in body

shell pointer0 Head of singly-linked chain of shells in region

type char Region type – solid („S‟) or void („V‟)

struct REGION_s // Region

{

int node_id; // $d

 JT v9.5 Format Reference

 - 421 -

union ATTRIB_GROUP_u attributes_groups; // $p

struct BODY_s *body; // $p

struct REGION_s *next; // $p

struct REGION_s *previous; // $p

struct SHELL_s *shell; // $p

char type; // $c

};

typedef struct REGION_s *REGION;

SHELL

Field name Type Description

node_id int Node-id

attributes_groups pointer0 Head of chain of attributes of shell

body pointer0 For shells in wire and sheet bodies, and for shells

bounding a solid region of a solid body, this is set to

the body of the shell. For shells in general bodies, or

void shells in solid bodies, it is null.

This field is obsolete, and should be ignored by

applications reading XT files. When writing XT files, it

must be set as above.

next pointer0 Next shell in region

face pointer0 Head of chain of back-faces of shell (i.e. faces with

face normal pointing out of region of shell).

edge pointer0 Head of chain of wire-frame edges of shell

vertex pointer0 If shell consists of a single vertex, this is it; else null

region pointer Region of shell

front_face pointer0 Head of chain of front-faces of shell (i.e. faces with

face normal pointing into region of shell)

struct SHELL_s // Shell

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

struct BODY_s *body; // $p

struct SHELL_s *next; // $p

 JT v9.5 Format Reference

 - 422 -

struct FACE_s *face; // $p

struct EDGE_s *edge; // $p

struct VERTEX_s *vertex; // $p

struct REGION_s *region; // $p

struct FACE_s *front_face; // $p

};

typedef struct SHELL_s *SHELL;

FACE

Field name Type Description

node_id int Node-id

attributes_groups pointer0 Head of chain of attributes of face and

member_of_groups of face

tolerance double Not used (null double)

next pointer0 Next back-face in shell

previous pointer0 Previous back-face in shell

loop pointer0 Head of singly-linked chain of loops

shell pointer Shell of which this is a back-face

surface pointer0 Surface of face

sense char Face sense – positive („+‟) or negative („-‟)

next_on_surface pointer0 Next in chain of faces sharing the surface of this face

previous_on_surface pointer0 Previous in chain of faces sharing the surface of this

face

next_front pointer0 Next front-face in shell

previous_front pointer0 Previous front-face in shell

front_shell pointer Shell of which this is a front-face

struct FACE_s // Face

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

double tolerance; // $f

struct FACE_s *next; // $p

struct FACE_s *previous; // $p

 JT v9.5 Format Reference

 - 423 -

struct LOOP_s *loop; // $p

struct SHELL_s *shell; // $p

union SURFACE_u surface; // $p

char sense; // $c

struct FACE_s *next_on_surface; // $p

struct FACE_s *previous_on_surface; // $p

struct FACE_s *next_front; // $p

struct FACE_s *previous_front; // $p

struct SHELL_s *front_shell; // $p

};

typedef struct FACE_s *FACE;

LOOP

Field name Type Description

node_id int Node-id

attributes_groups pointer0 Head of chain of attributes of loop

fin pointer One of ring of fins of loop

face pointer Face of loop

next pointer0 Next loop in face

 Isolated Loops

An isolated loop (one consisting of a single vertex) does not refer directly to a vertex, but points to a fin which

refers to that vertex. This isolated fin has fin->forward = fin->backward = fin, and fin->other = fin->curve = fin-

>edge = null. Its sense is not significant. The fin is chained into the chain of fins referencing the isolated vertex.

struct LOOP_s // Loop

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

struct FIN_s *fin; // $p

struct FACE_s *face; // $p

struct LOOP_s *next; // $p

};

typedef struct LOOP_s *LOOP;

 JT v9.5 Format Reference

 - 424 -

FIN

Field name Type Description

attributes_groups pointer0 Head of chain of attributes of fin

loop pointer0 Loop of fin

forward pointer0 Next fin around loop

backward pointer0 Previous fin around loop

vertex pointer0 Forward vertex of fin

other pointer0 Next fin around edge, clockwise looking along edge

edge pointer0 Edge of fin

curve pointer0 For a non-dummy fin of a tolerant edge, this will be a

trimmed SP-curve, otherwise null.

next_at_vx pointer0 Next fin referencing the vertex of this fin

sense char Positive („+‟) if the fin direction is parallel to that of its

edge, else negative („-‟)

Dummy Fins

An application will see edges as having any number of fins, including zero. However internally, they have at least

two. This is so that the forward and backward vertices of an edge can always be found as edge->fin->vertex and

edge->fin->other->vertex respectively - the first one being a positive fin, the second a negative fin. If an edge

does not have both a positive and a negative externally-visible fin, dummy fins will exist for this purpose.

Dummy fins have fin->loop = fin->forward = fin->backward = fin->curve = fin->next_at_vx = null. For example

the boundaries of a sheet always have one dummy fin.

struct FIN_s // Fin

{

union ATTRIB_GROUP_u attributes_groups; // $p

struct LOOP_s *loop; // $p

struct FIN_s *forward; // $p

struct FIN_s *backward; // $p

struct VERTEX_s *vertex; // $p

struct FIN_s *other; // $p

struct EDGE_s *edge; // $p

union CURVE_u curve; // $p

struct FIN_s *next_at_vx; // $p

char sense; // $c

 JT v9.5 Format Reference

 - 425 -

};

typedef struct FIN_s *FIN;

VERTEX

Field name Type Description

node_id int Node-id

attributes_groups pointer0 Head of chain of attributes of vertex and

member_of_groups of vertex

fin pointer0 Head of singly-linked chain of fins referencing this

vertex

previous pointer0 Previous vertex in body

next pointer0 Next vertex in body

point pointer Point of vertex

tolerance double Tolerance of vertex (null-double for accurate vertex)

owner pointer Owning body (for non-acorn vertices) or shell (for

acorn vertices)

union SHELL_OR_BODY_u

(

struct BODY_s *body;

struct SHELL_s *shell;

};

typedef union SHELL_OR_BODY_u SHELL_OR_BODY;

struct VERTEX_s // Vertex

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

struct FIN_s *fin; // $p

struct VERTEX_s *previous; // $p

struct VERTEX_s *next; // $p

struct POINT_s *point; // $p

double tolerance; // $f

union SHELL_OR_BODY_u owner; // $p

};

 JT v9.5 Format Reference

 - 426 -

typedef struct VERTEX_s *VERTEX;

EDGE

Field name Type Description

node_id int Node-id

attributes_groups pointer0 Head of chain of attributes of edge and

member_of_groups of edge

tolerance double Tolerance of edge (null-double for accurate edges)

fin pointer One of singly-linked ring of fins around edge

previous pointer0 Previous edge in body or shell

next pointer0 Next edge in body or shell

curve pointer0 Curve of edge, zero for tolerant edge. If edge is

accurate, but any of its vertices are tolerant, this will be

a trimmed curve

next_on_curve pointer0 Next in chain of edges sharing the curve of this edge

previous_on_cur

ve

pointer0 Previous in chain of edges sharing the curve of this edge

owner pointer Owning body (for non-wireframe edges) or shell (for

wireframe edges)

struct EDGE_s // Edge

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

double tolerance; // $f

struct FIN_s *fin; // $p

struct EDGE_s *previous; // $p

struct EDGE_s *next; // $p

union CURVE_u curve; // $p

struct EDGE_s; *next_on_curve // $p

struct EDGE_s *previous_on_curve; // $p

union

SHELL_OR_BODY_u

 owner; // $p

};

typedef struct EDGE_s *EDGE;

 JT v9.5 Format Reference

 - 427 -

Associated Data

LIST

Field name Type Description

node_id int Zero

list_type byte Always 4

notransmit logical Ignore

owner pointer Owning part

next pointer0 Ignore

previous pointer0 Ignore

list_length int Length of list (>= 0)

block_length int Length of each block of list. Always 20

size_of_entry int Ignore

finger_index int Any integer between 1 and list->list_length (set to 1 if length

is zero). Ignore

finger_block pointer Any block e.g. the first one. Ignore

list_block pointer Head of singly-linked chain of pointer list blocks

Lists only occur in part files as the list of attributes referenced by a part.

typedef enum

{

LIS_pointer = 4

}

LIS_type_t;

union LIS_BLOCK_u

{

struct POINTER_LIS_BLOCK_s *pointer_block;

};

typedef union LIS_BLOCK_u LIS_BLOCK;

union LIST_OWNER_u

{

struct BODY_s *body;

 JT v9.5 Format Reference

 - 428 -

struct ASSEMBLY_s *assembly;

struct WORLD_s *world;

};

typedef union LIST_OWNER_u LIST_OWNER;

struct LIST_s // List Header

{

int node_id; // $d

LIS_type_t list_type; // $u

logical notransmit; // $l

union LIST_OWNER_u owner; // $p

struct LIST_s *next; // $p

struct LIST_s *previous; // $p

int list_length; // $d

int block_length; // $d

int size_of_entry; // $d

int finger_index; // $d

union LIS_BLOCK_u finger_block; // $p

union LIS_BLOCK_u list_block; // $p

};

typedef struct LIST_s *LIST;

POINTER_LIS_BLOCK:

Field name Type Description

n_entries int Number of entries in this block (0 <= n_entries <=

20). Only the first block may have n_entries = 0.

index_map_offset int Must be set to 0

next_block pointer0 Next pointer list block in chain

Entries[20] pointer0 Pointers in block, those beyond n_entries must be zero

When the pointer_lis_block is used as the root node in a transmit file containing more than one part, the

restriction n_entries <= 20 does not apply.

The index_map_offset field is used for Indexed Transmit; applications writing XT files must ensure this field is

set to 0.

 JT v9.5 Format Reference

 - 429 -

struct POINTER_LIS_BLOCK_s // Pointer List

{

int n_entries; // $d

int index_map_offset // $d

struct POINTER_LIS_BLOCK_s *next_block; // $p

void *entries[1]; // $p[]

};

typedef struct POINTER_LIS_BLOCK_s *POINTER_LIS_BLOCK;

ATT_DEF_ID

Field

name

Type Description

string[] char String name e.g. "SDL/TYSA_COLOUR"

struct ATT_DEF_ID_s // name field type for attrib def.

{

char String[1]; // $c[]

};

typedef struct ATT_DEF_ID_s *ATT_DEF_ID;

FIELD_NAMES

Field

name

Type Description

names[] pointer Array of field names – unicode or char

typedef union FIELD_NAME_u

{

struct CHAR_VALUES_s *name

struct UNICODE_VALUES_s *uname

};

 FIELD_NAME_t;

struct FIELD_NAME_s // attribute field name

 JT v9.5 Format Reference

 - 430 -

{

union FIELD_NAME_u names[1]; // $p[]

};

typedef struct FIELD_NAME_s *FIELD_NAME;

ATTRIB_DEF

Field name Type Description

next pointer0 Next attribute definition. This can be ignored, except in

a partition transmit file.

identifier pointer Pointer to string name

type_id int Numeric id, e.g. 8001 for color. 9000 for user-defined

attribute definitions

actions[8] byte Required actions on various events

field_names pointer0 Names of fields (unicode or char)

legal_owners[14] logical Allowed owner types

fields[] byte Array of field types. Note that the number of fields is

given by the length of the variable length part of this

node, i.e. the integer following the node type in the

transmit file.

The legal_owners array is an array of logicals determining which node types may own this type of attribute.

e.g. if faces are allowed attrib_def -> legal_owners [SCH_fa_owner] = true.

Note that if the file contains user fields, the „fields‟ field of an attribute definition may contain extra values, set to

zero. These are to be ignored.

The „actions‟ field in an attribute definition defines the behaviour of the attribute when an event (rotate, scale,

translate, reflect, split, merge, transfer, change) occurs. The actions are:

 JT v9.5 Format Reference

 - 431 -

do_nothing Leave attribute as it is

delete Delete the attribute

transform Transform the transformable fields (point, vector, direction, axis)

by appropriate part of transformation

propagate Copy attribute onto split-off node

keep_sub_dominant Move attribute(s) from deleted node onto surviving node in a

merge, but any such attributes already on the surviving node are

deleted.

keep_if_equal Keep attribute if present on both nodes being merged, with the

same field values.

combine Move attribute(s) from deleted node onto surviving node, in a

merge

The PK attribute classes 1-7 correspond as follows:

 split merge transfer change Rotate scale translate reflect

class 1 propagate keep_equal do_nothing do_nothing do_nothing do_nothing do_nothing do_nothing

class 2 delete delete delete delete do_nothing delete do_nothing do_nothing

class 3 delete delete delete delete Delete delete delete delete

class 4 propagate keep_equal do_nothing do_nothing Transform transform transform transform

class 5 delete delete delete delete Transform transform transform transform

class 6 propagate combine do_nothing do_nothing do_nothing do_nothing do_nothing do_nothing

class 7 propagate combine do_nothing do_nothing Transform transform transform transform

Certain attribute definitions are created by Parasolid on startup, these are documented in an appendix.

typedef enum

{

SCH_rotate = 0,

SCH_scale = 1,

SCH_translate = 2,

SCH_reflect = 3,

SCH_split = 4,

SCH_merge = 5,

SCH_transfer = 6,

SCH_change = 7,

SCH_max_logged_event // last entry; value in $d[] code for

actions

 JT v9.5 Format Reference

 - 432 -

}

SCH_logged_event_t;

typedef enum

{

SCH_do_nothing = 0,

SCH_delete = 1,

SCH_transform = 2,

SCH_propagate = 3,

SCH_keep_sub_dominant = 4,

SCH_keep_if_equal = 5,

SCH_combine = 6

}

SCH_action_on_fields_t;

typedef enum

{

SCH_as_owner = 0,

SCH_in_owner = 1,

SCH_by_owner = 2,

SCH_sh_owner = 3,

SCH_fa_owner = 4,

SCH_lo_owner = 5,

SCH_ed_owner = 6,

SCH_vx_owner = 7,

SCH_fe_owner = 8,

SCH_sf_owner = 9,

SCH_cu_owner = 10,

SCH_pt_owner = 11,

SCH_rg_owner = 12,

SCH_fn_owner = 13,

SCH_max_owner // last entry; value in $l[] for

.legal_owners

} SCH_attrib_owners_t;

 JT v9.5 Format Reference

 - 433 -

typedef enum

{

SCH_int_field = 1,

SCH_real_field = 2,

SCH_char_field = 3,

SCH_point_field = 4,

SCH_vector_field = 5,

SCH_direction_field = 6,

SCH_axis_field = 7,

SCH_tag_field = 8,

SCH_pointer_field = 9,

SCH_unicode_field = 10

} SCH_field_type_t;

struct ATTRIB_DEF_s // attribute definition

{

struct ATTRIB_DEF_s *next; // $p

struct ATT_DEF_ID_s *identifier; // $p

int type_id; // $d

SCH_action_on_fields_t actions

[(int)SCH_max_logged_event];

// $u[8]

struct FIELD_NAMES_s *field_names // $p

logical legal_owners

 [(int)SCH_max_owner];

// $l[14]

SCH_field_type_t fields[1]; // $u[]

};

typedef struct ATTRIB_DEF_s *ATTRIB_DEF;

ATTRIBUTE

Field name Type Description

node_id int Node-id

definition pointer Attribute definition

owner pointer Attribute owner

next pointer0 Next attribute, group, or member_of_group

previous pointer0 Previous ditto

 JT v9.5 Format Reference

 - 434 -

next_of_type pointer0 Next attribute of this type in this part

previous_of_type pointer0 Previous attribute of this type in this part

fields[] pointer Fields, of type int_values etc. The number of fields is

given by the length of the variable part of the node. There

may be no fields.

The attributes of a node are chained using the next and previous pointers in the attribute. The attribute_groups

pointer in the node points to the head of this chain. This chain also contains the member_of_groups of the node.

Attributes within the same part, with the same attribute definition, are chained together by the next_of_type and

previous_of_type pointers. The part points to the head of this chain as follows. The attribute_chains pointer in the

part points to a list which contains the heads of these attribute chains, one for each attribute definition which has

attributes in the part. The list may be null.

Note that the attributes_groups chains in parts, groups and nodes contain the following types of node:

 Part: attributes and groups

 Group: attributes

 Node: attributes and member_of_groups

Fields of type „pointer‟ can be used in Parasolid V12.0, but they are always transmitted as empty.

union ATTRIBUTE_OWNER_u

 {

struct ASSEMBLY_s *assembly;

struct INSTANCE_s *instance;

struct BODY_s *body;

struct SHELL_s *shell;

struct REGION_s *region;

struct FACE_s *face;

struct LOOP_s *loop;

struct EDGE_s *edge;

struct FIN_s *fin;

struct VERTEX_s *vertex;

union SURFACE_u Surface;

union CURVE_u Curve;

struct POINT_s *point;

struct GROUP_s *group;

};

 JT v9.5 Format Reference

 - 435 -

typedef union ATTRIBUTE_OWNER_u ATTRIBUTE_OWNER;

union FIELD_VALUES_u

{

struct INT_VALUES_s *int_values;

struct REAL_VALUES_s *real_values;

struct CHAR_VALUES_s *char_values;

struct POINT_VALUES_s *point_values;

struct VECTOR_VALUES_s *vector_values;

struct DIRECTION_VALUES_s *direction_values;

struct AXIS_VALUES_s *axis_values;

struct TAG_VALUES_s *tag_values;

struct UNICODE_VALUES_s *unicode_values;

};

typedef union FIELD_VALUES_u FIELD_VALUES;

struct ATTRIBUTE_s // Attribute

{

int node_id; // $d

struct ATTRIB_DEF_s *definition; // $p

union ATTRIBUTE_OWNER_u owner; // $p

union ATTRIB_GROUP_u next; // $p

union ATTRIB_GROUP_u previous; // $p

struct ATTRIBUTE_s *next_of_type; // $p

struct ATTRIBUTE_s *previous_of_type; // $p

union FIELD_VALUES_u fields[1]; // $p[]

};

typedef struct ATTRIBUTE_s *ATTRIBUTE;

INT_VALUES

values[] int Integer values

struct INT_VALUES_s // Int values

{

 JT v9.5 Format Reference

 - 436 -

int values[1]; // $d[]

};

typedef struct INT_VALUES_s *INT_VALUES;

REAL_VALUES

values[] double Real values

struct REAL_VALUES_s // Real values

{

double values[1]; // $f[]

};

typedef struct REAL_VALUES_s *REAL_VALUES;

CHAR_VALUES

values[] char Character values

struct CHAR_VALUES_s // Character values

{

char values[1]; // $c[]

};

typedef struct CHAR_VALUES_s *CHAR_VALUES;

UNICODE_VALUES

values[] short Unicode character values

struct UNICODE_VALUES_s // Unicode character values

{

short values[1]; // $w[]

};

typedef struct UNICODE_VALUES_s *UNICODE_VALUES;

POINT_VALUES

 JT v9.5 Format Reference

 - 437 -

values[] vector Point values

struct POINT_VALUES_s // Point values

 {

vector values[1]; // $v[]

};

typedef struct POINT_VALUES_s *POINT_VALUES;

VECTOR_VALUES

values[] vector Vector values

struct VECTOR_VALUES_s // Vector values

{

vector values[1]; // $v[]

};

typedef struct VECTOR_VALUES_s *VECTOR_VALUES;

DIRECTION_VALUES

values[] vector Direction values

struct DIRECTION_VALUES_s // Direction values

{

vector values[1]; // $v[]

};

typedef struct DIRECTION_VALUES_s *DIRECTION_VALUES;

AXIS_VALUES

values[] vector Axis values

Note that an axis takes up two vectors.

struct AXIS_VALUES_s // Axis values

{

vector values[1]; // $v[]

 JT v9.5 Format Reference

 - 438 -

};

typedef struct AXIS_VALUES_s *AXIS_VALUES;

TAG_VALUES

values[] int Integer tag values

The tag field type and the tag_values node are not available for use in user-defined attributes, they occur only in

certain system attributes.

struct TAG_VALUES_s // Tag values

{

int values[1]; // $t[]

};

typedef struct TAG_VALUES_s *TAG_VALUES;

GROUP

Field name Type Description

node_id int Node-id

attributes_groups pointer0 Head of chain of attributes of this group

owner pointer Owning part

next pointer0 Next group or attribute

previous pointer0 Previous group or attribute

type byte Type of node allowed in group

first_member pointer0 Head of chain of member_of_group nodes in group

The groups in a part are chained by the next and previous pointers in a group. The attributes_groups pointer in the

part points to the head of the chain. This chain also contains the attributes attached directly to the part - groups

and attributes are intermingled in this chain, the order is not significant.

Each group has a chain of member_of_groups. These are chained together using the next_member and

previous_member pointers. The first_member pointer in the group points to the head of the chain. Each

member_of_group has an owning_group pointer which points back to the group.

Each member_of_group has an owner pointer which points to a node. Thus the group references its member

nodes via the member_of_groups.

The member_of_groups which refer to a particular node are chained using the next and previous pointers in the

member_of_group. The attributes_groups pointer in the node points to the head of this chain. This chain also

contains the attributes attached to the node.

 JT v9.5 Format Reference

 - 439 -

typedef enum

{

SCH_instance_fe = 1,

SCH_face_fe = 2,

SCH_loop_fe = 3,

SCH_edge_fe = 4,

SCH_vertex_fe = 5,

SCH_surface_fe = 6,

SCH_curve_fe = 7,

SCH_point_fe = 8,

SCH_mixed_fe = 9,

SCH_region_fe = 10

} SCH_group_type_t;

struct GROUP_s // Group

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union PART_u owner; // $p

union ATTRIB_GROUP_u next; // $p

union ATTRIB_GROUP_u previous; // $p

SCH_group_type_t type; // $u

struct MEMBER_OF_GROUP_s *first_member; // $p

};

typedef struct GROUP_s *GROUP;

MEMBER_OF_GROUP

Field name Type Description

dummy_node_id int Entity label

owning_group pointer Owning group

owner pointer Referenced member of group

next pointer0 Next attribute, group or member_of_group

previous pointer0 Previous ditto

 JT v9.5 Format Reference

 - 440 -

next_member pointer0 Next member_of_group in this group

previous_member pointer0 Previous ditto

union GROUP_MEMBER_u

 {

struct INSTANCE_s *instance;

struct FACE_s *face;

struct REGION_s *region;

struct LOOP_s *loop;

struct EDGE_s *edge;

struct VERTEX_s *vertex;

union SURFACE_u surface;

union CURVE_u curve;

struct POINT_s *point;

};

typedef union GROUP_MEMBER_u GROUP_MEMBER;

struct MEMBER_OF_GROUP_s // Member of group

{

int dummy_node_id; // $d

struct GROUP_s *owning_group; // $p

union GROUP_MEMBER_u owner; // $p

union ATTRIB_GROUP_u next; // $p

union ATTRIB_GROUP_u previous; // $p

struct MEMBER_OF_GROUP_s *next_member; // $p

struct MEMBER_OF_GROUP_s *previous_member; // $p

};

typedef struct MEMBER_OF_GROUP_s *MEMBER_OF_GROUP;

 JT v9.5 Format Reference

 - 441 -

Node Types

Node name Node

type

Visible at PK Has node-id

ASSEMBLY 10 Yes No

INSTANCE 11 Yes Yes

BODY 12 Yes No

SHELL 13 Yes Yes

FACE 14 Yes Yes

LOOP 15 Yes Yes

EDGE 16 Yes Yes

FIN 17 Yes No

VERTEX 18 Yes Yes

REGION 19 Yes Yes

POINT 29 Yes Yes

LINE 30 Yes Yes

CIRCLE 31 Yes Yes

ELLIPSE 32 Yes Yes

INTERSECTION 38 Yes Yes

CHART 40 No

LIMIT 41 No

BSPLINE_VERTICES 45 No

PLANE 50 Yes Yes

CYLINDER 51 Yes Yes

CONE 52 Yes Yes

SPHERE 53 Yes Yes

TORUS 54 Yes Yes

BLENDED_EDGE 56 Yes Yes

BLEND_BOUND 59 No

OFFSET_SURF 60 Yes Yes

 JT v9.5 Format Reference

 - 442 -

SWEPT_SURF 67 Yes Yes

SPUN_SURF 68 Yes Yes

LIST 70 Yes Yes

POINTER_LIS_BLOCK 74 No

ATT_DEF_ID 79 No

ATTRIB_DEF 80 Yes No

ATTRIBUTE 81 Yes Yes

INT_VALUES 82 No

REAL_VALUES 83 No

CHAR_VALUES 84 No

POINT_VALUES 85 No

VECTOR_VALUES 86 No

AXIS_VALUES 87 No

TAG_VALUES 88 No

DIRECTION_VALUES 89 No

GROUP 90 Yes Yes

MEMBER_OF_GROUP 91 No

UNICODE_VALUES 98 No

FIELD_NAMES 99 No

TRANSFORM 100 Yes Yes

WORLD 101 No

KEY 102 No

PE_SURF 120 Yes Yes

INT_PE_DATA 121 No

EXT_PE_DATA 122 No

B_SURFACE 124 Yes Yes

SURFACE_DATA 125 No

NURBS_SURF 126 No

 JT v9.5 Format Reference

 - 443 -

KNOT_MULT 127 No

KNOT_SET 128 No

PE_CURVE 130 Yes Yes

TRIMMED_CURVE 133 Yes Yes

B_CURVE 134 Yes Yes

CURVE_DATA 135 No

NURBS_CURVE 136 No

SP_CURVE 137 Yes Yes

GEOMETRIC_OWNER 141 No

HELIX_CU_FORM 163 No

HELIX_SU_FORM 184 No

 JT v9.5 Format Reference

 - 444 -

Node Classes

Node class name Node

class

GEOMETRY 1003

PART 1005

SURFACE 1006

SURFACE_OWNER 1007

CURVE 1008

CURVE_OWNER 1010

POINT_OWNER 1011

LIS_BLOCK 1012

LIST_OWNER 1013

ATTRIBUTE_OWNER 1015

GROUP_OWNER 1016

GROUP_MEMBER 1017

FIELD_VALUES 1018

ATTRIB_GROUP 1019

TRANSFORM_OWNER 1023

PE_DATA 1027

PE_INT_GEOM 1028

SHELL_OR_BODY 1029

FIELD_NAME 1037

 JT v9.5 Format Reference

 - 445 -

System Attribute Definitions

All system attribute definitions are of class 1.

Hatching

Identifier SDL/TYSA_HATCHING

Type_id 8003

Entity types face

Fields real real 1

 real 2

 real 3

 real 4

 integer Hatching type

Set by Application

Used by Parasolid hidden line and wireframe images

For planar hatching - the four real values define the hatch orientation as a vector and a spacing between

consecutive planes.

For radial hatching - the first three real values define the spacing of the hatch lines. The fourth value is not used.

For parametric hatching - the first two real values define the spacing in u and v respectively. The last two values

are not used.

 JT v9.5 Format Reference

 - 446 -

Planar Hatch

Identifier SDL/TYSA_PLANAR_HATCH

Type_id 8021

Entity types face

Fields real x component „direction‟ or plane normal

 y component

 z component

 „pitch‟ or separation

 x component position vector

 y component

 z component

Set by Application

Used by Parasolid hidden line and wireframe images

For planar hatching, an attribute with this definition takes precedence over an attribute with the

SDL/TYSA_HATCHING definition, if a face has both types of attribute attached.

Radial Hatch

Identifier SDL/TYSA_RADIAL_HATCH

Type_id 8027

Entity types face

Fields real radial around

 radial along

 radial about

 radial around start

 radial along start

 radial about start

Set by Application

Used by Parasolid hidden line and wireframe images

For radial hatching, an attribute with this definition takes precedence over an attribute with the

SDL/TYSA_HATCHING definition, if a face has both types of attribute attached.

 JT v9.5 Format Reference

 - 447 -

Parametric Hatch

Identifier SDL/TYSA_PARAM_HATCH

Type_id 8028

Entity types face

Fields real u spacing

 v spacing

 u start

 v start

Set by Application

Used by Parasolid hidden line and wireframe images

For parametric hatching, an attribute with this definition takes precedence over an attribute with the

SDL/TYSA_HATCHING definition, if a face has both types of attribute attached.

Density Attributes
There are density attributes for each of regions, faces, edges and vertices in addition to the system attribute for

density of a body.

The region/face/edge/vertex attributes will be taken into account when finding the mass, centre of gravity and

moment of inertia of a body or of the entity to which the attribute is attached:

 The mass of a region will not include that of any of its faces or edges, and the same applies to faces and edges

and their boundaries.

 A void region will always have zero mass whatever its density and a solid region will inherit its density from

the body if it does not have a density of its own.

 The default density for faces, edges and vertices is always zero.

Density (of a body)

Identifier SDL/TYSA_DENSITY

Type_id 8004

Entity types body

Fields real Density

 string Units

Set by Application

Used by Parasolid Mass Properties - calculation of mass

A body without a density attribute is taken to have, by default, a density of 1.0.

The character field units is not used by Parasolid but it can be set and read by the application.

 Region Density

Identifier SDL/TYSA_REGION_DENSITY

 JT v9.5 Format Reference

 - 448 -

Type_id 8023

Entity types region

Fields real Density of region

 string Units

Set by Application

Used by Parasolid Mass Properties - calculation of mass

This attribute only makes sense for solid regions; void regions always have a mass of zero.

A solid region without a density attribute is taken to have, by default, the same density as its owning body.

The character field units is not used by Parasolid but it can be set and read by the user.

Face Density

Identifier SDL/TYSA_FACE_DENSITY

Type_id 8024

Entity types face

Fields real Density of face

 string Units

Set by Application

Used by Parasolid Mass Properties - calculation of mass

The value of this attribute is treated as a mass per unit area.

A mass will be calculated for a face only when a face possesses this attribute. In all other cases the mass of a face

is not defined.

The character field units is not used by Parasolid but it can be set and read by the user.

 Edge Density

Identifier SDL/TYSA_EDGE_DENSITY

Type_id 8025

Entity types edge

Fields real Density of edge

 string Units

Set by Application

Used by Parasolid Mass Properties - calculation of mass

The value of this attribute is treated as a mass per unit length.

A mass will be calculated for an edge only when an edge possesses this attribute. In all other cases the mass of an

edge is not defined.

The character field units is not used by Parasolid but it can be set and read by the user.

Vertex Density

Identifier SDL/TYSA_VERTEX_DENSITY

 JT v9.5 Format Reference

 - 449 -

Type_id 8026

Entity types vertex

Fields real Mass of vertex

 string Units

Set by Application

Used by Parasolid Mass Properties - calculation of mass

The value of this attribute is treated as a point mass.

A mass will be calculated for a vertex only when a vertex possesses this attribute. In all other cases the mass of a

vertex is not defined.

The character field units is not used by Parasolid but it can be set and read by the user.

Region

Identifier SDL/TYSA_REGION

Type_id 8013

Entity types face

Fields string Unused

Set by Application

Used by Parasolid hidden line images

Regional data will allow the application to analyze a hidden-line picture for distinct regions in the 2D view.

 JT v9.5 Format Reference

 - 450 -

Colour

Identifier SDL/TYSA_COLOUR

Token 8001

Entity types face

 edge

Fields real Red value These three values should be

in the range 0.0 to 1.0

 Green value

 Blue value

Set by Application

Used by Application

Reflectivity

Identifier SDL/TYSA_REFLECTIVITY

Token 8014

Entity types face

Fields real Coefficient of specular reflection

 Proportion of colored light in highlights

 Coefficient of diffuse reflection

 Coefficient of ambient reflection

 integer Reflection power

Set by Application

Used by Application

The attribute types for Reflectivity and Translucency are also used by the Parasolid routine RRPIXL, but the use

of this routine is not recommended.

 Translucency

Identifier SDL/TYSA_TRANSLUCENCY

Token 8015

Entity types face

Fields real Transparency

coefficient

 range 0.0 to 1.0, where 0 is

opaque and 1 is transparent

Set by Application

Used by Application

 JT v9.5 Format Reference

 - 451 -

Name

Identifier SDL/TYSA_NAME

Token 8017

Entity types assembly, body, instance, shell, face, loop, edge,

vertex, group, surface, curve, point

Fields string Name of entity

Set by Application

Used by Application

Entities read into Parasolid from a Romulus 6.0 transmit file have their names held in name attributes. Only

entities to which the user has given names will be treated in this way.

Incremental faceting

Identifier SDL/TYSA_INCREMENTAL_FACETTING

Token TYSAIF

Entity types face

Fields string Unused

Set by Parasolid incremental faceting/Application

Used by Parasolid incremental faceting/Application

Transparency

Identifier SDL/TYSA_TRANSPARENCY

Token TYSATY

Entity types Body, face

Fields integer Non-zero transparency coefficient

value is transparent

Set by Application

Used by Parasolid hidden-line drawings

A body may be rendered transparent if it has an attached transparency attribute with a non-zero transparency

coefficient

Non-mergeable edges

Identifier SDL/TYSA_NO_MERGE

Token TYSAEN

Entity types edge

 JT v9.5 Format Reference

 - 452 -

Fields string Unused

Set by Application

Used by Parasolid modeling operations

If an edge has an attribute of this definition attached, it indicates that the edge should not be merged in any

modelling operations.

Group merge behavior

Identifier SDL/TYSA_GROUP_MERGE

Token TYSAGM

Entity types group

Fields string Unused

Set by Application

Used by Parasolid modeling operations

If a group has an attribute of this definition attached, it indicates that alternative behavior should be used if an

entity in the group is merged with an entity not in that group.

	JT File Format Reference
	Version 9.5
	Rev-A
	Acknowledgments
	Table of Contents
	List of Tables
	Siemens JT Data Format Reference Intellectual Property License Terms
	Scope
	Offline optimizations of the data contents
	Asynchronous streaming of content
	What’s New in This Revision

	References and Additional Information
	Definitions
	Terms
	Coordinate Systems

	Acronyms and Abbreviations
	Notational Conventions
	Diagrams and Field Descriptions
	Data Types

	Table 1: Basic Data Types
	Table 2: Composite Data Types
	File Format
	File Structure
	File Header

	Figure 2: File Header data collection
	UChar : Version
	Version M.n Comment
	DM Maj.Min.Qrm.Irm
	These final 5 characters (shown above and referred to as ASCII/binary translation detection bytes) can be used by JT file readers to validate that the JT files has not been corrupted by ASCII mode FTP transfers. For a JT Version 9.5 file written by D...
	UChar : Byte Order
	I32 : Reserved Field
	Must have the value 0.
	I32 : TOC Offset
	GUID : LSG Segment ID
	GUID: Reserved Field
	Reserved Field is a data field reserved for future JT format expansion
	TOC Segment

	Figure 3: TOC Segment data collection
	I32 : Entry Count
	TOC Entry

	Figure 4: TOC Entry data collection
	GUID : Segment ID
	I32 : Segment Offset
	I32 : Segment Length
	U32 : Segment Attributes
	Data Segment
	Segment Header

	Figure 6: Segment Header data collection
	GUID : Segment ID
	I32 : Segment Type
	Table 3: Segment Types
	I32 : Segment Length
	Data

	Figure 7: Data collection
	Logical Element Header
	Figure 8: Logical Element Header data collection
	I32 : Element Length
	Element Header
	Figure 9: Element Header data collection
	GUID : Object Type ID
	UChar : Object Base Type
	Table 4: Object Base Types
	Logical Element Header ZLIB
	Figure 10: Logical Element Header ZLIB data collection
	I32 : Compression Flag
	U8 : Compression Algorithm
	Object Data
	Data Segments
	LSG Segment

	Figure 11: LSG Segment data collection
	Graph Elements
	Node Elements
	Base Node Element

	Texture Coordinate Generator Attribute Element
	Mapping Surface
	Mapping Plane Element

	Figure 12: Base Node Element data collection
	Base Node Data

	Figure 13: Base Node Data collection
	I16 : Version Number
	U32 : Node Flags
	I32 : Attribute Object ID
	Partition Node Element

	Figure 14: Partition Node Element data collection
	Complete description for Group Node Data can be found in 7.2.1.1.1.3.1Group Node Data.
	I32 : Partition Flags
	BBoxF32 : Reserved Field
	Reserved Field is a data field reserved for future JT format expansion
	BBoxF32 : Transformed BBox
	F32 : Area
	BBoxF32 : Untransformed BBox
	Vertex Count Range

	Figure 15: Vertex Count Range data collection
	I32 : Min Count
	I32 : Max Count
	Node Count Range
	Polygon Count Range
	Group Node Element

	Figure 16: Group Node Element data collection
	Group Node Data

	Figure 17: Group Node Data collection
	Complete description for Base Node Data can be found in 7.2.1.1.1.1.1Base Node Data.
	I16 : Version Number
	I32 : Child Count
	I32 : Child Node Object ID
	Instance Node Element

	Figure 18: Instance Node Element data collection
	Complete description for Base Node Data can be found in 7.2.1.1.1.1.1Base Node Data.
	I16: Version Number
	I32 : Child Node Object ID
	Part Node Element

	Figure 19: Part Node Element data collection
	Complete description for Meta Data Node Data can be found in 7.2.1.1.1.6.1Meta Data Node Data.
	I16 : Version Number
	I32: Reserved Field
	Reserved Field is a data field reserved for future JT format expansion
	Meta Data Node Element

	Figure 20: Meta Data Node Element data collection
	Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.
	Meta Data Node Data

	Figure 21: Meta Data Node Data collection
	Complete description for Group Node Data can be found in 7.2.1.1.1.3.1Group Node Data.
	I16 : Version Number
	LOD Node Element

	Figure 22: LOD Node Element data collection
	LOD Node Data

	Figure 23: LOD Node Data collection
	Complete description for Group Node Data can be found in 7.2.1.1.1.3.1Group Node Data.
	I16: Version Number
	VecF32 : Reserved Field
	I32 : Reserved Field
	Range LOD Node Element

	Figure 24: Range LOD Node Element data collection
	Complete description for LOD Node Data can be found in 7.2.1.1.1.7.1 LOD Node Data
	I16: Version Number
	VecF32 : Range Limits
	CoordF32 : Center
	Switch Node Element

	Figure 25: Switch Node Element data collection
	Complete description for Group Node Data can be found in 7.2.1.1.1.3.1Group Node Data.
	I16 : Version Number
	I32 : Selected Child
	Shape Node Elements
	Base Shape Node Element

	Figure 26: Base Shape Node Element data collection
	Base Shape Data

	Figure 27: Base Shape Data collection
	Complete description for Base Node Data can be found in 7.2.1.1.1.1.1Base Node Data
	I16: Version Number
	BBoxF32 : Reserved Field
	Reserved Field is a data field reserved for future JT format expansion.
	BBoxF32 : Untransformed BBox
	F32 : Area
	I32 : Size
	F32 : Compression Level
	Vertex Count Range

	Figure 28: Vertex Count Range data collection
	I32 : Min Count
	I32 : Max Count
	Node Count Range
	Polygon Count Range
	Vertex Shape Node Element

	Figure 29: Vertex Shape Node Element data collection
	Vertex Shape Data

	Figure 30: Vertex Shape Data collection
	Complete description for Base Shape Data can be found in 7.2.1.1.1.10.1.1 Base Shape Data.
	I16: Version Number
	U64 : Vertex Binding
	Quantization Parameters

	Figure 31: Quantization Parameters data collection
	U8 : Bits Per Vertex
	U8 : Normal Bits Factor
	U8 : Bits Per Texture Coord
	U8 : Bits Per Color
	Tri-Strip Set Shape Node Element

	Figure 32: Tri-Strip Set Shape Node Element data collection
	Complete description for Vertex Shape Data can be found in 7.2.1.1.1.10.2.1Vertex Shape Data.
	Polyline Set Shape Node Element

	Figure 33: Polyline Set Shape Node Element data collection
	Complete description for Vertex Shape Data can be found in 7.2.1.1.1.10.2.1Vertex Shape Data.
	I16: Version Number
	F32 : Area Factor
	U64: Vertex Bindings
	Point Set Shape Node Element

	Figure 34: Point Set Shape Node Element data collection
	Complete description for Vertex Shape Data can be found in 7.2.1.1.1.10.2.1Vertex Shape Data.
	I16: Version Number
	F32 : Area Factor
	U64: Vertex Bindings
	Polygon Set Shape Node Element

	Figure 35: Polygon Set Shape Node Element data collection
	Complete description for Vertex Shape Data can be found in 7.2.1.1.1.10.2.1Vertex Shape Data.
	NULL Shape Node Element

	Figure 36: NULL Shape Node Element data collection
	Complete description for Base Shape Data can be found in 7.2.1.1.1.10.1.1 Base Shape Data.
	I16 : Version Number
	Primitive Set Shape Node Element

	Figure 37: Primitive Set Shape Node Element data collection
	Complete description for Base Shape Data can be found in 7.2.1.1.1.10.1.1 Base Shape Data.
	I16 : Version Number
	I32 : Texture Coord Binding
	I16 : Version Number
	Primitive Set Quantization Parameters

	Figure 38: Primitive Set Quantization Parameters data collection
	U8 : Bits Per Vertex
	U8 : Bits Per Color
	Attribute Elements
	Common Attribute Data Containers
	Base Attribute Data

	Figure 39: Base Attribute Data collection
	I16: Version Number
	U8 : State Flags
	Base Shader Data

	Figure 40: Base Shader Data collection
	I16 : Version Number
	I32 : Shader Language
	MbString : Source Code Loc
	I32 : Shader Param Count
	Shader Parameter

	Figure 41: Shader Parameter data collection
	MbString : Param Name
	U32 : Param Type
	Material Attribute Element

	Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.
	I16 : Version Number
	I16 : Version Number
	RGBA : Diffuse Color and Alpha
	RGBA : Specular Color
	RGBA : Emission Color
	F32 : Shininess
	F32 : Reflectivity
	Texture Image Attribute Element

	Figure 43: Texture Image Attribute Element data collection
	Texture Vers-1 Data

	Figure 44: Texture Vers-1 Data collection
	I32 : Texture Type
	I32 : Texture Channel
	U32 : Reserved Field
	U8 : Inline Image Storage Flag
	I32 : Image Count
	MbString : External Storage Name
	Texture Environment

	Figure 45: Texture Environment data collection
	I32 : Border Mode
	I32 : Mipmap Magnification Filter
	I32 : Mipmap Minification Filter
	I32 : S-Dimen Wrap Mode
	I32 : T-Dimen Wrap Mode
	I32 : R-Dimen Wrap Mode
	I32 : Blend Type
	I32 : Internal Compression Level
	RGBA : Blend Color
	RGBA : Border Color
	Mx4F32 : Texture Transform
	Texture Coord Generation Parameters

	Figure 46: Texture Coord Generation Parameters data collection
	I32 : Tex Coord Gen Mode
	PlaneF32 : Tex Coord Reference Plane
	Inline Texture Image Data

	Figure 47: Inline Texture Image Data collection
	I32 : Total Image Data Size
	I32 : Mipmap Image Byte Count
	UChar : Mipmap Image Texel Data
	Image Format Description

	I32 : Mipmap Image Byte Count
	Figure 48: Image Format Description data collection
	U32 : Pixel Format
	I16 : Mipmaps Count
	U32 : Pixel Data Type
	I16 : Dimensionality
	I16 : Row Alignment
	I16 : Width
	I16 : Height
	I16 : Depth
	I16 : Number Border Texels
	U8 : Shared Image Flag
	I16 : Mipmaps Count
	Texture Vers-2 Data

	Figure 49: Texture Vers-2 Data collection
	I32 : Texture Type
	I32 : Texture Channel
	U32 : Reserved Field
	U8 : Inline Image Storage Flag
	I32 : Image Count
	MbString : External Storage Name
	Texture Vers-3 Data

	Figure 50: Texture Vers-3 Data collection
	I32 : Texture Type
	I32 : Texture Channel
	U32 : Reserved Field
	U8 : Inline Image Storage Flag
	I32 : Image Count
	MbString : External Storage Name
	Draw Style Attribute Element

	Figure 51: Draw Style Attribute Element data collection
	Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.
	I16 : Version Number
	U8 : Data Flags
	Light Set Attribute Element

	Figure 52: Light Set Attribute Element data collection
	Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.
	I16 : Version Number
	I32 : Light Count
	I32 : Light Object ID
	Infinite Light Attribute Element

	Figure 53: Infinite Light Attribute Element data collection
	Complete description for Base Light Data can be found in 7.2.1.1.2.6.1Base Light Data.
	Complete description for Shadow Parameters can be found in 7.2.1.1.2.6.2 Shadow Parameters.
	Base Light Data

	Figure 54: Base Light Data collection
	I16 : Version Number
	RGBA : Ambient Color
	RGBA : Diffuse Color
	RGBA : Specular Color
	F32 : Brightness
	I32 : Coord System
	U8 : Shadow Caster Flag
	F32 : Shadow Opacity
	Shadow Parameters

	Figure 55: Shadow Parameters data collection
	F32 : Non-shadow Alpha Factor
	F32 : Shadow Alpha Factor
	Point Light Attribute Element

	Figure 56: Point Light Attribute ElementPoint Light Attribute Element data collection
	Complete description for Base Light Data can be found in 7.2.1.1.2.6.1 Base Light Data.
	Complete description for Attenuation Coefficients can be found in 7.2.1.1.2.7.1Attenuation Coefficients.
	Complete description for Shadow Parameters can be found in 7.2.1.1.2.6.2 Shadow Parameters.
	I16 : Version Number
	F32 : Spread Angle
	Figure 57: Spread Angle value with respect to the light cone
	DirF32 : Spot Direction
	I32 : Spot Intensity
	Attenuation Coefficients

	Figure 58: Attenuation Coefficients data collection
	F32 : Constant Attenuation
	F32 : Linear Attenuation
	F32 : Quadratic Attenuation
	Linestyle Attribute Element

	Figure 59: Linestyle Attribute Element data collection
	Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.
	I16: Version Number
	U8 : Data Flags
	Pointstyle Attribute Element

	Figure 60: Pointstyle Attribute Element data collection
	Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.
	I16 : Version Number
	U8 : Data Flags
	Geometric Transform Attribute Element

	Figure 61: Geometric Transform Attribute Element data collection
	Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.
	I16: Version Number
	U16 : Stored Values Mask
	Shader Effects Attribute Element

	Figure 62: Shader Effects Attribute Element data collection
	Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.
	I16 : Version Number
	U32 : Enable Flag
	I32 : Reserved Field 1
	F32 : Env Map Reflectivity
	I32 : Reserved Field 2
	F32 : Bumpiness Factor
	U32 : Reserved Field 3
	Vertex Shader Attribute Element

	Figure 63: Vertex Shader Attribute Element data collection
	Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.
	I16 : Version Number
	Fragment Shader Attribute Element

	Figure 64: Fragment Shader Attribute Element data collection
	Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data.
	Complete description for Base Shader Data can be found in 7.2.1.1.2.1.2 Base Shader Data.
	I16 : Version Number
	Texture Coordinate Generator Attribute Element
	Mapping Surface
	Mapping Plane Element
	Mapping Cylinder Element
	Mapping Sphere Element
	Mapping TriPlanar Element

	Property Atom Elements
	Base Property Atom Element

	Figure 70: Base Property Atom Element data collection
	Base Property Atom Data
	Figure 71: Base Property Atom Data collection
	I16: Version Number
	U32 : State Flags
	String Property Atom Element

	Figure 72: String Property Atom Element data collection
	Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data.
	I16: Version Number
	MbString : Value
	Integer Property Atom Element

	Figure 73: Integer Property Atom Element data collection
	Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data.
	I16: Version Number
	I32 : Value
	Floating Point Property Atom Element

	Figure 74: Floating Point Property Atom Element data collection
	Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data.
	I16: Version Number
	F32 : Value
	JT Object Reference Property Atom Element

	Figure 75: JT Object Reference Property Atom Element data collection
	Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data.
	I16: Version Number
	I32 : Object ID
	Date Property Atom Element

	Figure 76: Date Property Atom Element data collection
	Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data.
	I16 : Version Number
	I16 : Year
	I16 : Month
	I16 : Day
	I16 : Hour
	I16 : Minute
	I16 : Second
	Late Loaded Property Atom Element

	Figure 77: Late Loaded Property Atom Element data collection
	Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.
	Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data.
	I16 : Version Number
	GUID : Segment ID
	I32 : Segment Type
	I32 : Payload Object ID
	I32 : Reserved
	Reserved data field that is guaranteed to always be greater than or equal to 1
	Vector4f Property Atom Element

	Figure 78: Vector4f Property Atom Element data collection
	Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data.
	I16 : Version Number
	F32 : Value
	Value contains the floating point value for this property atom
	Property Table

	Figure 79: Property Table data collection
	I16 : Version Number
	I32 : Element Property Table Count
	I32 : Element Object ID
	Element Property Table

	Figure 80: Element Property Table data collection
	I32 : Key Property Atom Object ID
	I32 : Value Property Atom Object ID
	Shape LOD Segment

	Figure 81: Shape LOD Segment data collection
	Shape LOD Element
	Base Shape LOD Element

	Figure 82: Base Shape LOD Element data collection
	Base Shape LOD Data
	Figure 83: Base Shape LOD Data collection
	I16 : Version Number
	Vertex Shape LOD Element

	Figure 84: Vertex Shape LOD Element data collection
	Vertex Shape LOD Data

	Figure 85: Vertex Shape LOD Data collection
	I16 : Version Number
	U64 : Vertex Bindings
	TopoMesh LOD Data

	Figure 91: TopoMesh Compressed Rep Data V1 data collection
	I32: Number of Face Group List Indices
	I32: Number of Primitive List Indices
	I32: Number of Vertex List Indices
	VecI32{Int32CDP2} : Face Group List Indices
	VecI32{Int32CDP2} : Primitive List Indices
	VecI32{Int32CDP2} : Vertex List Indices
	I32: FGPV List Indices Hash
	U64: Vertex Bindings
	I32: Number of Vertex Records
	I32: Number of Unique Vertex Coordinates
	VecI32{Int32CDP2} : Unique Vertex Coordinate Length List
	I32: Unique Vertex List Map Hash
	TopoMesh Compressed Rep Data V2

	Figure 86: TopoMesh LOD Data collection
	I16 : Version Number
	I32: Vertex Records Object ID
	TopoMesh Compressed LOD Data

	Figure 87: TopoMesh LOD Data collection
	I16 : Version Number
	TopoMesh Topologically Compressed LOD Data

	Figure 88: TopoMesh Topologically Compressed LOD Data collection
	I16 : Version Number
	Topologically Compressed Rep Data

	Figure 89: Topologically Compressed Rep Data Collection
	VecI32{Int32CDP2} : Face Degrees
	VecI32{Int32CDP2} : Vertex Valences
	VecI32{Int32CDP2, Lag1} : Vertex Flags
	VecI32{Int32CDP2} : Face Attribute Masks (30 LSBs)
	VecI32{Int32CDP2} : Face Attribute Mask 8 (30 next MSBs)
	VecI32{Int32CDP2} : Face Attribute Mask 8 (4 MSBs)
	VecU32 : High-Degree Face Attribute Masks
	VecI32{Int32CDP2, Lag1} : Split Face Syms
	VecI32{Int32CDP2} : Split Face Positions
	U32 : Composite Hash
	Topologically Compressed Vertex Records

	Figure 90: Topologically Compressed Vertex Records data collection
	U64: Vertex Bindings
	I32 : Number of Topological Vertices
	I32 : Number of Vertex Attributes
	TopoMesh Compressed Rep Data V1

	Figure 91: TopoMesh Compressed Rep Data V1 data collection
	I32: Number of Face Group List Indices
	I32: Number of Primitive List Indices
	I32: Number of Vertex List Indices
	VecI32{Int32CDP2} : Face Group List Indices
	VecI32{Int32CDP2} : Primitive List Indices
	VecI32{Int32CDP2} : Vertex List Indices
	I32: FGPV List Indices Hash
	U64: Vertex Bindings
	I32: Number of Vertex Records
	I32: Number of Unique Vertex Coordinates
	VecI32{Int32CDP2} : Unique Vertex Coordinate Length List
	I32: Unique Vertex List Map Hash
	TopoMesh Compressed Rep Data V2

	Figure 92: TopoMesh Compressed Rep Data V2 data collection
	I16 : Version Number
	U64 : Vertex Bindings
	Topologically Compressed Vertex Records
	Figure 90: Topologically Compressed Vertex Records data collection
	U64: Vertex Bindings
	I32 : Number of Topological Vertices
	I32 : Number of Vertex Attributes
	GUID : Unique Field Identifier
	U8 : Field Type
	VecU32{Int32CDP2} : Data U32_0
	VecU32{Int32CDP2} : Data U32_1
	VecU32{Int32CDP2} : Data U32_2
	VecU32{Int32CDP2} : Data Lower Mantissae
	VecU32{Int32CDP2} : Data Upper Mantissae
	VecU32{Int32CDP2} : Data Exponents
	I32 : Auxiliary Data Hash
	Tri-Strip Set Shape LOD Element

	Figure 93: Tri-Strip Set Shape LOD Element data collection
	Complete description for Vertex Shape LOD Data can be found in 7.2.2.1.2.1 Vertex Shape LOD Data.
	I16 : Version Number
	Polyline Set Shape LOD Element

	Figure 94: Polyline Set Shape LOD Element data collection
	Complete description for Vertex Shape LOD Data can be found in 7.2.2.1.2.1 Vertex Shape LOD Data.
	I16 : Version Number
	Point Set Shape LOD Element

	Figure 95: Point Set Shape LOD Element data collection
	Complete description for Vertex Shape LOD Data can be found in 7.2.2.1.2.1 Vertex Shape LOD Data.
	I16 : Version Number
	Null Shape LOD Element

	Figure 96: Null Shape LOD Element data collection
	I16 : Version Number
	BBoxF32 : Untransformed BBox
	Primitive Set Shape Element

	Figure 97: Primitive Set Shape Element data collection
	I16 : Version Number
	Version Number is the version identifier for this element. Only version number 0x0001 is valid for now
	I32 : Texture Coord Binding
	I16 : Version Number
	I32 : Texture Coord Gen Type
	Texture Coord Gen Type specifies how texture coordinates are to be generated.
	Lossless Compressed Primitive Set Data

	Figure 98: Lossless Compressed Primitive Set Data collection
	I32 : Uncompressed Data Size
	I32 : Compressed Data Size
	U8 : Primitive Data
	{[reserved], [params1], [params2], [params3], [color], [type]}, …, for all primitives
	U8 : Compressed Primitive Data
	Lossy Quantized Primitive Set Data
	Figure 99: Lossy Quantized Primitive Set Data collection
	I32 : Primitive Count
	Quaternion : params3
	CoordF32 : params1
	DirF32 : params2
	RGB : Color
	I32 : Type
	U8 : Bits Per Color
	VecI32{Int32CDP, Lag1} : Compressed Types
	Compressed params1

	Figure 100: Compressed params1 data collection
	VecF32 : Quantization Range Min/Max Pairs
	VecI32{Int32CDP, Lag1} : params1 Codes
	Compressed params3
	Compressed params2
	Compressed Colors
	JT B-Rep Segment

	Figure 101: JT B-Rep Segment data collection
	JT B-Rep Element

	Figure 102: JT B-Rep Element data collection
	I16 : Version Number
	U32 : Reserved Field
	CoordF64 : Reserved Field
	F64 : Reserved Field
	U32 : CAD Tags Flag
	Topological Entity Counts

	Figure 103: Topological Entity Counts data collection
	I32 : Region Count
	I32 : Shell Count
	Shell Count indicates the number of topological shell entities in the B-Rep
	I32 : Face Count
	Face Count indicates the number of topological face entities in the B-Rep
	I32 : Loop Count
	Loop Count indicates the number of topological loop entities in the B-Rep
	I32 : CoEdge Count
	CoEdge Count indicates the number of topological coedge entities in the B-Rep
	I32 : Edge Count
	Edge Count indicates the number of topological edge entities in the B-Rep
	I32 : Vertex Count
	Vertex Count indicates the number of topological vertex entities in the B-Rep
	Geometric Entity Counts

	Figure 104: Geometric Entity Counts data collection
	I32 : Surface Count
	Surface Count indicates the number of distinct geometric surface entities in the B-Rep
	I32 : PCS Curve Count
	I32 : MCS Curve Count
	I32 : Point Count
	Topology Data

	Figure 105: Topology Data collection
	Regions Topology Data
	Figure 106: Regions Topology Data collection
	VecI32{Int32CDP, Lag1} : First Shell Indices
	VecI32{Int32CDP, Lag1} : Last Shell Indices
	VecI32{Int32CDP, Lag1} : Region Tags
	Shells Topology Data
	Figure 107: Shells Topology Data collection
	VecI32{Int32CDP, Lag1} : First Face Indices
	VecI32{Int32CDP, Lag1} : Last Face Indices
	VecI32{Int32CDP, Lag1} : Shell Tags
	VecI32{Int32CDP, Xor1} : Shell Anti-Hole Flags
	Faces Topology Data
	Figure 108: Trim Loop example in parameter Space - One Face with 2 Holes
	Figure 109: Faces Topology Data collection
	VecI32{Int32CDP, Lag1} : First Trim Loop Indices
	VecI32{Int32CDP, Lag1} : Last Trim Loop Indices
	VecI32{Int32CDP, Lag1} : Surface Indices
	VecI32{Int32CDP, Lag1} : Face Tags
	VecI32{Int32CDP, Xor1} : Face Reverse Normal Flags
	Loops Topology Data
	Figure 110: Loops Topology Data collection
	VecI32{Int32CDP, Lag1} : First CoEdge Indices
	VecI32{Int32CDP, Lag1} : Last CoEdge Indices
	VecI32{I32CDP, Lag1} : Loop Tags
	VecI32{I32CDP, Xor1} : Anti-Hole Flags
	CoEdges Topology Data
	Figure 111: CoEdges Topology Data collection
	VecI32{Int32CDP, Lag1} : Edge Indices
	VecI32{Int32CDP, Lag1} : PCS Curve Indices
	VecI32{Int32CDP, Lag1} : CoEdge Tags
	VecI32{Int32CDP, Xor1} : MCS Curve Reversed Flags
	Edges Topology Data
	Figure 112: Edges Topology Data collection
	VecI32{Int32CDP, Lag1} : Start Vertex Indices
	VecI32{Int32CDP, Lag1} : End Vertex Indices
	VecI32{Int32CDP, Lag1} : MCS Curve Indices
	VecI32{Int32CDP, Lag1} : Edge Tags
	Vertices Topology Data
	Figure 113: Vertices Topology Data collection
	VecI32{Int32CDP, Lag1} : Point Indices
	VecI32{Int32CDP, Lag1} : Vertex Tags
	Geometric Data

	Figure 114: Geometric Data collection
	Surfaces Geometric Data
	Figure 115: Surfaces Geometric Data collection
	VecI32{Int32CDP, Lag1} : Surface Base Types
	VecI32{Int32CDP, Lag1} : NURBS Surface Control Point Dimensionality
	VecI32{Int32CDP, Lag1} : NURBS Surface Reserved Fields
	Non-Trivial Knot Vector NURBS Surface Indices

	Figure 116: Non-Trivial Knot Vector NURBS Surface Indices data collection
	NURBS Surface Degree

	Figure 117: NURBS Surface Degree data collection
	VecI32{Int32CDP, Lag1} : U-Degrees
	VecI32{Int32CDP, Lag1} : V-Degrees
	NURBS Surface Control Point Counts

	Figure 118: NURBS Surface Control Point Counts data collection
	VecI32{Int32CDP, Lag1} : U-Control Point Counts
	VecI32{Int32CDP, Lag1} : V-Control Point Counts
	NURBS Surface Control Point Weights

	Figure 119: NURBS Surface Control Point Weights data collection
	NURBS Surface Control Points

	Figure 120: NURBS Surface Control Points data collection
	VecF64{Float64CDP, NULL} : Control Points
	NURBS Surface Knot Vectors

	Figure 121: NURBS Surface Knot Vectors data collection
	VecF64{Float64CDP, NULL} : U Knot Vectors
	VecF64{Float64CDP, NULL} : V Knot Vectors
	PCS Curves Geometric Data
	Figure 122: PCS Curves Geometric Data collection
	Trivial PCS Curves

	Figure 123: Trivial PCS Curves data collection
	I32 : Trivial Domain Loops Exist Flag
	I32 : Trivial Domain UV Curves Exist Flag
	VecI32{Int32CDP, Lag1} : Trivial Box Loop UV Curve Indices
	VecF64{Float64CDP, NULL} : Trivial Box Loop Corner Coords
	VecI32{Int32CDP, Lag1} : Trivial UV Curve Indices
	VecI32{Int32CDP, Lag1} : Trivial UV Curve Para Domain Side Codes
	MCS Curves Geometric Data
	Figure 124: MCS Curves Geometric Data collection
	Point Geometric Data
	Figure 125: Point Geometric Data collection
	CoordF32 : Point Coordinates
	Topological Entity Tag Counters

	Figure 126: Topological Entity Tag Counters data collection
	I32 : Region Tag Counter
	I32 : Shell Tag Counter
	I32 : Face Tag Counter
	I32 : Loop Tag Counter
	I32 : CoEdge Tag Counter
	I32 : Edge Tag Counter
	I32 : Vertex Tag Counter
	B-Rep CAD Tag Data

	Figure 127: B-Rep CAD Tag Data collection
	XT B-Rep Segment
	XT B-Rep Element

	Figure 128: XT B-Rep Element data collection
	I32 : Version Number
	I32 : Parasolid Kernel Major Version Number
	I32 : Parasolid Kernel Minor Version Number
	I32 : Parasolid Kernel Build Number
	I32 : XT B-Rep Data Length
	XT B-Rep Data
	Wireframe Segment

	Figure 129: Wireframe Segment data collection
	Wireframe Rep Element

	Figure 130: Wireframe Rep Element data collection
	I16 : Version Number
	I32 : Edge Count
	Edge Count indicates the number of topological Edge entities in the Wireframe Rep
	I32 : MCS Curve Count
	VecI32{Int32CDP2, Lag1} : MCS Curve Indices
	VecI32{Int32CDP2, Lag1} : Edge Tags
	I32 : Edge Tag Counter
	U32: CAD Tags Flag
	Wireframe MCS Curves Geometric Data

	Figure 131: Wireframe MCS Curves Geometric Data collection
	Wireframe Rep CAD Tag Data

	Figure 132: Wireframe Rep CAD Tag Data collection
	Meta Data Segment

	Figure 133: Meta Data Segment data collection
	Property Proxy Meta Data Element

	Figure 134: Property Proxy Meta Data Element data collection
	Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.
	I16: Version Number
	MbString : Property Key
	U8 : Property Value Type
	I32 : Integer Property Value
	F32 : Float Property Value
	Date Property Value

	Figure 135: Date Property Value data collection
	I16 : Year
	I16 : Month
	I16 : Day
	I16 : Hour
	I16 : Minute
	I16 : Second
	PMI Manager Meta Data Element

	Figure 136: PMI Manager Meta Data Element data collection
	Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB.
	I16 : PMI Version Number
	U32 : CAD Tags Flag
	I32: MV Property Count
	I32: Font Count
	String: Font Name
	VecI32: Character Set
	I16: Version Number
	I16 : PMI Version Number
	U32 : CAD Tags Flag
	I32: MV Property Count
	I32: Font Count
	String: Font Name
	VecI32: Character Set
	PMI Entities

	Figure 137: PMI Entities data collection
	PMI Dimension Entities

	Figure 138: PMI Dimension Entities data collection
	I32 : Dimension Count
	Dimension Count specifies the number of Dimension entities.
	PMI 2D Data

	Figure 139: PMI 2D Data collection
	I32 : Text Entity Count
	PMI Base Data

	Figure 140: PMI Base Data collection
	I32 : User Label
	U8 : 2D-Frame Flag
	F32 : Text Height
	U8 : Symbol Valid Flag
	2D-Reference Frame

	Figure 141: 2D-Reference Frame data collection
	CoordF32 : Origin
	Origin defines the origin (min-corner) of the 2D coordinate system
	CoordF32 : X-Axis Point
	CoordF32 : Y-Axis Point
	2D Text Data

	Figure 142: 2D Text Data collection
	I32 : String ID
	I32 : Font
	F32 : Reserved Field
	Text Box

	Figure 143: Text Box data collection
	F32 : Origin X-Coord
	F32 : Origin Y Coord
	F32 : Lower Right Corner X-Coord
	F32 : Lower Right Corner Y-Coord
	F32 : Upper Left Corner X-Coord
	F32 : Upper Left Corner Y Coord
	Text Polyline Data

	Figure 144: Constructing Text Polylines from data arrays
	Figure 145: Text Polyline Data collection
	I32 : Polyline Segment Index Count
	I16 : Polyline Segment Index
	VecF32 : Polyline Vertex Coords
	Non-Text Polyline Data

	Figure 146: Constructing Non-Text Polylines from packed 2D data arrays
	Figure 147: Non-Text Polyline Data collection
	I32 : Polyline Segment Index Count
	I16 : Polyline Segment Index
	I32 : Polyline Type Count
	I16 : Polyline Type
	VecF32 : Polyline Vertex Coords
	PMI Note Entities

	Figure 148: PMI Note Entities data collection
	Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.
	I32 : Note Count
	U32 : URL Flag
	PMI Datum Feature Symbol Entities

	Figure 149: PMI Datum Feature Symbol Entities data collection
	Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.
	I32 : DFS Count
	PMI Datum Target Entities

	Figure 150: PMI Datum Target Entities data collection
	Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.
	I32 : Datum Target Count
	PMI Feature Control Frame Entities

	Figure 151: PMI Feature Control Frame Entities data collection
	Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.
	I32 : FCF Count
	PMI Line Weld Entities

	Figure 152: PMI Line Weld Entities data collection
	Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.
	I32 : Line Weld Count
	PMI Spot Weld Entities

	Figure 153: PMI Spot Weld Entities data collection
	I32 : Spot Weld Count
	CoordF32 : Weld Point
	DirF32 : Approach Direction
	DirF32 : Clamping Direction
	DirF32 : Normal Direction
	PMI 3D Data

	Figure 154: PMI 3D Data collection
	Complete description for PMI Base Data can be found in 7.2.6.2.1.1.1.1 PMI Base Data.
	I32 : String ID
	I16 : Polyline Dimensionality
	I16 : Polyline Segment Index
	VecF32 : Polyline Vertex Coords
	PMI Surface Finish Entities

	Figure 155: PMI Surface Finish Entities data collection
	Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.
	I32 : SF Count
	PMI Measurement Point Entities

	Figure 156: PMI Measurement Point Entities data collection
	Complete description for PMI 3D Data can be found in 7.2.6.2.1.7.1 PMI 3D Data.
	I32 : MP Count
	CoordF32 : Location
	DirF32 : Measurement Direction
	DirF32 : Coordinate Direction
	DirF32 : Normal Direction
	Normal Direction specifies the components of the direction vector normal to the actual Measurement Point.
	PMI Locator Entities

	Figure 157: PMI Locator Entities data collection
	Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.
	I32 : Locator Count
	PMI Reference Geometry Entities

	Complete description for PMI 3D Data can be found in 7.2.6.2.1.7.1 PMI 3D Data.
	I32 : Reference Geometry Count
	PMI Design Group Entities

	Figure 159: PMI Design Group Entities data collection
	I32 : Design Group Count
	I32 : Group Name String ID
	I32 : Attribute Count
	Attribute Count specifies the number of Design Group Attribute data collections
	Design Group Attribute

	Figure 160: Design Group Attribute data collection
	I32 : Attribute Type
	F64 : Double Value
	I32 : String Value String ID
	I32 : Label String ID
	I32 : Description String ID
	PMI Coordinate System Entities

	Figure 161: PMI Coordinate System Entities data collection
	I32 : Coord Sys Count
	I32 : Name String ID
	CoordF32 : Origin
	CoordF32 : X-Axis Point
	CoordF32 : Y-Axis Point
	PMI Associations

	Figure 162: PMI Associations data collection
	I32 : Association Count
	I32 : Source Data
	I32 : Reason Code
	I32 : Destination Owning Entity String ID
	PMI User Attributes

	Figure 163: PMI User Attributes data collection
	I32 : User Attribute Count
	I32 : Key String ID
	I32 : Value String ID
	PMI String Table

	Figure 164: PMI String Table data collection
	I32 : String Count
	String : PMI String
	PMI Model Views

	Figure 165: PMI Model Views data collection
	I32 : Model View Count
	DirF32 : Eye Direction
	F32 : Angle
	CoordF32 : Eye Position
	CoordF32 : Target Point
	CoordF32 : View Angle
	F32 : Viewport Diameter
	F32 : Reserved Field
	I32 : Reserved Field
	Reserved Field is a data field reserved for future JT format expansion
	I32 : Active Flag
	I32 : View Name String ID
	Generic PMI Entities

	Figure 166: Generic PMI Entities data collection
	Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data.
	I32 : Generic Entity Count
	I32 : Property Count
	I32 : Entity Type Name String ID
	I32 : Parent Type Name String ID
	U16 : Entity Type
	U16 : User Flags
	PMI Property

	Figure 167: PMI Property data collection
	Table 7: Common Property Keys and Their Value Encoding formats
	PMI Property Atom

	Figure 168: PMI Property Atom data collection
	MbString : Value
	U32 : Hidden Flag
	PMI CAD Tag Data

	Figure 169: PMI CAD Tag Data collection
	I32 : CAD Tag Index Count
	I32 : CAD Tag Index
	PMI Polygon Data

	I32: Reserved Field
	Reserved Field is a data field reserved for future JT format expansion
	VecI32: vNumVerts
	Retrieve next vertCount from vNumVerts
	I32: NormalBinding
	I32: ColorBinding
	I32: TextureBinding
	I32: PolygonDimension
	VecI32: PrimTypes
	VecI32: PrimIndices
	VecI32: VertIndices
	VecF32: Vertices
	VecF32: Normals
	VecF32: Colors
	VecF32: Texture Coords
	PMI Data Segment
	JT ULP Segment

	Figure 171: JT ULP Segment data collection
	JT ULP Element

	Figure 172: JT ULP Element data collection
	I16:Version Number
	I32:Material Attribute Element Count
	Topology Data

	Figure 173: Topology Data collection
	Topological Entity Counts

	Figure 174: Topological Entity Counts data collection
	I32 : Region Count
	I32 : Shell Count
	I32 : Face Count
	I32 : Loop Count
	I32 : CoEdge Count
	I32 : Edge Count
	I32 : Vertex Count
	Combined Predictor Type

	Figure 175: Combined Predictor Type data collection
	VecI32{Int32CDP2, ePredictorType}: BasicArray
	U8: ProcessingType
	Element Mapping
	VecI32{Int32CDP2, ePredictorType}: MultiplicityArray
	Multiplicity Expansion
	Regions Topology Data

	Figure 176: Regions Topology Data collection
	VecI32{Int32CDP2, Combined:NULL}: Shell Index Difference
	Recover First and Last Shell Indices
	Shells Topology Data

	Figure 177: Shells Topology Data collection
	VecI32{Int32CDP2, Combined:NULL}: Face Index Difference
	Recover First and Last Face Indices
	VecI32{Int32CDP2, NULL}: Shell Anti-Hole Flags
	Faces Topology Data

	Figure 178: Faces Topology Data collection
	U8: Face Array Flag
	VecI32{Int32CDP2, Combined:NULL}: Index Difference Array
	Recover First and Last Loop Indices
	Recover Surface Indices
	Recover Material Indices
	VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array
	Supported Surface Type
	In an uncompressed/decoded form, the supported surface types are listed below.
	Supported Knot Type
	Loops Topology Data

	Figure 179: Loops Topology Data collection
	U8: Loop Array Flag
	VecI32{Int32CDP2, Combined:NULL}: CoEdge Index Difference
	Recover First and Last CoEdge Indices
	VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array
	CoEdges Topology Data

	Figure 180: CoEdges Topology Data collection
	U8: CoEdge Array Flag
	VecI32{Int32CDP2, Combined:NULL}: Edge Index Difference
	Recover Edge Indices
	VecI32{Int32CDP2, Combined:NULL}: PCS Curve Index Difference
	Recover PCS Curve Indices
	VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array
	Domain Type
	Figure 181: Surface Domain Classification
	In an uncompressed/decoded form, the supported PCS Curve types are listed below.
	Recover Flag Bits
	Edges Topology Data

	Figure 182: Edges Topology Data collection
	U8: Edge Array Flag
	VecI32{Int32CDP2, Combined:NULL}: Vertex Index Array
	Recover Vertex Indices
	VecI32{Int32CDP2, Combined:NULL}: MCS Curve Index Difference
	Recover MCS Curve Indices
	VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array
	The Knot Type, defined in Supported Knot Type, is an integer with its value between 0 and 3.
	MCS Curve Type
	In an uncompressed/decoded form, the supported MCS Curve types are listed below.
	Vertices Topology Data

	Figure 183: Vertices Topology Data collection
	U8: Vertex Array Flag
	VecI32{Int32CDP2, Combined:NULL}: Point Index Difference
	Recover Point Indices
	Geometric Data

	Figure 184: Geometric Data collection
	CoordF64 : Translation Vector
	U32: Geometric Tabe Flag
	U32: Geometric Tabe Flag
	Geometric Entity Counts

	U32: Geometric Tabe Flag
	Figure 185: U32: Geometric Tabe Flag
	Geometric Entity Counts data collection
	I32 : Surface Count
	Surface Count indicates the number of distinct geometric surface entities in the ULP
	I32 : MCS Curve Count
	I32 : PCS Curve Count
	I32 : Point Count
	Degree Table

	Figure 186: Degree Table data collection
	VecI32{Int32CDP2, Combined:NULL}: Degree Array
	Degree Array is a vector of integers that stores the degree information for all the Nurbs entities in the ULP, encoded using Combined Predictor Type. Degree Array is compressed and encoded using the Int32 version of second generation CODEC.
	Recover Nurbs Degree
	Figure 187: Recover Nurbs Degree
	Number of Control Points Table

	Figure 188: Number of Control Points Table data collection
	VecI32{Int32CDP2, Combined:NULL}: Number of Control Points Array
	Recover Number of Control Points
	Figure 189: Recover Number of Control Points
	Dimension Table

	Figure 190: Dimension Table data collection
	VecI32{Int32CDP2, Combined:NULL}: Dimension Array
	Recover Dimension
	3D Unit Vector Table

	Figure 192: 3D Unit Vector Table data collection
	U8 : Quantization Bits
	VecI32{Int32CDP2, Combined:NULL}: 3D Unit Vector Integer Array
	Recover 3D Unit Vector
	2D Unit Vector Table

	Figure 194: 2D Unit Vector Table data collection
	VecI32{Int32CDP2, Combined:NULL}: 2D Unit Vector Integer Array
	Recover 2D Unit Vector
	Figure 195: Recover 2D Unit Vector
	3D MCS Point Table

	Figure 196: 3D MCS Point Table data collection
	VecI32{Int32CDP2, Combined: Lag1}: X-Point Coord Codes
	VecI32{Int32CDP2, Combined: Lag1}: Y-Point Coord Codes
	VecI32{Int32CDP2, Combined: Lag1}: Z-Point Coord Codes
	Recover 3D MCS Points
	Figure 197: Recover 3D MCS Points
	Knot Vector Table

	Figure 198: Knot Vector Table data collection
	VecI32{Int32CDP2, Combined:NULL}: Knot Vector Codes
	Recover Knot Vectors
	1D MCS Table

	Figure 200: 1D MCS Table data collection
	VecI32{Int32CDP2, Combined:Lag1}: 1D MCS Codes
	Recover 1D MCS Table
	Table 8: Parameter Domain
	Figure 201: Recover 1D MCS Table
	PCS Value Table

	Figure 202: PCS Value Table data collection
	VecI32{Int32CDP2, Combined:NULL}: PCS Value Codes
	Recover PCS Value Table
	Figure 203: Recover PCS Value Table
	Figure 204: Radian Table data collection
	Radian Table

	VecI32{Int32CDP2, Combined:NULL}: Radian Codes
	Recover Radian Table
	Figure 205: Recover Radian Table
	Figure 206: Weight Table data collection
	Weight Table

	VecI32{Int32CDP2, Combined:NULL}:Weight Codes
	Recover Weight Table
	Figure 207: Recover Weight Table
	Material Attribute Element Properties

	Figure 208: Material Attribute Element Properties
	I32 : Property Count
	Property count is the number of properties attached.
	Property Entry
	Standard JT property entry, consisting of key and value pair.
	Information Recovery

	Figure 209: Information Recovery
	PCS Curve Recovery from Surface Domain

	Figure 210: PCS Curve Recovery from Surface Domain
	MCS Curve Recovery

	Figure 211: MCS Curve Recovery
	Figure 212: MCS Curve Recovery from Surface Geometry
	PCS Curve Recovery from MCS Curve and Surface Geometry

	Figure 213: PCS Curve Recovery from MCS Curve and Surface Geometry
	JT LWPA Segment

	Figure 214: JT LWPA Segment data collection
	Complete description for Segment Header can be found in 7.1.3.1Segment Header.
	JT LWPA Element

	Object Type ID: 0xd67f8ea8, 0xf524, 0x4879, 0x92, 0x8c, 0x4c, 0x3a, 0x56, 0x1f, 0xb9, 0x3a
	Figure 215: JT LWPA Element data collection
	I16:Version Number
	I32 : Surface Count
	I32 : Analytic Surface Count
	Analytic Surface Count indicates the number of analytic surface entries in LWPA.
	Analytic Surface Geometry

	Figure 216: Analytic Surface Geometry data collection
	VecI32{Int32CDP2, Lag1}: Analytic Surface Indices
	VecI32{Int32CDP2, NULL}: Analytic Surface Type
	VecF64: Coordinate Array
	VecF64: Axis Array
	VecF64: Radius Array
	VecF64: Radian Array
	Analytic Surface Creation
	Figure 217: Analytic Surface Creation
	Data Compression and Encoding
	Common Compression Data Collection Formats
	Int32 Compressed Data Packet

	Figure 218: Int32 Compressed Data Packet data collection
	U8 : CODEC Type
	I32 : Out-Of-Band Value Count
	I32 : CodeText Length
	I32 : Value Element Count
	I32 : Symbol Count
	VecU32 : CodeText
	Int32 Probability Contexts

	Figure 219: Int32 Probability Contexts data collection
	U8 : Probability Context Table Count
	U32{32} : Probability Context Table Entry Count
	U32{6} : Number Symbol Bits
	U32{6} : Number Occurrence Count Bits
	U32{6} : Number Value Bits
	U32{6} : Number Next Context Bits
	U32{32} : Min Value
	U32{variable}: Alignment Bits
	Int32 Probability Context Table Entry
	Figure 220: Int32 Probability Context Table Entry data collection
	U32{Number Symbol Bits} : Symbol
	U32{Number Occurrence Count Bits} : Occurrence Count
	U32{Number Value Bits} : Associated Value
	U32{Number Next Context Bits} : Next Context
	Int32 Compressed Data Packet Mk. 2

	Figure 221: Int32 Compressed Data Packet Mk. 2 data collection
	I32 : Value Count
	U8 : CODEC Type
	I32 : CodeText Length
	VecU32 : CodeText
	U8 : Chop Bits
	I32 : Value Bias
	U8 : Value Span Bits
	Int32 Compressed Data Packet Mk. 2 : Chopped MSB Data
	Int32 Compressed Data Packet Mk. 2 : Chopped LSB Data
	OrigValue[i] = (LSBValue[i] | (MSBValue[i] << (ValSpanBits - ChopBits))) + ValueBias;
	Int32 Compressed Data Packet Mk. 2 : OOB Data Values
	Int32 Probability Contexts Mk. 2

	Figure 222: Int32 Probability Contexts Mk. 2 data collection
	U32{16} : Probability Context Table Entry Count
	U32{6} : Number Symbol Bits
	U32{6} : Number Occurrence Count Bits
	U32{6} : Number Value Bits
	U32{32} : Min Value
	U32{variable}: Alignment Bits
	Int32 Probability Context Table Entry Mk. 2
	Figure 223: Int32 Probability Context Table Entry Mk. 2 data collection
	U32{Number Symbol Bits} : Symbol
	U32{Number Occurrence Count Bits} : Occurrence Count
	U32{Number Value Bits} : Associated Value
	Float64 Compressed Data Packet

	Figure 224: Float64 Compressed Data Packet data collection
	U8 : CODEC Type
	I32 : Value Element Count
	F64 : Value Range Min
	F64 : Value Range Max
	I32 : Out-Of-Band Value Count
	VecF64 : Out-Of-Band Values
	I32 : CodeText Length
	I32 : Value Element Count
	I32 : Symbol Count
	VecU32 : CodeText
	Float64 Probability Contexts

	Figure 225: Float64 Probability Contexts data collection
	I32 : Probability Context Table Count
	I32 : Probability Context Table Entry Count
	Float64 Probability Context Table Entry
	Figure 226: Float64 Probability Context Table Entry data collection
	I32 : Symbol
	I32 : Occurrence Count
	F64 : Associated Value
	I32 : Reserved Field
	Compressed Vertex Coordinate Array

	Figure 227: Compressed Vertex Coordinate Array data collection
	I32 : Unique Vertex Count
	U8 : Number Components
	VecU32{Int32CDP2, Lag1} : Vertex Coord Exponents
	VecU32{Int32CDP2, Lag1} : Vertex Coord Mantissae
	VecU32{Int32CDP2, Lag1} : Vertex Coord Codes
	I32 : Vertex Coordinate Hash
	Compressed Vertex Normal Array

	Figure 228: Compressed Vertex Normal Array data collection
	I32 : Normal Count
	U8 : Number Components
	U8 : Quantization Bits
	VecU32{Int32CDP2} : Vertex Normal Exponents
	VecU32{Int32CDP2} : Vertex Normal Mantissae
	VecU32{Int32CDP2} : Sextant Codes
	VecU32{Int32CDP2} : Octant Codes
	VecU32{Int32CDP2} : Theta Codes
	VecU32{Int32CDP2} : Psi Codes
	U32 : Vertex Normal Hash
	Compressed Vertex Texture Coordinate Array

	Figure 229: Compressed Vertex Texture Coordinate Array data collection
	I32 : Texture Coord Count
	U8 : Number Components
	U8 : Quantization Bits
	VecU32{Int32CDP2} : Vertex Texture Coord Exponents
	VecU32{Int32CDP2} : Vertex Texture Coord Mantissae
	VecU32{Int32CDP2, Lag1} : Texture Coord Codes
	U32 : Vertex Texture Coord Hash
	Compressed Vertex Color Array

	Figure 230: Compressed Vertex Color Array data collection
	I32 : Color Count
	U8 : Number Components
	U8 : Quantization Bits
	VecU32{Int32CDP2} : Vertex Color Exponents
	VecU32{Int32CDP2} : Vertex Color Mantissae
	VecU32{Int32CDP2, Lag1} : Hue/Red Codes
	VecU32{Int32CDP2, Lag1} : Sat/Green Codes
	VecU32{Int32CDP2, Lag1} : Value/Blue Codes
	VecU32{Int32CDP2, Lag1} : Alpha Codes
	U32 : Vertex Color Hash
	Compressed Vertex Flag Array

	Figure 231: Compressed Vertex Flag Array data collection
	I32 : Vertex Flag Count
	VecU32{Int32CDP2} : Vertex Flags
	Point Quantizer Data

	Figure 232: Point Quantizer Data collection
	Texture Quantizer Data

	Figure 233: Texture Quantizer Data collection
	Color Quantizer Data

	U8 : HSV Flag
	HSV Flag is a flag indicating whether color component data is stored in HSV color model form.
	U8 : Number of Hue Bits
	U8 : Number of Saturation Bits
	U8 : Number of Value Bits
	U8 : Number of Alpha Bits
	Uniform Quantizer Data

	Figure 235: Uniform Quantizer Data collection
	F32 : Min
	F32 : Max
	U8 : Number Of Bits
	Compressed Entity List for Non-Trivial Knot Vector

	JT B-Rep NURBS Surfaces
	JT B-Rep PCS NURBS Curves
	JT B-Rep MCS NURBS Curves
	Wireframe MCS NURBS Curves
	Case-2 for trivial knot vector
	Figure 236: Compressed Entity List for Non-Trivial Knot Vector data collection
	VecI32 : Entities of Knot Type Exist Flags
	VecI32{Int32CDP, Stride1} : Entity Index Codes
	Compressed Control Point Weights Data

	Figure 237: Compressed Control Point Weights Data collection
	I32 : Weights Count
	VecI32{Int32CDP, Stride1} : Weight Indices
	VecF64{Float64CDP, NULL} : Weight Values
	Compressed Curve Data

	Figure 238: Compressed Curve Data collection
	VecI32{Int32CDP, Lag1} : Curve Base Types
	VecI32{Int32CDP, Lag1} : NURBS Curve Degrees
	VecI32{Int32CDP, Lag1} : NURBS Curve Control Point Counts
	VecI32{Int32CDP, Lag1} : NURBS Curve Control Point Dimensionality
	VecI32{Int32CDP, Lag1} : NURBS Curve Reserved Fields
	VecF64{Float64CDP, NULL} : NURBS Curve Knot Vectors
	Non-Trivial Knot Vector NURBS Curve Indices
	Figure 239: Non-Trivial Knot Vector NURBS Curve Indices data collection
	NURBS Curve Control Point Weights
	NURBS Curve Control Points
	Figure 241: NURBS Curve Control Points data collection
	VecF64{Float64CDP, NULL} : Control Points
	Compressed CAD Tag Data

	I16:Version Number
	I32 : Data Length
	I32 : Version Number
	I32 : CAD Tag Count
	CAD Tag Count specifies the number of CAD Tags
	VecI32{Int32CDP2, Lag1} : CAD Tag Types
	VecI32{Int32CDP2, Lag1} : CAD Tags Type-1
	Compressed CAD Tag Type-2 Data

	Figure 243: Compressed CAD Tag Type-2 Data collection
	VecI32{Int32CDP2, Lag1} : First I32 of Type-2 CAD Tags
	VecI32{Int32CDP2, Lag1} : Second I32 of Type-2 CAD Tags
	Encoding Algorithms
	Uniform Data Quantization
	Bitlength CODEC

	Example 1: Prefix code to maintain same (current) field width.
	Example 2: Prefix code to increment field width four times (8 bits).
	Example 3: Prefix code to decrement field width two times.
	Arithmetic CODEC
	Example

	{2, 9, 12, 12, 0, 7, 1, 20, 5, 19}
	Deering Normal CODEC
	ZLIB Compression

	Best Practices
	Late-Loading Data
	Bit Fields
	Reserved Field
	Local Version
	Hash Value
	Metadata Conventions
	CAD Properties
	Required Properties
	Optional Properties

	Tessellation Properties
	Miscellaneous Properties

	LSG Attribute Accumulation Semantics
	LSG Part Structure

	Figure 245: JT Format Convention for Modeling each Part in LSG
	Range LOD Node Alternative Rep Selection
	Brep Face Group Associations

	Object Type Identifiers
	Semantic Value Class Shader Parameter Values
	Table 12: Semantic Value Class Shader Parameter Values
	Decoding Algorithms – An Implementation
	Common classes
	CntxEntry class
	ProbabilityContext class
	CodecDriver class

	Int32 iPredicted;
	CodecDriver2 class

	Bitlength decoding classes
	BitLengthCodec class

	Arithmetic decoding classes
	ArithmeticProbabilityRange class
	ArithmeticCodec class

	UInt32 bitBuffer; // Temporary i/o buffer
	Int32 nSymbols = pDriver->numSymbolsToRead();
	Bool ArithmeticCodec::removeSymbolFromStream(
	Deering Normal decoding classes
	DeeringNormalLookupTable class

	UInt32 numBitsPerAngle() {return nBits;}
	Int32 tableSize = (1 << nBits);
	Float32 fTheta =
	Int32 offset = nBits - numberBits;
	DeeringNormalCodec class

	Float32 fCosTheta, fSinTheta, fCosPsi, fSinPsi;
	DeeringNormalLookupTable LookupTable;
	Float32 fTheta = asin(tan(fPsiMax * Float32(iBitRange - iTheta) /
	UInt32 mask = (1<<numBits)-1;
	Hashing – An Implementation
	Polygon Mesh Topology Coder
	DualVFMesh
	Topology Decoder
	MeshCoderDriver class
	MeshCodec class
	MeshDecoder class

	Parasolid XT Format Reference
	Types of File Documented
	Text and Binary Formats
	Standard File Names and Extensions
	Logical Layout
	SCH_1200123_12006
	Schema
	For each node type, the schema file has a node specifier of the form
	<fieldname>; <type>; <transmit 1/0> <node class> <n_elements>
	Embedded schemas
	Physical layout
	XT format

	Space compression
	Field types
	Point
	Its corresponding schema file entry is
	Pointer classes
	Variable-length nodes
	Its schema file entry would be
	Unresolved indices
	Simple example
	Common header
	// application which is using Parasolid
	// site at which application is running
	Keyword Syntax

	All keyword definitions which appear in the three parts of data are written in the form
	<name> consists of 1 to 80 uppercase, digit, or underscore characters
	Text
	T
	For partition files, the modeller version string would be given as
	Binary
	bare binary
	typed binary
	neutral binary

	Model Structure
	Topology
	General points
	Entity definitions
	Assembly
	Instance
	Body
	Region
	Shell
	Face
	Loop
	Fin
	Edge
	Vertex
	Attributes
	Groups
	Node-ids

	Entity matrix
	Representation of manifold bodies
	Body types

	Restrictions on entity relationships for manifold body types
	Schema Definition
	Underlying types
	Geometry
	Curves
	LINE
	CIRCLE

	A circle has a parametric representation of the form
	ELLIPSE

	An ellipse has a parametric representation of the form
	B_CURVE (B-spline curve)
	Knot Vectors
	The Number of Knots and Vertices
	The Valid Range of the B-curve
	Periodic B-curves
	Closed B-curves
	Rational B-curve
	/B-surface definition

	INTERSECTION
	TRIMMED_CURVE

	For periodic basis curves
	For closed but non-periodic basis curves
	PE_CURVE (Foreign Geometry curve)
	SP_CURVE
	Surfaces
	PLANE

	A plane has a parametric representation of the form
	The Y axis in the definition above is the vector cross product of the normal and x_axis.
	CYLINDER
	CONE

	The Y axis in the definition above is the vector cross product of the axis and x_axis.
	SPHERE

	The Y axis of the sphere is the vector cross product of its A and X axes.
	TORUS

	A torus has a parametric representation of the form
	BLENDED_EDGE (Rolling Ball Blend)
	BLEND_BOUND (Blend boundary surface)
	OFFSET_SURF
	B_SURFACE

	The data stored in an XT file for a NURBS surface is
	SWEPT_SURF
	SPUN_SURF
	PE_SURF (Foreign Geometry surface)
	Point
	Transform

	The transform acts as
	Curve and Surface Senses
	Geometric_owner

	Topology
	WORLD
	ASSEMBLY
	INSTANCE
	BODY

	Attaching Geometry to Topology
	REGION
	SHELL
	FACE
	LOOP
	Isolated loops

	FIN
	Dummy fins

	VERTEX
	EDGE

	Associated Data
	LIST
	POINTER_LIS_BLOCK:
	ATT_DEF_ID
	FIELD_NAMES
	ATTRIB_DEF
	ATTRIBUTE
	INT_VALUES
	REAL_VALUES
	CHAR_VALUES
	UNICODE_VALUES
	POINT_VALUES
	VECTOR_VALUES
	DIRECTION_VALUES
	AXIS_VALUES
	TAG_VALUES
	GROUP
	MEMBER_OF_GROUP

	Node Types
	Node Classes
	System Attribute Definitions
	Hatching
	Planar Hatch
	Radial Hatch
	Parametric Hatch

	Density Attributes
	Density (of a body)
	Region Density
	Face Density
	Edge Density
	Vertex Density

	Region
	Colour
	Reflectivity
	Translucency
	Name
	Incremental faceting
	Transparency
	Non-mergeable edges
	Group merge behavior

