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1 Siemens JT Data Format Reference Intellectual Property License Terms 

The general idea of using an interchange format for electronic documents is in the public domain. Anyone is free to devise a 

set of unique data structures and operators that define an interchange format for electronic documents. However, Siemens 

Product Lifecycle Management Software Inc. owns the copyright for the particular data structures and operators, the JT™ 

Data Format Reference and the written specification constituting the interchange format called the JT Data Format. Thus, 

these elements of the JT Data Format may not be copied without Siemens‟s permission.  

Siemens will enforce its copyright. Siemens‟s intention is to maintain the integrity of the JT Data Format standard, enabling 

the public to distinguish between the JT Data Format and other interchange formats for electronic documents. However, 

Siemens desires to promote the use of the JT Data Format for information interchange among diverse products and 

applications. Accordingly, Siemens gives anyone copyright permission, subject to the conditions stated below, to: 

 Prepare and distribute files whose content conforms solely to the JT Data Format. 

 Write and distribute software applications that produce discreet output represented in the JT Data Format.  Write 

and distribute software applications that accept input in the form of the JT Data Format and display, print, or 

otherwise interpret the contents  

 Copy Siemens‟s copyrighted list of data structures and operators in the written specification to the extent 

necessary to use the JT Data Format for the purposes above. 

 For avoidance of doubt, the permissions granted in the preceding sentences do not include the reading, writing or 

distribution of files whose content contains output in the JT Data Format and any other data in any other format 

and do not include the right to incorporate, integrate, or combine the JT Data Format, structure, or schema into 

any other data format, structure, or schema. 

The conditions of such copyright permission are: 

 Anyone who uses the copyrighted list of data structures and operators, as stated above, must include an 

appropriate copyright notice. 

This limited right to use the copyrighted list of data structures and operators does not include the right to copy this document, 

other copyrighted material from Siemens, or the software in any of Siemens‟s products that use the JT Data Format, in whole 

or in part, nor does it include the right to use any Siemens patents, except as may be permitted by an official Siemens JT Data 

Format Reference Patent Clarification Notice.  

Nothing in this book is intended to grant you any right or license to use the Marks for any purpose. 
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2 Scope 

This reference defines the syntax and semantics of the JT Version 9.5 file format. 

The JT format is an industry focused, high-performance, lightweight, flexible file format for capturing and repurposing 3D 

Product Definition data that enables collaboration, validation and visualization throughout the extended enterprise.  JT format 

is the de-facto standard 3D Visualization format in the automotive industry, and the single most dominant 3D visualization 

format in Aerospace, Heavy Equipment and other mechanical CAD domains. 

The JT format is both robust, and streamable, and contains best-in-class compression for compact and efficient 

representation.  The JT format was designed to be easily integrated into enterprise translation solutions, producing a single set 

of 3D digital assets that support a full range of downstream processes from lightweight web-based viewing to full product 

digital mockups. 

At its core the JT format is a scene graph with CAD specific node and attributes support.  Facet information (triangles), is 

stored with sophisticated geometry compression techniques.  Visual attributes such as lights, textures, materials and shaders 

(Cg and OGLSL) are supported.  Product and Manufacturing Information (PMI), Precise Part definitions (B-Rep) and 

Metadata as well as a variety of representation configurations are supported by the format.  The JT format is also structured 

to enable support for various delivery methods including asynchronous streaming of content. 

Some of the highlights of the JT format include: 

 Built-in support for assemblies, sub-assemblies and part constructs 

 Flexible partitioning scheme, supporting single or multiple files 

 B-Rep, including integrated support for industry standard Parasolid® (XT) format 

 Product Manufacturing Information in support of paperless manufacturing initiatives 

 Precise and imprecise wireframe 

 Discrete purpose-built Levels of Detail 

 Wire harness information 

 Triangle sets, Polygon sets, Point sets, Line sets and Implicit Primitive sets (cylinder, cone, sphere, etc…) 

 Full array of visual attributes: Materials, Textures, Lights, Shaders 

 Hierarchical Bounding Box and Bounding Spheres 

 Advanced data compression that allows producers of JT files to fine tune the tradeoff between compression ratio 

and fidelity of the data. 

Beyond the data contents description of the JT Format, the overall physical structure/organization of the format is also 

designed to support operations such as:  

Offline optimizations of the data contents 

 File granularity and flexibility optimized to meet the needs of Enterprise Data Translation Solutions 

Asynchronous streaming of content  

 Viewing optimizations such as view frustum and occlusion culling and fixed-framerate display modes. 

Layers, and Layer Filters. 

Along with the pure syntactical definition of the JT Format, there is also series of conventions which although not required to 

have a reference compliant JT file, have become commonplace within JT format translators.  These conventions have been 

documented in the “Best Practices” section of this JT format reference. 

This JT format reference does not specifically address implementation of, nor define, a run-time architecture for viewing 

and/or processing JT data.  This is because although the JT format is closely aligned with a run-time data representation for 

fast and efficient loading/unloading of data, no interaction behavior is defined within the format itself, either in the form of 

specific viewer controls, viewport information, animation behavior or other event-based interactivity.  This exclusion of 

interaction behavior from the JT format makes the format more easily reusable for dissimilar application interoperation and 

also facilitates incremental update, without losing downstream authored data, as the original CAD asset revises. 

2.1 What’s New in This Revision 

Revision A 
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This specification is based on the Version 8.1 Rev D specification, but with major changes to all sections, and as such is a 

completely new, standalone document. 

3 References and Additional Information 
[1] JT Open Program (http://www.jtopen.com) --- A program to help members leverage the benefits of open 

collaboration across the extended enterprise through the adoption of the JT format, a technology that makes it 

possible to view and share product information throughout the product lifecycle.  Membership in the JT Open 

Program provides access to the JT Open Toolkit library, which among other things, provides read and write access 

to JT data and enforces certain JT conventions to ensure data compatibility with other JT-enabled applications. 

[2] JT2Go download (http://www.jt2go.com) --- JT2Go is the no-charge 3D JT viewer from Siemens. JT2Go puts 3D 

data at your fingertips by allowing anyone to download the no-charge viewer. JT2Go also allows anyone to embed 

3D JT data directly into Microsoft Office documents.  JT2Go offers full 3D interactivity on parts, assemblies, and 

even 2D drawings (CGM & TIF). 

[3] Siemens: PLM Components: Parasolid: XT Pipeline (http://www.ugs.com/products/open/parasolid/pipeline.shtml) 

--- This web page provides information on the Parasolid precise boundary representation format (XT) and how this 

XT format fits within the Siemens vision of seamless exchange of digital product models across enterprises, 

between different disciplines, using their PLM applications of choice. 

[4] OpenGL Programming Guide : The official guide to learning OpenGL Version 2, Fifth Edition, by OpenGL 

Architecture Review Board, Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis (Addison-Wesley 2005) --

- This book gives in-depth explanation of the OpenGL Specification and will provide further insight into the 

significance of some of  the data (e.g. Materials, Textures) that can exist in a JT file. Information in this book may 

also serve as a guide for how one could process the data contained in a JT file to produce/render an image on the 

screen. 

[5] Michael Deering, Geometry Compression, Computer Graphics, Proceedings SIGGRAPH „95, August 1995, pp. 

13-20. 

[6] Michael Deering, Craig Gotsman, Stefan Gumhold, Jarek Rossignac, and Gabriel Taubin,  3D Geometry 

Compression, Course Notes for SIGGRAPH 2000, July 25, 2000. 

[7] OpenGL Shading Language Specification (http://www.opengl.org/documentation/glsl/) --- OpenGL Shading 

Language (GLSL) as defined by the OpenGL Architectural Review Board, the governing body of OpenGL. 

[8] Cg Toolkit Users Manual (http://developer.nvidia.com/object/cg_users_manual.html) --- Explains everything you 

need to learn and use the Cg language as well as the Cg runtime library. 

[9] The Cg Tutorial: The Definitive Guide to Programmable Real-Time Graphics,  Randima Fernando and Mark J. 

Kilgard, nVIDIA Corporation, Addison Wesley Publishing Company, April 2003 

[10] K. Weiler. Topological Structures for Geometric Modeling, PhD thesis, Rensselaer Polytechnic Institute, Troy, 

NY, 1986. 

[11] C. M. Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann Publishers, Inc., San Mateo, 

California, 1989. 

[12] Les Piegl and Wayne Tiller, The NURBS Book, Springer-Verlag, 1997. 

[13] Planetmath.org - Huffman Coding (http://planetmath.org/encyclopedia/HuffmanCoding.html) --- This web page 

provides a technical overview of Huffman coding which is one form of data encoding used within the JT format. 

http://www.jtopen.com/
http://www.jt2go.com/
http://www.ugs.com/products/open/parasolid/pipeline.shtml
http://www.opengl.org/documentation/glsl/
http://developer.nvidia.com/object/cg_users_manual.html
http://planetmath.org/encyclopedia/HuffmanCoding.html
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[14] Michael Schindler, Practical Huffman Coding (http://www.compressconsult.com/huffman/#encoding) --- This web 

page provides some coding hints for implementing Huffman coding which is one form of data encoding used 

within the JT format. 

[15] Glen G. Langdon Jr., An Introduction to Arithmetic Coding, IBM Journal of Research and Development, Volume 

28, Number 2, March 1984, pp. 135-149. 

[16] Paul G. Howard and Jeffrey Scott Vitter, Practical Implementation of Arithmetic Coding. Image and Text 

Compression, ed. J. A. Storer, Kluwer Academic Publishers, April 1992, pp. 85-112. 

[17] zlib.net (http://www.zlib.net/) --- This web page provides (either directly or through links) complete detailed 

information on ZLIB compression including frequently asked questions, technical documentation, source code 

downloads, etc. 

[18] Andrei Khodakovsky, Pierre Alliez, Mathieu Desbrun, and Peter Schröder, Near-Optimal Connectivity Encoding 

of 2-Manifold Polygon Meshes, Graphical Models, 

Vol. 64,  No. 3-4, Pages: 147 - 168, 2002. 

[19] B. Schneier, Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish), Fast Software 

Encryption, Cambridge Security Workshop Proceedings (December 1993), Springer-Verlag, 1994, pp. 191-204. 

4 Definitions 

4.1 Terms 

It is assumed that readers of this document are familiar with concepts in the area of computer graphics and solid modeling.  

The intention of this section is not to provide comprehensive definitions, but is to provide a short introduction and 

clarification of the usage of terms within this document. 

Assembly A related collection of model parts, represented in a JT format 

logical scene graph as a logical graph branch 

Attribute Objects associated with nodes in a logical scene graph and 

specifying one of several appearances, positioning, or rendering 

characteristics of a shape.  

Boundary Representation A solid model representation where the solid volume is specified by 

its surface boundary (both its geometric and topological boundaries). 

CodeText A collection of data in encoded form. 

Directed Acyclic Graph A graph is a set of nodes, and a set of edges connecting the nodes in 

a tree like structure.  A directed graph is one in which every edge 

has a direction such that edge (u,v), connecting node-u with node-v, 

is different from edge (v,u). A Directed Acyclic Graph is a directed 

graph with no cycles; where a cycle is a path (sequence of edges) 

from a node to itself.  So with a Directed Acyclic Graph there is no 

path that can be followed within the graph such that the first node in 

the path is the same as the last node in the path. 

 

JT Enabled Application Application which supports reading and/or writing reference 

compliant JT Format files. 

Level of Detail One alternative graphical representation for some model component 

(e.g. part). 

Logical Scene Graph A scene graph representing the logical organization of a model. 

Contains shapes and attributes representing the model’s physical 

http://www.compressconsult.com/huffman/#encoding
http://www.zlib.net/
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components, properties identifying arbitrary metadata (e.g. names, 

semantic roles) of those components, and a hierarchical structure 

expressing the component relationships. 

Mipmap A reduced resolution version of a texture map.  Mipmaps are used to 

texture a geometric primitive whose screen resolution differs from 

the resolution of the source texture map originally applied to the 

primitive. 

Model Representation, in JT format, of a physical or virtual product, part, 

assembly; or collections of such objects. 

Parasolid XT Format Parasolid boundary representation format 

Product and Manufacturing Information Collection of information created on a 3D/2D CAD Model to 

completely document the product with respect to design, 

manufacturing, inspection, etc. This may includes data such as: 

Dimensions (tolerances for each dimension) 

Geometric tolerances of feature (datums, feature control frames) 

Manufacturing information (surface finish, welding notations)  

Inspection information (key locations points) 

Assembly instructions 

Product information (materials, suppliers, part numbers) 

Property An object associated with a logical scene graph node and identifying 

arbitrary application or enterprise specific information (meta-data) 

related to that node. 

Quantize Constrain something to a discrete set of values, such as an integer or 

integral multiplier of a common factor, rather than a continuous set 

of values, such as a real number. 

Scene Graph In the context of the JT format, a scene graph is a directed acyclic 

graph that arranges the logical and often (but not necessarily) spatial 

representation of a graphical scene. 

Shader A user-definable program, expressed directly in a target assembly 

language, or in high-level form to be compiled.  A shader program 

replaces a portion of the otherwise fixed-functionality graphics 

pipeline with some user-defined function.  At present, hardware 

manufacturers have made it possible to run a shader for each vertex 

that is processed or each pixel that is rendered. 

Streaming In the context of the JT format, streaming refers to both: 

Loading from disk based medium only the portions of data that are 

required by the user to perform the tasks at hand.  The motivation 

being to more efficiently manage system memory. 

Transfer of data in a stream of packets, over the internet on an on-

demand basis, where the data is interpreted in real-time by the 

application as the data packets arrive. The motivation being that the 

user can begin using or interacting with the data almost immediately 

- no waiting for the entire data file(s) to be transferred before 

beginning 

The desired end result of both being to deliver only the JT data that 

the user needs, where the user needs it, when the user needs it.  A 
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“just-in-time” approach to delivering JT format product data. 

Shape A logical scene graph leaf node containing or referencing the 

geometric shape definition data (e.g. vertices, polygons, normals, 

etc.) of a model component. 

Texture Channel A Texture Unit plus the texture environment.  In OpenGL® terms, 

Texture Channel basically controls “glActiveTexture” [4] 

Texture Object JT format meaning is the same as in OpenGL [4] “A named cache 

that stores texture data, such as the image array, associated 

mipmaps, and associated texture parameter values: width, height, 

border width, internal format, resolution of components, 

minification and magnification filters, wrapping modes, border 

color, and texture priority.” 

Texture Unit JT format meaning is the same as in OpenGL [4], with the 

connotation that texture parameters go with the Texture Unit 

(through binding of a texture object) but texture environment 

(texturing function) does not. 

4.2 Coordinate Systems 

The data contained within a JT file is defined within one of the following coordinate systems.   If not otherwise specified in a 

data field‟s description, it should be assumed that the data is defined in Local Coordinate System. 

Local Coordinate System (LCS). The coordinate system in which shape geometry is specified. It is the coordinate 

system used to specify the “raw” data with no transforms applied. 

Node Coordinate System (NCS). Local coordinates transformed by any transforms specified as attributes at the node.  

The NCS is also often referred to as Model Coordinate System (MCS). 

World Coordinate System (WCS). Node coordinates transformed by transforms inherited from a node‟s parent (i.e. the 

coordinate system at the root of the graph). 

View Coordinate System (VCS).  World coordinates transformed by a view matrix. 

5 Acronyms and Abbreviations 

 

Abs Absolute Value 

BBox Bounding Box 

B-Rep Boundary Representation 

CAE Computer Aided Engineering 

Cg C for Graphics 

CODEC Coder-Decoder 

GD&T Geometric Dimensioning and Tolerancing 

GLSL OpenGL Shader Language 

GPU Graphics Processing Unit 

GUID Globally Unique Identifier 

HSV Hue, Saturation, Value 

HSVA Hue, Saturation, Value, Alpha 
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LCS Local Coordinate System 

LOD Level of Detail 

LsbFirst Least Significant Byte First 

LSG Logical Scene Graph 

Max Maximum 

MCS Model Coordinate System 

Min Minimum 

MsbFirst Most Significant Byte First 

N/A Not Applicable 

NCS Node Coordinate System 

PCS Parameter Coordinate Space 

PLM Product Lifecycle Management 

PMI Product and Manufacturing Information 

RGB Red, Green, Blue 

RGBA Red, Green, Blue, Alpha 

TOC Table of Contents. 

VPCS Viewpoint Coordinate System 

URL Uniform Resource Locator 

WCS World Coordinate System 

6 Notational Conventions 

6.1 Diagrams and Field Descriptions 

Symbolic diagrams are used to describe the structure of the JT file.  The symbols used in these diagrams have the following 

meaning: 

 

 

 

Rectangles represent a data field of one of the standard data types. 

Arrows convey the ordering of the information. 

 

Rectangles with the right side corners clipped off represent information that has been 

compressed. 

Folders represent a logical collection of one or more of the standard data types.  

This information is grouped for clarity and the basic data types that compose the 

group are detailed in following sections of the document. 

Rectangles with extra lines at left and the right sides corners clipped off represent 

information logical stepsthat has been compressed.  
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The format used to title the diagram symbols is dependent upon the symbol type as follows: 

Diagram “rectangle box” (i.e. standard data types) symbols are titled using a format of “Data_Type : Field_Name.”  The 

Data_Type is an abbreviated data type symbol as defined in 6.2 Data Types.  In the example below the Data_Type is “I32” (a 

signed 32 bit integer) and Field_Name is “Count.” 

 

Diagram “folder” (i.e. logical data collections) symbols are simply titled with a collection name.  In the example below the 

collection name is “Graph Elements.” 

 

Diagram “rectangle box with lines at left and right sides” are simply titled with a logic step name.  In the example below the 

logic step name is “Recover First Shell Indices”. 

 

Diagram “rectangle box with clipped right side corners” (i.e. compressed/encoded data fields) are titled using one of the 

following three formats: 

Data Type; followed by open brace “{“, number of bits used to store value, closed brace “}”, and a colon “:”; followed by the 

Field Name.  This format for titling the diagram symbol indicates that the data is compressed but not encoded. The 

compression is achieved by using only a portion of the total bit range of the data type to store the value (e.g. if a count value 

can never be larger than the value “63” then only 6 bits are needed to store all possible count values).  In the example below 

the Data Type is “U32”, “6” bits are used to store the value, and Field Name is “Count” 

 

Data Type followed by open brace “{“, compressed data packet type, “,”, Predictor Type, closed brace “}”, and a colon “:”; 

followed by the field name.  This format for titling the diagram indicates that a vector of “Data Type” data (i.e. primal 

values) is ran through “Predictor Type” algorithm and the resulting output array of residual values is then compressed and 

encoded into a series of symbols using one of the two supported compressed data packet types. 

 

The two supported compressed data packet types are: 

Int32CDP – The Int32CDP (i.e. Int32 Compressed Data Packet) represents the format used to encode/compress a collection 

of data into a series of Int32 based symbols.  A complete description for Int32 Compressed Data Packet can be found in 8.1.1 

Int32 Compressed Data Packet. 

Int32CDP2 – The Int32CDP2 (i.e.Int32 Compressed Data Packet Mk. 2) represents a second-generation version of the above 

compressed data packet, and sports a simplified and more compact file layout, and the ability to more efficiently encode 

clustered data and bitfields.  A complete description for Int32 Compressed Data Packet Mk. 2 can be found in 8.1.2 Int32 

Compressed Data Packet Mk. 2. 

Float64CDP – The Float64CDP (i.e. Float64 Compressed Data Packet) represents the format used to encode/compress a 

collection of data into a series of Float64 based symbols.  A complete description for Float64 Compressed Data Packet can be 

found in 8.1.3 Float64 Compressed Data Packet. 

The Int32 Compressed Data Packet type is used for compressing/encoding both “integer” and “float” (through quantization) 

data.  While the Float64 Compressed Data Packet type is used for compressing/encoding “double” data. 

In the example below the Data Type is “VecU32”, Int32 Compressed Data Packet type is used, Lag1 Predictor Type is used, 

and Field Name is “First Shell Index.” 

U32{6} : Count 

Recover First Shell 

Indices 

Graph Elements 

I32 : Count 
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As mentioned above (with Predictor Type algorithm), the primal input data values are NOT always what is 

encoded/compressed.  This is because the primal input data is first run through a Predictor Type algorithm, which produces 

an output array of residual values (i.e. difference from the predicted value), and this resulting output array of residual values 

is the data which is actually encoded/compressed.  The JT format supports several Predictor Type algorithms and each use of 

Int32CDP or Float64CDP specifies, using the above described notation format, what Predictor Type algorithm is being used 

on the data.  The JT format supported Predictor Type algorithms are as follows (note that a sample implementation of 

decoding the predictor residual values back into the primal values can be found in Appendix C: Decoding Algorithms – An 

Implementation): 

 

Predictor 

Type 

Description 

Lag1 Predicts as last value 

Lag2 Predicts as value before last 

Stride1 Predicts using stride from last two values 

Stride2 Predicts using stride from values 2 and 4 back 

StripIndex This is a completely empirical predictor.  Looks at the values two 

back and four back in the stream, and uses the stride between these 

two values to predict the current value if and only if the stride lays 

between -8 and 8 noninclusive, else it predicts the value as the one 

two back plus two.  In pseudo-code form the predicted values is 

computed as follows: 

if(val2back - val4back < 8 && val2back - val4back > -8) 

      iPredicted = val2back + (val2back - val4back); 

else 

      iPredicted = val2back + 2; 

Ramp Predict value “i” as values “i‟s” index 

Xor1 Predict as last, but use XOR instead of subtract to compute 

residual 

Xor2 Predict as value before last, but use XOR instead of subtract to 

compute residual  

NULL No prediction applied 

Each predictor type can be combined with additional processing steps, and in such case the predictor type is prefixed with 

“Combined:”.  For example, “Combined:Lag1” means that predictor type “Lag1” is combined with additional preprocessing 

steps.  Additional description about the processing steps is provided whenever such combined predictor is used.  

“Data Type : Field Name” .  This format for titling the diagram symbol indicates that the data is both compressed and 

encoded. The Data_Type is an abbreviated data type symbol as defined in 6.2 Data Types and usually represent a vector/array 

of data.  How the data is compressed and encoded into the Data Type is indicated by a CODEC type and other information 

stored before the particular data in the file.  In the example below the Data_Type is “VecU32” and Field_Name is 

“CodeText.” 

 

Note that for some JT file Segment Types there is ZLIB compression also applied to all bytes of element data stored in the 

segment.  This ZLIB compression applied to all the segment‟s data is not indicated in the diagrams through the use of 

VecU32 : CodeText 

 

VecU32{Int32CDP, Lag1} : First Shell 

Index 
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“rectangle box with clipped right side corners”.  Instead, one must examine information stored with the first Element in the 

file segment to determine if ZLIB compression is applied to all data in the segment.    A complete description of the JT 

format data compression and encoding can be found in 7.1.3 Data Segment and 8 Data Compression and Encoding. 

Following each data collection diagram is detailed descriptions for each entry in the data diagram. 

For rectangles this detail includes the abbreviated data type symbol, field name, verbal data description, and compression 

technique/algorithm where appropriate.  If the data field is documented as a collection of flags, then the field is to be treated 

as a bit mask where the bit mask is formed by combining the flags using the binary OR operator.  Each bits usage is 

documented, and bit ON indicates flag value is TRUE and bit OFF indicates flag value is FALSE.  Any undocumented bits 

are reserved. 

For folders (i.e. data collections), if the collection is not detailed under a sub-section of the particular document section 

referencing the data collection, then a comment is included following the diagram indicating where in the document the 

particular data collection is detailed.  

If an arrow appears with a branch in its shaft, then there are two or more options for data to be stored in the file.  Which data 

is stored will depend on information previously read from the file.  The following example shows data field A followed by 

(depending on value of A) either data field B, C, or D. 

 

In cases where the same data type repeats, a loop construct is used where the number of iterations appears next to the loop 

line.  There are two forms of this loop construct.  The first form is used when the number of iterations is not controlled by 

some previous read count value.  Instead the number of iterations is either a hard coded count (e.g. always 80 characters) or is 

indicated by some end-of-list marker in the data itself (thus the count is always minimum of 1). This first form of the loop 

construct looks as follows: 

 

The second form of this loop construct is used when the number of iterations is based on data (e.g. count) previously read 

from the file.  In this case it is valid for there to be zero data iterations (zero count).  This second from of the loop construct 

looks as follows (data field D is repeated C value times). 

U8 : B 

I32 : A 

80 

A = = 1 A = = 2 

U8 : B 
 

U16 : C U32 : D 

I32 : A 
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6.2 Data Types 

The data types that can occur in the JT binary files are listed in the following two tables.   

Table 1: Basic Data Types lists the basic/standard data types which can occur in JT file.   

Table 1: Basic Data Types 

Type Description 

UChar An unsigned 8-bit byte. 

U8 An unsigned 8-bit integer value. 

U16 An unsigned 16-bit integer value. 

U32 An unsigned 32-bit integer value. 

U64 An unsigned 64-bit integer value. 

  

I16 A signed two‟s complement 16-bit integer value. 

I32 A signed two‟s complement 32-bit integer value. 

I64 A signed two's complement 64-bit integer value. 

  

F32 An IEEE 32-bit floating point number. 

F64 An IEEE 64-bit double precision floating point number 

Table 2: Composite Data Types lists some composite data types which are used to represent some frequently occurring 

groupings of the basic data types (e.g. Vector, RGBA color).  The composite data types are defined in this reference simply 

for convenience/brevity in describing the JT file contents. 

Table 2: Composite Data Types 

Type Description Symbolic Diagram 

BBoxF32 The BBoxF32 type defines a bounding box using two 

CoordF32 types to store the XYZ coordinates for the 

bounding box minimum and maximum corner points.  

 

CoordF32 The CoordF32 type defines X, Y, Z coordinate values.  So a 

CoordF32 is made up of three F32 base types. 

 

F32 : Data 
3 

CoordF32 : Min Corner 

CoordF32 : Max Corner 

U8 : D 
C 

I32 : C 
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Type Description Symbolic Diagram 

CoordF64 The CoordF64 type defines X, Y, Z coordinate values.  So a 

CoordF64 is made up of three F64 base types. 

 

DirF32 The DirF32 type defines X, Y, Z components of a direction 

vector.  So a DirF32 is made up of three F32 base types. 

 

GUID The GUID type is a 16 byte (128-bit) number. GUID is 

stored/written to the JT file using a four-byte word (U32), 2 

two-byte words (U16), and 8 one-byte words (U8) such as: 

{3F2504E0-4F89-11D3-9A-0C-03-05-E8-2C-33-01} 

In the JT format GUIDs are used as unique identifiers (e.g. 

Data Segment ID, Object Type ID, etc.) 

 

HCoordF32 The HCoordF32 type defines X, Y, Z, W homogeneous 

coordinate values.  So an HCoordF32 is made up of four F32 

base types. 

 

HCoordF64 The HCoordF64 type defines X, Y, Z, W homogeneous 

coordinate values.  So an HCoordF64 is made up of four F64 

base types 

 

MbString The MbString type starts with an I32 that defines the number 

of characters (NumChar) the string contains.  The number of 

bytes of character data is “2 * NumChar” (i.e. the strings are 

written out as multi-byte characters where each character is 

U16 size). 

 

Mx4F32 Defines a 4-by-4 matrix of F32 values for a total of 16 F32 

values.  The values are stored in row major order (right most 

subscript, column varies fastest), that is, the first 4 elements 

form the first row of the matrix. 
 

PlaneF32 The PlaneF32 type defines a geometric Plane using the 

General Form of the plane equation (Ax + By + Cz + D = 0). 

The PlaneF32 type is made up of four F32 base types where 

the first three F32 define the plane unit normal vector (A, B, 

C) and the last F32 defines the negated perpendicular distance 

(D), along normal vector, from the origin to the plane. 

 

 

Quaternion The Quaternion type defines a 3-dimensional orientation (no 

translation) in quaternion linear combination form (a + bi + cj 

+ dk) where the four scalar values (a, b, c, d) are associated 

with the 4 dimensions of a quaternion (1 real dimension, and 3 

imaginary dimensions).  So the Quaternion type is made up of 

 

F32 : Data 
4 

F32 : Data 
16 

I32 : Count 

U16 : Char 
Count 

F64 : Data 
4 

F32 : Data 
4 

U32 

U16 

U8 

2 

8 

F32 : Data 
3 

F64 : Data 
3 
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Type Description Symbolic Diagram 
four F32 base types. 

 

RGB The RGB type defines a color composed of Red, Green, Blue 

components, each of which is a F32.  So a RGB type is made 

up of three F32 base types.  The Red, Green, Blue color 

values typically range from 0.0 to 1.0. 
 

RGBA The RGBA type defines a color composed of Red, Green, 

Blue, Alpha components, each of which is a F32.  So a RGBA 

type is made up of four F32 base types.  The Red, Green, Blue 

color values typically range from 0.0 to 1.0.  The Alpha value 

ranges from 0.0 to 1.0 where 1.0 indicates completely opaque. 
 

String The String type starts with an I32 that defines the number of 

characters (NumChar) the string contains.  The number of 

bytes of character data is “NumChar” (i.e. the strings are 

written out as single-byte characters where each character is 

U8 size). 

 

VecF32 The VecF32 type defines a vector/array of F32 base type.  The 

type starts with an I32 that defines the count of following F32 

base type data.  So a VecF32 is made up of one I32 followed 

by that number of F32. Note that it is valid for the I32 count 

number to be equal to “0”, indicating no following F32. 

 

VecF64 The VecF64 type defines a vector/array of F64 base type.  The 

type starts with an I32 that defines the count of following F64 

base type data.  So a VecF64 is made up of one I32 followed 

by that number of F64. Note that it is valid for the I32 count 

number to be equal to “0”, indicating no following F64. 

 

VecI32 The VecI32 type defines a vector/array of I32 base type.  The 

type starts with an I32 that defines the count of following I32 

base type data.  So a VecI32 is made up of one I32 followed 

by that number of I32. Note that it is valid for the I32 count 

number to be equal to “0”, indicating no following I32. 

 

VecU32 The VecU32 type defines a vector/array of U32 base type.  

The type starts with an I32 that defines the count of following 

U32 base type data.  So a VecU32 is made up of one I32 

followed by that number of U32. Note that it is valid for the 

I32 count number to be equal to “0”, indicating no following 

U32.  

7 File Format 

All objects represented in the JT format are assigned an “object identifier” (e.g. see 7.2.1.1.1.1.1 Base Node Data, or 

7.2.1.1.2.1.1 Base Attribute Data) and all references from one object to another object are represented in the JT format using 

the referenced object‟s “object identifier”.  It is the responsibility of JT format readers/writers to maintain the integrity of 

I32 : Count 

U32 : Data 
Count 

I32 : Count 

I32 : Data 
Count 

I32 : Count 

F64 : Data 
Count 

I32 : Count 

F32 : Data 
Count 

I32 : Count 

U8 : Char 
Count 

F32 : Data 
4 

F32 : Data 
3 

F32 : Data 
4 
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these object references by doing appropriate pointer unswizzling/swizzling as JT format data is read into memory or written 

out to disk.  Where “pointer swizzling” refers to the process of converting references based on object identifiers into direct 

memory pointer references and “pointer unswizzling” is the reverse operation (i.e. replacing references based on memory 

pointers with object identifier references). 

7.1 File Structure 

A JT file is structured as a sequence of blocks/segments.  The File Header block is always the first block of data in the file.  

The File Header is followed (in no particular order) by a TOC Segment and a series of other Data Segments. The one Data 

Segment which must always exist to have a reference compliant JT file is the 7.2.1 LSG Segment. 

The TOC Segment is located within the file using data stored in the File Header.  Within the TOC Segment is information 

that locates all other Data Segments within the file.  Although there are no JT format compliance rules about where the TOC 

Segment must be located within the file, in practice the TOC Segment is typically located either immediately following the 

File header (as shown in the below Figure) or at the very end of the file following all other Data Segments. 

Figure 1: JT File Structure 

 

7.1.1 File Header 

The File Header is always the first block of data in a JT file.  The File Header contains information about the JT file version 

and TOC location, which Loaders use to determine how to read the file.  The exact contents of the File Header are as follows: 

File Header 

Data Segment 

TOC Segment 
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Figure 2: File Header data collection 

 

UChar : Version 

An 80-character version string defining the version of the file format used to write this file.  The Version string has the 

following format: 

Version M.n Comment 

Where M is replaced by the major version number, n is replaced by the minor version number, and Comment provides other 

unspecified reserved information.    The string with the following format is commonly used as  Comment to indicate the DM 

library version that was used to write this JT file: 

DM Maj.Min.Qrm.Irm 

Where Maj, Min, Qrm, and Irm are replaced by the major, minor, QRM, and IRM numbers respectively.  

The version string is padded with spaces to a length of 75 ASCII characters and then the final five characters must be filled 

with the following linefeed and carriage return character combination (shown using c-style syntax): 

Version[75] = „ „ 

Version[76] = „\n„ 

Version[77] = „\r„ 

Version[78] = „\n„ 

Version[79] = „ „ 

These final 5 characters (shown above and referred to as ASCII/binary translation detection bytes) can be used by JT file 

readers to validate that the JT files has not been corrupted by ASCII mode FTP transfers.  For a JT Version 9.5 file written by 

DM library version 7.3.4.0 this string will look as follows: 

 

“Version 9.5 JT  DM 7.3.4.0                                                \n\r\n “ 

 

UChar : Version 

UChar : Byte Order 

I32 : Reserved Field 

I32 : TOC Offset 

80 

GUID : LSG Segment ID 

Reserved Field != 0 

GUID: Reserved Field 
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UChar : Byte Order 

Defines the file byte order and thus can be used by the loader to determine if there is a mismatch (thus byte swapping 

required) between the file byte order and the machine (on which the loader is being run) byte order.  Valid values for Byte 

Order are: 

0 – Least Significant byte first (LsbFirst) 

1 – Most Significant byte first (MsbFirst) 

I32 : Reserved Field  

Must have the value 0. 

I32 : TOC Offset 

Defines the byte offset from the top of the file to the start of the TOC Segment. 

GUID : LSG Segment ID 

LSG Segment ID specifies the globally unique identifier for the Logical Scene Graph Data Segment in the file.  This ID 

along with the information in the TOC Segment can be used to locate the start of LSG Data Segment in the file.  This ID is 

needed because without it a loader would have no way of knowing the location of the root LSG Data Segment.  All other 

Data Segments must be accessible from the root LSG Data Segment. 

GUID: Reserved Field 

Reserved Field is a data field reserved for future JT format expansion 

7.1.2 TOC Segment 

The TOC Segment contains information identifying and locating all individually addressable Data Segments within the file.  

A TOC Segment is always required to exist somewhere within a JT file.  The actual location of the TOC Segment within the 

file is specified by the File Header segment‟s “TOC Offset” field.  The TOC Segment contains one TOC Entry for each 

individually addressable Data Segment in the file.   

Figure 3: TOC Segment data collection 

 

I32 : Entry Count 

Entry Count is the number of entries in the TOC. 

7.1.2.1 TOC Entry 

Each TOC Entry represents a Data Segment within the JT File.  The essential function of a TOC Entry is to map a Segment 

ID to an absolute byte offset within the file. 

I32 : Entry Count 

TOC Entry 

Entry Count 
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Figure 4: TOC Entry data collection 

 

GUID : Segment ID 

Segment ID is the globally unique identifier for the segment. 

I32 : Segment Offset 

Segment Offset defines the byte offset from the top of the file to start of the segment. 

I32 : Segment Length 

Segment Length is the total size of the segment in bytes. 

U32 : Segment Attributes 

Segment Attributes is a collection of segment information encoded within a single U32 using the following bit allocation. 

 

Bits 0 - 23 Reserved for future use. 

Bits 24 - 31 Segment type.  Complete list of Segment types can be found 

in Table 3: Segment Types. 

7.1.3 Data Segment 

All data stored in a JT file must be defined within a Data Segment. Data Segments are “typed” based on the general 

classification of data they contain. See Segment Type field description below for a complete list of the segment types.   

Beyond specific data field compression/encoding, some Data Segment types also have a ZLIB compression conditionally 

applied to all the Data bytes of information persisted within the segment.  Whether ZLIB compression is conditionally 

applied to a segment‟s Data bytes of information is indicated by information stored with the first “Element” in the segment.  

Also Table 3: Segment Types  has a column indicating whether the Segment Type may have ZLIB compression applied to its 

Data bytes. 

All Data Segments have the same basic structure. 

I32 : Segment Offset 

I32 : Segment Length 

U32 : Segment Attributes 

GUID : Segment ID 
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Figure 5: Data Segment data collection 

 

7.1.3.1 Segment Header 

Segment Header contains information that determines how the remainder of the Segment is interpreted by the loader. 

Figure 6: Segment Header data collection 

 

GUID : Segment ID 

Global Unique Identifier for the segment. 

I32 : Segment Type 

Segment Type defines a broad classification of the segment contents. For example, a Segment Type of “1” denotes that the 

segment contains Logical Scene Graph material; “2” denotes contents of a B-Rep, etc.   

The complete list of segment types is as follows.  The column labeled "ZLIB Applied?" denotes whether ZLIB compression 

is conditionally applied to the entirety of the segment's Data payload. 

Table 3: Segment Types 

Type Data Contents 
ZLIB 

Applied? 
1 Logical Scene Graph Yes 

2 JT B-Rep Yes 

3 PMI Data Yes 

4 Meta Data Yes 

6 Shape No 

7 Shape LOD0 No 

8 Shape LOD1 No 

9 Shape LOD2 No 

10 Shape LOD3 No 

11 Shape LOD4 No 

12 Shape LOD5 No 

13 Shape LOD6 No 

14 Shape LOD7 No 

15 Shape LOD8 No 

I32 : Segment Type 

I32 : Segment Length 

GUID : Segment ID 

Segment Header 

Data 
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Type Data Contents 
ZLIB 

Applied? 
16 Shape LOD9 No 

17 XT B-Rep  Yes 

18 Wireframe Representation Yes 

20 ULP Yes 

24 LWPA Yes 

Note: Segment Types 7-16 all identify the contents as LOD Shape data, where the increasing type number is intended to 

convey some notion of how high an LOD the specific shape segment represents.  The lower the type in this 7-16 range the 

more detailed the Shape LOD (i.e. Segment Type 7 is the most detailed Shape LOD Segment).  For the rare case when there 

are more than 10 LODs, LOD9 and greater are all assigned Segment Type 16.  

Note: The more generic Shape Segment type (i.e. Segment Type 6) is used when the Shape Segment has one or more of the 

following characteristics: 

 Not a descendant of an LOD node, 

 Is referenced by (i.e. is a child of) more than one LOD node, 

 Shape has its own built-in LODs, and 

 No way to determine what LOD a Shape Segment represents. 

I32 : Segment Length 

Segment Length is the total size of the segment in bytes.  This length value includes all segment Data bytes plus the Segment 

Header bytes (i.e. it is the size of the complete segment) and should be equal to the length value stored with this segment‟s 

TOC Entry. 

7.1.3.2 Data 

The interpretation of the Data section depends on the Segment Type.  See 7.2 Data Segments for complete description for all 

Data Segment that may be contained in a JT file. 

Although the Data section is Segment Type dependent there is a common structure which often occurs within the Data 

section.  This structure is a list or multiple lists of Elements where each Element has the same basic structure which consists 

of some fixed length header information describing the type of object contained in the Element, followed by some variable 

length object type specific data. 

Individual data fields of an Element data collection (and its children data collections) may have advanced  

compression/encoding applied to them as indicated through compression related data values stored as part of the particular 

Element‟s storage format.  In addition, another level of compression (i.e. ZLIB compression) may be conditionally applied to 

all bytes of information stored for all Elements within a particular Segment.  Not all Segment types support ZLIB 

compression on all Segment data as indicated in Table 3: Segment Types.   If a particular file Segment is of the type which 

supports ZLIB compression on all the Segment data, whether this compression is applied or not is indicated by data values 

stored in the Logical Element Header ZLIB data collection of the first Element within the Segment.  An in-depth description 

of JT file compression/encoding techniques can be found in 8 Data Compression and Encoding.  

Figure 7: Data collection 

 
Object Data 

Logical Element Header 

Object Data 

Logical Element Header ZLIB 

For Segment Types that do NOT support 

ZLIB compression on all Segment Data. 

(see Table 3: Segment Types.) 

For Segment Types that support ZLIB 

compression on all Segment Data 

(see Table 3: Segment Types.) 
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7.1.3.2.1 Logical Element Header 

Logical Element Header contains data defining the length in bytes of the Element along with the Element Header. 

Figure 8: Logical Element Header data collection 

 

Complete description for Logical Element Header can be found in 7.1.3.2.2 Element Header. 

I32 : Element Length 

Element Length is the total length in bytes of the element Object Data. 

7.1.3.2.2  Element Header 

Element Header contains data describing the object type contained in the Element. 

Figure 9: Element Header data collection 

 

GUID : Object Type ID 

Object Type ID is the globally unique identifier for the object type.  A complete list of the assigned GUID for all object types 

stored in a JT file can be found in Appendix A:  Object Type Identifiers.  

UChar : Object Base Type 

Object Base Type identifies the base object type.  This is useful when an unknown element type is encountered and thus the 

best the loader can do is to read the known Object Base Type data bytes (base type object data is always written first) and 

then skip (read pass) the bytes of unknown data using knowledge of number of bytes encompassing the Object Base Type 

data and the unknown types Length field.  If the Object Base Type is unknown then the loader should simply skip (read pass) 

Element Length number of bytes.  

Valid Object Base Types include the following: 

Table 4: Object Base Types 

Base 

Type 
Description Base Type’s Data Format 

255 Unknown Graph Node Object none 

0 Base Graph Node Object 7.2.1.1.1.1.1 Base Node Data 

1 Group Graph Node Object 7.2.1.1.1.3.1Group Node Data 

2 Shape Graph Node Object 7.2.1.1.1.10.1.1 Base Shape Data 

3 Base Attribute Object 7.2.1.1.2.1.1 Base Attribute Data 

4 Shape LOD none 

GUID : Object Type ID 

UChar : Object Base Type 

I32 : Texture Coord 

Channel 

I32 : Element Length 

Object Data 
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Base 

Type 
Description Base Type’s Data Format 

5 Base Property Object 7.2.1.2.1.1 Base Property Atom Data 

6 JT Object Reference Object 

7.2.1.2.5 JT Object Reference Property Atom Element 

without the Logical Element Header ZLIB data 

collection. 

8 JT Late Loaded Property Object 
0 Late Loaded Property Atom Element without the 

Logical Element Header ZLIB data collection. 

9 JtBase (none) none 

I32 : Object ID 

Object ID is the identifier for this Object.  Other objects referencing this particular object do so using the Object ID. 

7.1.3.2.3 Logical Element Header ZLIB 

Logical Element Header ZLIB data collection is the format of Element Header data used by all Elements within Segment 

Types that support ZLIB compression on all data in the Segment.  See Table 3: Segment Types for information on whether a 

particular Segment Type supports ZLIB compression on all data in the Segment. 

Figure 10: Logical Element Header ZLIB data collection 

 

Complete description for Logical Element Header can be found in 7.1.3.2.1 Logical Element Header.  Note that if 

Compression Flag indicates that  ZLIB compression is ON for all element data in the Segment, then the Logical Element 

Header data collection is also compressed accordingly. 

I32 : Compression Flag 

Compression Flag is a flag indicating whether ZLIB compression is ON/OFF for all data elements in the file Segment.  Valid 

values include the following: 

 

 = 2 ZLIB compression is ON 

!= 2 ZLIB compression is OFF. 

Logical Element Header 

If first Element 

within file Segment 

I32 : Compressed Data Length 

U8 : Compression Algorithm 

I32 : Compression Flag 
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I32 : Compressed Data Length 

Compressed Data Length specifies the compressed data length in number of bytes.  Note that data field Compression 

Algorithm is included in this count. 

U8 : Compression Algorithm 

Compression Algorithm specifies the compression algorithm applied to all data in the Segment.  Valid values include the 

following: 

 

= 1 No compression 

= 2 ZLIB compression 

7.1.3.2.4 Object Data 

The interpretation of the Object Data section depends upon the Object Type ID stored in the Logical Element Header (see 

7.1.3.2.1 Logical Element Header). 

7.2 Data Segments 

7.2.1 LSG Segment 

LSG Segment contains a collection of objects (i.e. Elements) connected through directed references to form a directed acyclic 

graph structure (i.e. the LSG).  The LSG is the graphical description of the model and contains graphics shapes and attributes 

representing the model‟s physical components, properties identifying arbitrary metadata (e.g. names, semantic roles) of those 

components, and a hierarchical structure expressing the component relationships.  The “directed” nature of the LSG 

references implies that there is by default “state/attribute” inheritance from ancestor to descendant (i.e. predecessor to 

successor).   It is the responsibility of the loader to insure that the acyclic property of the resulting LSG is maintained.   

The first Graph Element in a LSG Segment should always be a Partition Node.  The LSG Segment type supports ZLIB 

compression on all element data, so all elements in LSG Segment use the Logical Element Header ZLIB form of element 

header data. 

Figure 11: LSG Segment data collection 

 

Complete description for Segment Header can be found in 7.1.3.1Segment Header.  

Segment Header 

Graph Elements Until End-Of-Elements marker 
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7.2.1.1 Graph Elements 

Graph Elements form the backbone of the LSG directed acyclic graph structure and in doing so serve as the JT model‟s 

fundamental description.  There are two general classifications of Graph elements, Node Elements and Attribute Elements.   

Node Elements are nodes in the LSG and in general can be categorized as either an internal or leaf node.  The leaf nodes are 

typically shape nodes used to represent a model‟s physical components and as such either contain or reference some 

graphical representation or geometry.  The internal nodes define the hierarchical organization of the leaf nodes, forming both 

spatial and logical model relationships, and often contain or reference information (e.g. Attribute Elements) that is inherited 

down the LSG to all descendant nodes. 

Attribute Elements represent graphical data (like appearance characteristics (e.g. color), or positional transformations) that 

can be attached to a node, and inherit down the LSG. 

Each of these general Graph Element classifications (i.e. Node/Attribute Elements) is sub-typed into specific/concrete types 

based on data content and implied specialized behavior.   The following sub-sections describe each of the Node and Attribute 

Element types. 

7.2.1.1.1 Node Elements 

Node Elements represent the relationships of a model‟s components.   The model‟s component hierarchy is formed via 

certain types of Node Elements containing collections of references to other Node Elements who in turn may reference other 

collections of Node Elements.  Node Elements are also the holders (either directly or indirectly) of geometric shape, 

properties, and other information defining a model‟s components and representations. 

7.2.1.1.1.1 Base Node Element 

Object Type ID: 0x10dd1035,  0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Base Node Element represents the simplest form of a node that can exist within the LSG.  The Base Node Element has no 

implied LSG semantic behavior nor can it contain any children nodes. 

Figure 12: Base Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Base Node Data 

Logical Element Header ZLIB 
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7.2.1.1.1.1.1 Base Node Data 

Figure 13: Base Node Data collection 

 

I16 : Version Number   

Version Number is the version identifier for this node.  Version number “0x0001” is currently the only valid value for Base 

Node Data. 

U32 : Node Flags 

Node Flags is a collection of flags.  The flags are combined using the binary OR operator.  These flags store various state 

information of the node object.   All undocumented bits are reserved. 

 

0x00000001 Ignore Flag 

= 0 – Algorithms traversing the LSG structure should include/process this node.  

= 1 – Algorithms traversing the LSG structure should skip the whole subgraph rooted at 

this node.  Essentially the traversal should be pruned. 

I32 : Attribute Count 

Attribute Count indicates the number of Attribute Objects referenced by this Node Object.  A node may have zero Attribute 

Object references. 

I32 : Attribute Object ID 

Attribute Object ID is the identifier for a referenced Attribute Object. 

7.2.1.1.1.2 Partition Node Element 

Object Type ID: 0x10dd103e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

A Partition Node represents an external JT file reference and provides a means to partition a model into multiple physical JT 

files (e.g. separate JT file per part in an assembly).  When the referenced JT file is opened, the Partition Node‟s children are 

really the children of the LSG root node for the underlying JT file.   Usage of Partition Nodes in LSG also aids in supporting 

JT file loader/reader “best practice” of late loading data (i.e. can delay opening and loading the externally referenced JT file 

until the data is needed).  

I16 : Version Number  

U32 : Node Flags 

 

I32 : Attribute Count 

I32 : Attribute Object ID 
Attribute Count 
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Figure 14: Partition Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Group Node Data can be found in 7.2.1.1.1.3.1Group Node Data. 

I32 : Partition Flags 

Partition Flags is a collection of flags.  The flags are combined using the binary OR operator.  These flags store various state 

information of the Partition Node Object such as indicating the presence of optional data.   All undocumented bits are 

reserved. 

 

0x00000001 Untransformed bounding box is written. 

Group Node Data 

I32 : Partition Flags 

 

MbString : File Name 

I32 : Partition Flags 

 

F32 : Area 

  

Vertex Count Range 

Node Count Range 

Polygon Count Range 

BBoxF32 : Transformed BBox 

BBoxF32 : Untransformed BBox 

Logical Element Header ZLIB 

(Partition Flags & 0x00000001) != 0 

(Partition Flags & 0x00000001) = = 0 

BBoxF32 : Reserved Field 
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MbString : File Name 

File Name is the relative path portion of the Partition‟s file location. Where “relative path” should be interpreted to mean the 

string contains the file name along with any additional path information that locates the partition JT file relative to the 

location of the referencing JT file 

BBoxF32 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion 

BBoxF32 : Transformed BBox 

The Transformed BBox is an NCS axis aligned bounding box and represents the transformed geometry extents for all 

geometry contained in the Partition Node.  This bounding box information may be used by a renderer of JT data to determine 

whether to load the data contained within the Partition node (i.e. is any part of the bounding box within the view frustum). 

F32 : Area 

Area is the total surface area for this node and all of its descendents.  This value is stored in NCS coordinate space (i.e. values 

scaled by NCS scaling). 

BBoxF32 : Untransformed BBox 

The Untransformed BBox is only present if Bit 0x00000001 of Partition Flags data field is ON. The Untransformed BBox is 

an LCS axis-aligned bounding box and represents the untransformed geometry extents for all geometry contained in the 

Partition Node.  This bounding box information may be used by a renderer of JT data to determine whether to load the data 

contained within the Partition node (i.e. is any part of the bounding box within the view frustum). 

7.2.1.1.1.2.1 Vertex Count Range 

Vertex Count Range is the aggregate minimum and maximum vertex count for all descendants of the Partition Node.  There 

is a minimum and maximum value to accommodate descendant branches having LOD nodes, which encompass a range of 

count values within the branch, and to accommodate nodes that can themselves generate varying representations.  The 

minimum value represents the least vertex count that can be achieved by the Partition Node‟s descendants.  The maximum 

value represents the greatest vertex count that can be achieved by the Partition Node‟s descendants.  

Figure 15: Vertex Count Range data collection 

 

I32 : Min Count 

Min Count is the least vertex count that can be achieved by the Partition Node‟s descendants. 

I32 : Max Count 

Max Count is the maximum vertex count that can be achieved by the Partition Node‟s descendants. 

7.2.1.1.1.2.2 Node Count Range 

Node Count Range is the aggregate minimum and maximum count of all node descendants of the Partition Node.  There is a 

minimum and maximum value to accommodate descendant branches having LOD nodes, which encompass a range of 

descendant node count values within the branch.  The minimum value represents the least node count that can be achieved by 

the Partition Node‟s descendants.  The maximum value represents the greatest node count that can be achieved by the 

Partition Node‟s descendants. 

The data format for Node Count Range is the same as that described in 7.2.1.1.1.2.1Vertex Count Range. 

I32 : Min Count 

I32 : Max Count 
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7.2.1.1.1.2.3 Polygon Count Range 

Polygon Count Range is the aggregate minimum and maximum polygon count for all descendants of the Partition Node.  

There is a minimum and maximum value to accommodate descendant branches having LOD nodes, which encompass a 

range of count values within the branch, and to accommodate nodes that can themselves generate varying representations.  

The minimum value represents the least polygon count that can be achieved by the Partition Node‟s descendants.  The 

maximum value represents the greatest polygon count that can be achieved by the Partition Node‟s descendants. 

The data format for Polygon Count Range is the same as that described in 7.2.1.1.1.2.1Vertex Count Range. 

7.2.1.1.1.3  Group Node Element 

Object Type ID: 0x10dd101b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Group Nodes contain an ordered list of references to other nodes, called the group‟s children. Group nodes may contain zero 

or more children; the children may be of any node type. Group nodes may not contain references to themselves or their 

ancestors. 

Figure 16:  Group Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

7.2.1.1.1.3.1 Group Node Data 

Figure 17: Group Node Data collection 

 

Complete description for Base Node Data can be found in 7.2.1.1.1.1.1Base Node Data. 

I16 : Version Number 

Version Number is the version identifier for this node.  Version number “0x0001” is currently the only valid value for Group 

Node Data. 

Base Node Data 

I32 : Child Count 

I32 : Child Node Object ID 

 

Child Count 

I16 : Version Number 

Group Node Data 

Logical Element Header ZLIB 
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I32 : Child Count 

Child Count indicates the number of child nodes for this Group Node Object.  A node may have zero children. 

I32 : Child Node Object ID 

Child Node Object ID is the identifier for the referenced Node Object. 

7.2.1.1.1.4 Instance Node Element 

Object Type ID: 0x10dd102a, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

An Instance Node contains a single reference to another node. Their purpose is to allow sharing of nodes and assignment of 

instance-specific attributes for the instanced node.  Instance Nodes may not contain references to themselves or their 

ancestors. 

For example, a Group Node could use Instance Nodes to instance the same Shape Node several times, applying different 

material properties and matrix transformations to each instance.  Note that this could also be done by using Group Nodes 

instead of Instance Nodes, but Instance Nodes require fewer resources. 

Figure 18: Instance Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Node Data can be found in 7.2.1.1.1.1.1Base Node Data. 

I16: Version Number 

Version Number is the version identifier for this node.  Version number “0x0001” is currently the only valid value for 

Instance Node Element. 

I32 : Child Node Object ID 

Child Node Object ID is the identifier for the instanced Node Object. 

7.2.1.1.1.5 Part Node Element 

Object Type ID: 0xce357244, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1 

A Part Node Element represents the root node for a particular Part within a LSG structure.  Every unique Part represented 

within a LSG structure should have a corresponding Part Node Element.  A Part Node Element typically references (using 

Late Loaded Property Atoms) additional Part specific geometric data and/or properties (e.g. B-Rep data, PMI data). 

Base Node Data 

I16: Version Number 

Logical Element Header ZLIB 

I32 : Child Node Object ID 
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Figure 19: Part Node Element data collection 

 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Meta Data Node Data can be found in 7.2.1.1.1.6.1Meta Data Node Data. 

I16 : Version Number 

Version Number is the version identifier for this node.  Version number “0x0001” is currently the only valid value for Part 

nodes. 

I32: Reserved Field  

Reserved Field is a data field reserved for future JT format expansion 

7.2.1.1.1.6 Meta Data Node Element 

Object Type ID: 0xce357245, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1 

The Meta Data Node Element is a node type used for storing references to specific “late loaded” meta-data (e.g. properties, 

PMI).  The referenced meta-data is stored in a separate addressable segment of the JT File (see 7.2.6 Meta Data Segment) and 

thus the use of this Meta Data Node Element is in support of the JT file loader/reader “best practice” of late loading data (i.e. 

storing the referenced meta-data in separate addressable segment of the JT file allows a JT file loader/reader to ignore this 

node‟s meta-data on initial load and instead late-load the node‟s meta-data upon demand so that the associated meta-data 

does not consume memory until needed). 

Figure 20: Meta Data Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Meta Data Node Data 

Logical Element Header ZLIB 

Meta Data Node Data 

I16 : Version Number 

I32: Reserved Field  

Logical Element Header ZLIB 
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7.2.1.1.1.6.1 Meta Data Node Data 

Figure 21: Meta Data Node Data collection 

 

Complete description for Group Node Data can be found in 7.2.1.1.1.3.1Group Node Data. 

I16 : Version Number 

Version Number is the version identifier for this data.  Version number “0x0001” is currently the only valid value for Meta 

Data Node Data. 

7.2.1.1.1.7 LOD Node Element 

Object Type ID: 0x10dd102c, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

An LOD Node holds a list of alternate representations. The list is represented as the children of a base group node, however, 

there are no implicit semantics associated with the ordering.  Traversers of LSG may apply semantics to the ordering as part 

of alternative representation selection. 

Each alternative representation could be a sub-assembly where the alternative representation is a group node with an 

assembly of children. 

Figure 22: LOD Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

LOD Node Data 

Logical Element Header ZLIB 

Group Node Data 

I16 : Version Number 
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7.2.1.1.1.7.1 LOD Node Data 

Figure 23: LOD Node Data collection 

 

Complete description for Group Node Data can be found in 7.2.1.1.1.3.1Group Node Data. 

I16: Version Number 

Version Number is the version identifier for this node.  Version number “0x0001” is currently the only valid value for LOD 

Node Data. 

VecF32 : Reserved Field 

Reserved Field is a vector data field reserved for future JT format expansion. 

I32 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion. 

7.2.1.1.1.8 Range LOD Node Element 

Object Type ID: 0x10dd104c, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Range LOD Nodes hold a list of alternate representations and the ranges over which those representations are appropriate. 

Range Limits indicate the distance between a specified center point and the eye point, within which the corresponding 

alternate representation is appropriate.   Traversers of LSG consult these range limit values when making an alternative 

representation selection. 

Group Node Data 

VecF32 : Reserved Field 

I32 : Reserved Field 

I16: Version Number 
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Figure 24: Range LOD Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for LOD Node Data can be found in 7.2.1.1.1.7.1 LOD Node Data 

I16: Version Number 

Version Number is the version identifier for this node.  Version number “0x0001” is currently the only valid value for Range 

LOD Node Data. 

VecF32 : Range Limits 

Range Limits indicate the WCS distance between a specified center point and the eye point, within which the corresponding 

alternate representation is appropriate.  It is not required that the count of range limits is equivalent to the number of 

alternative representations.  These values are considered “soft values” in that loaders/viewers of JT data are free to throw 

these values away and compute new values based on their desired LOD selection semantics.  

Best practices suggest that LSG traversers apply the following strategy, at Range LOD Nodes, when making alternative 

representation selection decisions based on Range Limits:  The first alternate representation is valid when the distance 

between the center and the eye point is less than or equal to the first range limit (and when no range limits are specified). The 

second alternate representation is valid when the distance is greater than the first limit and less than or equal to the second 

limit, and so on. The last alternate representation is valid for all distances greater than the last specified limit. 

CoordF32 : Center 

Center specifies the X,Y,Z coordinates for the NCS center point upon which alternative representation selection eye distance 

computations are based.  Typically this location is the center of the highest-detail alternative representation.  These values are 

considered “soft values” in that loaders/viewers of JT data are free to throw these values away and compute new values based 

on their desired LOD selection semantics 

7.2.1.1.1.9 Switch Node Element 

Object Type ID: 0x10dd10f3, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

The Switch Node is very much like a Group Node in that it contains an ordered list of references to other nodes, called the 

children nodes.  The difference is that a Switch Node also contains additional data indicating which child (one or none) a 

LSG traverser should process/traverse.  

LOD Node Data 

VecF32 : Range Limits 

CoordF32 : Center 

Logical Element Header ZLIB 

I16: Version Number 
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Figure 25: Switch Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Group Node Data can be found in 7.2.1.1.1.3.1Group Node Data. 

I16 : Version Number 

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for Switch 

nodes. 

I32 : Selected Child 

Selected Child is the index for the selected child node.  Valid Selected Child values reside within the following range: “-1 < 

Selected Child < Child Count”.  Where “-1” indicates that no child is to be selected and “Child Count” is the data field value 

from 7.2.1.1.1.3.1Group Node Data. 

7.2.1.1.1.10 Shape Node Elements 

Shape Node Elements are “leaf” nodes within the LSG structure and contain or reference the geometric shape definition data 

(e.g. vertices, polygons, normals, etc.).    

Typically Shape Node Elements do not directly contain the actual geometric shape definition data, but instead reference 

(using Late Loaded Property Atoms) Shape LOD Segments within the file for the actual geometric shape definition data.  

Storing the geometric shape definition data within separate independently addressable data segments in the JT file, allows a 

JT file reader to be structured to support the “best practice” of delaying the loading/reading of associated data until it is 

actually needed.  Complete descriptions for Late Loaded Property Atom Elements and Shape LOD Segments can be found in 

0 Late Loaded Property Atom Element and 7.2.2 Shape LOD Segment respectively. 

There are several types of Shape Node Elements which the JT format supports.  The following sub-sections document the 

various Shape Node Element types. 

7.2.1.1.1.10.1 Base Shape Node Element 

Object Type ID: 0x10dd1059, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Base Shape Node Element represents the simplest form of a shape node that can exist within the LSG. 

Group Node Data 

I16 : Version Number 

 

I32 : Selected Child 

 

Logical Element Header ZLIB 
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Figure 26: Base Shape Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

7.2.1.1.1.10.1.1 Base Shape Data 

Figure 27: Base Shape Data collection 

 

Complete description for Base Node Data can be found in 7.2.1.1.1.1.1Base Node Data  

F32 : Compression Level 

I32 : Size 

Base Node Data 

BBoxF32 : Reserved Field 

BBoxF32 : Untransformed BBox 

F32 : Area 

Vertex Count Range 

Polygon Count Range 

Node Count Range 

I16: Version Number 

Base Shape Data 

Logical Element Header ZLIB 
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I16: Version Number 

Version Number is the version identifier for this node.  Version number “0x0001” is currently the only valid value for Base 

Shape Data. 

BBoxF32 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion.   

BBoxF32 : Untransformed BBox 

The Untransformed BBox is an axis-aligned LCS bounding box and represents the untransformed geometry extents for all 

geometry contained in the Shape Node. 

F32 : Area 

Area is the total surface area for this node and all of its descendents.  This value is stored in NCS coordinate space (i.e. values 

scaled by NCS scaling). 

I32 : Size 

Size specifies the in memory length in bytes of the associated/referenced Shape LOD Element.  This Size value has no 

relevancy to the on-disk (JT File) size of the associated/referenced Shape LOD Element. A value of zero indicates that the in 

memory size is unknown.  See 7.2.2.1Shape LOD Element for complete description of Shape LOD Elements.  JT file 

loaders/readers can leverage this Size value during late load processing to help pre-determine if there is sufficient memory to 

load the Shape LOD Element. 

F32 : Compression Level 

Compression Level specifies the qualitative compression level applied to the associated/referenced Shape LOD Element.  See 

7.2.2.1Shape LOD Element for complete description of Shape LOD Elements.  This compression level value is a qualitative 

representation of the compression applied to the Shape LOD Element.  The absolute compression (derived from this 

qualitative level) applied to the Shape LOD Element is physically represented in the JT format by other data stored with both 

the Shape Node and the Shape LOD Element (e.g. 7.2.1.1.1.10.2.1.1Quantization Parameters), and thus it's not necessary to 

understand how to map this qualitative value to absolute compression values in order to uncompress/decode the data 

 

= 0.0 “Lossless” compression used. 

 

= 0.1 “Minimally Lossy” compression used.  This setting generally results in modest 

compression ratios with little if any visual difference when compared to the same images 

rendered from “Lossless” compressed Shape LOD Element. 

 

= 0.5 “Moderate Lossy” compression used.  The setting results in more data loss than 

“Minimally Lossy” and thus higher compression ratio is obtained.  Some visual difference 

will likely be noticeable when compared to the same images rendered from “Lossless” 

compressed Shape LOD Element. 

 

= 1.0 “Aggressive Lossy” compression used.  With this setting as much data as possible will be 

thrown away, resulting in highest compression ratio, while still maintaining a modestly 

useable representation of the underlying data.  Visual differences may be evident when 

compared to the same images rendered from “Lossless” compressed Shape LOD Element. 

7.2.1.1.1.10.1.1.1 Vertex Count Range 

Vertex Count Range is the aggregate minimum and maximum vertex count for this Shape Node. There is a minimum and 

maximum value to accommodate shape types that can themselves generate varying representations.  The minimum value 
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represents the least vertex count that can be achieved by the Shape Node. The maximum value represents the greatest vertex 

count that can be achieved by the Shape Node. 

Figure 28: Vertex Count Range data collection 

 

I32 : Min Count 

Min Count is the least vertex count that can be achieved by this Shape Node. 

I32 : Max Count 

Max Count is the maximum vertex count that can be achieved by this Shape Node.  A value of  “-1” indicates maximum 

vertex count is unknown. 

7.2.1.1.1.10.1.1.2 Node Count Range 

Node Count Range is the aggregate minimum and maximum count of all node descendants of the Shape Node.  The 

minimum value represents the least node count that can be achieved by the Shape Node‟s descendants.  The maximum value 

represents the greatest node count that can be achieved by Shape Node‟s descendants.  For Shape Nodes the minimum and 

maximum count values should always be equal to “1”. 

The data format for Node Count Range is the same as that described in 7.2.1.1.1.10.1.1.1Vertex Count Range. 

7.2.1.1.1.10.1.1.3 Polygon Count Range 

Polygon Count Range is the aggregate minimum and maximum polygon count for this Shape Node.  There is a minimum and 

maximum value to accommodate shape types that can themselves generate varying representations. The minimum value 

represents the least polygon count that can be achieved by the Shape Node.  The maximum value represents the greatest 

polygon count that can be achieved by the Shape Node. 

 The data format for Polygon Count Range is the same as that described in 7.2.1.1.1.10.1.1.1Vertex Count Range. 

7.2.1.1.1.10.2 Vertex Shape Node Element 

Object Type ID: 0x10dd107f, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Vertex Shape Node Element represents shapes defined by collections of vertices. 

Figure 29: Vertex Shape Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

7.2.1.1.1.10.2.1 Vertex Shape Data 

Vertex Shape Data 

Logical Element Header ZLIB 

I32 : Min Count 

I32 : Max Count 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 48  

Figure 30: Vertex Shape Data collection 

 

Complete description for Base Shape Data can be found in 7.2.1.1.1.10.1.1 Base Shape Data. 

I16: Version Number 

Version Number is the version identifier for this node.  Version number “0x0002” is currently the highest valid value for 

Vertex Shape Data. 

U64 : Vertex Binding 

Vertex Bindings is a collection of normal, texture coordinate, and color binding information encoded within a single U64.  

All undocumented bits are reserved.  For more information see Vertex Shape LOD Data U64 : Vertex Bindings. 

7.2.1.1.1.10.2.1.1 Quantization Parameters 

Quantization Parameters specifies for each shape data type grouping (i.e. Vertex, Normal, Texture Coordinates, Color) the 

number of quantization bits used for given qualitative compression level.  Although these Quantization Parameters values are 

saved in the associated/referenced Shape LOD Element, they are also saved here so that a JT File loader/reader does not have 

to load the Shape LOD Element in order to determine the Shape quantization level.  See 7.2.2.1Shape LOD Element for 

complete description of Shape LOD Elements. 

Base Shape Data 

U64 : Vertex Binding 

Quantization Parameters 

I16: Version Number 

U64 : Vertex Binding 

Version Number = = 1 
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Figure 31: Quantization Parameters data collection 

 

U8 : Bits Per Vertex 

Bits Per Vertex specifies the number of quantization bits per vertex coordinate component.  Value must be within range 

[0:24] inclusive. 

U8 : Normal Bits Factor 

Normal Bits Factor is a parameter used to calculate the number of quantization bits for normal vectors.  Value must be within 

range [0:13] inclusive . The actual number of quantization bits per normal is computed using this factor and the following 

formula:  “BitsPerNormal = 6 + 2 * Normal Bits Factor” 

U8 : Bits Per Texture Coord  

Bits Per Texture Coord specifies the number of quantization bits per texture coordinate component.  Value must be within 

range [0:24] inclusive. 

U8 : Bits Per Color 

Bits Per Color specifies the number of quantization bits per color component.  Value must be within range [0:24] inclusive. 

7.2.1.1.1.10.3 Tri-Strip Set Shape Node Element 

Object Type ID: 0x10dd1077, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

A Tri-Strip Set Shape Node Element defines a collection of independent and unconnected triangle strips. Each strip 

constitutes one primitive of the set and is defined by one list of vertex coordinates. 

Figure 32: Tri-Strip Set Shape Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Vertex Shape Data can be found in 7.2.1.1.1.10.2.1Vertex Shape Data. 

7.2.1.1.1.10.4 Polyline Set Shape Node Element 

Object Type ID: 0x10dd1046, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Vertex Shape Data 

Logical Element Header ZLIB 

U8 : Bits Per Vertex 

U8 : Normal Bits Factor 

U8 : Bits Per Texture Coord 

U8 : Bits Per Color 
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A Polyline Set Shape Node Element defines a collection of independent and unconnected polylines. Each polyline constitutes 

one primitive of the set and is defined by one list of vertex coordinates. 

Figure 33: Polyline Set Shape Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Vertex Shape Data can be found in 7.2.1.1.1.10.2.1Vertex Shape Data. 

I16: Version Number 

Version Number is the version identifier for this node.  Version number “0x0002” is currently the highest valid value for 

Polyline Set Shape Data. 

F32 : Area Factor 

Area Factor specifies a multiplier factor applied to a Polyline Set computed surface area.  In JT data viewer applications there 

may be LOD selection semantics that are based on screen coverage calculations.  The so-called ”surface area” of a polyline is 

computed as if each line segment were a square.  This Area Factor turns each edge into a narrow rectangle.  Valid Area 

Factor values lie in the range (0,1]. 

U64: Vertex Bindings 

Vertex Bindings is a collection of normal, texture coordinate, and color binding information encoded within a single U64.  

All undocumented bits are reserved.  For more information see Vertex Shape LOD Data U64 : Vertex Bindings. 

7.2.1.1.1.10.5 Point Set Shape Node Element 

Object Type ID: 0x98134716, 0x0010, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83, 0x5d, 0x5a 

A Point Set Shape Node Element defines a collection of independent and unconnected points. Each point constitutes one 

primitive of the set and is defined by one vertex coordinate. 

Vertex Shape Data 

F32 : Area Factor 

Logical Element Header ZLIB 

U64: Vertex Bindings 

Version Number = = 1 

I16: Version Number 
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Figure 34: Point Set Shape Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Vertex Shape Data can be found in 7.2.1.1.1.10.2.1Vertex Shape Data. 

I16: Version Number 

Version Number is the version identifier for this node.  Version number “0x0002” is currently the highest valid value for 

Point Set Shape Data. 

F32 : Area Factor 

Area Factor specifies a multiplier factor applied to the Point Set computed surface area. In JT data viewer applications there 

may be LOD selection semantics that are based on screen coverage calculations.  The computed “surface area” of a Point Set 

is equal to the larger (i.e. whichever is greater) of either the area of the Point Set‟s  bounding box, or “1.0”.  Area Factor 

scales the result of this “surface area” computation.. 

U64: Vertex Bindings 

Vertex Bindings is a collection of normal, texture coordinate, and color binding information encoded within a single U64.  

All undocumented bits are reserved.  For more information see Vertex Shape LOD Data U64 : Vertex Bindings. 

7.2.1.1.1.10.6 Polygon Set Shape Node Element 

Object Type ID: 0x10dd1048, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

A Polygon Set Shape Node Element defines a collection of independent and unconnected polygons. Each polygon constitutes 

one primitive of the set and is defined by one list of vertex coordinates. 

Vertex Shape Data 

F32 : Area Factor 

Logical Element Header ZLIB 

U64: Vertex Bindings 

Version Number = = 1 

I16: Version Number 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 52  

Figure 35: Polygon Set Shape Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Vertex Shape Data can be found in 7.2.1.1.1.10.2.1Vertex Shape Data. 

7.2.1.1.1.10.7 NULL Shape Node Element 

Object Type ID: 0xd239e7b6, 0xdd77, 0x4289, 0xa0, 0x7d, 0xb0, 0xee, 0x79, 0xf7, 0x94, 0x94 

A NULL Shape Node Element defines a shape which has no direct geometric primitive representation (i.e. it is 

empty/NULL).  NULL Shape Node Elements are often used as “proxy/placeholder” nodes within the serialized LSG when 

the actual Shape LOD data is run time generated (i.e. not persisted). 

Figure 36: NULL Shape Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Shape Data can be found in 7.2.1.1.1.10.1.1 Base Shape Data. 

I16 : Version Number 

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for NULL 

Shape Node Element. 

7.2.1.1.1.10.8 Primitive Set Shape Node Element 

Object Type ID: 0xe40373c1, 0x1ad9, 0x11d3, 0x9d, 0xaf, 0x0, 0xa0, 0xc9, 0xc7, 0xdd, 0xc2 

A Primitive Set Shape Node Element represents a list/set of primitive shapes (e.g. box, cylinder, sphere, etc.) who‟s LODs 

can be procedurally generated.  “Procedurally generate” means that the raw geometric shape definition data (e.g. vertices, 

polygons, normals, etc) for LODs is not directly stored; instead some basic shape information is stored (e.g. sphere center and 

radius) from which LODs can be generated. 

Primitive Set Shape Node Elements actually do not even directly contain this basic shape definition data, but instead 

reference (using Late Loaded Property Atoms) Primitive Set Shape Elements within the file for the actual basic shape 

definition data.  Storing the basic shape definition data within separate independently addressable data segments in the JT 

file, allows a JT file reader to be structured to support the “best practice” of delaying the loading/reading of associated data 

until it is actually needed.  Complete descriptions for Late Loaded Property Atom Elements and Primitive Set Shape Element 

can be found in 0 Late Loaded Property Atom Element and 7.2.2.2 Primitive Set Shape Element respectively. 

I16 : Version Number 

Logical Element Header ZLIB 

Base Shape Data 

Vertex Shape Data 

Logical Element Header ZLIB 
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Figure 37: Primitive Set Shape Node Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Shape Data can be found in 7.2.1.1.1.10.1.1 Base Shape Data. 

I16 : Version Number 

Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for 

Primitive Set Shape Node Element. 

I32 : Texture Coord Binding 

Texture Coord Binding specifies how (at what granularity) texture coordinate data is supplied (“bound”) for the shape in the 

associated/referenced Shape LOD Element.  Valid values are as follows: 

 

= 0 None.  Shape has no texture coordinate data. 

= 1 Per Vertex.  Shape has texture coordinates for every vertex. 

I32 : Color Binding 

Color Binding specifies how (at what granularity) color data is supplied (“bound”) for the shape in the associated/referenced 

Shape LOD Element.  Valid values are the same as documented for Texture Coord Binding data field. 

Logical Element Header ZLIB 

Base Shape Data 

I32 : Texture Coord Binding 

I32 : Color Binding 

Primitive Set 

Quantization Parameters 

I16 : Version Number 

I32 : Texture Coord Gen Type 

I16 : Version Number 
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I16 : Version Number 

Version Number is the version identifier for this element.  The value of this Version Number indicates the format of data 

fields to follow.  

 

= 0 Version 0 Format  

= 1 Version 1 Format 

I32 : Texture Coord Gen Type 

Texture Coord Gen Type specifies how texture coordinates are to be generated. 

 

= 0 Single Tile…Indicates that a single copy of a texture image will be applied to significant 

primitive features (i.e. cube face, cylinder wall, end cap) no matter how eccentrically shaped. 

= 1 Isotropic…Implies that multiple copies of a texture image may be mapped onto eccentric 

surfaces such that a mapped texel stays approximately square. 

7.2.1.1.1.10.8.1 Primitive Set Quantization Parameters 

Primitive Set Quantization Parameters specifies for the two shape data type grouping (i.e. Vertex, Color) the number of 

quantization bits used for given qualitative compression level.  Although these Quantization Parameters values are saved in 

the associated/referenced Shape LOD Element, they are also saved here so that a JT File loader/reader does not have to load 

the Shape LOD Element in order to determine the Shape quantization level.  See 7.2.2.1Shape LOD Element for complete 

description of Shape LOD Elements. 

Figure 38: Primitive Set Quantization Parameters data collection 

 

U8 : Bits Per Vertex 

Bits Per Vertex specifies the number of quantization bits per vertex coordinate component.  Value must be within range 

[0:24] inclusive. 

U8 : Bits Per Color 

Bits Per Color specifies the number of quantization bits per color component.  Value must be within range [0:24] inclusive. 

7.2.1.1.2 Attribute Elements 

Attribute Elements (e.g. color, texture, material, lights, etc.) are placed in LSG as objects associated with nodes.  Attribute 

Elements are not nodes themselves, but can be associated with any node.   

For applications producing or consuming JT format data, it is important that the JT format semantics of how attributes are 

meant to be applied and accumulated down the LSG are followed.  If not followed, then consistency between the applications 

in terms of 3D positioning and rendering of LSG model data will not be achieved. 

 

To that end each attribute type defines its own application and accumulation semantics, but in general attributes at lower 

levels in the LSG take precedence and replace or accumulate with attributes set at higher levels.  Nodes without associated 

U8 : Bits Per Vertex 

U8 : Bits Per Color 
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attributes inherit those of their parents. Attributes inherit only from their parents, thus a node‟s attributes do not affect that 

node‟s siblings. The root of a partition inherits the attributes in effect at the referring partition node. 

Attributes can be declared “final” (see 7.2.1.1.2.1.1Base Attribute Data), which terminates accumulation of that attribute type 

at that attribute and propagates the accumulated values there to all descendants of the associated node.  Descendants can 

explicitly do a one-shot override of “final” using the attribute “force” flag (see 7.2.1.1.2.1.1Base Attribute Data), but do not 

by default.  Note that “force” does not turn OFF “final” – it is simply a one-shot override of “final” for the specific attribute 

marked as “forcing.”  An analogy for this “force” and “final” interaction is that “final” is a back-door in the attribute 

accumulation semantics, and that “force” is a doggy-door in the back-door! 

7.2.1.1.2.1 Common Attribute Data Containers 

7.2.1.1.2.1.1 Base Attribute Data 

Figure 39: Base Attribute Data collection 

 

I16: Version Number  

Version Number is the version identifier for this node.  Version number “0x0001” is currently the only valid value for Base 

Shape Data. 

U8 : State Flags 

State Flags is a collection of flags.  The flags are combined using the binary OR operator and store various state information 

for Attribute Elements; such as indicating that the attributes accumulation is final.  All undocumented bits are reserved. 

 

0x01 Accumulation Final flag. 

Provides a means to terminate a particular attribute type‟s accumulation at any node of the LSG 

and thereby force all descendants to have that value of the attribute. 

= 0 – Accumulation is to occur normally 

= 1 – Accumulation is “final” 

0x02 Accumulation Force flag. 

Provides a way to assign nodes in LSG, attributes that must not be overridden by ancestors. 

= 0 – Accumulation of this attribute obeys ancestor‟s Final flag setting. 

= 1 – Accumulation of this attribute is forced (overrides ancestor‟s Final flag setting) 

0x04 Accumulation Ignore Flag. 

Provides a way to indicate that the attribute is to be ignored (not accumulated). 

= 0 – Attribute is to be accumulated normally (subject to values of Force/Final flags) 

= 1 – Attribute is to be ignored. 

0x08 Attribute Persistable Flag. 

I16: Version Number  

U8 : State Flags 

U32 : Field Inhibit Flags 
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Provides a way to indicate that the attribute is to be persistable to a JT file. 

= 0 – Attribute is to be non-persistable. 

= 1 – Attribute is to be persistable. 

U32 : Field Inhibit Flags 

Field Inhibit Flags is a collection of flags.  The flags are combined using the binary OR operator and store the per attribute 

value accumulation flag.  Each value present in an Attribute Element is given a field number ranging from 0 to 31.  If the 

field‟s corresponding bit in Inhibit Flags is set, then the field should not participate in attribute accumulation.  All bits are 

reserved. 

See each particular Attribute Element (e.g. Material Attribute Element) for a description of bit field assignments for each 

attribute value. 

7.2.1.1.2.1.2 Base Shader Data 

The JT v9 file format is able to represent vertex- and fragment shader programs in GLSL source code form together with 

parameter bindings for both.  The shader source code can be specified inline directly in the JT file, or as a filename 

containing the shader source code. 

 

Figure 40: Base Shader Data collection 

 

I16 : Version Number 

Version Number is the version identifier for this data collection.  Version number “0x0001” is currently the only valid value. 

I16 : Version Number 

I32 : Shader Language 

U32 : Inline Source Flag 

Inline Source Flag = = 1 

MbString : Source Code MbString : Source Code Loc 

I32 : Shader Param Count 

Shader Parameter 
Shader Param 

Count 
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I32 : Shader Language 

Shader Language specifies the Shader program language.  JT v9.5 only supports the GLSL Shading Language. 

 

= 0 None 

= 2 GLSL (“GL Shading Language” as defined by the Architectural Review Board of 

OpenGL, the governing body of OpenGL [7]. 

U32 : Inline Source Flag 

Inline Source Flag specifies whether the shader‟s “source code” is stored within this JT file or in some other externally 

referenced file.  Valid values include the following: 

 

= 0 Source code stored in an externally referenced file. 

= 1 Source code stored within this JT file. 

MbString : Source Code 

Source Code is the shader‟s source code in Shader Language programming language. 

MbString : Source Code Loc 

Source Code Loc specifies the file name for the external file containing the shader‟s source code. 

I32 : Shader Param Count 

Shader Param Count specifies the number of shader parameters. 

7.2.1.1.2.1.2.1 Shader Parameter 

Shader Parameter data collection defines a Shader input and/or output parameter.  A list of Shader Parameters represents the 

runtime linkage of the shader program into the GPU‟s data streams. 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 58  

Figure 41: Shader Parameter data collection 

 

MbString : Param Name 

Param Name specifies the shader parameter name. 

U32 : Param Type 

Param Type specifies the shader parameter type.  Valid types include the following: 

 

= 0 Unknown 

= 1 Boolean 

= 2 Integer 

= 3 Float 

= 4 Vector of two Integer values. 

= 5 Vector of three Integer values 

= 6 Vector of four Integer values 

= 7 Vector of two Float values 

= 8 Vector of three Float values 

= 9 Vector of four Float values 

= 10 2 x 2 matrix of Float values 

= 11 3 x 3 matrix of Float values 

= 12 4 x 4 matrix of Float values 

MbString : Param Name 

U32 : Param Type 

U32 : Value Class 

U32 : Direction 

U32 : Semantic Binding 

U32 : Variability 

U32 : Reserved Field 

16 
U32 : Value 
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= 13 Texture Object/Unit number bound to current 1D texture sampler 

= 14 Texture Object/Unit number bound to current 2D texture sampler 

= 15 Texture Object/Unit number bound to current 3D texture sampler 

= 16 Texture Object/Unit number bound to current rectangle map texture sampler 

= 17 Texture Object/Unit number bound to current cube map texture sampler 

= 18 Texture Object/Unit number bound to current 1D shadow  map texture sampler 

= 19 Texture Object/Unit number bound to current 2D shadow  map texture sampler 

U32 : Value Class 

Value Class specifies the shader parameter “value class”.  Valid values include the following: 

 

= 0 Unknown class 

= 1 Immediate class. 

= 2 Semantic class (i.e. Shader Parameter is implicitly tied/bound to a piece of OpenGL 

graphics system state (e.g. OpenGL ModelView matrix) or JT graphics system state 

(e.g. diffuse material color)).  The actual graphics state that the parameter is bound 

to is indicated by value in Value data field. 

U32 : Direction 

Direction specifies whether the shader parameter is an input, output, or input/output parameter. Valid values include the 

following: 

 

= 0 Unknown 

= 1 Input parameter 

= 2 Output parameter 

= 3 Both an Input and an Output parameter. 

U32 : Semantic Binding 

Semantic Binding specifies the “per vertex input and/or output” or the “per fragment input and/or output” this shader 

parameter is associated with (i.e. bound to).  Valid values, including their input/output applicability to vertex and fragment 

shaders, are as follows (note that N/A indicates „Not Applicable”):  

 

Value 
Binding 

Description 

Vertex Shader 

Applicability 

Fragment Shader 

Applicability 
= 0 Unknown   

= 1 None   

= 2 Position Input/Output Input 

= 3 Normal Input N/A 

= 4 Binormal Input N/A 

= 5 Blend Indices Input N/A 

= 6 Blend Weight Input N/A 

= 7 Tangent Input N/A 

= 8 Point Size Input/Output Input 

= 10 Texture Coordinate 0 Input/Output Input 

= 11 Texture Coordinate 1 Input/Output Input 

= 12 Texture Coordinate 2 Input/Output Input 

= 13 Texture Coordinate 3 Input/Output Input 

= 14 Texture Coordinate 4 Input/Output Input 

= 15 Texture Coordinate 5 Input/Output Input 

= 16 Texture Coordinate 6 Input/Output Input 

= 17 Texture Coordinate 7 Input/Output Input 
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Value 
Binding 

Description 

Vertex Shader 

Applicability 

Fragment Shader 

Applicability 
= 20 Fog Coordinate Output Input 

= 21 Primary Color Output Input 

= 22 Secondary Color Output Input 

= 23 Primary Color N/A Output 

= 24 Depth Value N/A Output 

U32 : Variability 

Variability specifies how often the value of the parameter is allowed to change. Valid values include the following:   

 

= 0 Unknown 

= 1 Constant (a parameter that takes on a single value and never changes)  

= 2 Uniform (a parameter that may take on a different value each time the shader is 

invoked but remains the same for all vertices or fragments processed by the 

shader) 

= 3 Varying (a parameter which may change with every vertex or fragment processed 

by the shader) 

U32 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion. 

U32 : Value 

Value specifies the shader parameter values treated as a U32 array of bytes.  The maximum number of bytes required to store 

all possible Param Type and Value Class dependent values is 64 bytes and thus there are 16 U32 values stored.  The 

interpretation of the Value data is Param Type and Value Class dependent as follows:   

For “Immediate” Value Class parameters (i.e. Value Class = = 1), the interpretation of the Value data is dependent upon the 

Param Type value. 

For “Semantic” Value Class parameters, the Value data is to be interpreted as a single U32 with all the possible values 

documented in Appendix B: Semantic Value Class Shader Parameter Values. 

7.2.1.1.2.2 Material Attribute Element 

Object Type ID: 0x10dd1030, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Material Attribute Element defines the material properties of a object. JT format LSG traversal semantics state that material 

attributes accumulate down the LSG by replacement. 

The Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments for the Material Attribute Element data fields, 

are as follows: 

 

Field Inhibit 

Flag Bit 

Data Field(s) Bit Applies To 

0 Ambient Common RGB Value,  Ambient Color 

1 Diffuse Color and Alpha (Legacy)    

2 Specular Common RGB Value,  Specular Color 

3 Emission Common RGB Value,  Emission Color 

4 Blending Flag,  Source Blending Factor,  Destination Blending Factor 

5 Override Vertex Color Flag 

6 Material Reflectivity  

7 Diffuse Color 

8 Diffuse Alpha 
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Figure 42: Material Attribute Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data. 

I16 : Version Number 

Version Number is the version identifier for this element.  The value of this Version Number indicates the format of data 

fields to follow.  

 

= 1 Version-1 Format  

RGBA : Ambient Color 

Base Attribute Data 

U16 : Data Flags 

RGBA : Specular Color 

RGBA : Emission Color 

RGBA : Diffuse Color and Alpha 

F32 : Shininess 

Logical Element Header ZLIB 

F32 : Reflectivity 

I16 : Version 
Number 

 

Version Number = = 2 
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= 2 Version-2 Format 

U16 : Data Flags 

Data Flags is a collection of flags and factor data.  The flags and factor data are combined using the binary OR operator.  The 

flags store information to be used for interpreting how to read subsequent Material data fields.  All undocumented bits are 

reserved. 

 

0x0010 Blending Flag.  Blending is a color combining operation in the graphics pipeline that happens 

just before writing a color to the framebuffer.  If Blending is ON then incoming fragment RGBA 

color values are used (based on Source Blend Factor) and existing framebuffer‟s RGBA color 

values are used (based on Destination Blend Factor) to blend between the incoming fragment 

RGBA and the current frame buffer RGBA to arrive at a new RGBA color to write into the 

framebuffer. If Blending is OFF then incoming fragment RGBA color is written directly into 

framebuffer unmodified (i.e. completely overriding existing framebuffer RGBA color).  

Additional information on how one might leverage the Blending Flag and Blending Factors to 

render an image can be found in the references listed in section 3 References and Additional 

Information. 

= 0 – Blending OFF. 

= 1 – Blending ON  

0x0020 Override Vertex Colors Flag.  If ON, then a shape‟s per vertex colors are to be overridden by the 

accumulated Material color. 

= 0 – Override OFF 

= 1 – Override ON 

0x07C0 Source Blend Factor (stored in bits 6 – 10 or in binary notation 0000011111000000). If Blending 

Flag enabled, this value indicates how the incoming fragment‟s (i.e. the source) RGBA color 

values are to be used to blend with the current framebuffer‟s (i.e. the destination) RGBA color 

values.  Additional information on the interpretation of the Blending Factor values and how one 

might leverage them to render an image can be found in reference [4] listed in section 3 

References and Additional Information. 

= 0 – Interpret same as OpenGL GL_ZERO Blending Factor 

= 1 – Interpret same as OpenGL GL_ONE Blending Factor 

= 2 – Interpret same as OpenGL GL_DST_COLOR Blending Factor 

= 3 – Interpret same as OpenGL GL_SRC_COLOR Blending Factor 

= 4 – Interpret same as OpenGL GL_ONE_MINUS_DST_COLOR Blending Factor 

= 5 – Interpret same as OpenGL GL_ONE_MINUS_SRC_COLOR Blending Factor 

= 6 – Interpret same as OpenGL GL_SRC_ALPHA Blending Factor 

= 7 – Interpret same as OpenGL GL_ONE_MINUS_SRC_ALPHA Blending Factor 

= 8 – Interpret same as OpenGL GL_DST_ALPHA Blending Factor 

= 9 – Interpret same as OpenGL GL_ONE_MINUS_DST_ALPHA Blending Factor 

= 10 – Interpret same as OpenGL GL_SRC_ALPHA_SATURATE Blending Factor 

 

0xF800 Destination Blend Factor (stored in bits 11 – 15 or in binary notation 1111100000000000). ). If 

Blending Flag enabled, this value indicates how the current framebuffer‟s (the destination) 

RGBA color values are to be used to blend with the incoming fragment‟s (the source) RGBA 

color values.  Additional information on the interpretation of the Blending Factor values and 

how one might leverage them to render an image can be found in reference [4] listed in section 3 

References and Additional Information. 

= 0 – Interpret same as OpenGL GL_ZERO Blending Factor 

= 1 – Interpret same as OpenGL GL_ONE Blending Factor 

= 2 – Interpret same as OpenGL GL_DST_COLOR Blending Factor 
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= 3 – Interpret same as OpenGL GL_SRC_COLOR Blending Factor 

= 4 – Interpret same as OpenGL GL_ONE_MINUS_DST_COLOR Blending Factor 

= 5 – Interpret same as OpenGL GL_ONE_MINUS_SRC_COLOR Blending Factor 

= 6 – Interpret same as OpenGL GL_SRC_ALPHA Blending Factor 

= 7 – Interpret same as OpenGL GL_ONE_MINUS_SRC_ALPHA Blending Factor 

= 8 – Interpret same as OpenGL GL_DST_ALPHA Blending Factor 

= 9 – Interpret same as OpenGL GL_ONE_MINUS_DST_ALPHA Blending Factor 

= 10 – Interpret same as OpenGL GL_SRC_ALPHA_SATURATE Blending Factor 

RGBA : Ambient Color 

Ambient Color specifies the ambient red, green, blue, alpha color values of the material.   

RGBA : Diffuse Color and Alpha  

Diffuse Color and Alpha specify the diffuse red, green, blue color components,  and alpha value of the material. 

RGBA : Specular Color 

Specular Color specifies the specular red, green, blue, alpha color values of the material.   

RGBA : Emission Color 

Emission Color specifies the emissive red, green, blue, alpha color values of the material.   

F32 : Shininess 

Shininess is the exponent associated with specular reflection and highlighting.  Shininess controls the degree with which the 

specular highlight decays.  Only values in the range [1,128] are valid. 

F32 : Reflectivity 

Reflectivity specifies the material reflectivity of the material. It represents the fraction of light reflected in the mirror 

direction by the material. Only values in the range [0.0, 1.0] are valid.  

7.2.1.1.2.3 Texture Image Attribute Element 

Object Type ID: 0x10dd1073, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Texture Image Attribute Element defines a texture image and its mapping environment.  JT format LSG traversal semantics 

state that texture image attributes accumulate down the LSG by replacement on a per channel basis.  See below for more 

information on texture image channels.  

Note that additional information on the interpretation of the various Texture Image Attribute Element data fields can be found 

in the OpenGL references listed in section 3 References and Additional Information. 

The Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments for the Texture Image Attribute Element data 

fields, are as follows: 

 

Field Inhibit 

Flag Bit 
Data Field(s) Bit Applies To 

0 I32 : Texture Type, Mipmap Image Texel Data, MbString : External Storage Name,  

Shared Image Flag 

1 Border Mode,  Border Color 

2 Mipmap Minification Filter,   Mipmap Magnification Filter 

3 S-Dimen Wrap Mode,  T-Dimen Wrap Mode,  R-Dimen Wrap Mode 

4 Blend Type,  Blend Color 

5 Texture Transform 

6 Tex Coord Gen Mode,  Tex Coord Reference Plane  

8 Internal Compression Level 
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Figure 43: Texture Image Attribute Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1 Base Attribute Data. 

Complete description for Texture Vers-1 Data can be found in 7.2.1.1.2.3.1 Texture Vers-1 Data. 

Complete description for Texture Vers-2 Data can be found in 7.2.1.1.2.3.2 Texture Vers-2 Data. 

Complete description for Texture Vers-3 Data can be found in 7.2.1.1.2.3.3 Texture Vers-3 Data. 

I16 : Version Number 

Version Number is the version identifier for this element.  The value of this Version Number indicates the format of data 

fields to follow.  

 

= 1 Version-1 Format  

= 2 Version-2 Format 

= 3 Version-3 Format 

Because the 7.2.1.1.2.3Texture Image Attribute Element has undergone major upgrades during the lifetime of the JT v9 file 

format, the attribute has a complex version structure to be mindful of.  Usually, when a data element in the JT file is 

versioned, it is for the purpose of merely adding a few pieces of new data onto the end of the existing data format.  In this 

way, older viewers and readers of the JT file that do not yet know about higher local versions will naturally read the lower-

numbered version blocks and ignore the higher-numbered ones they do not know how to read.  This is sometimes the case 

with Texture Image Attribute Element, but sometimes not.  Entirely new texture types with no analogous lower-level 

functionality have been added.  In these cases, the most sensible thing for an older reader to do it to ignore the texture image 

entirely as if it were not even present in the JT file. 

Base Attribute Data 

I16 : Version Number 
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In order to support this sensible fallback mechanism, the following two general rules are followed: 1) a given texture image is 

written at the lowest version level that completely captures its contents, and 2) lower-order Texture Vers Data blocks are 

written with a "stub" texture. 

7.2.1.1.2.3.1 Texture Vers-1 Data 

Texture Vers-1 Data format is stored in JT file if the Texture Image Element is a vanilla/basic texture image (i.e. if texture 

does not use any advanced features as described in 7.2.1.1.2.3.2Texture Vers-2 Data and 7.2.1.1.2.3.3Texture Vers-3 Data). 

However, advanced textures also write a Texture Vers-1 Data block because of the need to be backward-compatible with 

older readers that may not understand Vers-2 and Vers-3 data. 

Figure 44: Texture Vers-1 Data collection 

 

Complete details for Texture Environment can be found in 7.2.1.1.2.3.1.1Texture Environment. 

Complete details for Texture Coord Generation Parameters can be found in 7.2.1.1.2.3.1.2Texture Coord Generation 

Parameters. 

Complete details for Inline Texture Image Data can be found in 7.2.1.1.2.3.1.3Inline Texture Image Data. 
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I32 : Texture Type 

Texture Type specifies the type of texture.  

 

= 0 None. 

= 1 One-Dimensional.  A one-dimensional texture has a height (T-Dimension) 

and depth (R-Dimension) equal to “1” and no top or bottom border. 

= 2 Two-Dimensional. A two-dimensional texture has a depth (R-Dimension) 

equal to “1.” 

= 3 Three-Dimensional.  A three-dimensional texture can be thought of as 

layers of two-dimensional sub image rectangles arranged in a sequence. 

= 4 Bump Map.  A bump map texture is a texture where the image texel data 

(e.g. RGB color values) represents surface normal XYZ components. 

= 5 Cube Map. A cube map texture is a texture cube centered at the origin and 

formed by a set of six two-dimensional texture images. 

= 6 Depth Map. A depth map texture is a texture where the image texel data 

represents depth values. 

I32 : Texture Channel 

Texture Channel specifies the texture channel number for the Texture Image Element.  For purposes of multi-texturing, the 

JT concept of a texture channel corresponds to the OpenGL concept of a “texture unit.”   The Texture Channel value must be 

between 0 and 31 inclusive.  Best practices suggest that renderer of JT data ignore all but channel-0 if the renderer does not 

support multi-textured geometry.  Also for purposes of blending, renderer of JT data should assume that higher numbered 

texture channels “blend over” lower numbered ones.  

U32 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion. 

U8 : Inline Image Storage Flag 

Inline Image Storage Flag is a flag that indicates whether the texture image is stored within the JT File (i.e. inline) or in some 

other external file. 

 

= 0 Texture image stored in an external file. 

= 1 Texture image stored inline in this JT file. 

I32 : Image Count 

Image Count specifies the number of texture images.  A “Cube Map” I32 : Texture Type must have six images while all other 

Texture Types should only have one image. 

MbString : External Storage Name 

External Storage Name is a string identifying the name of an external texture image storage.  External Storage Name is only 

present if data field Inline Image Storage Flag equals “0.”   If present there will be data field Image Count number of External 

Storage Name instances.  This External Storage Name string is a relative path based name for the texture image file.  Where 

“relative path” should be interpreted to mean the string contains the file name along with any additional path information that 

locates the texture image file relative to the location of the referencing JT file. 

7.2.1.1.2.3.1.1 Texture Environment 

The Texture Environment is a collection of data defining various aspects of how a texture image is to be mapped/applied to a 

surface. 
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Figure 45: Texture Environment data collection 

 
 

I32 : Border Mode 

Border Mode specifies the texture border mode. 

= 0 No border. 
= 1 Constant Border Color.  Indicates that the texture has a constant border 

color whose value is defined in data field Border Color. 

= 2 Explicit.  Indicates that a border texel ring is present in the texture image 

definition. 

I32 : Border Mode 

I32 : Mipmap Magnification Filter 

I32 : Mipmap Minification Filter 

I32 : S-Dimen Wrap Mode 

I32 : T-Dimen Wrap Mode 

I32 : R-Dimen Wrap Mode 

I32 : Blend Type 

I32 : Internal Compression Level 

RGBA : Blend Color 

RGBA : Border Color 

Mx4F32 : Texture Transform 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 68  

I32 : Mipmap Magnification Filter 

Mipmap Magnification Filter specifies the texture filtering method to apply when a single pixel on screen maps to a tiny 

portion of a texel. 

= 0 None. 

= 1 Nearest.  Texel with coordinates nearest the center of the pixel is used. 

= 2 Linear.  A weighted linear average of the 2 x 2 array of texels nearest to the 

center of the pixel is used. For one-dimensional texture is average of 2 

texels.  For three dimensional texel is 2 x 2 x 2 array. 

I32 : Mipmap Minification Filter 

Mipmap Minification Filter specifies the texture filtering method to apply when a single pixel on screen maps to a large 

collection of texels. 

 

= 0 None. 

= 1 Nearest.  Texel with coordinates nearest the center of the pixel is used. 

= 2 Linear.  A weighted linear average of the 2 x 2 array of texels nearest to the center of the 

pixel is used. For one-dimensional texture is average of 2 texels.  For three-dimensional 

texture is 2 x 2 x 2 array. 

= 3 Nearest in Mipmap.  Within an individual mipmap, the texel with coordinates nearest the 

center of the pixel is used. 

= 4 Linear in Mipmap. Within an individual mipmap, a weighted linear average of the 2 x 2 

array of texels nearest to the center of the pixel is used. For one-dimensional texture is 

average of 2 texels.  For three-dimensional texture is 2 x 2 x 2 array 

= 5 Nearest between Mipmaps.  Within each of the adjacent two mipmaps, selects the texel 

with coordinates nearest the center of the pixel and then interpolates linearly between these 

two selected mipmap values. 

= 6 Linear between Mipmaps.  Within each of the two adjacent mipmaps, computes value based 

on a weighted linear average of the 2 x 2 array of texels nearest to the center of the pixel 

and then interpolates linearly between these two computed mipmap values. 

I32 : S-Dimen Wrap Mode 

S-Dimen Wrap Mode specifies the mode for handling texture coordinates S-Dimension values outside the range [0, 1]. 

 

= 0 None. 

= 1 Clamp.  Any values greater than 1.0 are set to 1.0; any values less than 0.0 are set to 0.0 

= 2 Repeat  Integer parts of the texture coordinates are ignored (i.e. retains only the fractional 

component o texture coordinates greater than 1.0 and only one-minus the fractional 

component of values less than zero).  Resulting in copies of the texture map tiling the 

surface 

= 3 Mirror Repeat.  Like Repeat, except the surface tiles “flip-flop” resulting in an alternating 

mirror pattern of surface tiles. 

= 4 Clamp to Edge.   Border is always ignored and instead texel at or near the edge is chosen 

for coordinates outside the range [0, 1].  Whether the exact nearest edge texel or some 

average of the nearest edge texels is used is dependent upon the mipmap filtering value. 

= 5 Clamp to Border.  Nearest border texel is chosen for coordinates outside the range [0, 1]. 

Whether the exact nearest border texel or some average of the nearest border texels is used 

is dependent upon the mipmap filtering value. 

I32 : T-Dimen Wrap Mode 

T-Dimen Wrap Mode specifies the mode for handling texture coordinates T-Dimension values outside the range [0, 1].  Same 

mode values as documented for S-Dimen Wrap Mode. 
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I32 : R-Dimen Wrap Mode 

R-Dimen Wrap Mode specifies the mode for handling texture coordinates R-Dimension values outside the range [0, 1].  

Same mode values as documented for S-Dimen Wrap Mode. 

I32 : Blend Type 

Blend Type contains information indicating how the values in the texture map are to be modulated/combined/blended with 

the original color of the surface or some other alternative color to compute the final color to be painted on the surface.  

Additional information on the interpretation of the Blend Type values and how one might leverage them to render an image 

can be found in reference [4] listed in section 3 References and Additional Information. 

 

= 0 None. 

= 1 Decal.  Interpret same as OpenGL GL_DECAL environment mode. 

= 2 Modulate.  Interpret same as OpenGL GL_MODULATE environment mode. 

= 3 Replace.  Interpret same as OpenGL GL_REPLACE environment mode. 

= 4 Blend.  Interpret same as OpenGL GL_BLEND environment mode. 

= 5 Add.  Interpret same as OpenGL GL_ADD environment mode. 

= 6 Combine.  Interpret same as OpenGL GL_COMBINE environment mode. 

I32 : Internal Compression Level 

Internal Compression Level specifies a data compression hint/recommendation that a JT file loader is free to follow for 

internally (in memory) storing texel data.  This setting does not affect how image texel data is actually stored in JT files or 

other externally referenced files. 

 

= 0 None.  No compression of texel data. 

= 1 Conservative.  Lossless compression of texel data. 

= 2 Moderate.  Texel components truncated to 8-bits each. 

= 3 Aggressive.  Texel components truncates to 4-bits each (or 5 bits for RGB images). 

RGBA : Blend Color 

Blend Color specifies the color to be used for the “Blend” mode of Blend Type operations. 

RGBA : Border Color 

Border Color specifies the constant border color to use for “Clamp to Border” style wrap modes when the texture itself does 

not have a border. 

Mx4F32 : Texture Transform 

Texture Transform defines the texture coordinate transformation matrix.  A renderer of JT data would typically apply this 

transform to texture coordinates prior to applying the texture. 

7.2.1.1.2.3.1.2 Texture Coord Generation Parameters 

Texture Coord Generation Parameters contains information indicating if and how texture coordinate components should be 

automatically generated for each of the 4 components (S, T, R, Q) of a texture coordinate. 
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Figure 46: Texture Coord Generation Parameters data collection 

 

I32 : Tex Coord Gen Mode 

Tex Coord Gen Mode specifies the texture coordinate generation mode for each component (S, T, R, Q) of texture 

coordinate.  There are four mode values stored, one for each component of texture coordinate.  The mode values are stored in 

S, T, R, Q order. 

 

= 0 None.  No texture coordinates automatically generated. 

= 1 Model Coordinate System Linear.  Texture coordinates computed as a distance from a 

reference plane specified in model coordinates. 

= 2 View Coordinate System Linear.  Texture coordinates computed as a distance from a 

reference plane specified in view coordinates. 

= 3 Sphere Map.  Texture coordinates generated based on spherical environment mapping. 

= 4 Reflection Map.  Texture coordinates generated based on cubic environment mapping. 

= 5 Normal Map.  Texture coordinates computed/set by copying vertex normal in view 

coordinates to S, T, R. 

PlaneF32 : Tex Coord Reference Plane 

Reference Plane specifies the reference plane used for “Model Coordinate System Linear” and “View Coordinate System 

Linear” texture coordinate generation modes.  There are four Reference Planes stored, one for each component of texture 

coordinate.  The Reference Planes are stored in S, T, R, Q order.  Even if a components “Tex Coord Gen Mode” is one that 

does not require a reference plane, dummy reference planes are still stored in JT file. 

7.2.1.1.2.3.1.3 Inline Texture Image Data 

Inline Texture Image Data is a collection of data defining the texture format properties and image texel data for one texture 

image.  Inline Texture Image Data is only present if data field Inline Image Storage Flag equals “1.”   If present there will be 

data field Image Count number of Inline Texture Image Data instances. 

I32 : Tex Coord Gen Mode 

PlaneF32 : Tex Coord Reference Plane 

4 

4 
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Figure 47: Inline Texture Image Data collection 

 

Complete description for Image Format Description can be found in 7.2.1.1.2.3.1.3.1Image Format Description. 

I32 : Total Image Data Size 

Total  Image Data Size specifies the total length, in bytes, of the on-disk representation for all mipmap images.  This byte 

total does not include the I32 : Mipmap Image Byte Count 

 data field storage (4 bytes per) for each mipmap. 

I32 : Mipmap Image Byte Count 

Mipmap Image Byte Count specifies the length, in bytes, of the on-disk representation of the next mipmap image. 

UChar : Mipmap Image Texel Data 

Mipmap Image Texel Data is the mipmap‟s block of image data.  The length of this field in bytes is specified by the value of 

data field Mipmap Image Byte Count. 

7.2.1.1.2.3.1.3.1 Image Format Description 

The Image Format Description is a collection of data defining the pixel format, data type, size, and other miscellaneous 

characteristics of the texel image data. 

I32 : Total Image Data Size 

UChar : Mipmap Image Texel Data Mipmap Image 
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Figure 48: Image Format Description data collection 

 

U32 : Pixel Format 

Pixel format specifies the format of the texture image pixel data.  Depending on the format, anywhere from one to four 

elements of data exists per texel. 

 

= 0 No format specified.  Texture mapping is not applied. 
= 1 RGB: A red color component followed by green and blue color components 

= 2 RGBA: A red color component followed by green, blue, and alpha color components 

= 3 LUM: A single luminance component 

= 4 LUMA: A luminance component followed by an alpha color component. 

= 5 A single stencil index. 

= 6 A single depth component 

= 7 A single red color component 

= 8 A single green color component 

= 9 A single blue color component 

U32 : Pixel Format 

U32 : Pixel Data Type 

I16 : Dimensionality 

I16 : Row Alignment 

I16 : Width 

I16 : Height 

I16 : Depth 

I16 : Number Border Texels 

U8 : Shared Image Flag 

I16 : Mipmaps 
Count 
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= 10 A single alpha color component 

= 11 A blue color component, followed by green and red color components 

= 12 A blue color component, followed by green , red, and alpha color components 

= 13 A depth component, followed by a stencil component 

U32 : Pixel Data Type 

Pixel Data Type specifies the data type used to store the per texel data.  If the Pixel Format represents a multi component 

value (e.g. red, green, blue) then each value requires the Pixel Data Type number of bytes of storage (e.g. a Pixel Format 

Type of “1” with Pixel Data Type of “3” would require 3 bytes of storage for each texel). 

 

= 0 No type specified. Texture mapping is not applied. 

= 1 Signed 8-bit integer 

= 2 Single-precision 32-bit floating point 

= 3 Unsigned 8-bit integer 

= 4 Single bits in unsigned 8-bit integers 

= 5 Unsigned 16-bit integer 

= 6 Signed 16-bit integer 

= 7 Unsigned 32-bit integer 

= 8 Signed 32-bit integer 

= 9 16-bit floating point according to IEEE-754 format (i.e. 1 sign 

bit, 5 exponent bits, 10 mantissa bits) 

I16 : Dimensionality 

Dimensionality specifies the number of dimensions the texture image has.  Valid values include: 

 

= 1 One-dimensional texture  

= 2 Two-dimensional texture 

= 3 Three-dimensional texture 

I16 : Row Alignment 

Row Alignment specifies the byte alignment for image data rows.  This data field must have a value of 1, 2, 4, or 8.  If set to 

1 then all bytes are used (i.e. no bytes are wasted at end of row).  If set to 2, then if necessary, an extra wasted byte(s) is/are 

stored at the end of the row so that the first byte of the next row has an address that is a multiple of 2 (multiple of four for 

Row Alignment equal 4 and multiple of 8 for row alignment equal 8).  The actual formula (using C syntax) to determine 

number of bytes per row is as follows: 

 

BytesPerRow =  (numBytesPerPixel * ImageWidth + RowAlignment – 1)  &  ~(RowAlignment – 1) 

I16 : Width 

Width specifies the width dimension (number of texel columns) of the texture image in number of pixels. 

I16 : Height 

Height specifies the height dimension (number of texel rows) of the texture image in number of pixels. Height is 1 for one-

dimensional images. 

I16 : Depth 

Depth specifies the depth dimension (number of texel slices) of the texture image in number of pixels. Depth is 1 for one-

dimensional and two-dimensional images. 

I16 : Number Border Texels 

Number Border Texels specifies the number of border texels in the texture image definition.  Valid values are 0 and 1. 
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U8 : Shared Image Flag 

Shared Image Flag is a flag indicating whether this texture image is shareable with other Texture Image Element attributes. 

 

= 0 Image is not shareable with other Texture Image Elements. 

= 1 Image is shareable with other Texture Image Elements. 

I16 : Mipmaps Count 

Mipmaps Count specifies the number of mipmap images.  A value of 1 indicates that no mipmaps are used.  A value greater 

than 1 indicates that mipmaps are present all the way down to a 1-by-1 texel. 

7.2.1.1.2.3.2 Texture Vers-2 Data 

Texture Vers-2 Data collection supports texturing effects not representable in the Texture Vers-1 Data format (e.g. more 

precise texture types, automatic texture channel, etc.). Any Texture Image Attribute Element using the Texture Vers-2 Data 

format will contain a “degenerate” Texture Vers-1 Data block, where Image Count data field has a value of  “0”. 
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Figure 49: Texture Vers-2 Data collection 

 

Complete details for Texture Environment can be found in 7.2.1.1.2.3.1.1Texture Environment. 

Complete details for Texture Coord Generation Parameters can be found in 7.2.1.1.2.3.1.2Texture Coord Generation 

Parameters. 

Complete details for Inline Texture Image Data can be found in 7.2.1.1.2.3.1.3Inline Texture Image Data. 

Texture Vers-1 Data : Stub 

This is a dummy block written with its I32 : Texture Type field set to "None".  This block is included so that older readers 

that do not understand Texture Vers-2 Data will read an "empty" texture. 
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I32 : Texture Type 

Texture Type specifies the type of texture. There is a complete restructuring and redefinition of what a “texture type” implies 

in Texture Vers-2 Data. It is a much stronger concept now, that not only describes generally what the texture image contains, 

but also defines precisely what the texture is being used for. In the following list, “image” refers to an image texture, “pre-lit” 

indicates that the image texture is to be applied before lighting when rendering the object to which it is applied, and “post-lit” 

indicates that the image texture is to be applied after lighting. A gloss map is a pre-lit texture that applies itself to the specular 

material component of lighting instead of the diffuse component. A light map is an environment texture (texture at infinity 

surrounding the whole model) that serves as a source of illumination during shading calculations. 

 

Texture 

Type 
Description 

Explicit 

Channel 
Auto 

Channel 
= 0 None. N/A N/A 

= 1 One-Dimensional post-lit image texture.   Yes No 

= 2 Two-Dimensional post-lit image texture.  Yes No 

= 3 Three-Dimensional post-lit image texture.   Yes No 

= 4 Two-Dimensional 3-component tangent-space normal map. No Yes 

= 5 Cube post-lit image texture. Yes No 

= 7 Cube pre-lit image texture. Yes No 

= 8  One-Dimensional pre-lit image texture.   Yes No 

= 9 Two-Dimensional pre-lit image texture. Yes No 

= 10 Three-Dimensional pre-lit image texture. Yes No 

= 11 Cube environment map. No Yes 

= 12 One-Dimensional gloss map (specular) texture.  No Yes 

= 13 Two-Dimensional gloss map (specular) texture. No Yes 

= 14 Three-Dimensional gloss map (specular) texture. No Yes 

= 15 Cube gloss map (specular) texture. No Yes 

= 16 Two-Dimensional 1-component bumpmap. No Yes 

= 17 Two-Dimensional 3-component world-space normal map.  No Yes 

= 18 Two-Dimensional sphere environment map. No Yes 

= 19  Two-Dimensional latitude/longitude environment map. No Yes 

= 20 Two-Dimensional spherical diffuse light map. No Yes 

= 21 Cube diffuse light map. No Yes 

= 22 Two-Dimensional latitude/longitude diffuse light map. No Yes 

= 23 Two-Dimensional spherical specular light map. No Yes 

= 24 Cube specular light map. No Yes 

= 25 Two-Dimensional latitude/longitude specular light map. No Yes 

I32 : Texture Channel 

Texture Channel specifies the texture channel number for the Texture Image Element. For purposes of multi-texturing, the JT 

concept of a texture channel corresponds to the OpenGL concept of a “texture unit.”   The Texture Channel value must be 

between -1 and 31 inclusive. The value -1 is accepted to denote a texture whose channel number is to be automatically 

assigned.  This assignment will never displace another texture with an explicit texture channel assignment from its slot. Best 

practices suggest that renderer of JT data ignore all but channel-0 if the renderer does not support multi-textured geometry.  

Also for purposes of blending, any renderer of JT data should ensure that higher numbered texture channels “blend over” 

lower numbered ones. 

Pre- and post-lit image textures must specify an explicit texture channel.  All other texture types must specify -1 for their 

texture channel. 

U32 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion. 
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U8 : Inline Image Storage Flag 

Inline Image Storage Flag is a flag that indicates whether the texture image is stored within the JT File (i.e. inline) or in some 

other external file. 

 

= 0 Texture image stored in an external file. 

= 1 Texture image stored inline in this JT file. 

I32 : Image Count 

Image Count specifies the number of texture images.  A “Cube Map” I32 : Texture Type must have six images while all other 

Texture Types may only have one image. 

MbString : External Storage Name 

External Storage Name is a string identifying the name of an external texture image storage.  External Storage Name is only 

present if data field Inline Image Storage Flag equals 0.   If present, there will be data field Image Count number of External 

Storage Name instances.  This External Storage Name string is a relative path based name for the texture image file.  Where 

“relative path” should be interpreted to mean the string contains the file name along with any additional path information that 

locates the texture image file relative to the location of the referencing JT file. 

7.2.1.1.2.3.3 Texture Vers-3 Data 

Texture Vers-3 Data collection supports texturing effects not representable in the Texture Vers-1 Data format or the Texture 

Vers-2 Data format (e.g. texture coordinate channel, separator texture type, and texture channel greater than 31). Any Texture 

Image Attribute Element using the Texture Vers-3 Data format will contain a “degenerate” Texture Vers-1 Data block,  and a 

“degenerate” Texture Vers-2 Data block, where Image Count data field has a value of  0 and the Texture Type will be set to 

None. 
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Figure 50: Texture Vers-3 Data collection 

 

Complete details for Texture Environment can be found in 7.2.1.1.2.3.1.1Texture Environment. 

Complete details for Texture Coord Generation Parameters can be found in 7.2.1.1.2.3.1.2Texture Coord Generation 

Parameters. 

Complete details for Inline Texture Image Data can be found in 7.2.1.1.2.3.1.3Inline Texture Image Data. 
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Texture Vers-2 Data : Stub 

This is a dummy block written with its I32 : Texture Type field set to "None".  This block is included so that older readers 

that do not understand Texture Vers-3 Data will read an "empty" texture. 

 

I32 : Texture Type 

Texture Type specifies the type of texture. A new texture type, separator texture, is defined in Texture Vers-3 Data to support 

resetting the texture accumulation state mid-graph. Shadow maps and prefiltered light maps, however, are a general exception 

to this rule. In the following list, “image” refers to an image texture, “pre-lit” indicates that the image texture is to be applied 

before lighting when rendering the object to which it is applied, and “post-lit” indicates that the image texture is to be applied 

after lighting. A gloss map is a pre-lit texture that applies itself to the specular material component of lighting instead of the 

diffuse component. A light map is an environment texture (texture at infinity surrounding the whole model) that serves as a 

source of illumination during shading calculations.  

 

Texture 

Type 
Description 

Explicit 

Channel 

Auto 

Channel 
= 0 None. N/A N/A 

= 1 One-Dimensional post-lit image texture.   Yes No 

= 2 Two-Dimensional post-lit image texture.  Yes No 

= 3 Three-Dimensional post-lit image texture.   Yes No 

= 4 Two-Dimensional 3-component tangent-space normal map. No Yes 

= 5 Cube post-lit image texture. Yes No 

= 7 Cube pre-lit image texture. Yes No 

= 8  One-Dimensional pre-lit image texture.   Yes No 

= 9 Two-Dimensional pre-lit image texture. Yes No 

= 10 Three-Dimensional pre-lit image texture. Yes No 

= 11 Cube environment map. No Yes 

= 12 One-Dimensional gloss map (specular) texture.  No Yes 

= 13 Two-Dimensional gloss map (specular) texture. No Yes 

= 14 Three-Dimensional gloss map (specular) texture. No Yes 

= 15 Cube gloss map (specular) texture. No Yes 

= 16 Two-Dimensional 1-component bumpmap. No Yes 

= 17 Two-Dimensional 3-component world-space normal map.  No Yes 

= 18 Two-Dimensional sphere environment map. No Yes 

= 19  Two-Dimensional latitude/longitude environment map. No Yes 

= 20 Two-Dimensional spherical diffuse light map. No Yes 

= 21 Cube diffuse light map. No Yes 

= 22 Two-Dimensional latitude/longitude diffuse light map. No Yes 

= 23 Two-Dimensional spherical specular light map. No Yes 

= 24 Cube specular light map. No Yes 

= 25 Two-Dimensional latitude/longitude specular light map. No Yes 

=26 Resets texture state except shadow map and light maps. N/A N/A 

I32 : Texture Channel 

Texture Channel specifies the texture channel number for the Texture Image Element. For purposes of multi-texturing, the JT 

concept of a texture channel corresponds to the OpenGL concept of a “texture unit.”   The Texture Channel value must be 

between -1 and 2,147,483,647 inclusive. The value -1 is accepted to denote a texture whose channel number is to be 

automatically assigned.  This assignment will never displace another texture with an explicit texture channel assignment from 

its slot. Best practices suggest that renderer of JT data ignore all but channel-0 if the renderer does not support multi-textured 

geometry.  Also for purposes of blending, any renderer of JT data should ensure that higher numbered texture channels 

“blend over” lower numbered ones. 
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Pre- and post-lit image textures must specify an explicit texture channel.  All other texture types must specify -1 for their 

texture channel. 

U32 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion. 

U8 : Inline Image Storage Flag 

Inline Image Storage Flag is a flag that indicates whether the texture image is stored within the JT File (i.e. inline) or in some 

other external file. 

 

= 0 Texture image stored in an external file. 

= 1 Texture image stored inline in this JT file. 

I32 : Image Count 

Image Count specifies the number of texture images.  A “Cube Map” I32 : Texture Type must have six images while all other 

Texture Types should only have one image. 

MbString : External Storage Name 

External Storage Name is a string identifying the name of an external texture image storage.  External Storage Name is only 

present if data field Inline Image Storage Flag equals “0.”   If present there will be data field Image Count number of External 

Storage Name instances.  This External Storage Name string is a relative path based name for the texture image file.  Where 

“relative path” should be interpreted to mean the string contains the file name along with any additional path information that 

locates the texture image file relative to the location of the referencing JT file. 

I32 : Tex Coord Channel 

Tex Coord Channel specifies the channel number for texture coordinate generation. Value must be within range [-1, 

2147483647] inclusive. 

7.2.1.1.2.4 Draw Style Attribute Element 

Object Type ID: 0x10dd1014, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Draw Style Attribute Element contains information defining various aspects of the graphics state/style that should be used for 

rendering associated geometry.  JT format LSG traversal semantics state that draw style attributes accumulate down the LSG 

by replacement. 

The Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments for the Draw Style Attribute Element data fields, 

are as follows: 

 

Field Inhibit 

Flag Bit 
Data Field(s) Bit Applies To 

0 Two Sided Lighting Flag 

1 Back-face Culling Flag 

2 Outlined Polygons Flag 

3 Lighting Enabled Flag 

4 Flat Shading Flag 

5 Separate Specular Flag 
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Figure 51: Draw Style Attribute Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data. 

I16 : Version Number 

Version Number is the version identifier for this node.  Version number “0x0001” is currently the only valid value for Draw 

Style Attribute Element. 

U8 : Data Flags 

Data Flags is a collection of flags.  The flags are combined using the binary OR operator and store various state settings for 

Draw Style Attribute Elements.  All undocumented bits are reserved. 

 

0x01 Back-face Culling Flag. 

Indicates if back-facing polygons should be discarded (culled). 

= 0 – Back-facing polygons not culled. 

= 1 – Back-facing polygons culled. 

0x02 Two Sided Lighting Flag. 

Indicates if two sided lighting should be enabled to insure that polygons are illuminated 

on both sides. 

= 0 – Disable two sided lighting. 

= 1 – Enable two sided lighting. 

0x04 Outlined Polygons Flag. 

Indicates if polygons should be draw as “wireframes” i.e. not filled. 

= 0 – Polygons drawn as filled. 

= 1 – Only polygon‟s outline drawn. 

0x08 Lighting Enabled Flag. 

Indicates if lighting should be enabled.  If lighting disabled, then renderer should perform 

no calculations concerning normals, light sources, material properties, etc. 

= 0 – Disable lighting. 

= 1 – Enable lighting. 

0x10 Flat Shading Flag. 

Indicates if the geometry should be rendered with single color (flat shading) or with many 

different color (smooth/Gouraud) shading. 

= 0 – Disable flat shading (i.e. use smooth/Gouraud shading). 

= 1 – Enable flat shading.  

0x20 Separate Specular Flag. 

Indicates if the application of the specular color should be delayed until after texturing.  If 

U8 : Data Flags 

Base Attribute Data 

I16 : Version Number 

Logical Element Header ZLIB 
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no texture mapping then this flag setting is irrelevant. 

= 0 – Apply specular color contribution before texture mapping. 

= 1 – Apply specular color contribution after texture mapping. 

7.2.1.1.2.5  Light Set Attribute Element 

Object Type ID: 0x10dd1096, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Light Set Attribute Element holds an unordered list of Lights.  JT format LSG traversal semantics state that light set attributes 

accumulate down the LSG through addition of lights to an attribute list. 

Light Set Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments. 

Figure 52: Light Set Attribute Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data. 

I16 : Version Number 

Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value for 

Light Set Attribute Element. 

I32 : Light Count 

Light Count specifies the number of lights in the Light Set. 

I32 : Light Object ID 

Light Object ID is the identifier for a referenced Light Object. 

7.2.1.1.2.6 Infinite Light Attribute Element 

Object Type ID: 0x10dd1028, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Infinite Light Attribute Element specifies a light source emitting unattenuated light in a single direction from every point on 

an infinite plane.  The infinite location indicates that the rays of light can be considered parallel by the time they reach an 

object. 

Base Attribute Data 

Logical Element Header ZLIB 

I32 : Light Count 

Light Count 
I32 : Light Object ID 

I16 : Version Number 
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JT format LSG traversal semantics state that infinite light attributes accumulate down the LSG through addition of lights to 

an attribute list. 

Infinite Light Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments. 

Figure 53: Infinite Light Attribute Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Light Data can be found in 7.2.1.1.2.6.1Base Light Data. 

Complete description for Shadow Parameters can be found in 7.2.1.1.2.6.2 Shadow Parameters. 

16 : Version Number 

Version Number is the version identifier for this element.  The value of this Version Number indicates the format of data 

fields to follow.  

 

= 1 Version-1 Format  

= 2 Version-2 Format 

DirF32 : Direction 

Direction specifies the direction the light is pointing in. 

Base Light Data 

Logical Element Header ZLIB 

DirF32 : Direction 

16 : Version Number 

Version Number = = 2 

Shadow Opacity 

specifies the shadow 

opacity factor on 

Light source. Value 

must be within range 

[0.0, 1.0] inclusive.  

Shadow Opacity is 

intended to convey 

how dark a shadow 

cast by this light 

source are to be 

rendered.  A value of 

1.0 means that no 

light from this light 

source reaches a 

shadowed surface, 

resulting in a black 

shadow. 

Shadow Parameters 
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7.2.1.1.2.6.1 Base Light Data 

Figure 54: Base Light Data collection 

 

I16 : Version Number 

Version number is the version identifier for this element. Version number “0x0001” is currently the only valid value for Base 

Light Data. 

RGBA : Ambient Color 

Ambient Color specifies the ambient red, green, blue, alpha color values of the light. 

RGBA : Diffuse Color 

Diffuse Color specifies the diffuse red, green, blue, alpha color values of the light. 

RGBA : Specular Color 

Specular Color specifies the specular red, green, blue, alpha color values of the light. 

F32 : Brightness 

Brightness specifies the Light brightness.  The Brightness value must be greater than or equal to “-1”. 

I32 : Coord System 

Coord System specifies the coordinate space in which Light source is defined.  Valid values include the following: 

 

I16 : Version Number 

RGBA : Ambient Color 

RGBA : Diffuse Color 

RGBA : Specular Color 

F32 : Brightness 

I32 : Coord System 

U8 : Shadow Caster Flag 

F32 : Shadow Opacity 
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= 1 Viewpoint Coordinate System.  Light source is to move together with the viewpoint 

= 2 Model Coordinate System. Light source is affected by whatever model transforms 

that are current when the light source is encountered in LSG. 

= 3 World Coordinate system. Light source is not affected by model transforms in the 

LSG. 

U8 : Shadow Caster Flag 

Shadow Caster Flag is a flag that indicates whether the light is a shadow caster or not. 

 

= 0 Light source is not a shadow caster. 

= 1 Light source is a shadow caster. 

F32 : Shadow Opacity 

Shadow Opacity specifies the shadow opacity factor on Light source. Value must be within range [0.0, 1.0] inclusive.  

Shadow Opacity is intended to convey how dark a shadow cast by this light source are to be rendered.  A value of 1.0 means 

that no light from this light source reaches a shadowed surface, resulting in a black shadow. 

7.2.1.1.2.6.2 Shadow Parameters 

Figure 55: Shadow Parameters data collection 

 
 

F32 : Non-shadow Alpha Factor 

Non-shadow Alpha Factor is one of a matched pair of fields intended to govern how a shadowing light source (one whose 

Shadow Caster Flag is set) casts "alpha light" into areas that it directly illuminates (i.e. are not in shadow).  Those fragments 

directly lit by this light source will have their alpha values scaled by Non-shadow Alpha Factor.  Non-shadow Alpha Factor 

value must lie on the range [0.0, 1.0] inclusive. 

This field can be used to create "drop shadows" by setting its value to 0.  The effect being that all geometry illuminated by 

the light source will be "burned away," leaving behind only those parts lying in shadow.  Naturally, implementing this 

intended behavior implies extensive viewer support. 

F32 : Shadow Alpha Factor 

Shadow Alpha Factor is one of a matched pair of fields intended to govern how a shadowing light source (one whose Shadow 

Caster Flag is set) casts "alpha light" into areas that it does not illuminate (i.e. are in shadow).  Those fragments in shadow 

from this light source will have their alpha values scaled by Shadow Alpha Factor.  Shadow Alpha Factor value must lie on 

the range [0.0, 1.0] inclusive. 

This field has the opposite effect of Non-shadow Alpha Factor.  If set to a value of 0, for example, it will cause all geometry 

shadowed from the light source to be burned away, leaving behind only those parts directly illuminated by the light source.  

Naturally, implementing this intended behavior implies extensive viewer support. 

7.2.1.1.2.7 Point Light Attribute Element 

Object Type ID: 0x10dd1045, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

F32 : Non-shadow Alpha Factor 

Non-shadow Alpha Factor is one 
of a matched pair of fields intended 

to govern how a shadowing light 

source (one whose Shadow Caster 

Flag is set) casts "alpha light" into 

areas that it directly illuminates 

(i.e. are not in shadow).  Those 

fragments directly lit by this light 

source will have their alpha values 

scaled by Non-shadow Alpha 

Factor.  Non-shadow Alpha Factor 

value must lie on the range [0.0, 

1.0] inclusive. 

This field can be used to create 

"drop shadows" by setting its value 

to 0.  The effect being that all 

geometry illuminated by the light 

source will be "burned away," 

leaving behind only those parts 

lying in shadow.  Naturally, 

implementing this intended 

behavior implies extensive viewer 

support. 

F32 : Shadow Alpha Factor 
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Point Light Attribute Element specifies a light source emitting light from a specified position, along a specified direction, and 

with a specified spread angle 

JT format LSG traversal semantics state that point light attributes accumulate down the LSG through addition of lights to an 

attribute list. 

Point Light Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments. 

Figure 56: Point Light Attribute ElementPoint Light Attribute Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Light Data can be found in 7.2.1.1.2.6.1 Base Light Data. 

Complete description for Attenuation Coefficients can be found in 7.2.1.1.2.7.1Attenuation Coefficients. 

Complete description for Shadow Parameters can be found in 7.2.1.1.2.6.2 Shadow Parameters. 

 

Logical Element Header ZLIB 

HCoordF32 : Position 

F32 : Spread Angle 

DirF32 : Spot Direction 

I32 : Spot Intensity 

I16 : Version Number 

 

Attenuation Coefficients 

Version Number = = 2 

Shadow Opacity 

specifies the shadow 

opacity factor on 

Light source. Value 

must be within range 

[0.0, 1.0] inclusive.  

Shadow Opacity is 

intended to convey 

how dark a shadow 

cast by this light 

source are to be 

rendered.  A value of 

1.0 means that no 

light from this light 

source reaches a 

shadowed surface, 

resulting in a black 

shadow. 

Shadow Parameters 

Base Light Data 
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I16 : Version Number 

Version Number is the version identifier for this element.  The value of this Version Number indicates the format of data 

fields to follow.  

 

= 1 Version-1 Format  

= 2 Version-2 Format 

 

HCoordF32 : Position 
Position specifies the light position in homogeneous coordinates. 

 

F32 : Spread Angle 

Spread Angle, as shown in Figure 57 below, specifies in degrees the half angle of the light cone.  Valid Spread Angle values 

are clamped and interpreted as follows: 

 

angle = = 180.0 Simple point light 

0.0 >= angle <= 90.0 Spot Light 

 

 

Figure 57: Spread Angle value with respect to the light cone 

DirF32 : Spot Direction 

Spot Direction specifies the direction the spot light is pointing in. 

I32 : Spot Intensity 

Spot Intensity specifies the intensity distribution of the light within the spot light cone.  Spot Intensity is really a “spot 

exponent” in a lighting equation and indicates how focused the light is at the center.  The larger the value, the more focused 

the light source.  Only non-negative Spot intensity values are valid. 

7.2.1.1.2.7.1 Attenuation Coefficients 

Attenuation Coefficients data collection contains the coefficients for how light intensity decreases with distance. 

Spread Angle 
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Figure 58: Attenuation Coefficients data collection 

 

F32 : Constant Attenuation 

Constant Attenuation specifies the constant coefficient for how light intensity decreases with distance.  Value must be greater 

than or equal to “0”. 

F32 : Linear Attenuation 

Linear Attenuation specifies the linear coefficient for how light intensity decreases with distance.  Value must be greater than 

or equal to “0”. 

F32 : Quadratic Attenuation 

Quadratic Attenuation specifies the quadratic coefficient for how light intensity decreases with distance.  Value must be 

greater than or equal to “0”. 

7.2.1.1.2.8 Linestyle Attribute Element 

Object Type ID: 0x10dd10c4, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Linestyle Attribute Element contains information defining the graphical properties to be used for rendering polylines.   JT 

format LSG traversal semantics state that Linestyle attributes accumulate down the LSG by replacement. 

Linestyle Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments. 

 

Figure 59: Linestyle Attribute Element data collection 

 

Base Attribute Data 

Logical Element Header ZLIB 

U8 : Data Flags 

F32 : Line Width 

I16: Version Number 

F32 : Constant Attenuation 

F32 : Linear Attenuation 

F32 : Quadratic Attenuation 
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Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data. 

I16: Version Number 

Version Number is the version identifier for this node.  Version number “0x0001” is currently the only valid value for 

Linestyle Attribute Element. 

U8 : Data Flags 

Data Flags is a collection of flags and line type data.  The flags and line type data are combined using the binary OR operator 

and store various polyline rendering attributes.  All undocumented bits are reserved. 

 

0x0F 
Line Type (stored in bits 0 – 3 or in binary notation 00001111)  

Line type specifies the polyline rendering stipple-pattern. 

= 0 - Solid  
= 1 – Dash  
= 2 – Dot  
= 3 – Dash_Dot  
= 4 – Dash_Dot_Dot  
= 5 – Long_Dash  
= 6 – Center_Dash  
= 7 – Center_Dash_Dash  

 

0x10 
Antialiasing Flag (stored in bit 4 or in binary notation 00010000) 

Indicates if antialiasing should be applied as part of rendering polylines. 

= 0 – Antialiasing disabled. 

= 1 – Antialiasing enabled. 

F32 : Line Width 

Line Width specifies the width in pixels that should be used for rendering polylines.  The value of this field must be greater 

than 0.0. 

7.2.1.1.2.9 Pointstyle Attribute Element 

Object Type ID: 0x8d57c010, 0xe5cb, 0x11d4, 0x84, 0xe,  0x00, 0xa0, 0xd2, 0x18, 0x2f, 0x9d 

Pointstyle Attribute Element contains information defining the graphical properties that should be used for rendering points.  

JT format LSG traversal semantics state that Pointstyle attributes accumulate down the LSG by replacement. 

Pointstyle Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments. 
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Figure 60: Pointstyle Attribute Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data. 

I16 : Version Number 

Version Number is the version identifier for this element.  Version number “0x0001” is currently the only valid value for 

Pointstyle Attribute Element. 

U8 : Data Flags 

Data Flags is a collection of flags and point type data.  The flags and point type data are combined using the binary OR 

operator and store various point rendering attributes.  All undocumented bits are reserved. 

 

0x0F Point Type (stored in bits 0 – 3 or in binary notation 00001111) 

These bits are reserved for future expansion of the format to support Point Types. 

0x10 Antialiasing Flag (stored in bit 4 or in binary notation 00010000) 

Indicates if antialiasing should be applied as part of rendering points. 

= 0 – Antialiasing disabled. 

= 1 – Antialiasing enabled. 

F32 : Point Size 

Point Size specifies the size in pixels that should be used for rendering points.  The value must be greater than 0.0. 

7.2.1.1.2.10 Geometric Transform Attribute Element 

Object Type ID: 0x10dd1083, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Geometric Transform Attribute Element contains a 4x4 homogeneous transformation matrix that positions the associated 

LSG node‟s coordinate system relative to its parent LSG node.  JT format LSG traversal semantics state that geometric 

transform attributes accumulate down the LSG through matrix multiplication as follows: 

p‟ = pAM 

Where p is a point of the model,  p’ is the transformed point, M is the current modeling transformation matrix inherited from 

ancestor LSG nodes and previous Geometric Transform Attribute Element, and A is the transformation matrix of this 

Geometric Transform Attribute Element.  The matrix is allowed to contain translation, rotation, and uniform- and non-

Base Attribute Data 

Logical Element Header ZLIB 

I16 : Version Number 

F32 : Point Size 

U8 : Data Flags 
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uniform scaling factors, including negative scales.  It is not allowed to contain shearing or projective components, or scaling 

factors of zero (which would make the matrix singular). 

Geometric Transform Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit 

assignments. 

Figure 61: Geometric Transform Attribute Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data. 

I16: Version Number 

Version Number is the version identifier for this node.  Version number “0x0001” is currently the only valid value for 

Geometric Transform Attribute Element. 

U16 : Stored Values Mask 

Stored Values mask is a 16-bit mask where each bit is a flag indicating whether the corresponding element in the matrix is 

different from the identity matrix.  Only elements which are different from the identity matrix are actually stored.  The bits 

are assigned to matrix elements as follows: 

Bit15    Bit14    Bit13    Bit12 

Bit11    Bit10    Bit9      Bit8 

Bit7      Bit6      Bit5      Bit4 

Bit3      Bit2      Bit1      Bit0 

The individual bit-flag values are interpreted as follows: 

Base Attribute Data 

Logical Element Header ZLIB 

U16 : Stored Values Mask 

if(Stored Values Mask & 0x8000 ) 

F32 : Element Value 

Stored Values Mask = Stored Values Mask << 1 

16 

I16: Version Number 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 92  

 

= 0 Value not stored (matrix value same as corresponding element in identity matrix) 

= 1 Value stored 

F32 : Element Value 

Element Value specifies a particular matrix element value. 

7.2.1.1.2.11 Shader Effects Attribute Element 

Object Type ID: 0xaa1b831d, 0x6e47, 0x4fee, 0xa8, 0x65, 0xcd, 0x7e, 0x1f, 0x2f, 0x39, 0xdb 

Shader Effects Attribute Element contains information specifying “high-level” shader functionality (e.g. Phong shading, 

bump mapping, etc.) that should be used for rendering the geometry this attribute element is associated with. 

JT format LSG traversal semantics state that shader effects attributes accumulate down the LSG by replacement. 

Shader Effects Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) bit assignments. 

Figure 62: Shader Effects Attribute Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Base Attribute Data 

Logical Element Header ZLIB 

I16 : Version Number 

I32 : Reserved Field 1 

U32 : Enable Flag 

F32 : Env Map Reflectivity 

I32 : Reserved Field 2 

F32 : Bumpiness Factor 

U32 : Reserved Field 3 

U32 : Phong Shading Flag 

U32 : Reserved Field 4 
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Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data. 

I16 : Version Number 

Version Number is the version identifier for this element.  Version number “0x0001” is currently the only valid value. 

U32 : Enable Flag 

Enable Flag specifies whether this Shader Effects Attribute is enabled.  Valid values include the following: 

 

= 0 Shader Effects Attribute disabled 

= 1 Shader Effects Attribute enabled 

 

I32 : Reserved Field 1 

Reserved Field 1 is a data field reserved for future JT format expansion 

F32 : Env Map Reflectivity 

Env Map Reflectivity specifies the fraction of the environment to be reflected (1 minus this fraction will show through form 

the underlying texture channel).  Valid value must be in the range [0:1] inclusive. 

I32 : Reserved Field 2 

Reserved Field 2 is a data field reserved for future JT format expansion  

F32 : Bumpiness Factor 

Bumpiness Factor specifies the degree of “bumpiness”, or the relative “height” of the bump map.  Larger values make the 

bumps appear deep and more severe.  Negative values invert the sense of the bump map, making the surface appear engraved, 

rather than embossed.  This value only has an effect with tangent space bump maps.; it has no effect on the appearance of 

object space bump maps. 

U32 : Reserved Field 3 

Reserved Field 3 is a data field reserved for future JT format expansion 

U32 : Phong Shading Flag 

Phong Shading Flag specifies whether Phong Shading (i.e. per fragment lighting) is enabled.  Valid values include the 

following: 

 

= 0 Phong Shading disabled 

= 1 Phong Shading enabled 

U32 : Reserved Field 4 

Reserved Field 4 is a data field reserved for future JT format expansion  

7.2.1.1.2.12 Vertex Shader Attribute Element 

Object Type ID: 0x2798bcad, 0xe409, 0x47ad, 0xbd, 0x46, 0xb, 0x37, 0x1f, 0xd7, 0x5d, 0x61 

Vertex Shader Attribute Element defines a per-vertex shader program in the GLSL shading language.  A complete 

description of the GLSL shading language can be found in references listed within the 3 References and Additional 

Information section of this document. 

JT format LSG traversal semantics state that vertex shader attributes accumulate down the LSG by replacement. 
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In general, a shader program is used to replace a portion of the otherwise fixed-function graphics pipeline with some user-

defined functionality.  Specifically a Vertex Shader program is a small user defined program to be run for each vertex that is 

sent to the GPU for processing.  A Vertex shader can alter vertex positions and normals, generate texture coordinates, 

perform Gouraud per-vertex lighting, etc. 

Figure 63: Vertex Shader Attribute Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data. 

I16 : Version Number 

Version Number is the version identifier for this element.  Version number “0x0001” is currently the only valid value. 

7.2.1.1.2.13 Fragment Shader Attribute Element 

Object Type ID: 0xad8dccc2, 0x7a80, 0x456d, 0xb0, 0xd5, 0xdd, 0x3a, 0xb, 0x8d, 0x21, 0xe7 

Fragment Shader Attribute Element defines a per-fragment shader program in the GLSL shading language.  A complete 

description of the GLSL shading language can be found in references listed within the 3 References and Additional 

Information section of this document. 

JT format LSG traversal semantics state that fragment shader attributes accumulate down the LSG by replacement; with the 

exception that if the new fragment shader attribute‟s shader language is not the same as current fragment shader attribute‟s 

shader language, then new fragment shader attribute is simply ignored. 

In general, a shader program is used to replace a portion of the otherwise fixed-function graphics pipeline with some user-

defined functionality.   Specifically a Fragment Shader program is a small user defined program to be run for each fragment 

generated by the GPU hardware‟s scan-conversion logic.  A fragment is a "proto-pixel" generated by triangle scan-

conversion, but not let laid down into the frame buffer, where it will become an actual pixel.  A Fragment Shader can support 

sophisticated effects like Phong shading, shadow mapping, bump mapping, reflection mapping, etc. 

 

Base Attribute Data 

Logical Element Header ZLIB 

Base Shader Data 

I16 : Version Number 
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Figure 64: Fragment Shader Attribute Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data. 

Complete description for Base Shader Data can be found in 7.2.1.1.2.1.2 Base Shader Data. 

I16 : Version Number 

Version Number is the version identifier for this element.  Version number “0x0001” is currently the only valid value. 

7.2.1.1.2.14 Texture Coordinate Generator Attribute Element 

Object Type ID: 0xaa1b831d, 0x6e47, 0x4fee, 0xa8, 0x65, 0xcd, 0x7e, 0x1f, 0x2f, 0x39, 0xdc 

Texture Coordinate Generator Attribute Element defines texture coordinate generation for texture mapping. Multiple texture 

coordinate generation at a given node is supported by way of the “texture coordinate channel” concept. JT format LSG 

traversal semantics state that Texture Coordinate Generator attributes accumulate down the LSG by replacement on a per-

channel basis. 

Texture Coordinate Generator Attribute Element does not have any Field Inhibit flag (see 7.2.1.1.2.1.1Base Attribute Data) 

bit assignments. 

Base Attribute Data 

Logical Element Header ZLIB 

Base Shader Data 

I16 : Version Number 
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Figure 65: Texture Coordinate Generator Attribute Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Attribute Data can be found in 7.2.1.1.2.1.1Base Attribute Data. 

Complete description for Mapping Surface can be found in 7.2.1.1.2.14.1Mapping Surface. 

I16 : Version Number 

Version Number is the version identifier for this element.  Version number “0x0001” is currently the only valid value. 

I32 : Texture Coord Channel 

Tex Coord Channel specifies the channel number for texture coordinate generation. Value must be within range [0, 

2147483647] inclusive.  This number is intended to match up with the I32 : Tex Coord Channel field on Texture Image 

Attribute Element in order to associate a specific Texture Coordinate Generator with a Specific Texture Image. 

7.2.1.1.2.14.1 Mapping Surface  

Mapping Surface defines the mapping surface for texture coordinate generation. Four kinds of mapping surfaces, Mapping 

Plane Element, Mapping Cylinder Element, Mapping Sphere Element, and Mapping TriPlanar Element, are defined to 

support texture coordinate generation. 

7.2.1.1.2.14.1.1 Mapping Plane Element 

Object Type ID: 0xa3cfb921, 0xbdeb, 0x48d7, 0xb3, 0x96, 0x8b, 0x8d, 0xe, 0xf4, 0x85, 0xa0 

Mapping Plane Element defines the mapping plane for texture coordinate generation. 

Base Attribute Data 

Logical Element Header ZLIB 

I32 : Texture Coord Channel 

Mapping Surface 

I16 : Version Number 
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Figure 66: Mapping Plane Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

I16 : Version Number 

Version Number is the version identifier for this element.  Version number “0x0001” is currently the only valid value. 

Mx4F64 : Mapping Plane Matrix 

Mx4F64 : Mapping Plane Matrix specifies the transformation matrix and mapping parameters for the mapping plane. The 

transformation matrix defines the mapping coordinate system transformed from I32 : Coordinate System. The mapping 

parameters specifies the width and height of the mapping plane. The mapping plane is defined in the + xy-plane of the 

mapping coordinate system. In the mapping process, the geometry vertex coordinates in Model Coordinate System are 

transformed to the mapping coordinate system at first, and then the transformed vertex coordinates are mapped to texture 

coordinates as following: 

s-coordinate = x-coordinate of the transformed vertex / the width of the mapping plane 

t-coordinate  = y-coordinate of the transformed vertex / the height of the mapping plane 

I32 : Coordinate System 

Coordinate system specifies the coordinate space in which mapping plane is defined. Valid values include the following 

 

= 0 Undefined Coordinate System. 

= 1 Viewpoint Coordinate System. Mapping plane is to move together with the 

viewpoint. 

= 2 Model Coordinate System. Mapping plane is affected by whatever model 

transforms that are current when the mapping plane is encountered in LSG. 

= 3 World Coordinate system. Mapping plane is not affected by model transforms in 

the LSG. 

7.2.1.1.2.14.1.2 Mapping Cylinder Element 

Object Type ID: 0x3e70739d, 0x8cb0, 0x41ef, 0x84, 0x5c, 0xa1, 0x98, 0xd4, 0x0, 0x3b, 0x3f 

Mapping Cylinder Element defines the mapping cylinder for texture coordinate generation. 

Mx4F64 : Mapping Plane Matrix 

I32 : Coordinate System 

Logical Element Header ZLIB 

I16 : Version Number 
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Figure 67: Mapping Cylinder Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

I16 : Version Number 

Version Number is the version identifier for this element.  Version number “0x0001” is currently the only valid value. 

Mx4F64 : Mapping Cylinder Matrix 

Mx4F64 : Mapping Cylinder Matrix specifies the transformation matrix and mapping parameters for the mapping cylinder. 

The transformation matrix defines the mapping coordinate system transformed from I32 : Coordinate System. The mapping 

parameters specifies the horizontal sweep angle and height of the mapping cylinder. The mapping cylinder‟s axis is parallel 

to the z-axis of the mapping coordinate system, and the horizontal sweep angle starts from the +x-axis in a counter clockwise 

direction. In the mapping process, the geometry vertex coordinates in Model Coordinate System are transformed to the 

mapping coordinate system at first, and then the transformed vertex coordinates are mapped to texture coordinates as 

following: 

s-coordinate  = the horizontal sweep angle of the vertex / the horizontal sweep angle of the mapping cylinder 

t-coordinate  = the z-coordinate of the vertex / height of the mapping cylinder 

Mapping Cylinder Element implements the strategy to handle texture coordinates who cross the seam of the texture in the 

mapping process. 

I32 : Coordinate System 

Coordinate system specifies the coordinate space in which mapping cylinder is defined. Valid values include the following 

 

= 0 Undefined Coordinate System. 

= 1 Viewpoint Coordinate System. Mapping cylinder is to move together with the 

viewpoint. 

= 2 Model Coordinate System. Mapping cylinder is affected by whatever model 

transforms that are current when the mapping cylinder is encountered in LSG. 

= 3 World Coordinate system. Mapping cylinder is not affected by model transforms 

in the LSG. 

7.2.1.1.2.14.1.3 Mapping Sphere Element 

Object Type ID: 0x72475fd1, 0x2823, 0x4219, 0xa0, 0x6c, 0xd9, 0xe6, 0xe3, 0x9a, 0x45, 0xc1 

Mapping Sphere Element defines the mapping sphere for texture coordinate generation. 

Mx4F64 : Mapping Cylinder Matrix 

I32 : Coordinate System 

Logical Element Header ZLIB 

I16 : Version Number 
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Figure 68: Mapping Sphere Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

I16 : Version Number 

Version Number is the version identifier for this element.  Version number “0x0001” is currently the only valid value. 

Mx4F64 : Mapping Sphere Matrix 

Mx4F64 : Mapping Sphere Matrix specifies the transformation matrix and mapping parameters of the mapping sphere. The 

transformation matrix defines the mapping coordinate system transformed from I32 : Coordinate System. The mapping 

parameters specify the horizontal sweep angle and vertical sweep angle of the mapping sphere. The mapping sphere‟s center 

is at the origin of the mapping coordinate system, and the poles of the sphere are parallel to the z-axis of the coordinate 

system. The horizontal sweep angle starts from the +x-axis in a counter clockwise direction, and the vertical sweep angle is 

from the +z-axis to the –z-axis. In the mapping process, the geometric vertex coordinates in Model Coordinate System are 

transformed to the mapping coordinate system at first, and then the transformed vertex coordinates are mapped to texture 

coordinates as following: 

s-coordinate  = the horizontal sweep angle of the vertex / the horizontal sweep angle of the mapping sphere 

t-coordinate  = the vertical sweep angle of the vertex  / the vertical sweep angle of the mapping sphere 

Mapping Sphere Element implements the strategy to handle texture coordinates who cross the seam of the texture in the 

mapping process. 

I32 : Coordinate System 

Coordinate system specifies the coordinate space in which mapping sphere is defined. Valid values include the following 

 

= 0 Undefined Coordinate System. 

= 1 Viewpoint Coordinate System. Mapping sphere is to move together with the 

viewpoint. 

= 2 Model Coordinate System. Mapping sphere is affected by whatever model 

transforms that are current when the mapping sphere is encountered in LSG. 

= 3 World Coordinate system. Mapping sphere is not affected by model transforms in 

the LSG. 

7.2.1.1.2.14.1.4 Mapping TriPlanar Element 

Object Type ID: 0x92f5b094, 0x6499, 0x4d2d, 0x92, 0xaa, 0x60, 0xd0, 0x5a, 0x44, 0x32, 0xcf 

Mapping TriPlanar Element defines the mapping triplanar surface for texture coordinate generation. 

Mx4F64 : Mapping Sphere Matrix 

I32 : Coordinate System 

Logical Element Header ZLIB 

I16 : Version Number 
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Figure 69: Mapping TriPlanar Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

I16 : Version Number 

Version Number is the version identifier for this element.  Version number “0x0001” is currently the only valid value. 

Mx4F64 : Mapping TriPlanar Matrix 

Mx4F64 : Mapping TriPlanar Matrix specifies the transformation matrix and mapping parameter for the mapping triplanar. 

The transformation matrix defines the mapping coordinate system transformed from I32 : Coordinate System. The mapping 

parameter specifies the planar length of the triplanar. The left bottom corner of the triplanar is located at the origin of the 

mapping coordinate system, and the three planes are in the + xy-plane, + yz-plane, and + xz-plane respectively. In the 

mapping process, the geometry vertex coordinates in Model Coordinate System are transformed to the mapping coordinate 

system at first, and then the transformed vertex coordinates are projected to the corresponding plane based on the maximum 

component of its normals, and at last the projected vertex coordinates are mapped to texture coordinates as following: 

s-coordinate = the first-coordinate of the projected vertex / the planar length of the triplanar 

t-coordinate = the second-coordinate of the projected vertex / the planar length of the triplanar 

I32 : Coordinate System 

Coordinate system specifies the coordinate space in which mapping triplanar surface is defined. Valid values include the 

following 

 

= 0 Undefined Coordinate System. 

= 1 Viewpoint Coordinate System. Mapping triplanar surface is to move together with 

the viewpoint. 

= 2 Model Coordinate System. Mapping triplanar surface is affected by whatever 

model transforms that are current when the mapping triplanar surface is 

encountered in LSG. 

= 3 World Coordinate system. Mapping triplanar surface is not affected by model 

transforms in the LSG. 

7.2.1.2 Property Atom Elements 

Property Atom Elements are meta-data objects associated with nodes or Attributes.  Property Atom Elements are not nodes or 

attributes themselves, but can be associated with any node or Attribute to maintain arbitrary application- or enterprise 

information (meta-data) pertaining to that node or Attribute.  Each Node Element or Attribute Element in an LSG may hold 

zero or more Property Atom Elements and this relationship information is stored within 7.2.1.3 Property Table section of a JT 

file.  

Mx4F64 : Mapping TriPlanar Matrix 

I32 : Coordinate System 

Logical Element Header ZLIB 

I16 : Version Number 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 101  

An individual property is specified as a key/value Property Atom Element pair, where the key identifies the type and meaning 

of the value.  The JT format supports many different Property Atom Element key/value object types.  The different Property 

Atom Element key/value object types are documented in the following subsections.  

 Some “Best Practices” for placing application or enterprise properties/meta-data on Nodes in JT files can be found in 9.6 

Metadata Conventions section of this reference. 

7.2.1.2.1 Base Property Atom Element 

Object Type ID: 0x10dd104b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Base Property Atom Element represents the simplest form of a property that can exist within the LSG and has no type 

specific value data associated with it. 

Figure 70: Base Property Atom Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

7.2.1.2.1.1 Base Property Atom Data 

Figure 71: Base Property Atom Data collection 

 

I16: Version Number  

Version Number is the version identifier for this data collection.  Version number “0x0001” is currently the only valid value 

for Base Property Atom Data. 

U32 : State Flags 

State Flags is a collection of flags.  The flags are combined using the binary OR operator and store various state information 

for property atoms.  Bits 0 – 7 are freely available for an application to store whatever property atom information desired.  

All other bits are reserved for future expansion of the file format.   

7.2.1.2.2 String Property Atom Element 

Object Type ID: 0x10dd106e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

String Property Atom Element represents a character string property atom. 

I16: Version Number  

U32 : State Flags 

Base Property Atom Data 

Logical Element Header ZLIB 
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Figure 72: String Property Atom Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data. 

I16: Version Number 

Version Number is the version identifier for this data collection.  Version number “0x0001” is currently the only valid value 

for String Property Atom Element. 

MbString : Value 

Value contains the character string value for this property atom. 

7.2.1.2.3 Integer Property Atom Element 

Object Type ID: 0x10dd102b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Integer Property Atom Element represents a property atom whose value is of I32 data type. 

Figure 73: Integer Property Atom Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data. 

Base Property Atom Data 

I16: Version Number 

Logical Element Header ZLIB 

I32 : Value 

Base Property Atom Data 

I16: Version Number 

Logical Element Header ZLIB 

MbString : Value 
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I16: Version Number 

Version Number is the version identifier for this data collection.  Version number “0x0001” is currently the only valid value 

for Integer Property Atom Element. 

I32 : Value 

Value contains the integer value for this property atom. 

7.2.1.2.4 Floating Point Property Atom Element 

Object Type ID: 0x10dd1019, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Floating Point Property Atom Element represents a property atom whose value is of F32 data type. 

 

Figure 74: Floating Point Property Atom Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data. 

I16: Version Number 

Version Number is the version identifier for this data collection.  Version number “0x0001” is currently the only valid value. 

F32 : Value 

Value contains the floating point value for this property atom. 

7.2.1.2.5 JT Object Reference Property Atom Element 

Object Type ID: 0x10dd1004, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

JT Object Reference Property Atom Element represents a property atom whose value is an object ID for another object within 

the JT file. 

Base Property Atom Data 

I16: Version Number 

Logical Element Header ZLIB 

F32 : Value 
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Figure 75: JT Object Reference Property Atom Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data. 

 

I16: Version Number 

Version Number is the version identifier for this data collection.  Version number “0x0001” is currently the only valid value. 

I32 : Object ID 

Object ID specifies the identifier within the JT file for the referenced object. 

7.2.1.2.6 Date Property Atom Element 

Object Type ID: 0xce357246, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1 

Date Property Atom Element represents a property atom whose value is a “date”. 

Base Property Atom Data 

I16: Version Number 

Logical Element Header ZLIB 

I32 : Object ID 
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Figure 76: Date Property Atom Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data. 

 

I16 : Version Number 

Version Number is the version identifier for this data collection.  Version number “0x0001” is currently the only valid value 

for Late Loaded Property Atom Element. 

I16 : Year 

Year specifies the date year value.  Valid values are [1900, 2999] inclusive. 

I16 : Month 

Month specifies the date month value.  Valid values are [0, 11] inclusive. 

I16 : Day 

Day specifies the date day value.  Valid values are [1, 31] inclusive. 

Base Property Atom Data 

Logical Element Header ZLIB 

I16 : Year 

I16 : Month 

I16 : Day 

I16 : Hour 

I16 : Minute 

I16 : Second 

I16 : Version Number 
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I16 : Hour 

Hour specifies the date hour value.  Valid values are [0, 23] inclusive. 

I16 : Minute 

Minute specifies the date minute value.  Valid values are [0, 59] inclusive. 

I16 : Second 

Second specifies the date Second value.  Valid values are [0, 59] inclusive. 

7.2.1.2.7 Late Loaded Property Atom Element 

Object Type ID: 0xe0b05be5, 0xfbbd, 0x11d1, 0xa3, 0xa7, 0x00, 0xaa, 0x00, 0xd1, 0x09, 0x54 

Late Loaded Property Atom Element is a property atom type used to reference an associated piece of atomic data in a 

separate addressable segment of the JT file.  The “Late Loaded” connotation derives from the associated data being stored in 

a separate addressable segment of the JT file, and thus a JT file reader can be structured to support the “best practice” of 

delaying the loading/reading of the associated data until it is actually needed. 

Late Loaded Property Atom Elements are used to store a variety of data, including, but not limited to, Shape LOD Segments 

and B-Rep Segments (see 7.2.2 Shape LOD Element and 7.2.3 JT B-Rep Segment). 

Figure 77: Late Loaded Property Atom Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data. 

I16 : Version Number 

Version Number is the version identifier for this data collection.  Version number “0x0001” is currently the only valid value 

for Late Loaded Property Atom Element. 

Base Property Atom Data 

GUID : Segment ID 

I32 : Segment Type 

Logical Element Header ZLIB 

I16 : Version Number 

I32 : Payload Object ID 

I32 : Reserved 
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GUID : Segment ID 

Segment ID is the globally unique identifier for the associated data segment in the JT file.  See 7.1.2 TOC Segment for 

additional information on how this Segment ID can be used in conjunction with the file TOC Entries to locate the associated 

data in the JT file. 

The complete list of segment types can be found in Table 3: Segment Types. 

I32 : Segment Type 

Segment Type defines a broad classification of the associated data segment contents. For example, a Segment Type of “1” 

denotes that the segment contains Logical Scene Graph material; “2” denotes contents of a B-Rep, etc.   

I32 : Payload Object ID 

Object ID is the identifier for the payload.  Other objects referencing this particular payload will do so using the Object ID. 

I32 : Reserved 

Reserved data field that is guaranteed to always be greater than or equal to 1 

7.2.1.2.8 Vector4f Property Atom Element 

Object Type ID: 0x2e7db4be, 0xc71a, 0x4b18, 0x9d, 0x7, 0xc7, 0x22, 0x7e, 0x9f, 0xef, 0x76 

Vector4f Property Atom Element represents a property atom whose value is of VecF32 data type with the length to be equal 

to 4 . 

Figure 78: Vector4f Property Atom Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

Complete description for Base Property Atom Data can be found in 7.2.1.2.1.1Base Property Atom Data. 

I16 : Version Number 

Version Number is the version identifier for this data collection.  Version number “0x0001” is currently the only valid value 

for Late Loaded Property Atom Element. 

F32 : Value 

Value contains the floating point value for this property atom 

Base Property Atom Data 

Logical Element Header ZLIB 

I16 : Version Number 

F32 : Value 
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7.2.1.3 Property Table 

The Property Table is where the data connecting Node Elements and Attribute Elements with their associated Properties is 

stored.  The Property Table contains an Element Property Table for each element  in the JT File which has associated 

Properties.  An Element Property Table is a list of key/value Property Atom Element pairs for all Properties associated with a 

particular Node Element Object or Attribute Element Object.   

For a reference compliant JT File all Node Elements, Attribute Elements, and Property Atom Elements contained in a JT file 

should have been read by the time a JT file reader reaches the Property Table section of the file.  This means that all Node 

Objects, Attribute Objects, and Property Atom Objects referenced in the Property Table (through Object IDs), should have 

already been read, and if not, then the file is corrupt (i.e. not reference compliant). 

Figure 79: Property Table data collection 

 

I16 : Version Number 

Version Number is the version identifier for this Property Table.  Version number “0x0001” is currently the only valid value. 

I32 : Element Property Table Count 

Element Property Table Count specifies the number of Element Property Tables to follow.  This value is equivalent to the 

total number of Node Elements (see 7.2.1.1.1Node Elements) and Attribute Elements (see 7.2.1.1.2 Attribute Elements) that 

have associated Property Atom Elements (see 7.2.1.2 Property Atom Elements). 

I32 : Element Object ID 

Element Object ID is the identifier for the Node Element object (see 7.2.1.1.1Node Elements) or the Attribute Element object 

(see 7.2.1.1.2Attribute Elements) that the following Element Property Table is for (i.e. Node Element or Attribute Element 

that all properties in the following Element Property Table are associated with). 

7.2.1.3.1 Element Property Table 

The Element Property Table is a list of key/value Property Atom Element pairs for all properties associated with a particular 

Node Element Object or Attribute Element Object.  The list is terminated by a “0” value for Key Property Atom Object ID. 

I16 : Version Number 

I32 : Element Property Table Count 

Element Property 

Table Count 

I32 : Element Object ID 

Element Property Table 
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Figure 80: Element Property Table data collection 

 

I32 : Key Property Atom Object ID 

Key Property Atom Object ID is the identifier for the Property Atom Element object (see 7.2.1.2 Property Atom Elements) 

representing the “key” part of the property key/value pair.  A value of “0” indicates the end of the Node Property Table. 

I32 : Value Property Atom Object ID 

Value Property Atom Object ID is the identifier for the Property Atom Element object (see 7.2.1.2 Property Atom Elements) 

representing the “value” part of the property key/value pair.  A value is not stored if Key Property Atom Object ID has a 

value of “0”. 

7.2.2 Shape LOD Segment 

Shape LOD Segment contains an Element that defines the geometric shape definition data (e.g. vertices, polygons, normals, 

etc) for a particular shape Level Of Detail or alternative representation.  Shape LOD Segments are typically referenced by 

Shape Node Elements using Late Loaded Property Atom Elements (see 7.2.1.1.1.10 Shape Node Elements and 0 Late Loaded 

Property Atom Element respectively). 

Figure 81: Shape LOD Segment data collection 

 

Complete description for Segment Header can be found in 7.1.3.1Segment Header. 

7.2.2.1 Shape LOD Element 

A Shape LOD Element is the holder/container of the geometric shape definition data (e.g. vertices, polygons, normals, etc.) 

for a single LOD.   Much of the “heavyweight” data contained within a Shape LOD Element may be optionally compressed 

and/or encoded.  The compression and/or encoding state is indicated through other data stored in each Shape LOD Element. 

There are several types of Shape LOD Elements which the JT format supports.  The following sub-sections document the 

various Shape LOD Element types. 

7.2.2.1.1 Base Shape LOD Element 

Object Type ID: 0x10dd10a4, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Base Shape LOD Element serves as the underlying representation for all LODs. 

Segment Header 

Shape LOD Element 

I32 : Value Property Atom Object ID 

While Key 

Property Atom 

Object ID != 0 

I32 : Key Property Atom Object ID 
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Figure 82: Base Shape LOD Element data collection 

 

Complete description for Logical Element Header can be found in 7.1.3.2.1Logical Element Header. 

7.2.2.1.1.1 Base Shape LOD Data 

Base shape LOD data contains the common items to all shape LODs. 

Figure 83: Base Shape LOD Data collection 

 

I16 : Version Number 

Version Number is the version identifier for this Base Shape LOD Data.  Version number “0x0001” is currently the only 

valid value. 

7.2.2.1.2 Vertex Shape LOD Element 

Object Type ID: 0x10dd10b0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

Vertex Shape LOD Element represents LODs defined by collections of vertices. 

Figure 84: Vertex Shape LOD Element data collection 

 

Complete description for Logical Element Header can be found in 7.1.3.2.1Logical Element Header. 

7.2.2.1.2.1  Vertex Shape LOD Data 

 Vertex Shape LOD Data collection is an abstract container for geometric primitives such as triangle strips, line strips, or 

points, depending on the specific type of Vertex Shape.  The set of primitives are further partitioned into so-called "face 

groups."  The  Vertex Shape LOD Data also contains the vertex attribute bindings and quantization settings used to store the 

vertex records referenced by the primitives. 

One use for face groups is to establish a correspondence between Brep faces and their triangle representation.  A convention 

for mapping JTBrep and XTBrep faces to face groups is described in section 9.10 Brep Face Group Associations. 

Logical Element 
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Base Shape LOD Data 

 Vertex Shape LOD Data 
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Figure 85:  Vertex Shape LOD Data collection 

 

Complete description for TopoMesh Compressed LOD Data and TopoMesh Topologically Compressed LOD Data can be 

found in 7.2.2.1.2.3 TopoMesh Compressed LOD Data and 7.2.2.1.2.4 TopoMesh Topologically Compressed LOD Data. 

I16 : Version Number 

Version Number is the version identifier for this Vertex Shape LOD Data.  Version number “0x0001” is currently the only 

valid value. 

U64 : Vertex Bindings 

Binding Attributes is a collection of normal, texture coordinate, and color binding information encoded within a single U64 

using the following bit allocation.  All undocumented bits are reserved. 

 

Bits 1-3 Vertex Coordinate Binding. The Vertex Coordinate Binding denotes per vertex 

coordinate field data is present when one of the bits is set. 

  Bit 1 - 2 Component Vertex Coordinates 

  Bit 2 - 3 Component Vertex Coordinates 

  Bit 3 - 4 Component Vertex Coordinates 

Bit 4 Normal Binding. The Normal Binding denotes per vertex normal field data is 

present when the bit is set.  Normal field data is always stored in 3 Component 

Normals when present. 

Bits 5 -6 Color Binding.  The Color Binding denotes per vertex color field data is present 

when one of the bits is set. 

  Bit 5 - 3 Component Colors 

  Bit 6 - 4 Component Color 

Bit 7 Vertex Flag Binding. The Vertex Flag Binding denotes the per vertex flag field is 

present on the shape when the bit is set. 

Bits 9-12 Texture Coordinate 0 Binding.  The Texture Coordinate 0 binding denotes per 

vertex texture coordinates field data is present when one of the bits is set: 

  Bit 9 - 1 Component Texture Coordinates 

  Bit 10 - 2 Component Texture Coordinates 

  Bit 11 - 3 Component Texture Coordinates 

  Bit 12 - 4 Component Texture Coordinates 

Bits 13-16 Texture Coordinate 1 Binding.  The Texture Coordinate 1 binding denotes per 

vertex texture coordinates field data is present when one of the bits is set: 

  Bit 13   - 1 Component Texture Coordinates 

  Bit 14 - 2 Component Texture Coordinates 

  Bit 15 - 3 Component Texture Coordinates 

  Bit 16 - 4 Component Texture Coordinates 

Bits 17-20 Texture Coordinate 2 Binding.  The Texture Coordinate 2 binding denotes per 

vertex texture coordinates field data is present when one of the bits is set: 

I16 : Version Number 

U64 : Vertex Bindings  

TopoMesh Compressed LOD Data TopoMesh Topologically 

Compressed LOD Data 

If TopoMesh Compressed Rep Data V1 

TopoMesh Compressed Rep Data V1 

contains the geometric shape definition 

data (e.g. vertices, colors, normals, 

etc.) in a lossy or lossless compressed 

formed.  

Figure 91: TopoMesh Compressed 

Rep Data V1 data collection 
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  Bit 17 - 1 Component Texture Coordinates 

  Bit 18 - 2 Component Texture Coordinates 

  Bit 19 - 3 Component Texture Coordinates 

  Bit 20 - 4 Component Texture Coordinates 

Bits 21-24 Texture Coordinate 3 Binding.  The Texture Coordinate 3 binding denotes per 

vertex texture coordinates field data is present when one of the bits is set: 

  Bit 21 - 1 Component Texture Coordinates 

  Bit 22 - 2 Component Texture Coordinates 

  Bit 23 - 3 Component Texture Coordinates 

  Bit 24 - 4 Component Texture Coordinates 

Bits 25-28 Texture Coordinate 4 Binding.  The Texture Coordinate 4 binding denotes per 

vertex texture coordinates field data is present when one of the bits is set: 

  Bit 25 - 1 Component Texture Coordinates 

  Bit 26 - 2 Component Texture Coordinates 

  Bit 27 - 3 Component Texture Coordinates 

  Bit 28 - 4 Component Texture Coordinates 

Bits 29-32 Texture Coordinate 5 Binding.  The Texture Coordinate 5 binding denotes per 

vertex texture coordinates field data is present when one of the bits is set: 

  Bit 29 - 1 Component Texture Coordinates 

  Bit 30 - 2 Component Texture Coordinates 

  Bit 31 - 3 Component Texture Coordinates 

  Bit 32 - 4 Component Texture Coordinates 

Bits 33-36 Texture Coordinate 6 Binding.   The Texture Coordinate 6 binding denotes per 

vertex texture coordinates field data is present when one of the bits is set: 

  Bit 33 - 1 Component Texture Coordinates 

  Bit 34 - 2 Component Texture Coordinates 

  Bit 35 - 3 Component Texture Coordinates 

  Bit 36 - 4 Component Texture Coordinates 

Bits 37-40 Texture Coordinate 7 Binding.  The Texture Coordinate 7 binding denotes per 

vertex texture coordinates field data is present when one of the bits is set: 

  Bit 37 - 1 Component Texture Coordinates 

  Bit 38 - 2 Component Texture Coordinates 

  Bit 39 - 3 Component Texture Coordinates 

  Bit 40 - 4 Component Texture Coordinates 

Bit 64 Auxiliary Vertex Field Binding.  The Auxiliary Vertex Field Binding denotes per 

vertex auxiliary field data is present on the shape when the bit is set. 

7.2.2.1.2.2  TopoMesh LOD Data 

TopoMesh LOD Data collection contains the common items to all TopoMesh LOD elements. 

Figure 86: TopoMesh LOD Data collection 

 

I16 : Version Number 

Version Number is the version identifier for this TopoMesh LOD Data.  Version number “0x0001” and “0x0002” are 

currently the only valid values. 

I16 : Version Number 

I32: Vertex Records 

Object ID  
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I32: Vertex Records Object ID 

Vertex Records Object ID is the identifier for the vertex records associated with this Object.  Other objects referencing these 

vertex records will do so using this Object ID. 

7.2.2.1.2.3  TopoMesh Compressed LOD Data 

TopoMesh Compressed LOD Data collection contains the common items to all TopoMesh Compressed LOD data elements. 

Figure 87: TopoMesh LOD Data collection 

 

Complete description for TopoMesh LOD Data, TopoMesh Compressed Rep Data V1, and TopoMesh Compressed Rep Data 

V2 can be found in 7.2.2.1.2.2 TopoMesh LOD Data, 7.2.2.1.2.7 TopoMesh Compressed Rep Data V1, and 7.2.2.1.2.8 

TopoMesh Compressed Rep Data V2. 

I16 : Version Number 

Version Number is the version identifier for this TopoMesh LOD Data.  Version number “0x0001” and "0x0002" are 

currently the only valid values. 

7.2.2.1.2.4  TopoMesh Topologically Compressed LOD Data 

TopoMesh Topologically Compressed LOD Data collection contains the common items to all TopoMesh Topologically 

Compressed LOD data elements. 

Figure 88: TopoMesh Topologically Compressed LOD Data collection 

 

Complete description for TopoMesh LOD Data and Topologically Compressed Rep Data can be found in 7.2.2.1.2.2 

TopoMesh LOD Data and 7.2.2.1.2.5 Topologically Compressed Rep Data. 

I16 : Version Number 

Version Number is the version identifier for this TopoMesh Topologically Compressed LOD Data.  Version number 

“0x0001” and “0x0002” are currently the only valid values. 

I16 : Version Number 

Topologically Compressed Rep Data 

TopoMesh LOD Data 

I16 : Version Number 

TopoMesh LOD Data 

TopoMesh Compressed Rep Data V1 

If I16 : Version Number is greater or equal to 2 

 

TopoMesh Compressed Rep Data V2 
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7.2.2.1.2.5 Topologically Compressed Rep Data 

JT v9 represents triangle strip data very differently than it does in the JT v8 format.  The new scheme stores the triangles 

from a TriStripSet as a topologically-connected triangle mesh.  Even though more information is stored to the JT file, the 

additional structure provided by storing the full topological adjacency information actually provides a handsome reduction in 

the number of bytes needed to encode the triangles.  More importantly, however, the topological information aids us in a 

more significant respect -- that of only storing the unique vertex records used by the TriStripSet.  Combined, these two 

effects reduce the typical storage footprint of TriStripSet data by approximately half relative to the JT v8 format. 

The tristrip information itself is no longer stored in the JT file -- only the triangles themselves.  The reader is expected to re-

tristrip (or not) as it sees fit, as tristrips may no longer provide a performance advantage during rendering.  There may, 

however, remain some memory savings for tristripping, and so the decision to tristrip is left to the user. 

To begin the decoding process, first read the compressed data fields shown in Figure 89.  These fields provide all the 

information necessary to reconstruct the per face-group organized sets of triangles.  The first 22 fields represent the 

topological information, and the remaining fields constitute the set of unique vertex records to be used.  The next step is to 

run the topological decoder algorithm detailed in Appendix E: Polygon Mesh Topology Coder on this data to reconstruct the 

topologically connected representation of the triangle mesh in a so-called "dual VFMesh.”  The triangles in this heavy-weight 

data structure can then be exported to a lighter-weight form, and the dual VFMesh discarded if desired. 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 115  

Figure 89: Topologically Compressed Rep Data Collection 

 

 

VecI32{Int32CDP2} : Face Degrees  

Similarly to the way valences are encoded, the topology encoder emits the degree (number of incident vertices) of each face 

in the order they were visited.  The number of face degrees in this array is equal to the number of faces in the mesh. 

8 

8 

U32 : Composite Hash 

 

VecI32{Int32CDP2} : Face Degrees  

VecI32{Int32CDP2} : Vertex Valences 

 

VecI32{Int32CDP2} : Vertex Groups 

 

VecI32{Int32CDP2, Lag1} : Vertex Flags 

 

VecI32{Int32CDP2} : Face Attribute Masks 

(30 LSBs)  

 

VecI32{Int32CDP2} : Face Attribute Mask 8 

(30 next MSBs) 

 

VecI32{Int32CDP2} : Face Attribute Mask 8 

(4 MSBs) 

 

VecI32{Int32CDP2, Lag1} : Split Face Syms 

 

VecI32{Int32CDP2} : Split Face Positions 

 

Topologically Compressed Vertex Records 

VecU32 : High-Degree Face Attribute Masks 
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VecI32{Int32CDP2} : Vertex Valences  

As the coder visits each vertex in the mesh, it emits the valence (number of incident faces) of each vertex.  These valences are 

collect in the order they were visited into this array.  The number of valences in this array is equal to the number of 

(topological) vertices in the mesh. 

VecI32{Int32CDP2} : Vertex Groups 

This array is parallel to the Vertex Valences array above.  As the coder emits the valence of each vertex, it also emits the face 

group number to which the dual vertex belongs into this array. 

VecI32{Int32CDP2, Lag1} : Vertex Flags 

This array is also parallel to the Vertex Valences array, and contains a value of 0 when the dual face was present in the 

original triangle mesh, and a value of 1 if the dual face is a cover face that was added to artificially close the original mesh. 

VecI32{Int32CDP2} : Face Attribute Masks (30 LSBs)  

This field is written 8 times – once for each of the 8 context groups listed above – and encodes the face attribute bit vector 

associated with a single face. 

VecI32{Int32CDP2} : Face Attribute Mask 8 (30 next MSBs)  

This field encodes the next 30 most significant bits of the 8
th

 context group of face attribute bit vectors. 

VecI32{Int32CDP2} : Face Attribute Mask 8 (4 MSBs)  

This field encodes the 4 most significant bits of the 8
th

 context group of face attribute bit vectors, rounding out its full 64-bit 

width. 

VecU32 : High-Degree Face Attribute Masks  

This field encodes all remaining face attribute bit vectors, adjoined end-to-end, and encoded as a single array of unsigned 

integers. 

VecI32{Int32CDP2, Lag1} : Split Face Syms  

Encodes the list of “split face” ID numbers in the order the coder encountered them. 

VecI32{Int32CDP2} : Split Face Positions  

Encodes the list of “split face” positions in the active vertex queue in the order the code encountered them. 

U32 : Composite Hash  

This field is a hash value computed on all of the above data using the hash function described in Appendix D: .  It is written 

into the JT file so that a reader can perform the same hash on the above data and compare against this value in order to 

guarantee that it has read and decoded correct data from the JT file.  It is highly encouraged that all readers perform this 

check, as even a single bit error in the topology information above can have catastrophic consequences on the topology 

decoder and the resulting mesh.  Any writers are required to write this field using the method provided so that other readers 

may validate the data they read. 

UInt32 uHash        = 0; 

UInt32 anDegSyms[8] = {0},  

       nValSyms = 0,  

       nVGrpSyms = 0,  

       nVtxFlags = 0,  

       anAttrMasks[8] = {0},  

       nLrgAttrMasks = 0,  

       nSplitVtxSyms = 0,  

       nSplitVtxPos = 0; 

VecI32 vFaceDegreeSymbols[8], vviValenceSymbols, vFaceGroupSyms, 

       vvuAttrMasks[8], viSplitVtxSyms, viSplitVtxPos; 

VecI16 vFaceFlags; 

VecU32 vuTmp, vuAttrMasksLrg; 

... 

for (i=0 ; i<8 ;i++) 
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  uHash = hash32((UInt32*) vFaceDegreeSymbols[i].ptr(), anDegSyms[i], uHash ); 

uHash = hash32((UInt32*) vviValenceSymbols.ptr(), nValSyms, uHash ); 

uHash = hash32((UInt32*)vVtxGroupSyms.ptr(), nVGrpSyms, uHash ); 

uHash = hash16((UInt16*)vVtxFlags.ptr(), nFlags, uHash ); 

for (i=0 ; i<7 ;i++) 

  uHash = hash32((UInt32*)vvuAttrMasks[i].ptr(), anAttrMasks[i], uHash ); 

vuTmp = vvuAttrMasks[7] & 0x3fffffff;  // Lower 30 bits of each element 

uHash = hash32(vuTmp.ptr(), anAttrMasks[7], uHash ); 

vuTmp = (vvuAttrMasks[7] >> 30) & 0x3fffffff; // Next 30 bits of each element 

uHash = hash32(vuTmp.ptr(), anAttrMasks[7], uHash ); 

vuTmp = (vvuAttrMasks[7] >> 60) & 0x0f; // Upper 4 bits of each element 

uHash = hash32(vuTmp.ptr(), anAttrMasks[7], uHash ); 

uHash = hash32(vuAttrMasksLrg.ptr(), nLrgAttrMasks, uHash ); 

uHash = hash32((UInt32*)viSplitVtxSyms.ptr(), nSplitVtxSyms, uHash ); 

uHash = hash32((UInt32*)viSplitVtxPos.ptr(), nSplitVtxPos, uHash ); 

7.2.2.1.2.6 Topologically Compressed Vertex Records 

Documented here is the format of the vertex data written by the topological encoder from Appendix E: .  Some additional 

explanation is necessary, however, because only the unique vertex coordinates are written to the JT file, while  the remaining 

vertex attributes (normals, colors, texture coordinates, vertex flags) may not be unique. 

Vertex coordinates are written to the file in the order that they were visited by the topology encoder.  Note that this means 

that the number of vertex coordinates written is equal to the number of topological vertices in the mesh (i.e. all vertex 

coordinates are unique). 

By contrast one set of vertex attribute records is written to the file corresponding to each 1 bit across all encoded dual Face 

Attribute Masks.  The vertex attribute records are written in the order that the topology encoder visited them.  The reader 

must then use the topology decoder's output to correctly associate each vertex attribute record to the correct vertex coordinate 

using the dual Face Attribute Masks. 
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 Figure 90: Topologically Compressed Vertex Records data collection 

 

U64: Vertex Bindings 

Vertex Bindings is a collection of normal, texture coordinate, and color binding information encoded within a single U64.  

All undocumented bits are reserved.  For more information see Vertex Shape LOD Data U64 : Vertex Bindings. 

I32 : Number of Topological Vertices 

This field is the number of topological vertices encoded by the topology encoder.  This is the number of unique vertex 

coordinates that will be written in the later Compressed Vertex Coordinate Array field. 

I32 : Number of Vertex Attributes 

One set of vertex attribute records is written to the file corresponding to each 1 bit across all encoded dual Face Attribute 

Masks.  The vertex attribute records are written in the order that the topology encoder visited them.  The reader must then use 

the topology decoder's output to correctly associate each vertex attribute record to the correct vertex coordinate using the dual 

Face Attribute Masks. 

U64: Vertex Bindings 

 

Quantization Parameters 

I32 : Number of Vertex Attributes 

 

I32 : Number of Topological Vertices 

If  num topo vts > 0 

8 

if Normal Bindings 

if Color Bindings 

if vertex flag Bindings 

if Tex Coord n Bindings 

if Coordinate Bindings 

Compressed Vertex 

Coordinate Array 

Compressed Vertex 

Normal Array 

Compressed Vertex Color 

Array 

Compressed Vertex 

Texture Coordinate Array 

Compressed Vertex Flag 

Array 
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7.2.2.1.2.7  TopoMesh Compressed Rep Data V1 

TopoMesh Compressed Rep Data V1 contains the geometric shape definition data (e.g. vertices, colors, normals, etc.) in a 

lossy or lossless compressed formed.  

Figure 91: TopoMesh Compressed Rep Data V1 data collection 

 

Complete description for Quantization Parameters can be found in 7.2.1.1.1.10.2.1.1 Quantization Parameters. 

I32: Number of Primitive List Indices 

 

I32: Number of Vertex List Indices 

 

I32: FGPV List Indices Hash 

U64: Vertex Bindings 

 

VecI32{Int32CDP2} : Primitive List Indices 

VecI32{Int32CDP2} : Vertex List Indices 

Quantization Parameters 

I32: Number of Vertex Records 

 

I32: Number of Unique Vertex 

Coordinates  

If  number records > 0 

I32: Unique Vertex List Map Hash 

 

8 

if Normal Bindings 

if Color Bindings 

if vertex flag Bindings 

if Tex Coord n Bindings 

if Coordinate Bindings 

Compressed Vertex 

Coordinate Array 

Compressed Vertex 

Normal Array 

Compressed Vertex Color 

Array 

Compressed Vertex 

Texture Coordinate Array 

Compressed Vertex Flag 

Array 

VecI32{Int32CDP2} : Unique Vertex Coordinate 

Length List  

VecI32{Int32CDP2} : Face Group List Indices 

if Polyline Shape 

I32: Number of Face Group List Indices 

 

if Polyline Shape 
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I32: Number of Face Group List Indices 

Number of Face Group List Indices.  

I32: Number of Primitive List Indices 

Number of Primitive List Indices.  

I32: Number of Vertex List Indices 

Number of Vertex List Indices. 

VecI32{Int32CDP2} : Face Group List Indices 

Face Group List Indices is a vector of indices into the uncompressed Raw Primitive Data marking the start/beginning of 

Faces.  Face Group List Indices uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP2} : Primitive List Indices 

Primitive List Indices is a vector of indices into the uncompressed Raw Vertex Data marking the start/beginning of 

primitives.  Primitive List Indices uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP2} : Vertex List Indices 

Vertex List Indices is a vector of indices (one per vertex) into the uncompressed/dequantized unique vertex data arrays 

(Vertex Coords, Vertex Normals, Vertex Texture Coords, Vertex Colors) identifying each Vertex‟s data  (i.e. for each Vertex 

there is an index identifying the location within the unique arrays of the particular Vertex‟s data).   The Compressed Vertex 

Index List uses the Int32 version of the CODEC to compress and encode data.   

I32: FGPV List Indices Hash 

The FGPV Hash is the combined hash value of the Face Group List Indices (if Polyline), Primitive List Indices, and Vertex 

List Indices.   Refer to section 9.5 for a more detailed description on hashing. 

UInt32 uHash    = 0; 

UInt32 nFGIdx   = 0,  

       nPrimIdx = 0, 

       nVtxIdx  = 0; 

vecI32 vFGIndices, vPrimIdices, vVertexIndices; 

... 

if (bLineStrip) 

  uHash = hash32( (UInt32*)(&vFGIndices), nFGIdx+1, uHash ); 

uHash = hash32( (UInt32*)(& vPrimIdices), nPrimIdx+1, uHash ); 

uHash = hash32( (UInt32*)(& vVertexIndices), nVtxIdx  , uHash ); 

U64: Vertex Bindings 

Vertex Bindings is a collection of normal, texture coordinate, and color binding information encoded within a single U64.  

All undocumented bits are reserved.  For more information see Vertex Shape LOD Data U64 : Vertex Bindings. 

I32: Number of Vertex Records 

Number of vertex records. 

I32: Number of Unique Vertex Coordinates  

Number of unique vertex coordinates values in the Compressed Vertex Coordinate Array. 

VecI32{Int32CDP2} : Unique Vertex Coordinate Length List  

The Unique Vertex Length List contains the number of vertex records containing each of the unique vertex coordinates and 

should sum to the number of vertex records.  When read in the Compressed Vertex Coordinate Array only contains a single 

value for each unique vertex coordinate value and is therefore parallel to the Unique Vertex Length List.  In order to expand 

its coordinates into the vertex record space it unique coordinate value will need to be smeared out such that each unique 

vertex coordinate is repeated the number of times specified in the Unique Vertex Length List.  The Compressed Vertex 

Normal, Color, Texture, and Flag Arrays do not require the same expansion. 
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I32: Unique Vertex List Map Hash 

The Unique Vertex List Map Hash is the hash value of Unique Vertex Coordinate Length List.  Refer to section 9.5 for a 

more detailed description on hashing. 

UInt32 uHash    = 0; 

UInt32 nUniqVtx = 0; 

vecF32 vUniqVtxIndices; 

... 

uHash = hash32( (UInt32*)(&vUniqVtxIndices), nUniqVtx, uHash ); 

7.2.2.1.2.8  TopoMesh Compressed Rep Data V2 

TopoMesh Compressed Rep Data V2 data contains additional geometric shape data (auxiliary vertex fields) that were not 

included in V1.  Auxiliary fields are parallel to the existing vertex record information and contain additional information 

pertaining to each vertex. 
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Figure 92: TopoMesh Compressed Rep Data V2 data collection 

 

Complete description for TopoMesh Compressed Rep Data V1 can be found in TopoMesh Compressed Rep Data V1. 

I16 : Version Number 

Version Number is the version identifier for this TopoMesh Compressed Rep Data V2.  Version number “0x0001” is 

currently the only valid value. 

U64 : Vertex Bindings 

Vertex Bindings is a collection of normal, texture coordinate, and color binding information encoded within a single U64.  

All undocumented bits are reserved.  For more information see Vertex Shape LOD Data U64 : Vertex Bindings. 

I32 : Auxiliary Data Hash 

VecU32{Int32CDP2} : Data 

Lower Mantissae 

VecU32{Int32CDP2} : Data 

Upper Mantissae 

VecU32{Int32CDP2} : Data 

Exponents 

I16 : Version Number 

uHash = 

hash32((UInt32*) 

vviValenceSymbols.ptr(), 

nValSyms, uHash ); 

uHash = 

hash32((UInt32*)vVtxGro

upSyms.ptr(), 

nVGrpSyms, uHash ); 

uHash = 

hash16((UInt16*)vVtxFla

gs.ptr(), nFlags, uHash 

); 

for (i=0 ; i<7 ;i++) 

  uHash = 

hash32((UInt32*)vvuAttr

Masks[i].ptr(), 

anAttrMasks[i], uHash 

); 

vuTmp = vvuAttrMasks[7] 

& 0x3fffffff;  // Lower 

30 bits of each element 

uHash = 

hash32(vuTmp.ptr(), 

anAttrMasks[7], uHash 

); 

vuTmp = 

(vvuAttrMasks[7] >> 30) 

& 0x3fffffff; // Next 

30 bits of each element 

uHash = 

hash32(vuTmp.ptr(), 

anAttrMasks[7], uHash 

); 

vuTmp = 

(vvuAttrMasks[7] >> 60) 

& 0x0f; // Upper 4 bits 

of each element 

uHash = 

hash32(vuTmp.ptr(), 

anAttrMasks[7], uHash 

); 

uHash = 

hash32(vuAttrMasksLrg.p

tr(), nLrgAttrMasks, 

uHash ); 

uHash = 

hash32((UInt32*)viSplit

VtxSyms.ptr(), 

nSplitVtxSyms, uHash ); 

uHash = 

hash32((UInt32*)viSplit

VtxPos.ptr(), 

nSplitVtxPos, uHash ); 

1.1.1.1.1.3 Topologi
cally 
Compres
sed 
Vertex 
Records 

Documented here is the 

format of the vertex data 

written by the topological 

encoder from Appendix E: .  

Some additional 

explanation is necessary, 

however, because only the 

unique vertex coordinates 

are written to the JT file, 

U64 : Vertex Bindings 

if auxiliary vertex field binding 

Bindings 

GUID : Unique Field Identifier 

U8 : Field Type 

if data F 

if data F64 

if data F32 or F64 

VecU32{Int32CDP2} : Data 

U32_2 

VecU32{Int32CDP2} : Data 

U32_1 

VecU32{Int32CDP2} : Data 

U32_0 

if data I 

if data U32, I32, U64, or I64 

if data U64 or I64 

Number Auxiliary Fields 

Number Components 
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GUID : Unique Field Identifier 

Each Auxiliary Vertex Field is associated with Unique Field Identifier to denote the usage of the contained data.  All Unique 

Field Identifiers are currently reserved.  These identifiers are intended to be unique across all application domains, therefore 

any JT file producer wishing to "lock down" a Unique Field Identifier so that others can rely on its semantic identity should 

contact the JTOpen industry liaison to obtain them. 

U8 : Field Type 

Defines the number of components and type of data contained within the auxiliary field based upon the below table. 

 

VecU32{Int32CDP2} : Data U32_0 

Data U32_0 contains the low order bits from the data i'th data component for each vertex record in an U32 vector.  For U8, 

I8, U16, and I16 data types this contains all bits.  For U32, I32, U64, and I64 data types it contains bits 0 through 30.  Data 

U32_0 uses the Int32 version of the CODEC to compress and encode data. 

VecU32{Int32CDP2} : Data U32_1 

Data U32_1 contains the middle order bits from the data i'th data component for each vertex record in an U32 vector.  For 

U32 and I32 data types it only contains bit 31.  For U64 and U64 data types it contains bits 31 through 61.  Data U32_1 uses 

the Int32 version of the CODEC to compress and encode data. 

VecU32{Int32CDP2} : Data U32_2 

Data U32_2 contains the upper order bits from the data i'th data component for each vertex record in an U32 vector.  For U64 

and I64 data types it contains bits 62 and 63. Data U32_2 uses the Int32 version of the CODEC to compress and encode data. 

VecU32{Int32CDP2} : Data Lower Mantissae 

Vertex Coord Components is a vector of lower bits of Floating Point Mantissae for all the i'th component values of a set of 

vertex coordinates.  For F32 data type this contains all bits of the mantissa, however for F64 data type it only contains bits 0 

through 30. Data Lower Mantissae uses the Int32 version of the CODEC to compress and encode data. 

Type Data Components  Type Data Components 

1 U8 1  24 I32 4 

2 U8 2  25 U64 1 

3 U8 3  26 U64 2 

4 U8 4  27 U64 3 

5 I8 1  28 U64 4 

6 I8 2  29 I64 1 

7 I8 3  30 I64 2 

8 I8 4  31 I64 3 

9 U16 1  32 I64 4 

10 U16 2  33 F32 1 

11 U16 3  34 F32 2 

12 U16 4  35 F32 3 

13 I16 1  36 F32 4 

14 I16 2  37 F32 2x2 

15 I16 3  38 F32 3x3 

16 I16 4  39 F32 4x4 

17 U32 1  40 F64 1 

18 U32 2  41 F64 2 

19 U32 3  42 F64 3 

20 U32 4  43 F64 4 

21 I32 1  44 F64 2x2 

22 I32 2  45 F64 3x3 

23 I32 3  46 F64 4x4 
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VecU32{Int32CDP2} : Data Upper Mantissae 

Vertex Coord Components is a vector of upper bits of the Floating Point Mantissae for all the i'th component values of a set 

of vertex coordinates.  For the F64 data type it contains bits  31 though 51.  Data Upper Mantissae uses the Int32 version of 

the CODEC to compress and encode data. 

VecU32{Int32CDP2} : Data Exponents 

Vertex Coord Components is a vector of Floating Point Exponents and Sign for all the i'th component values of a set of 

vertex coordinates.  Data Exponents uses the Int32 version of the CODEC to compress and encode data. 

I32 : Auxiliary Data Hash 

The Auxiliary Data Hash is the combined hash of auxiliary field data arrays.   Refer to section 9.5 for a more detailed 

description on hashing. 

UInt32 uHash    = 0; 

UInt32 nVtxRec  = 0,  

       nComp    = 0; 

vecU32 vU32_0, vU32_1, vU32_2, vLMANT, vUMANT, vEXP;  

... 

if ( bU8 || bI8 | bU16 | bI16 ) { 

  for ( int i=0 ; i<nComp ; i++ ) { 

 uHash = hash32( &vU32_0[i], nVtxRec, uHash ); 

  } 

} else if ( bU32 || bI32 ) { 

  for ( int i=0 ; i<nComp ; i++ ) { 

 uHash = hash32( &vU32_0[i], nVtxRec, uHash ); 

 uHash = hash32( &vU32_1[i], nVtxRec, uHash ); 

  } 

} else if ( bU64 || bI64 ) { 

  for ( int i=0 ; i<nComp ; i++ ) { 

 uHash = hash32( &vU32_0[i], nVtxRec, uHash ); 

 uHash = hash32( &vU32_1[i], nVtxRec, uHash ); 

 uHash = hash32( &vU32_2[i], nVtxRec, uHash ); 

  } 

} else if ( bF32 ) { 

  for ( int i=0 ; i<nComp ; i++ ) { 

 uHash = hash32( &vLMANT[i], nVtxRec, uHash ); 

 uHash = hash32( &vEXP[i], nVtxRec, uHash ); 

  } 

} else { 

  for ( int i=0 ; i<nComp ; i++ ) { 

 uHash = hash32( &vLMANT[i], nVtxRec, uHash ); 

 uHash = hash32( &vUMANT[i], nVtxRec, uHash ); 

 uHash = hash32( &vEXP[i], nVtxRec, uHash ); 

  } 

} 

7.2.2.1.3 Tri-Strip Set Shape LOD Element 

Object Type ID: 0x10dd10ab, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

A Tri-Strip Set Shape LOD Element contains the geometric shape definition data (e.g. vertices, polygons, normals, etc.) for a 

single LOD of a collection of independent and unconnected triangle strips.  Each strip constitutes one primitive of the set and  

the ordering of the vertices in forming triangles, is the same as OpenGL‟s triangle strip definition [4]. 

A Tri-Strip Set Shape LOD Element is typically referenced by a Tri-Strip Set Shape Node Element  using Late Loaded 

Property Atom Elements (see 7.2.1.1.1.10.3 Tri-Strip Set Shape Node Element and 0 Late Loaded Property Atom 

ElementLate Loaded Property Atom Element respectively). 
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Figure 93: Tri-Strip Set Shape LOD Element data collection 

 

Complete description for Logical Element Header can be found in 7.1.3.2.1Logical Element Header. 

Complete description for Vertex Shape LOD Data can be found in 7.2.2.1.2.1 Vertex Shape LOD Data. 

I16 : Version Number 

Version Number is the version identifier for this Tri-Strip Set Shape LOD.  Version number “0x0001” is currently the only 

valid value. 

7.2.2.1.4 Polyline Set Shape LOD Element 

Object Type ID: 0x10dd10a1, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

A Polyline Set Shape LOD Element contains the geometric shape definition data (e.g. vertices, normals, etc.) for a single 

LOD of a collection of independent and unconnected polylines.  Each polyline constitutes one primitive of the set. 

A Polyline Set Shape LOD Element is typically referenced by a Polyline Set Shape Node Element using Late Loaded 

Property Atom Elements (see 7.2.1.1.1.10.5 Polyline Set Shape Node Element and 0 Late Loaded Property Atom Element 

respectively). 

Figure 94: Polyline Set Shape LOD Element data collection 

 

Complete description for Logical Element Header can be found in 7.1.3.2.1Logical Element Header. 

Complete description for Vertex Shape LOD Data can be found in 7.2.2.1.2.1 Vertex Shape LOD Data. 

I16 : Version Number 

Version Number is the version identifier for this Polyline Set Shape LOD.  Version number “0x0001” is currently the only 

valid value. 

7.2.2.1.5 Point Set Shape LOD Element 

Object Type ID: 0x98134716, 0x0011, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83, 0x5d, 0x5a 

Logical Element 

Header 

 Vertex Shape LOD Data 

I16 : Version Number 

Logical Element 

Header 

 Vertex Shape LOD Data 

I16 : Version Number 
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A Point Set Shape LOD Element contains the geometric shape definition data (e.g. coordinates, normals, etc.) for a collection 

of independent and unconnected points.  Each point constitutes one primitive of the set. 

A Point Set Shape LOD Element is typically referenced by a Point Set Shape Node Element using Late Loaded Property 

Atom Elements (see 7.2.1.1.1.10.5 Point Set Shape Node Element and 0 Late Loaded Property Atom Element respectively). 

Figure 95: Point Set Shape LOD Element data collection 

 

Complete description for Logical Element Header can be found in 7.1.3.2.1Logical Element Header. 

Complete description for Vertex Shape LOD Data can be found in 7.2.2.1.2.1 Vertex Shape LOD Data. 

I16 : Version Number 

Version Number is the version identifier for this Point Set Shape LOD.  Version number “0x0001” is currently the only valid 

value. 

7.2.2.1.6 Null Shape LOD Element 

Object Type ID: 0x3e637aed, 0x2a89, 0x41f8, 0xa9, 0xfd, 0x55, 0x37, 0x37, 0x3, 0x96, 0x82 

A Null Shape LOD Element represents the pseudo geometric shape definition data for a NULL Shape Node Element.  

Although a NULL Shape Node Element has no real geometric primitive representation (i.e. is empty), its usage as a 

“proxy/placeholder” node within the LSG still supports the concept of having a defined bounding box and thus the existence 

of this Null Shape LOD Element type. 

A Null Shape LOD Element is typically referenced by a NULL Shape Node Element using Late Loaded Property Atom 

Elements (see 7.2.1.1.1.10.7 NULL Shape Node Element and 7.2.1.2.7 Late Loaded Property Atom Element respectively). 

 

Figure 96: Null Shape LOD Element data collection 

 

Complete description for Logical Element Header can be found in 7.1.3.2.1 Logical Element Header. 

Logical Element 

Header 

I16 : Version Number 

BBoxF32 : Untransformed BBox 

Logical Element 

Header 

 Vertex Shape LOD Data 

I16 : Version Number 
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I16 : Version Number 

Version Number is the version identifier for this Null Shape LOD Element.  Version number “0x0001” is currently the only 

valid value. 

BBoxF32 : Untransformed BBox 

The Untransformed BBox is an axis-aligned LCS bounding box and represents the untransformed extents for this Null Shape 

LOD Element. 

7.2.2.2 Primitive Set Shape Element 

Object Type ID: 0xe40373c2, 0x1ad9, 0x11d3, 0x9d, 0xaf, 0x0, 0xa0, 0xc9, 0xc7, 0xdd, 0xc2 

A Primitive Set Shape Element defines the minimum data necessary to procedurally generate LODs for a list of primitive 

shapes (e.g. box, cylinder, sphere, etc.).  “Procedurally generate” means that the raw geometric shape definition data (e.g. 

vertices, polygons, normals, etc) for LODs is not directly stored; instead some basic shape information is stored (e.g. sphere 

center and radius) from which LODs can be generated. 

 

Figure 97: Primitive Set Shape Element data collection 

 

Logical Element 

Header 

I16 : Version Number 

I32 : Bits Per Vertex 

Lossless Compressed 

Primitive Set Data 

Bits Per Vertex = = 0 

Lossy Quantized 

Primitive Set Data 

I32 : Texture Coord Binding 

I32 : Color Binding 

I16 : Version Number 

 

I32 : Texture Coord Gen Type 
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Complete description for Logical Element Header can be found in 7.1.3.2.1Logical Element Header. 

I16 : Version Number 

Version Number is the version identifier for this element.  Only version number 0x0001 is valid for now 

I32 : Texture Coord Binding 

Texture Coord Binding specifies how (at what granularity) texture coordinate data is supplied (“bound”) for the shape.  Valid 

values are as follows: 

 

= 0 None.  Shape has no texture coordinate data. 

= 1 Per Vertex.  Shape has texture coordinates for every vertex. 

I32 : Color Binding 

Color Binding specifies how (at what granularity) color data is supplied (“bound”) for the shape.  Valid values are the same 

as documented for Texture Coord Binding data field. 

I16 : Version Number 

Version Number is the version identifier for this element.  The value of this Version Number indicates the format of data 

fields to follow.  

 

= 1 Version-1 Format  

= 2 Version-2 Format 

I32 : Bits Per Vertex 

Bits Per Vertex specifies the number of quantization bits per vertex coordinate component.  Value must be within range 

[0:32] inclusive. 

I32 : Texture Coord Gen Type 

Texture Coord Gen Type specifies how texture coordinates are to be generated. 

 

= 0 Single Tile…Indicates that a single copy of a texture image will be applied to significant 

primitive features (i.e. cube face, cylinder wall, end cap) no matter how eccentrically shaped. 

= 1 Isotropic…Implies that multiple copies of a texture image may be mapped onto eccentric 

surfaces such that a mapped texel stays approximately square. 

7.2.2.2.1 Lossless Compressed Primitive Set Data 

The Lossless Compressed Primitive Set Data collection contains all the per-primitive information stored in a “lossless” 

compression format for all primitives in the Primitive Set.  The Lossless Compressed Primitive Set Data collection is only 

present when the Bits Per Vertex data field equals “0” (see 7.2.2.2 Primitive Set Shape Element for complete description). 
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Figure 98: Lossless Compressed Primitive Set Data collection 

 

I32 : Uncompressed Data Size 

Uncompressed Data size specifies the uncompressed size of Primitive Data or Compressed Primitive Data in bytes. 

I32 : Compressed Data Size 

Compressed Data Size specifies the compressed size of Primitive Data or Compressed Primitive Data in bytes.  If the 

Compressed Data Size is negative, then the Compressed Primitive Data field is not present (i.e. data is not compressed) and 

the absolute value of Compressed Data Size should be equal to Uncompressed Data Size value. 

U8 : Primitive Data 

The Primitive Data field is a packed array of the raw per primitive data (i.e. reserved, params1, params2, params3, color, 

type) sequentially for all primitives in the set.  The Primitive Data field is only present if Compressed Data Size value is less 

than zero. 

The per primitive data is packed into Primitive Data array using an interleaved data schema/format as follows:  

{[reserved], [params1], [params2], [params3], [color], [type]}, …, for all primitives 

Where the data elements have the following size and meaning: 

 

Element Data Type Description 
reserved I32 This is a field reserved for future expansion of the JT Format. 

params1 CoordF32 Interpretation is Primitive Type specific (see below table) 

params2 DirF32 Interpretation is Primitive Type specific (see below table) 

params3 Quaternion Interpretation is Primitive Type specific (see below table) 

color RGB Red, Green, Blue color component values 

type I32 Primitive Type 

= 0 – Box 

= 1 – Cylinder 

= 2 – Pyramid 

= 3 – Sphere 

= 4 – Tri-Prism 

Table 5: Primitive Set Primitive Data Elements 

Given this format of the Primitive Data, and the previously read size fields, a reader can then implicitly compute the data 

stride (length of one primitive entry in Primitive Data), and number of primitives.  

The interpretation of the three “params#” data fields is primitive type dependent as follows: 

 

I32 : Uncompressed Data Size 

I32 : Compressed Data Size 

U8 : Primitive Data Abs(Compressed 

Data Size) 

U8 : Compressed 

Primitive Data Compressed 

Data Size 

Compressed Data Size < 0 Compressed Data Size > 0 
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Primitiv

e Type 
params1 params2 params3 

 
[0] [1] [2] [0] [1] [2] [0] [1] [2] [3] 

Box min  X min Y min  Z 
length 

X 

length 

Y 

length 

Z 
orientation in Quaternion form 

Cylinder 
base 

center X 

base 

center 

Y 

base 

center 

Z 

spine 

X 

spine 

Y 

spine 

Z 

radius 

1 

radius 

2 
N/A N/A 

Pyramid 
base 

center X 

base 

center 

Y 

base 

center 

Z 

length 

X 

length 

Y 

length 

Z 
orientation in Quaternion form 

Sphere center X 
center 

Y 

center 

Z 
radius N/A N/A N/A N/A N/A N/A 

Tri-Prism 
bottom 

front X 

bottom 

front Y 

bottom 

front Z 

length 

X (to 

right) 

length 

Y (to 

back) 

length 

Z (to 

top) 

orientation in Quaternion form 

Table 6: Primitive Set “params#” Data Fields Interpretation 

U8 : Compressed Primitive Data 

The Compressed Primitive Data field represents the same data as documented in Primitive Data field above except that the 

data is compressed using the general “ZLIB deflation compression” method.  The Compressed Primitive Data field is only 

present if Compressed Data Size value is greater than zero.   See 8 Data Compression and Encoding for more details on ZLIB 

compression and ZLIB library version used. 

7.2.2.2.2 Lossy Quantized Primitive Set Data 

The Lossy Quantized Primitive Set Data collection contains all the per-primitive information (i.e. reserved, params1, 

params2, params3, color, type)  stored in a “lossy” encoding/compression format for all primitives in the Primitive Set.  The 

Lossy Quantized Primitive Set Data collection is only present when the Bits Per Vertex data field is NOT equal to “0” (See 

7.2.2.2 Primitive Set Shape Element for compete description).   

The interpretation of the three per-primitive “params#” data fields is primitive type dependent.  See Table 6: Primitive Set 

“params#” Data Fields Interpretation in 7.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description 

of the “params#” data fields. 
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Figure 99: Lossy Quantized Primitive Set Data collection 

 

I32 : Primitive Count 

Primitive Count specifies the number of primitives in the Primitive Set. 

Quaternion : params3 

Interpretation of params3 data field is primitive Type dependent.  See Table 6: Primitive Set “params#” Data Fields 

Interpretation in 7.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the params3 data 

fields. 

CoordF32 : params1 

Interpretation of params1 data field is primitive Type dependent.  See Table 6: Primitive Set “params#” Data Fields 

Interpretation in 7.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the params1 data 

fields. 

DirF32 : params2 

Interpretation of params1 data field is primitive Type dependent.  See Table 6: Primitive Set “params#” Data Fields 

Interpretation in 7.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the params1 data 

fields. 

RGB : Color 

Color specifies the Red, Green Blue color components for the primitive. This data field is only present if previously read 

Color Binding (see 7.2.2.2 Primitive Set Shape Element) is not equal to “0”. 

I32 : Primitive Count 

Primitive Count > 4 

Primitive 

Count 

Quaternion : params3 

CoordF32 : params1 

DirF32 : params2 

RGB : Color 

I32 : Type 

Color Binding != 0 

U8 : Bits Per Color 

Compressed params1 

Compressed params3 

Compressed params2 

Color Binding != 0 

Compressed Colors 

VecI32{Int32CDP, Lag1} : Compressed Types 
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I32 : Type 

Type specifies the primitive type.  See Table 5: Primitive Set Primitive Data Elements in 7.2.2.2.1 Lossless Compressed 

Primitive Set Data for valid primitive Type values. 

U8 : Bits Per Color 

Bits Per Color specifies the number of quantization bits per color component.  Value must be within range [0:32] inclusive. 

VecI32{Int32CDP, Lag1} : Compressed Types 

The Compressed Types data field is a vector of Type data for all the primitives in the Primitive Set. Compressed Types uses 

the Int32 version of the CODEC to compress and encode data.  In an uncompressed form the valid primitive Type vales are 

as documented in  Table 5: Primitive Set Primitive Data Elements in 7.2.2.2.1 Lossless Compressed Primitive Set Data. 

7.2.2.2.2.1 Compressed params1 

Compressed params1 is the compressed representation of the params1 data for all the primitives in the Primitive Set.  Note 

that the interpretation of the uncompressed params1 data is primitive Type dependent.  See Table 6: Primitive Set “params#” 

Data Fields Interpretation in 7.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the 

params1 data fields 

The params1 data for all primitives in the Primitive Set is compressed/encoded on a per ordinate basis using a separate 

Uniform Quantizer (with Bits Per Vertex number of quantization bits) for each collection of ordinate values.  Since params1 

is of type “CoordF32”, it has three ordinate values (three F32 values), and thus three Uniform Quantizers (where a Uniform 

Quantizer is a scalar quantizer/encoder whose range is divided into levels of equal spacing).   See 8 Data Compression and 

Encoding for more complete description of Uniform Quantizer. 

The JT Format packs all the params1 data for all primitives into a single array using an ordinate dependent order (as shown 

below) and then encodes each of the lists of ordinate values using a separate Uniform Quantizer per ordinate list.    

{prim1 params1[0], prim2 params1[0],…primN params1[0],   

 prim1 params1[1], prim2 params1[1],…primN params1[1], 

 prim1 params1[2], prim2 params1[2],…primN params1[2]} 

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate value 

collection, and an integer array of params1 quantization codes that corresponds to the above described “ordinate dependent 

order” packed array of params1 data. 

Figure 100: Compressed params1 data collection 

 

VecF32 : Quantization Range Min/Max Pairs 

Quantization Range Min/Max Pairs is a vector of Uniform Quantizer range min/max value pairs.  There must be a min/max 

pair for each ordinate value collection (i.e. each Uniform Quantizer).  Thus the length of this vector is “2 * num_ordinates” 

(so vector length would be “6” for params1 data). 

VecI32{Int32CDP, Lag1} : params1 Codes 

The params1 Codes data field is a vector of quantizer “codes” for the params1 data of all the primitives in the Primitive Set.  

The params1Codes also uses the Int32 version of the CODEC to compress and encode data. 

VecF32 : Quantization Range Min/Max Pairs 

VecI32{Int32CDP, Lag1} : params1 Codes 
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7.2.2.2.2.2 Compressed params3 

Compressed params3 is the compressed representation of the params3 data for all the primitives in the Primitive Set.  Note 

that the interpretation of the uncompressed param31 data is primitive Type dependent.  See Table 6: Primitive Set “params#” 

Data Fields Interpretation in 7.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the 

params3 data fields 

The params3 data for all primitives in the Primitive Set is compressed/encoded on a per ordinate basis using a separate 

Uniform Quantizer (with Bits Per Vertex number of quantization bits) for each collection of ordinate values.  Since params1 

is of type “Quaternion”, it has four ordinate values (four F32 values), and thus four Uniform Quantizers (where a Uniform 

Quantizer is a scalar quantizer/encoder whose range is divided into levels of equal spacing).   See 8 Data Compression and 

Encoding for more complete description of Uniform Quantizer. 

The JT Format packs all the params3 data for all primitives into a single array using an ordinate dependent order (as shown 

below) and then encodes each of the lists of ordinate values using a separate Uniform Quantizer per ordinate list.    

{prim1 params3[0], prim2 params3[0],…primN params3[0],   

 prim1 params3[1], prim2 params3[1],…primN params3[1], 

 prim1 params3[2], prim2 params3[2],…primN params3[2], 

 prim1 params3[3], prim2 params3[3],…primN params3[3]} 

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate value 

collection, and an integer array of params3 quantization codes that corresponds to the above described “ordinate dependent 

order” packed array of params3 data. 

The storage format of Compressed params3 is exactly the same as that documented in Figure 100: Compressed params1 data 

collection. 

7.2.2.2.2.3 Compressed params2 

Compressed params2 is the compressed representation of the params2 data for all the primitives in the Primitive Set.  Note 

that the interpretation of the uncompressed params2 data is primitive Type dependent.  See Table 6: Primitive Set “params#” 

Data Fields Interpretation in 7.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the 

params2 data fields 

 

The params2 data for all primitives in the Primitive Set is compressed/encoded on a per ordinate basis using a separate 

Uniform Quantizer (with Bits Per Vertex number of quantization bits) for each collection of ordinate values.  Since params2 

is of type “DirF32”, it has three ordinate values (three F32 values), and thus three Uniform Quantizers (where a Uniform 

Quantizer is a scalar quantizer/encoder whose range is divided into levels of equal spacing).   See 8 Data Compression and 

Encoding for more complete description of Uniform Quantizer. 

The JT Format packs all the params2 data for all primitives into a single array using an ordinate dependent order (as shown 

below) and then encodes each of the lists of ordinate values using a separate Uniform Quantizer per ordinate list.    

{prim1 params2[0], prim2 params2[0],…primN params2[0],   

 prim1 params2[1], prim2 params2[1],…primN params2[1], 

 prim1 params2[2], prim2 params2[2],…primN params2[2]} 

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate value 

collection, and an integer array of params2 quantization codes that corresponds to the above described “ordinate dependent 

order” packed array of params2 data. 

The storage format of Compressed params2 is exactly the same as that documented in Figure 100: Compressed params1 data 

collection. 

7.2.2.2.2.4 Compressed Colors 

Compressed Colors is the compressed representation of the color data for all the primitives in the Primitive Set.  This data 

collection is only present if previously read Color Binding (see 7.2.2.2 Primitive Set Shape Element) is not equal to “0”. 

The color data for all primitives in the Primitive Set is compressed/encoded on a per ordinate basis using a separate Uniform 

Quantizer (with Bits Per Color number of quantization bits) for each collection of ordinate values.  Since color is of type 
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“RGB”, it has three ordinate values (three F32 values), and thus three Uniform Quantizers (where a Uniform Quantizer is a 

scalar quantizer/encoder whose range is divided into levels of equal spacing).   See 8 Data Compression and Encoding for 

more complete description of Uniform Quantizer. 

The JT Format packs all the color data for all primitives into a single array using an ordinate dependent order (as shown 

below) and then encodes each of the lists of ordinate values using a separate Uniform Quantizer per ordinate list.    

{prim1 color[0], prim2 color[0],…primN color[0],   

 prim1 color[1], prim2 color[1],…primN color[1], 

 prim1 color[2], prim2 color[2],…primN color[2]} 

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate value 

collection, and an integer array of color quantization codes that corresponds to the above described “ordinate dependent 

order” packed array of color data. 

The storage format of Compressed Colors is exactly the same as that documented in Figure 100: Compressed params1 data 

collection. 

7.2.3 JT B-Rep Segment 

JT B-Rep Segment contains an Element that defines the precise geometric Boundary Representation data for a particular Part 

in JT B-Rep format.  Note that there is also another Boundary Representation format (i.e. XT B-Rep) supported by the JT file 

format within a different file Segment Type.  Complete description for the XT B-Rep can be found in 7.2.4 XT B-Rep 

Segment. 

JT B-Rep Segments are typically referenced by Part Node Elements (see 7.2.1.1.1.5Part Node Element) using Late Loaded 

Property Atom Elements (see 0Second specifies the date Second value.  Valid values are [0, 59] inclusive. 

Late Loaded Property Atom Element Late Loaded Property Atom Element).  The JT B-Rep Segment type supports ZLIB 

compression on all element data, so all elements in JT B-Rep Segment use the Logical Element Header ZLIB form of 

element header data. 

Figure 101: JT B-Rep Segment data collection 

 

Complete description for Segment Header can be found in 7.1.3.1Segment Header. 

7.2.3.1 JT B-Rep Element 

Object Type ID: 0x873a70c0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

JT B-Rep Element represents a particular Part‟s precise data in JT boundary representation format. Much of the 

“heavyweight” data contained within a JT B-Rep Element is compressed and/or encoded.  The compression and/or encoding 

state is indicated through other data stored in each JT B-Rep Element. 

Two important aspects of a Part are its geometry and its topology.  The geometry describes the shape of a Part: this Surface is 

a plane, that Surface is a cylinder, this Curve is an arc, etc.  The topology describes the connectivity of the Part: this Point is 

inside the Part, these Surfaces are next to each other, etc.  The 0, 1, and 2 dimensional building blocks of geometry are 

Points, Curves, and Surfaces.  The corresponding topological building blocks are Vertices, Edges, and Faces.  Topology also 

uses Shells and Regions to conceptually divide up the three dimensional space. 

Parts may have the same topology, but wildly different geometry.  Imagine the Surfaces of a Part being composed of rubber.  

The topology of the Part does not change as we deform the Part by bending or stretching the surfaces, as long as we do not 

cut or glue them (we call this a “nice” deformation).  A Part‟s topology can be classified as being “manifold” or “non-

Segment Header 

JT B-Rep Element 
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manifold”; where “manifold” implies that the Part has the property that each Edge, excluding seams and poles, has exactly 

two faces using it. 

Similarly, Parts may have nearly identical geometry but different topology.  The topology of a Part depends on how the 

geometry is put together.  A Part may be manifold or non-manifold simply depending on how the geometry is put together.  

In addition to describing connectivity in space, topology is used to describe areas of interest (active areas) on Surfaces.  

These active Surface areas are used in defining a complex Part.  The areas are specified by oriented Loops and often referred 

to as trimmed Surfaces which are exactly the 2-dimensional topological building block called a Face. 

Readers desiring/needing a more in-depth exploration of boundary representation theory in order to understand the 

significance/meaning of some of the JT B-Rep data fields are referred to references [10], [11] and [12] listed in 3 References 

and Additional Information section of this document. 

Since the topology is a convenient way to describe or organize the Part, it is also convenient to store the geometry of the Part 

in the topological structures.  The following sub-sections document the JT B-Rep format for storing the topology and 

geometry of a Part in a JT file. 
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Figure 102: JT B-Rep Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

I16 : Version Number 

Version Number is the version identifier for this JT B-Rep Element.  Only version number 0x0001 is currently defined. 

I16 : Version Number 

U32 : Reserved Field 

Topological Entity Counts 

Geometric Entity Counts 

Topology Data 

Region Count > 0  

Geometric Data 

Topological Entity Tag Counters 

Version Number > 4  

U32 : CAD Tags Flag 

CAD Tags Flag = = 1  

B-Rep CAD Tag Data 

Logical Element Header ZLIB 

CoordF64 : Reserved Field 

F64 : Reserved Field 
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U32 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion. 

CoordF64 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion. 

F64 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion. 

U32 : CAD Tags Flag 

CAD Tags Flag is a flag indicating whether CAD Tag data exist for the JT B-Rep. 

7.2.3.1.1 Topological Entity Counts 

Topological Entity Counts data collection defines the counts for each of the various topological entities within a B-Rep. 

Figure 103: Topological Entity Counts data collection 

 

I32 : Region Count 

Region Count indicates the number of topological region entities in the B-Rep. 

I32 : Shell Count 

Shell Count indicates the number of topological shell entities in the B-Rep 

I32 : Face Count 

Face Count indicates the number of topological face entities in the B-Rep 

I32 : Region Count 

I32 : Shell Count 

I32 : Face Count 

I32 : Loop Count 

I32 : CoEdge Count 

I32 : Edge Count 

I32 : Vertex Count 
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I32 : Loop Count 

Loop Count indicates the number of topological loop entities in the B-Rep 

I32 : CoEdge Count 

CoEdge Count indicates the number of topological coedge entities in the B-Rep 

I32 : Edge Count 

Edge Count indicates the number of topological edge entities in the B-Rep 

I32 : Vertex Count 

Vertex Count indicates the number of topological vertex entities in the B-Rep 

7.2.3.1.2 Geometric Entity Counts 

Geometric Entity Counts data collection defines the counts for each of the various geometric entities within a B-Rep. 

Figure 104: Geometric Entity Counts data collection 

 

I32 : Surface Count 

Surface Count indicates the number of distinct geometric surface entities in the B-Rep 

I32 : PCS Curve Count 

PCS Curve Count indicates the number of distinct geometric Parameter Coordinate Space curves (i.e. UV curve) entities in 

the B-Rep 

I32 : MCS Curve Count 

MCS Curve Count indicates the number of distinct geometric (Model Coordinate Space) curves (i.e. XYZ curve) entities in 

the B-Rep. 

I32 : Point Count 

Point Count indicates the number of distinct geometric point entities in the B-Rep. 

I32 : Surface Count 

I32 : PCS Curve Count 

I32 : MCS Curve Count 

I32 : Point Count 
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7.2.3.1.3 Topology Data 

Figure 105: Topology Data collection 

 

7.2.3.1.3.1 Regions Topology Data 

Regions Topology Data defines the set of non-overlapping Shells comprising each Region.  The volume of a Region is that 

volume lying inside each “anti-hole Shell” and outside each simply-contained “hole Shell” belonging to the particular 

Region.  A Region is analogous to a dimensionally elevated face where Region corresponds to Face and Shell corresponds to 

Trim Loop.   

Regions Topology Data 

Shells Topology Data 

Shell Count > 0  

Faces Topology Data 

Face Count > 0  

Loops Topology Data 

Loop Count > 0  

CoEdges Topology Data 

CoEdge Count > 0  

Edges Topology Data 

Edge Count > 0  

Vertices Topology Data 

Vertex Count > 0  
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Each Region‟s defining Shells are identified in a list of Shells by an index for both the first Shell and the last Shell in each 

Region (i.e. all Shells inclusive between the specified first and last Shell list index define the particular Region). 

Figure 106: Regions Topology Data collection 

 

VecI32{Int32CDP, Lag1} : First Shell Indices 

First Shell Indices is a vector of indices representing the index of the first Shell in each Region.  First Shell Indices uses the 

Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : Last Shell Indices 

Last Shell Indices is a vector of indices representing the index of the last Shell in each Region.  Last Shell Indices uses the 

Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : Region Tags 

Each Region has an identifier tag. Region Tags is a vector of identifier tags for a set of Regions.  Region Tags uses the Int32 

version of the CODEC to compress and encode data. 

7.2.3.1.3.2 Shells Topology Data 

Shells Topology Data defines the set of topological adjacent Faces making up each Shell.  A Shell‟s set of topological 

adjacent Faces define a single (usually closed) two manifold solid that in turn defines the boundary between the finite volume 

of space enclosed within the Shell and the infinite volume of space outside the Shell.  Additional, each Shell has a flag that 

denotes whether the Shell refers to the finite interior volume (i.e. a “hole Shell”) or the infinite exterior volume (i.e. an “anti-

hole Shell”). 

Each Shell‟s defining Faces are identified in a list of Faces by an index for both the first Face and the last Face in each Shell 

(i.e. all Faces inclusive between the specified first and last Face list index define the particular Shell). 

VecI32{Int32CDP, Lag1} : First Shell Indices 

 

VecI32{Int32CDP, Lag1} : Last Shell Indices 

VecI32{Int32CDP, Lag1} : Region Tags 
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Figure 107: Shells Topology Data collection 

 

VecI32{Int32CDP, Lag1} : First Face Indices 

First Face Indices is a vector of indices representing the index of the first Face in each Shell.  First Face Indices uses the 

Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : Last Face Indices 

Last Face Indices is a vector of indices representing the index of the last Face in each Shell.  Last Face Indices uses the Int32 

version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : Shell Tags 

Each Shell has an identifier tag. Shell Tags is a vector of identifier tags for a set of Shells.  Shell Tags uses the Int32 version 

of the CODEC to compress and encode data. 

VecI32{Int32CDP, Xor1} : Shell Anti-Hole Flags 

Each Shell has a flag identifying whether the Shell is an anti-hole Shell. Shell Anti-Hole Flags is a vector of anti-hole flags 

for a set of Shells.  

In an uncompressed/decoded form the flag values have the following meaning: 

 

= 0 Shell is not an anti-hole Shell 

= 1 Shell is an anti-hole Shell 

Shell Anti-Hole Flags uses the Int32 version of the CODEC to compress and encode data. 

7.2.3.1.3.3 Faces Topology Data 

A Face is a two-dimensional topological building block defined as the active (that portion to be used in the model) 

regions/areas of a Geometric Surface; where active regions/areas of a Geometric Surface are indicated using oriented Trim 

Loops.  Faces Topology Data specifies the underlying Geometric Surface and Trim Loops making up each Face along with a 

“reverse normal” flag and identifier tag for each Face.    

A Face must be trimmed with at least one “anti-hole” Trim Loop and zero or more “hole” Trim Loops.  Thus the area of the 

Geometric Surface defined as the Face, is the area inside the “anti-hole” Trim Loops and outside each “hole” Trim Loop.  No 

Trim Loops (“hole‟ or “anti-hole”) may intersect/cross or be tangent at any point.  “Anti-Hole” Trim Loops must be defined 

with a counter-clockwise orientation in the underlying surface's parameter space whereas “hole” Trim Loops must be defined 

with a clockwise orientation.  With this Trim Loop orientation definition, as one traverses a Trim Loop of a Face, the material 

or “active region” is always to one‟s left.  Figure 108 gives an example in parameter space of proper trim loop definition and 

orientation (as indicated by the arrows on the loop‟s CoEdges) for a face with two holes.  “L1” represents the face “anti-hole” 

VecI32{Int32CDP, Lag1} : First Face Indices 

VecI32{Int32CDP, Lag1} : Last Face Indices 

VecI32{Int32CDP, Lag1} : Shell Tags 

VecI32{Int32CDP, Xor1} : Shell Anti-Hole Flags 
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Trim Loop while “L2” and L3” represent the two “hole” Trim Loops.  Note that each hole is always represented by a separate 

distinct “hole” Trim Loop. 

Figure 108: Trim Loop example in parameter Space - One Face with 2 Holes 

 

Each Face‟s underlying Geometric Surface is identified by an index into a list of Geometric Surfaces.  Each Face‟s defining 

Trim Loops are identified in a list of trim Loops by an index for both the first Trim Loop and the last Trim Loop in each Face 

(i.e. all Trim Loops inclusive between the specified first and last Trim Loop list index define the particular Face). 

Figure 109: Faces Topology Data collection 

 

VecI32{Int32CDP, Lag1} : First Trim Loop Indices 

VecI32{Int32CDP, Lag1} : Last Trim Loop Indices 

VecI32{Int32CDP, Lag1} : Surface Indices 

VecI32{Int32CDP, Lag1} : Face Tags 

VecI32{Int32CDP, Xor1} : Face Reverse Normal Flags 
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VecI32{Int32CDP, Lag1} : First Trim Loop Indices 

First Trim Loop Indices is a vector of indices representing the index of the first Trim Loop in each Face.  First Trim Loop 

Indices uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : Last Trim Loop Indices 

Last Trim Loop Indices is a vector of indices representing the index of the last Trim Loop in each Face.  Last Trim Loop 

Indices uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : Surface Indices 

Surface Indices is a vector of indices representing the index of the underlying Geometric Surface for each Face. Surface 

Indices uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : Face Tags 

Each Face has an identifier tag. Face Tags is a vector of identifier tags for a set of Faces.  Face Tags uses the Int32 version of 

the CODEC to compress and encode data. 

VecI32{Int32CDP, Xor1} : Face Reverse Normal Flags 

Each Face has a flag identifying whether the Face‟s normal(s) should be interpreted to point in the direction opposite of the 

usual U cross V normal (note that these flags do not imply any sort of parameter reversal, the flag only implies that the 

material is on the other side of the surface). 

Face Reverse Normal Flags is a vector of reverse-normal flags for a set of Faces.  

In an uncompressed/decoded form the flag values have the following meaning: 

 

= 0 Face normal is not reversed 

= 1 Face normal is reversed. 

Face Reverse Normal Flags uses the Int32 version of the CODEC to compress and encode data. 

7.2.3.1.3.4 Loops Topology Data 

A Loop (often called Trimming Loop) defines in parameter space a 1D boundary around which geometric surfaces are 

trimmed to form a Face.  Loops Topology Data specifies the CoEdges making up each Loop along with an anti-hole flag and 

identifier tag for each Loop. 

A Loop is composed of one or more CoEdges and the Loop must be closed and non-self-intersecting. 

Each Loop‟s defining CoEdges are identified in a list of CoEdges by an index for both the first CoEdge and the last CoEdge 

in each Loop (i.e. all CoEdges inclusive between the specified first and last CoEdge list index define the particular Loop). 
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Figure 110: Loops Topology Data collection 

 

VecI32{Int32CDP, Lag1} : First CoEdge Indices 

First CoEdge Indices is a vector of indices representing the index of the first CoEdge in each Loop.  First CoEdge Indices 

uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : Last CoEdge Indices 

Last CoEdge Indices is a vector of indices representing the index of the last CoEdge in each Loop.  Last CoEdge Indices uses 

the Int32 version of the CODEC to compress and encode data. 

VecI32{I32CDP, Lag1} : Loop Tags 

Each Loop has an identifier tag. Loop Tags is a vector of identifier tags for a set of Loops.  Loop Tags uses the Int32 version 

of the CODEC to compress and encode data. 

VecI32{I32CDP, Xor1} : Anti-Hole Flags 

Each Loop has a flag identifying whether the Loop is an anti-hole Loop. Anti-Hole Flags is a vector of anti-hole flags for a 

set of Loops 

In an uncompressed/decoded form the flag values have the following meaning: 

 

= 0 Loop is not an anti-hole Loop 

= 1 Loop is an anti-hole Loop 

Anti-Hole Flags uses the Int32 version of the CODEC to compress and encode data. 

7.2.3.1.3.5 CoEdges Topology Data 

A CoEdge defines a parameter space edge trim Loop segment (i.e. the projection of an Edge into the parameter space of the 

Face). CoEdges Topology Data specifies the underlying Edge and PCS Curve making up each CoEdge along with a MCS 

curve reversed flag and tag for each CoEdge. 

The “Co” portion of the CoEdge name derives from the manifold topology definition that each Edge has exactly two Faces 

containing it; thus a CoEdge defines one Face‟s “use” of an Edge and the adjoining Face also has a CoEdge (“edge use” in 

some other terminologies) for the same underlying Edge.  This sharing of the same underlying Edge by two adjoining Faces 

requires an “MCS Curve Reversed Flag” on each CoEdge to indicate the edge traversal direction (i.e. for a proper manifold 

topology definition each CoEdge must traverse the Edge in opposite directions).  

VecI32{Int32CDP, Lag1} : First CoEdge Indices 

VecI32{Int32CDP, Lag1} : Last CoEdge Indices 

VecI32{I32CDP, Lag1} : Loop Tags 

VecI32{I32CDP, Xor1} : Anti-Hole Flags 
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Figure 111: CoEdges Topology Data collection 

 

VecI32{Int32CDP, Lag1} : Edge Indices 

Edge Indices is a vector of indices representing the index of the underlying Edge for each CoEdge.  Edge Indices uses the 

Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : PCS Curve Indices 

PCS Curve Indices is a vector of indices representing the index of the PCS Curve (UV Curve) for each CoEdge.  PCS Curve 

Indices uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : CoEdge Tags 

Each CoEdge has an identifier tag. CoEdge Tags is a vector of identifier tags for a set of CoEdges.  CoEdge Tags uses the 

Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Xor1} : MCS Curve Reversed Flags 

Each CoEdge has a flag indicating whether the directional sense of the associated Edge‟s MCS curve should be interpreted as 

opposite the direction its parameterization implies.  MCS Curve Reversed Flags is a vector of reverse flags for a set of 

CoEdges.  

In an uncompressed/decoded form the flag values have the following meaning: 

 

= 0 Directional sense of associated edges MCS curve should not be interpreted as opposite the 

direction its parameterization implies. 

= 1 Directional sense of associated edges MCS curve should be interpreted as opposite the 

direction its parameterization implies. 

MCS Curve Reversed Flags uses the Int32 version of the CODEC to compress and encode data. 

7.2.3.1.3.6 Edges Topology Data 

An Edge defines a model space trim Loop segment.  Edges Topology Data specifies the underlying MCS Curve and start and 

end Vertex making up each Edge along with an identification tag for each Edge. 

If manifold topology, then two faces join at a single model Edge and thus an edge is shared/referenced by two CoEdges (one 

per Face). 

VecI32{Int32CDP, Lag1} : Edge Indices 

VecI32{Int32CDP, Lag1} : PCS Curve Indices 

VecI32{Int32CDP, Lag1} : CoEdge Tags 

VecI32{Int32CDP, Xor1} : MCS Curve Reversed Flags 
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Figure 112: Edges Topology Data collection 

 

VecI32{Int32CDP, Lag1} : Start Vertex Indices 

Start Vertex Indices is a vector of indices representing the index of the start Vertex in each Edge.  Start Vertex Indices uses 

the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : End Vertex Indices 

End Vertex Indices is a vector of indices representing the index of the end Vertex in each Edge.  End Vertex Indices uses the 

Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : MCS Curve Indices 

MCS Curve Indices is a vector of indices representing the index of the MCS Curve (Model Space curve) for each Edge. MCS 

Curve Indices uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : Edge Tags 

Each Edge has an identifier Tag. Edge Tags is a vector of identifier Tags for a set of Edges. Edge Tags uses the Int32 version 

of the CODEC to compress and encode data. 

7.2.3.1.3.7 Vertices Topology Data 

A Vertex is the simplest topological entity and is basically made up of a geometric Point.  Vertices Topology Data specifies 

the underlying geometric Point making up each Vertex along with an identification tag for each Vertex.   

The presence of Vertices Topology Data in a JT B-Rep topology definition is optional.  Vertex data is optional because 

unlike most topological entities, no connectivity information is contained in a Vertex structure and Vertex data is also not 

necessary for performing operations such as tessellation or mass properties calculations. 

A Vertex is usually shared/referenced by two or more Edges (e.g. if the corners of four rectangular Faces touches at a 

common point, this point is represented by a Vertex and is shared by four Edges).  

Figure 113: Vertices Topology Data collection 

 

VecI32{Int32CDP, Lag1} : Point Indices 

VecI32{Int32CDP, Lag1} : Vertex Tags 

VecI32{Int32CDP, Lag1} : Start Vertex Indices 

VecI32{Int32CDP, Lag1} : End Vertex Indices 

VecI32{Int32CDP, Lag1} : MCS Curve Indices 

VecI32{Int32CDP, Lag1} : Edge Tags 
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VecI32{Int32CDP, Lag1} : Point Indices 

Point Indices is a vector of indices representing the index of the geometric point for each Vertex.  Point Indices uses the Int32 

version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : Vertex Tags 

Each Vertex has an identifier Tag. Vertex Tags is a vector of identifier Tags for a set of Vertices. Vertex Tags uses the Int32 

version of the CODEC to compress and encode data. 

7.2.3.1.4 Geometric Data 

Figure 114: Geometric Data collection 

 

7.2.3.1.4.1 Surfaces Geometric Data 

Surfaces Geometric Data collection contains the JT B-Rep‟s geometric Surface data.  Currently only NURBS Surface types 

are supported within a JT B-Rep.  The count/number of Surfaces within a JT B-Rep is indicated by data field Surface Count 

documented in 7.2.3.1.2 Geometric Entity Counts. 

Surfaces Geometric 

Data 

Surface Count > 0  

PCS Curves Geometric 

Data 

PCS Curve Count > 0  

MCS Curves 

Geometric Data 

MCS Curve Count > 0  

Point Geometric Data 

Point Count > 0  
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Figure 115: Surfaces Geometric Data collection 

 

VecI32{Int32CDP, Lag1} : Surface Base Types 

Each Surface is assigned a base type identifier. Surface Base Types is a vector of base type identifiers for each Surface in a 

list of Surfaces.   Currently only NURBS Surface Base Type is supported, but a type identifier is still included in the 

specification to allow for future expansion of the JT Format to support other surface types within a JT B-Rep. 

 In an uncompressed/decoded form the Surface base type identifier values have the following meaning: 

 

= 1 Surface is a NURBS surface 

Non-Trivial Knot Vector 

NURBS Surface Indices 

NURBS Surface Degree 

NURBS Surface Control 

Point Counts 

NURBS Surface Control 

Point Weights 

NURBS Surface Control 

Points 

NURBS Surface Knot 

Vectors 

VecI32{Int32CDP, Lag1} : Surface Base Types 

VecI32{Int32CDP, Lag1} : NURBS Surface Control Point Dimensionality 

VecI32{Int32CDP, Lag1} : NURBS Surface Reserved Fields 
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Surface Base Types uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : NURBS Surface Control Point Dimensionality 

NURBS Surface Control Point Dimensionality is a vector of control point dimensionality values for each NURBS Surface in 

a list of Surfaces (i.e. there is a stored values for each NURBS Surface in the list).   

In an uncompressed/decoded form dimensionality values have the following meaning:  

 

= 3 Non-Rational (each control point has 3 coordinates) 

= 4 Rational (each control point has 4 coordinates) 

NURBS Surface Control Point Dimensionality uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : NURBS Surface Reserved Fields 

NURBS Surface Reserved Fields is a vector of data reserved for future expansion of the  JT format.  Each NURBS Surface in 

a list of Surfaces has one reserved data field entry in this NURBS Surface Reserved Fields vector.  NURBS Surface Reserved 

Fields uses the Int32 version of the CODEC to compress and encode data 

7.2.3.1.4.1.1 Non-Trivial Knot Vector NURBS Surface Indices 

Non-Trivial Knot Vector NURBS Surface Indices data collection specifies for both U and V directions the Surface index 

identifiers (i.e. indices to particular NURBS Surfaces within a list of Surfaces) for all NURBS Surfaces containing non-trivial 

knot vectors.  A description/definition for “non-trivial knot vector” can be found in 8.1.13 Compressed Entity List for Non-

Trivial Knot Vector. 

This Surface index data is stored in a compressed format. 

Figure 116: Non-Trivial Knot Vector NURBS Surface Indices data collection 

 

Both Non-Trivial U Knot Vector Surface Indices and Non-Trivial V Knot Vector Surface Indices have the same data format 

as that documented for data collection 8.1.13 Compressed Entity List for Non-Trivial Knot Vector. 

7.2.3.1.4.1.2 NURBS Surface Degree 

NURBS Surface Degree data collection defines the Surface degree in both U and V directions for each NURBS Surface in a 

list of Surfaces (i.e. there are stored values for each NURBS Surface in the list).  This degree data for the list of Surfaces is 

stored in a compressed format. 

Non-Trivial U Knot 

Vector Surface Indices 

Non-Trivial V Knot 

Vector Surface Indices 
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Figure 117: NURBS Surface Degree data collection 

 

VecI32{Int32CDP, Lag1} : U-Degrees 

U-Degrees is a vector of Surface degree values in U direction for each NURBS Surface in a list of Surfaces.  U-Degrees uses 

the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : V-Degrees 

V -Degrees is a vector of Surface degree values in V direction for each NURBS Surface in a list of Surfaces.  V-Degrees uses 

the Int32 version of the CODEC to compress and encode data. 

7.2.3.1.4.1.3 NURBS Surface Control Point Counts 

NURBS Surface Control Point Counts defines the number of NURBS Surface control points for both U and V directions for 

each NURBS Surface in a list of Surfaces (i.e. there are stored values for each NURBS Surface in the list).  The control point 

count data for the list of Surfaces in stored in a compressed format. 

Figure 118: NURBS Surface Control Point Counts data collection 

 

VecI32{Int32CDP, Lag1} : U-Control Point Counts 

U-Control Point Counts is a vector of control point counts in U direction for each NURBS Surface in a list of Surfaces.  U-

Control Point Counts uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : V-Control Point Counts 

V-Control Point Counts is a vector of control point counts in V direction for each NURBS Surface in a list of Surfaces.  V-

Control Point Counts uses the Int32 version of the CODEC to compress and encode data. 

7.2.3.1.4.1.4 NURBS Surface Control Point Weights 

NURBS Surface Control Point Weights data collection defines the Weight values for a conditional set of Control Points for a 

list of NURBS Surfaces.  The storing of the Weight value for a particular Control Point is conditional, because if NURBS 

Surface Control Point Dimension is “non-rational” or the actual Control Point‟s Weight value is “1”, then no Weight value is 

stored for the Control Point (i.e. Weight value can be inferred to be “1”). 

The NURBS Surface Control Point Weights data is stored in a compressed format.  

VecI32{Int32CDP, Lag1} : U-Control Point Counts 

VecI32{Int32CDP, Lag1} : V-Control Point Counts 

VecI32{Int32CDP, Lag1} : U-Degrees 

VecI32{Int32CDP, Lag1} : V-Degrees 
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Figure 119: NURBS Surface Control Point Weights data collection 

 

Complete description for Compressed Control Point Weights Data can be found in 8.1.14 Compressed Control Point Weights 

Data. 

7.2.3.1.4.1.5 NURBS Surface Control Points 

NURBS Surface Control Points is the compressed and/or encoded representation of the Control Point coordinates for each 

NURBS Surface in a list of Surfaces (i.e. there are stored values for each NURBS Surface in the list).  Note that these are 

non-homogeneous coordinates (i.e. Control Point coordinates have been divided by the corresponding Control Point Weight 

values).    

Figure 120: NURBS Surface Control Points data collection 

 

VecF64{Float64CDP, NULL} : Control Points 

Control Points is a vector of Control Point coordinates for all the NURBS Surfaces in a list of Surfaces.  All the NURBS 

Surfaces Control Point coordinates are cumulated into this single vector in the same order as the Surface appears in the 

Surface list (i.e. Surface-1 U Control Points, Surface-1 V Control Points, Surface-2 U Control Points, Surface-2 V Control 

Points, etc.).  Control Points uses the Float64 version of the CODEC to compress and encode data in a “lossless” manner. 

7.2.3.1.4.1.6 NURBS Surface Knot Vectors 

NURBS Surface Knot Vectors defines the knot vectors for both U and V directions for each NURBS Surface having non-

trivial knot vectors in a list of Surfaces (i.e. there are stored values for each non-trivial knot vector NURBS Surface in the 

list).  The NURBS Surfaces for which knot vectors are stored (i.e. those containing non-trivial knot vectors) are identified in 

data collection Non-Trivial Knot Vector NURBS Surface Indices documented in 7.2.3.1.4.1.1 Non-Trivial Knot Vector 

NURBS Surface Indices. 

The knot vector data for the list of Surfaces is stored in a compressed format. 

Figure 121: NURBS Surface Knot Vectors data collection 

 

VecF64{Float64CDP, NULL} : U Knot Vectors 

U Knot Vectors is a list of knot vector values in U direction for each NURBS Surface having non-trivial knot vectors in a list 

of Surfaces.  All these NURBS Surface U direction non-trivial knot vectors are cumulated into this single list in the same 

order as the Surface appears in the Surface list (i.e. Surface-N Non-Trivial U Knot Vector, Surface-M Non-Trivial U Knot 

Vector, etc.).  U Knot Vectors uses the Float64 version of the CODEC to compress and encode data. 

VecF64{Float64CDP, NULL} : U Knot Vectors 

VecF64{Float64CDP, NULL} : V Knot Vectors 

VecF64{Float64CDP, NULL} : Control Points 

Compressed Control 

Point Weights Data 
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VecF64{Float64CDP, NULL} : V Knot Vectors 

V Knot Vectors is a list of knot vector values in V direction for each NURBS Surface having non-trivial knot vectors in a list 

of Surfaces.  All these NURBS Surface V direction non-trivial knot vectors are cumulated into this single list in the same 

order as the Surface appears in the Surface list (i.e. Surface-N Non-Trivial V Knot Vector, Surface-M Non-Trivial V Knot 

Vector, etc.).  V Knot Vectors uses the Float64 version of the CODEC to compress and encode data. 

7.2.3.1.4.2 PCS Curves Geometric Data 

PCS Curves Geometric Data collection contains the JT B-Rep‟s Parameter Coordinate Space geometric Curve data (i.e. UV 

Curve data).  This geometric PCS Curve data is divided up into two collection types; one data collection for what are 

considered “Trivial” PCS curves and one data collection for compressed/encoded PCS NURBS Curve data.  

“Trivial” PCS Curves are those UV Curves whose definition is such that the actual UV Curve definition can be derived from 

the parametric domain definition by storing a limited amount of descriptive data for each UV curve (i.e. do not have to store 

the complete NURBS UV Curve definition).  

The count/number of PCS Curves within a JT B-Rep is indicated by data field PCS Curve Count documented in 7.2.3.1.2 

Geometric Entity Counts. 

Figure 122: PCS Curves Geometric Data collection 

 

Complete description for Compressed Curve Data can be found in 8.1.15 Compressed Curve Data. 

7.2.3.1.4.2.1 Trivial PCS Curves 

Trivial PCS Curves data collection represents those UV curves whose definition is such (i.e. “trivial” enough) that the actual 

UV curve definition can be derived from the parametric domain definition by storing a limited amount of descriptive data for 

each UV curve (i.e. do not have to store the complete UV curve definition).  These Trivial PCS Curves are grouped into three 

classifications (Trivial Domain Loop, Trivial Box Loop, or Trivial Domain UV Curve) and stored as described in the 

following sub-sections. 

Compressed Curve Data 

Trivial PCS Curves 
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Figure 123: Trivial PCS Curves data collection 

 

I32 : Trivial Domain Loops Exist Flag 

Trivial Domain Loops Exist Flag is a flag indicating whether “trivial” domain loops exist/follow.  A Trivial Domain Loop is 

a Loop that encloses the entire parametric domain. (i.e. all UV Curves of the Loop span the entire length of the Surface 

parametric domain).  Given this criteria a Trivial Domain Loop must always be made up of four Trivial Domain UV curves. 

 

= 0 Trivial Domain Loops do not exist. 

I32 : Trivial Domain Loops Exist Flag 

I32 : Trivial Box Loops Exist Flag 

I32 : Trivial Domain UV Curves Exist Flag 

Trivial Domain Loops Exist Flag = = 1  

Trivial Box Loops Exist Flag = = 1  

Trivial Domain UV Curves Exist Flag = = 1  

VecI32{Int32CDP, Lag1} : Trivial Domain Loop UV Curve Indices 

VecI32{Int32CDP, Lag1} : Trivial Box Loop UV Curve Indices 

VecF64{Float64CDP, NULL} : Trivial Box Loop Corner Coords 

VecI32{Int32CDP, Lag1} : Trivial UV Curve Indices 

VecI32{Int32CDP, Lag1} : Trivial UV Curve Para Domain Side Codes 
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= 1 Trivial Domain Loops exist. 

I32 : Trivial Box Loops Exist Flag 

Trivial Box Loops Exist Flag is a flag indicating whether “trivial” box loops exist/follow.  A trivial Box Loop is a Loop that 

forms a rectangle (i.e. corresponding curve end coordinates of opposite sides of the box are equal).  Given this criteria a 

Trivial Box Loop must always be made up of four UV curves 

 

= 0 Trivial Box Loops do not exist. 

= 1 Trivial Box Loops exist. 

“Equality of corresponding curve end coordinates of opposite sides of the box” is represented graphically as follows: 

 

I32 : Trivial Domain UV Curves Exist Flag 

Trivial Domain UV Curves Exist Flag is a flag indicating whether “trivial” domain UV curves (Loop CoEdges) exist/follow 

that are not part of a Trivial Domain Loop or Trivial Box Loop (i.e. a Loop contains some UV curves that span the entire 

length of the Surface parametric domain but not all the Loop UV curves meet this criteria and thus not captured as part of the 

Trivial Domain Loop data). 

 

= 0 Trivial Domain UV Curves do not exist. 

= 1 Trivial Domain UV Curves exist. 

VecI32{Int32CDP, Lag1} : Trivial Domain Loop UV Curve Indices 

Trivial Domain Loop UV Curve Indices is a vector of all UV curve indices that are part of a Trivial Domain Loop.  Note that 

each Trivial Domain Loop is always  made up of four UV curves (thus four UV curve indices per Loop).  Trivial Domain 

Loop UV Curve Indices uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : Trivial Box Loop UV Curve Indices 

Trivial Box Loop UV Curve Indices is a vector of all UV Curve indices that are part of a Trivial Box Loop.  Note that each 

Trivial Box Loop is always  made up of four UV Curves (thus four UV Curve indices per Loop).  Trivial Box Loop UV 

Curve Indices uses the Int32 version of the CODEC to compress and encode data. 

VecF64{Float64CDP, NULL} : Trivial Box Loop Corner Coords 

Trivial Box Loop Corner Coords is a vector of box corner coordinates for all Trivial Box Loops (i.e. each Box Loop will 

store two box coroner coordinates).  A Box Loop‟s set of “box corner coordinates” are the coordinates of the two min/max 

diagonally opposite corners of the box.  Note that if the Box Loop is a “hole”, then the max and min corners are the other 

ends of the respective box sides that contain the max and min corners.  Trivial Box Loop Corner Coords uses the Float64 

version of the CODEC to compress and encode data. 
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P3 

P4 P5 
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P7 

P0[0] – P5[0] = 0 

P1[0] – P4[0] = 0 

P2[1] – P7[1] = 0 

P3[1] – P6[1] = 0 
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VecI32{Int32CDP, Lag1} : Trivial UV Curve Indices 

Trivial UV Curve Indices is a vector of all Loop UV Curve indices that are not part of a Trivial Domain Loop or Trivial Box 

Loop.  Trivial UV Curve Indices uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : Trivial UV Curve Para Domain Side Codes 

Trivial UV Curve Para Domain Side Codes is a vector containing a “side code” for each Trivial UV Curve indicating which 

parametric domain side the UV Curve lies on.   

In an uncompressed/decoded form the parametric domain side values have the following meaning: 

 

= 0 Bottom side of parametric domain 

= 1 Right side of parametric domain 

= 2 Top side of parametric domain 

= 3 Left side of parametric domain 

Trivial UV Curve Para Domain Side Codes uses the Int32 version of the CODEC to compress and encode data. 

7.2.3.1.4.3 MCS Curves Geometric Data 

MCS Curves Geometric Data collection contains the JT B-Rep‟s Model Coordinate System geometric Curve data (i.e. XYZ 

Curve data).  Currently only NURBS Curve types are supported within a JT B-Rep.  The count/number of MCS Curves 

within a JT B-Rep is indicated by data field MCS Curve Count documented in 7.2.3.1.2 Geometric Entity Counts. 

Figure 124: MCS Curves Geometric Data collection 

 

Complete description for Compressed Curve Data can be found in 8.1.15 Compressed Curve Data. 

7.2.3.1.4.4 Point Geometric Data 

Point Geometric Data collection contains the JT B-Rep‟s geometric Point data.  Each Point is simply represented by a 

CoordF32 for the Point‟s coordinate components.  The count/number of Points within a JT B-Rep is indicated by data field 

Point Count documented in 7.2.3.1.2 Geometric Entity Counts. 

Figure 125: Point Geometric Data collection 

 

CoordF32 : Point Coordinates 

Point Coordinates specifies the XYZ coordinate components for a Point. 

CoordF32 : Point Coordinates 
 Point Count 

Compressed Curve 

Data 
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7.2.3.1.5 Topological Entity Tag Counters 

Topological Entity Tag Counters data collection specifies the next available “unique” tag value for each entity type in a JT B-

Rep.  These are rolling tag counters that are meant to be used for assigning a unique tag when a new entity is added to a JT B-

Rep. 

Figure 126: Topological Entity Tag Counters data collection 

 

I32 : Region Tag Counter 

Region tag Counter specifies the next available “unique‟ tag value for Region entity. 

I32 : Shell Tag Counter 

Shell Tag Counter specifies the next available “unique‟ tag value for Shell entity. 

I32 : Face Tag Counter 

Face Tag Counter specifies the next available “unique‟ tag value for Face entity. 

I32 : Loop Tag Counter 

Loop Tag Counter specifies the next available “unique‟ tag value for Loop entity. 

I32 : CoEdge Tag Counter 

CoEdge Tag Counter specifies the next available “unique‟ tag value for CoEdge entity. 

I32 : Edge Tag Counter 

Edge Tag Counter specifies the next available “unique‟ tag value for Edge entity. 

I32 : Vertex Tag Counter 

Vertex Tag Counter specifies the next available “unique‟ tag value for Vertex entity. 

I32 : Region Tag Counter 

I32 : Shell Tag Counter 

I32 : Face Tag Counter 

I32 : Loop Tag Counter 

I32 : CoEdge Tag Counter 

I32 : Edge Tag Counter 

I32 : Vertex Tag Counter 
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7.2.3.1.6 B-Rep CAD Tag Data 

The B-Rep CAD Tag Data collection contains the list of persistent IDs, as defined in the CAD System, to uniquely identify 

individual Faces and Edges in the JT B-Rep.  The existence of this B-Rep CAD Tag Data collection is dependent upon the 

value of previously read data field CAD Tags Flag as documented in 7.2.3.1 JT B-Rep Element. 

If B-Rep CAD Tag Data collection is present, there will be a CAD Tag for every Face and every Edge in the JT B-Rep and 

the list order will be Face CAD Tags followed by Edge CAD Tags.  Therefore the total number of CAD Tags in the list 

should be equal to “Face Count + Edge Count” as documented in 7.2.3.1.1 Topological Entity Counts. 

Figure 127: B-Rep CAD Tag Data collection 

 

Complete description for Compressed CAD Tag Data can be found in 8.1.16 Compressed CAD Tag Data. 

7.2.4 XT B-Rep Segment 

XT B-Rep Segment contains an Element that defines the precise geometric Boundary Representation data for a particular Part 

in Parasolid boundary representation (XT) format.  Note that there is also another Boundary Representation format (i.e. JT B-

Rep) supported by the JT file format within a different file Segment Type.  Complete description for the JT B-Rep can be 

found in 7.2.3 JT B-Rep Segment. 

XT B-Rep Segments are typically referenced by Part Node Elements (see 7.2.1.1.1.5Part Node Element) using Late Loaded 

Property Atom Elements (see 0Second specifies the date Second value.  Valid values are [0, 59] inclusive. 

Late Loaded Property Atom Element).  The XT B-Rep Segment type supports ZLIB compression on all element data, so all 

elements in XT B-Rep Segment use the Logical Element Header ZLIB form of element header data. 

7.2.4.1 XT B-Rep Element 

Object Type ID: 0x873a70e0, 0x2ac9, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

XT B-Rep Element represents a particular part‟s precise data in Parasolid boundary representations (XT) format. 

Compressed CAD 

Tag Data 
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Figure 128: XT B-Rep Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

I32 : Version Number 

Version Number is the version identifier for this XT B-Rep Element.  Version number “2” is currently the only valid value 

for v9 JT files.  

I32 : Parasolid Kernel Major Version Number 

Parasolid Kernel Major Version Number specifies the major version number for the revision of Parasolid that wrote the XT 

B-Rep data into JT File. 

I32 : Parasolid Kernel Minor Version Number 

Parasolid Kernel Minor Version Number specifies the minor version number for the revision of Parasolid that wrote the XT 

B-Rep data into JT File. 

I32 : Parasolid Kernel Build Number 

Parasolid Kernel Build Number specifies the build number for the revision of Parasolid that wrote the XT B-Rep data into JT 

File. 

I32 : XT B-Rep Data Length 

XT B-Rep Data Length specifies the length in bytes of the XT B-Rep Data collection.  A JT file loader/reader may use this 

information to compute the end position of the XT B-Rep Data within the JT file and thus skip (for whatever reason) reading 

the remaining XT B-Rep Data. 

I32 : Version Number 

I32 : Parasolid Kernel Major Version Number 

I32 : Parasolid Kernel Minor Version Number 

I32 : XT B-Rep Data Length 

XT B-Rep Data 

Logical Element Header ZLIB 

I32 : Parasolid Kernel Build Number 
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7.2.4.1.1 XT B-Rep Data 

The XT B-Rep Data collection specifies the raw stream of bytes that Parasolid uses to represent a Part‟s B-Rep Body(s) in an 

external file.  The XT B-Rep Data collection format in the JT file is exactly equivalent to the Parasolid XT “Neutral Binary” 

encoding format as written by the Parasolid “PK_PART_transmit” interface routine.   

Complete documentation for the Parasolid XT “Neutral Binary” encoding format as written by “PK_PART_transmit” can be 

found in Appendix F: Parasolid XT Format Reference.   

7.2.5 Wireframe Segment 

Wireframe Segment contains an Element that defines the precise 3D wireframe data for a particular Part.  A Wireframe 

Segment is typically referenced by a Part Node Element (see 7.2.1.1.1.5 Part Node Element) using a Second specifies the 

date Second value.  Valid values are [0, 59] inclusive. 

Late Loaded Property Atom Element (see 0 Late Loaded Property Atom Element).  The Wireframe Segment type supports 

ZLIB compression on all element data, so all elements in Wireframe Segment use the Logical Element Header ZLIB form of 

element header data. 

Figure 129: Wireframe Segment data collection 

 

Complete description for Segment Header can be found in 7.1.3.1Segment Header. 

7.2.5.1 Wireframe Rep Element 

Object Type ID: 0x873a70d0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 

A Wireframe Rep Element represents a particular Part‟s precise 3D wireframe data (e.g.  reference curves, section curves).  

Much of the “heavyweight” data contained within a Wireframe Rep Element is compressed and/or encoded.  The 

compression and/or encoding state is indicated through other data stored in each Wireframe Rep Element. 

Segment Header 

Wireframe Rep Element 
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Figure 130: Wireframe Rep Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

I16 : Version Number 

Version Number is the version identifier for this JT Wireframe Rep Element.  Version numbers “1” is currently supported. 

I32 : Edge Count 

I32 : MCS Curve Count 

Edge Count > 0  

MCS Curve Count > 0  

Wireframe MCS 

Curves Geometric Data 

I32 : Edge Tag Counter 

VecI32{Int32CDP2, Lag1} : MCS Curve Indices 

VecI32{Int32CDP2, Lag1} : Edge Tags 

Logical Element Header ZLIB 

Wireframe Rep CAD 

Tag Data  

CAD Tags Flag = = 1 

I16 : Version Number 

 

U32: CAD Tags Flag 
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I32 : Edge Count 

Edge Count indicates the number of topological Edge entities in the Wireframe Rep 

I32 : MCS Curve Count 

MCS Curve Count indicates the number of distinct geometric (Model Coordinate Space) curves (i.e. XYZ curve) entities in 

the Wireframe Rep. 

VecI32{Int32CDP2, Lag1} : MCS Curve Indices 

MCS Curve Indices is a vector of indices representing the index of the MCS Curve (Model Space curve) for each Edge. MCS 

Curve Indices uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP2, Lag1} : Edge Tags 

Each Edge has an identifier Tag. Edge Tags is a vector of identifier Tags for a set of Edges. Edge Tags uses the Int32 version 

of the CODEC to compress and encode data. 

I32 : Edge Tag Counter 

Edge Tag Counter specifies the next available “unique‟ tag value for Edge entity. 

U32: CAD Tags Flag 

CAD Tags Flag is a flag indicating whether CAD Tag data exist for the Wireframe Rep. 

7.2.5.1.1 Wireframe MCS Curves Geometric Data 

Wireframe MCS Curves Geometric Data collection contains the Wireframe Rep‟s Model Coordinate System geometric 

Curve data (i.e. XYZ Curve data).  Currently only NURBS Curve types are supported within a Wireframe Rep.  The 

count/number of MCS Curves within a Wireframe Rep is indicated by data field MCS Curve Count documented in 7.2.5.1 

Wireframe Rep Element. 

Figure 131: Wireframe MCS Curves Geometric Data collection 

 

Complete description for Compressed Curve Data can be found in 8.1.15 Compressed Curve Data. 

7.2.5.1.2 Wireframe Rep CAD Tag Data 

The Wireframe Rep CAD Tag Data collection contains the list of persistent IDs, as defined in the CAD System, to uniquely 

identify individual Edges in the Wireframe Rep.  The existence of this Wireframe Rep CAD Tag Data collection is dependent 

upon the value of previously read data field CAD Tags Flag as documented in 7.2.5.1 Wireframe Rep Element. 

If Wireframe Rep CAD Tag Data collection is present, there will be a CAD Tag for every Edge in the Wireframe Rep.  

Therefore the total number of CAD Tags in the list should be equal to “Edge Count” as documented in 7.2.5.1 Wireframe 

Rep Element. 

Figure 132: Wireframe Rep CAD Tag Data collection 
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Tag Data 

Compressed Curve 

Data 
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Complete description for Compressed CAD Tag Data can be found in 8.1.16 Compressed CAD Tag Data. 

7.2.6 Meta Data Segment 

Meta Data Segments are used to store large collections of meta-data in separate addressable segments of the JT File.  Storing 

meta-data in a separate addressable segment allows references (from within the JT file) to these segments to be constructed 

such that the meta-data can be late-loaded (i.e. JT file reader can be structured to support the “best practice” of delaying the 

loading/reading of the referenced meta-data segment until it is actually needed).   

Meta Data Segments are typically referenced by Part Node Elements (see 7.2.1.1.1.5Part Node Element) using Late Loaded 

Property Atom Elements (see 0 Late Loaded Property Atom ElementSecond specifies the date Second value.  Valid values 

are [0, 59] inclusive. 

Late Loaded Property Atom Element). 

The Meta Data Segment type supports ZLIB compression on all element data, so all elements in Meta Data Segment use the 

Logical Element Header ZLIB form of element header data. 

Figure 133: Meta Data Segment data collection 

 

Complete description for Segment Header can be found in 7.1.3.1 Segment Header. 

The following sub-sections document the various I32 : Texture Coord Channel types. 

7.2.6.1 Property Proxy Meta Data Element 

Object Type ID: 0xce357247, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1 

A Property Proxy Meta Data Element  serves as a “proxy” for all meta-data properties associated with a particular Meta Data 

Node Element (see 7.2.1.1.1.6 Meta Data Node Element).  The proxy is in the form of a list of key/value property pairs where 

the key identifies the type and meaning of the value.  Although the property key is always in the form of a String data type, 

the value can be one of several data types. 

Segment Header 

Meta Data Element 
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Figure 134: Property Proxy Meta Data Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

I16: Version Number 

Version Number is the version identifier for this data collection.  Version number “0x0001” is currently the only valid value. 

Logical Element Header ZLIB 

MbString : Property Key 

U8 : Property Value Type 

If Property Key string is not 

empty (i.e. NULL). 

MbString : String Property Value 

Property Value Type = = 1 

I32 : Integer Property Value 

Property Value Type = = 2 

F32 : Float Property Value 

Property Value Type = = 3 

Property Value Type = = 4 

Date Property Value 

while Property Key 

string is not empty 

(i.e. NULL). 

I16: Version Number 
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MbString : Property Key 

Property Key specifies the key string for the property. 

U8 : Property Value Type 

Property Value Type specifies the data type for the Property Value.  If the type equals “0” then no Property Value is written. 

Valid types include the following: 

 

= 0 Unknown 

= 1 MbString data type value 

= 2 I32 data type value 

= 3 F32 data type value 

= 4 Date value 

MbString : String Property Value 

String Property Value represents the property value when Property Value Type = = 1. 

I32 : Integer Property Value 

Integer Property Value represents the property value when Property Value Type = = 2. 

F32 : Float Property Value 

Float Property Value represents the property value when Property Value Type = = 3. 

7.2.6.1.1 Date Property Value 

Date Property Value represents the property value when Property Value Type = = 4.  Date Property Value data collection 

represents a date as a combination of year, month, day, hour, minute, and second data fields. 
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Figure 135: Date Property Value data collection 

 

I16 : Year 

Year specifies the date year value. 

I16 : Month 

Month specifies the date month value. 

I16 : Day 

Day specifies the date day value. 

I16 : Hour 

Hour specifies the date hour value. 

I16 : Minute 

Minute specifies the date minute value. 

I16 : Second 

Second specifies the date Second value. 

7.2.6.2 PMI Manager Meta Data Element 

Object Type ID: 0xce357249, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1 

The PMI Manager Meta Data Element data collection is a type of I32 : Texture Coord Channel which contains the Product 

and Manufacturing Information for a part/assembly.  

I16 : Year 

I16 : Month 

I16 : Day 

I16 : Hour 

I16 : Minute 

I16 : Second 
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Figure 136: PMI Manager Meta Data Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

 

I16: Version Number 

I16 : Reserved Field 

I16: Version Number 

Version Number is the 

version identifier for 

this PMI Manager  

Element.  Version 

numbers 0x0001 and 

0x0002 are currently 
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I16 : PMI 
Version 
Number 

Version Number is the 
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the PMI.  There are 

several PMI versions 
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for JT File format 8.1.  

This is because if an 
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to JT File Format 8.1, 
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I16: Version Number 

Version Number is the version identifier for this PMI Manager  Element.  Version numbers 0x0001 and 0x0002 are currently 

supported.  

I16 : PMI Version Number 

Version Number is the version identifier for the PMI.  There are several PMI versions that must be supported for JT File 

format 8.1.  This is because if an older JT File format containing PMI is read and then re-exported to JT File Format 8.1, the 

exported PMI data must be maintained in the version format originally read from the initial JT file (i.e. PMI data read from a 

JT File is not migrated to new version format when re-exported to another JT File format). 

The valid PMI version numbers are as follows: 

= 3 Version-3 

= 4 Version-4 

= 5 Version-5 

= 6 Version-6 

= 7 Version-7 

= 8 Version-8 

I16 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion. 

U32 : CAD Tags Flag 

CAD Tags Flag is a flag indicating whether CAD Tag data exist for the PMI. 

I32: MV Property Count  

Number of ModelViews in the PMI segment.  

I32: Font Count  

Number of sets of glyph definitions. Each set of glyphs represents a single font definition that consists of a name, a character 

set and polygonal glyph definition for each character in the set.  

String: Font Name  

Font name specifies a representative name for the font set.  

VecI32: Character Set 

Integer identifiers for each character whose symbol is defined in the ensuing PolygonData segment.   
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7.2.6.2.1 PMI Entities 

Figure 137: PMI Entities data collection 

 

7.2.6.2.1.1 PMI Dimension Entities 

The PMI Dimension Entities data collection defines data for a list of Dimensions.   

Figure 138: PMI Dimension Entities data collection 

 

I32 : Dimension Count 

Dimension Count specifies the number of Dimension entities. 

 

I32 : Dimension Count 

Dimension 
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PMI 2D Data 

PMI Dimension Entities 
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PMI Datum Target Entities 
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7.2.6.2.1.1.1 PMI 2D Data 

The PMI 2D Data collection defines a data format common to all 2D based PMI entities. 

Figure 139: PMI 2D Data collection 

 

I32 : Text Entity Count 

Text Entity Count specifies the number of Text entities in the particular PMI entity. 

7.2.6.2.1.1.1.1 PMI Base Data 

The PMI Base Data collection defines the basic/common data that every 2D and 3D PMI entity contains 

I32 : Text Entity Count 

PMI Base Data 

Text Entity 

Count 

2D Text Data 

Non-Text Polyline Data 
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Figure 140: PMI Base Data collection 

 

I32 : User Label 

User Label specifies the particular PMI entity identifier. 

U8 : 2D-Frame Flag 

2D-Frame Flag is a flag specifying whether 7.2.6.2.1.1.1.1.1 2D-Reference Frame data is stored.  If 2D-Frame Flag has a 

non-zero value then 2D-Reference Frame data is included.  If 2D-Frame Flag has a value of “2”, then dummy (i.e. all zeros) 

2D-Reference Frame data is written.  The “2D-Frame Flag = = 2” case is used by 7.2.6.2.6 Generic PMI Entities because for 

Generic PMI Entities all the 7.2.6.2.1.1.1.3 Non-Text Polyline Data is already in 3D form (i.e. XYZ coordinate data). 

F32 : Text Height 

Text Height specifies the PMI text height in WCS. 

U8 : Symbol Valid Flag 

Symbol Valid Flag is a flag specifying whether the particular PMI entity is valid.  If Symbol Valid Flag has a non-zero value 

then PMI entity is valid.  This flag is only stored if the Version Number as defined in 7.2.6.2PMI Manager Meta Data 

Element is greater than “4.”   

7.2.6.2.1.1.1.1.1 2D-Reference Frame 

The 2D-Reference Frame data collection defines a reference frame (2D coordinate system) where the PMI entity is displayed 

in 3D space.  All the PMI entity‟s 2D and 3D polyline data is assumed to lie on the defined plane. 

I32 : User Label 

2D-Reference Frame 

U8 : 2D-Frame Flag 

2D-Frame Flag != 0 

F32 : Text Height 

PMI Version Number > 4 

U8 : Symbol Valid Flag 
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Figure 141: 2D-Reference Frame data collection 

 

CoordF32 : Origin 

Origin defines the origin (min-corner) of the 2D coordinate system 

CoordF32 : X-Axis Point 

X-Axis Point defines a point along the X-Axis of the 2D coordinate system. 

CoordF32 : Y-Axis Point 

Y-Axis Point defines a point along the Y-Axis of the 2D coordinate system. 

7.2.6.2.1.1.1.2 2D Text Data  

The 2D Text Data collection defines a 2D text entity/primitive. 

Figure 142: 2D Text Data collection 

 

I32 : String ID 

String ID specifies the identifier for the character string. This identifier is an index to a particular character string in the PMI 

String Table as defined in 7.2.6.2.4 PMI String Table.  An identifier value of “-1” indicates no string. 

I32 : String ID 

I32 : Font 

I32 : Reserved Field 

F32 : Reserved Field 

Text Box 

Text Polyline Data 

CoordF32 : Origin 

CoordF32 : X-Axis Point 

CoordF32 : Y-Axis Point 
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I32 : Font 

Font identifies the font to be used for this text.  Valid values include the following: 

 

= 1 Simplex 

= 2 Din 

= 3 Military 

= 4 ISO 

= 5 Lightline 

= 6 IGES 1001 

= 7 Century 

= 8 IGES 1002 

= 9 IGES 1003 

= 101 Japanese JISX 0208 coded character set 

= 102 Japanese Extended Unix Codes JISX 0208 coded character set 

= 103 Chinese GB 2312.1980 Simplified coded character set 

= 104 Korean KSC 5601 coded character set 

= 105 Chinese Big5 Traditional coded character set 

I32 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion. 

F32 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion. 

7.2.6.2.1.1.1.2.1 Text Box 

The Text Box data collection specifies a 2D box that particular text fits within.  All values are with respect to 2D-Reference 

Frame documented in 7.2.6.2.1.1.1.1.1 2D-Reference Frame.  
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Figure 143: Text Box data collection 

 

F32 : Origin X-Coord 

Origin X-Coord defines the 2D X-coordinate of the text origin with respect to 2D-Reference Frame. 

F32 : Origin Y Coord 

Origin Y-Coord defines the 2D Y-coordinate of the text origin with respect to 2D-Reference Frame. 

F32 : Lower Right Corner X-Coord 

Lower Right Corner X-Coord defines the 2D X-coordinate of the lower right corner of the text with respect to 2D-Reference 

Frame. 

F32 : Lower Right Corner Y-Coord 

Lower Right Corner Y-Coord defines the 2D Y-coordinate of the lower right corner of the text with respect to 2D-Reference 

Frame. 

F32 : Upper Left Corner X-Coord 

Upper Left Corner X-Coord defines the 2D X-coordinate of the upper left corner of the text with respect to 2D-Reference 

Frame. 

F32 : Upper Left Corner Y Coord  

Upper Left Corner Y-Coord defines the 2D Y-coordinate of the upper left corner of the text with respect to 2D-Reference 

Frame. 

7.2.6.2.1.1.1.2.2 Text Polyline Data 

The Text Polyline Data collection defines any polyline segments which are part of the text representation.  This existence of 

this polyline data is conditional (i.e. not all text has it) and is made up of an array of indices into an array of polyline 

segments packed as 2D vertex coordinates, specifying where each polyline segment begins and ends.   Polylines are 

constructed from these arrays of data as follows: 

 

F32 : Origin X-Coord 

F32 : Origin Y Coord 

F32 : Lower Right Corner X-Coord 

F32 : Lower Right Corner Y-Coord 

F32 : Upper Left Corner X-Coord 

F32 : Upper Left Corner Y Coord  
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Figure 144: Constructing Text Polylines from data arrays 

 

 This data is represented in JT file in the following format: 

Figure 145: Text Polyline Data collection 

 

I32 : Polyline Segment Index Count 

Polyline Segment Index Count specifies the number of polyline segment indices. 

I16 : Polyline Segment Index 

Polyline Segment Index is an index into the Polyline Vertex Coords array specifying where polyline segment begins or ends.  

This index is a vertex coordinate index so the absolute index into the Polyline Vertex Coords array is computed by 

multiplying the index value by “2” (i.e. for 2D coordinates). 

I32 : Polyline Segment Index Count 

Polyline Segment Index Count > 0 

I16 : Polyline Segment Index 
Polyline Segment 

Index Count 

VecF32 : Polyline Vertex Coords 

0 

2 

6 

10 

 

Array of Indices Array of Polyline Segments 

(packed as 2D coords) 

80.609 

5.42 

65.08 

5.42 

65.61 

5.42 

72.84 

6.62 

72.84 

4.21 

65.61 

5.42 

80.60 

5.42 

73.37 

4.21 

73.37 

6.62 

80.60 

5.42 

 

Polyline 1 Vertices 

Polyline 2 Vertices 

Polyline 3 Vertices 

X, Y Vertex 1 

X, Y Vertex 2 

X, Y Vertex 3 

. 

. 

. 
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VecF32 : Polyline Vertex Coords 

Polyline Vertex Coords is an array of polyline segments packed as 2D point coordinates.  These 2D point coordinates are 

with respect to the 2D-Reference Frame documented in 7.2.6.2.1.1.1.1.1 2D-Reference Frame. 

7.2.6.2.1.1.1.3 Non-Text Polyline Data 

The Non-Text Polyline Data collection contains all the non-text polylines making up the particular PMI entity.  Examples of 

non-text polylines include line attachments, text boxes, symbol box dividers, etc. The Non-Text Polyline Data collection is 

made up of an array of indices into an array of polyline segments packed as either 2D or 3D vertex coordinates, specifying 

where each polyline segment begins and ends.  Whether vertex coordinates are 2D or 3D is dependent upon the PMI entity 

type using this data collection.  If it is a 7.2.6.2.6 Generic PMI Entities type then the packed coordinate data is 3D; for all 

other PMI entity types the packed coordinate data is 2D.  Also for  Version Number, as defined in 7.2.6.2 PMI Manager Meta 

Data Element, greater than “4” an array of values that sequentially specify the polyline type in the polyline segments array is 

included.   

Figure 146 below shows how Polylines are constructed from these arrays of data for the packed 2D coordinates case.  The 

packed 3D coordinates case is interpreted the same except that the coordinates array includes a Z component and is thus 

packed as “[XYZ][XYZ][XYZ]…” 

Figure 146: Constructing Non-Text Polylines from packed 2D data arrays 

 

This data is represented in the JT format as follows: 

0 

2 

6 

10 

 

Array of Indices Array of Polyline Segments 

(packed as 2D coords) 

80.609 

5.42 

65.08 

5.42 

65.61 

5.42 

72.84 

6.62 

72.84 

4.21 

65.61 

5.42 

80.60 

5.42 

73.37 

4.21 

73.37 

6.62 

80.60 

5.42 

 

Polyline 1 Vertices 

Polyline 2 Vertices 

Polyline 3 Vertices 

X, Y Vertex 1 

X, Y Vertex 2 

X, Y Vertex 3 

. 

. 

. 

Array of Polyline 

Type Values 

2 

0 

4 

1 
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Figure 147: Non-Text Polyline Data collection 

 

I32 : Polyline Segment Index Count 

Polyline Segment Index Count specifies the number of polyline segment indices. 

I16 : Polyline Segment Index 

Polyline Segment Index is an index into the Polyline Vertex Coords array specifying where polyline segment begins or ends.  

This index is a vertex/coordinate index so the absolute index into the Polyline Vertex Coords array is computed by 

multiplying the index value by “2” (i.e. for 2D coordinates). 

I32 : Polyline Type Count 

Polyline Type Count specifies the number of  polyline type values. 

I16 : Polyline Type 

Polyline Type specifies the type of polyline segment in Polyline Vertex Coords array.  See Figure 146: Constructing Non-

Text Polylines from packed 2D data arrays for interpretation of this array of type values relative to the defined polylines.  

Valid values include the following: 

 

= 0 General line 

= 1 General arrow 

= 2 General circle 

= 3 General arc 

= 4 Extended line 1 

= 5 Extended line 2 

= 6 Extended arc 

= 7 Extended circle 

= 8 Text line (used in text boxes and symbol box dividers) 

= 9 Text string 

I32 : Polyline Segment Index Count 

I16 : Polyline Segment Index 
Polyline Segment 

Index Count 

VecF32 : Polyline Vertex Coords 

I32 : Polyline Type Count 

PMI Version Number > 4 

I16 : Polyline Type 
Polyline Type 

Count 
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VecF32 : Polyline Vertex Coords 

Polyline Vertex Coords is an array of polyline segments packed as 2D point coordinates.  These 2D point coordinates are 

with respect to the 2D-Reference Frame documented in 7.2.6.2.1.1.1.1.1 2D-Reference Frame. 

7.2.6.2.1.2 PMI Note Entities 

The PMI Note Entities data collection defines data for a list of Notes.  Notes are used to connect textual information to 

specific Part entities. 

Figure 148: PMI Note Entities data collection 

 

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data. 

I32 : Note Count 

Note Count specifies the number of Note entities. 

U32 : URL Flag 

URL Flag specifies whether Note is an URL. This data field is only present if Version Number, as defined in 7.2.6.2 PMI 

Manager Meta Data Element, is greater than “5”.  The URL is the actual text of the note as specified in PMI 2D Data. 

7.2.6.2.1.3 PMI Datum Feature Symbol Entities 

The PMI Datum Feature Symbol Entities data collection defines data for a list of Datum Feature Symbols. A Datum Feature 

Symbol is a Geometric Dimensioning and Tolerancing (GD&T ) symbol that provides a “label” for a part feature which is 

referenced by a Feature Control Frame.  

I32 : Note Count 

Note 

Count 

PMI 2D Data 

PMI Version Number > 5 

U32 : URL Flag 
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Figure 149: PMI Datum Feature Symbol Entities data collection 

 

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data. 

I32 : DFS Count 

DFS Count specifies the number of Datum Feature Symbol entities. 

7.2.6.2.1.4 PMI Datum Target Entities 

The PMI Datum Target Entities data collection defines data for a list of Datum Targets.  A Datum Target is a Geometric 

Dimensioning and Tolerancing (GD&T ) symbol that specifies a point, a line, or an area on a part to define a “datum” for 

manufacturing and inspection operations. 

Figure 150: PMI Datum Target Entities data collection 

 

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data. 

I32 : Datum Target Count 

Datum Target Count specifies the number of Datum Target entities. 

7.2.6.2.1.5 PMI Feature Control Frame Entities 

The PMI Feature Control Frame Entities data collection defines data for a list of Feature Control Frames.  A Feature Control 

Frame is a Geometric Dimensioning and Tolerancing (GD&T ) symbol used for expressing the geometric characteristics, 

form tolerance, runout or location tolerance, and relationships between the geometric features of a part.  If necessary, Datum 

Feature and/or Datum Target references may be included in the Feature Control Frame symbol. 

I32 : Datum Target Count 

Datum Target 

Count 

PMI 2D Data 

I32 : DFS Count 

 DFS Count 

PMI 2D Data 
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Figure 151: PMI Feature Control Frame Entities data collection 

 

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data. 

I32 : FCF Count 

FCF Count specifies the number of Feature Control Frame entities. 

7.2.6.2.1.6 PMI Line Weld Entities 

The PMI Line Weld Entities data collection defines data for a list of Line Weld symbols.  A Line Weld symbol describes the 

specifications for welding a joint. 

Figure 152: PMI Line Weld Entities data collection 

 

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data. 

I32 : Line Weld Count 

Line Weld Count specifies the number of Line Weld entities. 

7.2.6.2.1.7 PMI Spot Weld Entities 

The PMI Spot Weld Entities data collection defines data for a list of Spot Weld Symbols.  Spot Weld symbols describe the 

specifications for welding sheet metal.   

Several data fields of the PMI Spot Weld Entities data collection are only present if Version Number, as defined in 

7.2.6.2PMI Manager Meta Data Element, is greater than or equal to “4”. 

I32 : Line Weld Count 

Line Weld 

Count 

PMI 2D Data 

I32 : FCF Count 

FCF Count 

PMI 2D Data 
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Figure 153: PMI Spot Weld Entities data collection 

 

I32 : Spot Weld Count 

Spot Weld Count specifies the number of Spot Weld entities. 

CoordF32 : Weld Point 

Weld Point specifies the coordinates of the weld point. 

DirF32 : Approach Direction 

Approach Direction specifies the components of the direction vector from which the weld gun approaches the part. 

DirF32 : Clamping Direction 

Clamping Direction specifies the components of the clamping force direction vector. 

DirF32 : Normal Direction 

Normal Direction specifies the components of the direction vector normal to the actual spot weld. 

7.2.6.2.1.7.1 PMI 3D Data 

The PMI 3D Data collection defines a data format common to all 3D based PMI entities. 

 

Along with the PMI Base Data and String identifier, this data collection also includes non-text polyline data defined by an 

array of indices into an array of polyline segments packed as 2D/3D vertex coordinates, specifying where each polyline 

I32 : Spot Weld Count 

Spot Weld 

Count 

PMI 3D Data 

CoordF32 : Weld Point 

DirF32 : Approach Direction 

DirF32 : Clamping Direction 

DirF32 : Normal Direction 

PMI Version Number >=  4 
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segment begins and ends.  How polylines are constructed from this index array and packed vertex coordinates array is the 

same as that illustrated in Figure 144 of 7.2.6.2.1.1.1.2.2 Text Polyline Data. 

Figure 154: PMI 3D Data collection 

 

Complete description for PMI Base Data can be found in 7.2.6.2.1.1.1.1 PMI Base Data. 

I32 : String ID 

String ID specifies the identifier for the character string.  This identifier is an index to a particular character string in the PMI 

String Table as defined in 7.2.6.2.4 PMI String Table.  An identifier value of “-1” indicates no string. 

I16 : Polyline Dimensionality 

Polyline Dimensionality specifies the dimensionality of the polyline coordinates packed in Polyline Vertex Coords.  Valid 

values include the following: 

 

= 2 Indicates 2-dimensioanl (xyxy…) data packing.. 

= 3 Indicates 3-dimensional (xyzxyz…) data packing. 

I32 : Polyline Segment Index Count 

Polyline Segment Index Count specifies the number of polyline segment indices. 

I16 : Polyline Segment Index 

Polyline Segment Index is an index into the Polyline Vertex Coords array specifying where polyline segment begins or ends.  

This index is a vertex coordinate index so the absolute index into the Polyline Vertex Coords array is computed by 

multiplying the index value by Polyline Dimensionality. 

VecF32 : Polyline Vertex Coords 

Polyline Vertex Coords is an array of polyline segments packed as Polyline Dimensionality point coordinates. 

PMI Base Data 

I32 : String ID 

I16 : Polyline Dimensionality 

I32 : Polyline Segment Index Count 

I16 : Polyline Segment Index 
Polyline Segment 

Index Count 

VecF32 : Polyline Vertex Coords 
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7.2.6.2.1.8 PMI Surface Finish Entities 

The PMI Surface Finish Entities data collection defines data for a list of Surface Finish symbols.  Surface Finish symbols 

indicate surface quality and generally are only specified where finish quality affects function (e.g. bearings, pistons, gears). 

Figure 155: PMI Surface Finish Entities data collection 

 

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data. 

I32 : SF Count 

SF Count specifies the number of Surface Finish symbol entities. 

7.2.6.2.1.9 PMI Measurement Point Entities 

The PMI Measurement Point Entities data collection defines data for a list of Measurement Point symbols. Measurement 

Points are predefined locations (i.e. geometric entities or theoretical, but measurable points, such as surface locations) which 

are measured on manufactured parts to verify the accuracy of the manufacturing process. 

Several data fields of the PMI Measurement Point Entities data collection are only present if Version Number, as defined in 

7.2.6.2PMI Manager Meta Data Element, is greater than or equal to “4”. 

I32 : SF Count 

 SF Count 

PMI 2D Data 
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Figure 156: PMI Measurement Point Entities data collection 

 

Complete description for PMI 3D Data can be found in 7.2.6.2.1.7.1 PMI 3D Data. 

I32 : MP Count 

MP Count specifies the number of Measurement Point entities. 

CoordF32 : Location 

Location specifies the coordinates of the Measurement Point. 

DirF32 : Measurement Direction 

Measurement Direction specifies the components of the direction vector from which a CCM (Coordinate Measuring 

Machine) approaches when taking a measurement. 

DirF32 : Coordinate Direction 

Coordinate Direction specifies the components of the direction vector another Measurement Point on a mating part would 

like to align with a Measurement Point on the first part. 

DirF32 : Normal Direction 

Normal Direction specifies the components of the direction vector normal to the actual Measurement Point. 

 

I32 : MP Count 

 MP Count 

PMI 3D Data 

CoordF32 : Location 

DirF32 : Measurement Direction 

DirF32 : Coordinate Direction 

DirF32 : Normal Direction 

PMI Version Number >=  4 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 184  

7.2.6.2.1.10 PMI Locator Entities 

The PMI Locator Entities data collection defines data for a list of Locator symbols.  Locator symbols are used to accurately 

locate components with respect to each other and the manufacturing tooling. 

Figure 157: PMI Locator Entities data collection 

 

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data. 

I32 : Locator Count 

Locator Count specifies the number of Locator symbol entities. 

7.2.6.2.1.11 PMI Reference Geometry Entities 

The PMI Reference Geometry Entities data collection defines data for a list of Reference Geometry.  Reference Geometry 

can be thought of as user-definable datums, which are positioned relative to the topology of an existing entity. Each reference 

geometry type (point, polyline, polygon) can be implicitly determined by the value of Polyline Segment Index[1] (see 

7.2.6.2.1.7.1 PMI 3D Data) as follows: 

 

Polyline Segment Index[1] Implied Reference Geometry 

Type 

= = 1 Point 

= = 2 Polyline 

> 2 Polygon 

Figure 158: PMI Reference Geometry Entities data collection 

 

Complete description for PMI 3D Data can be found in 7.2.6.2.1.7.1 PMI 3D Data. 

I32 : Reference Geometry Count 

Reference Geometry Count specifies the number of Reference Geometry entities. 

I32 : Reference Geometry Count 

Reference 

Geometry Count 

PMI 3D Data 

I32 : Locator Count 

Locator 

Count 

PMI 2D Data 
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7.2.6.2.1.12 PMI Design Group Entities 

The PMI Design Group Entities data collection defines data for a list of Design Groups.  Design Groups are collections of 

PMI created to organize a model into smaller subsets of information.  This organization is achieved via PMI Associations 

(see 7.2.6.2.2 PMI Associations), where specific PMI entities are associated as “destinations” to a “source” PMI Design 

Group. 

Figure 159: PMI Design Group Entities data collection 

 

I32 : Design Group Count 

Design Group Count specifies the number of Design Group entities. 

I32 : Group Name String ID 

Group Name String ID specifies the identifier for the group name character string.  This identifier is an index to a particular 

character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table.  An identifier value of “-1” indicates no 

string. 

I32 : Attribute Count 

Attribute Count specifies the number of Design Group Attribute data collections 

7.2.6.2.1.12.1 Design Group Attribute 

The Design Group Attribute data collection defines a group property/attribute. 

I32 : Design Group Count 

Design Group 

Count 

I32 : Attribute Count 

PMI Version Number >=  3 

I32 : Group Name String ID 

Attribute 

Count 

Design Group Attribute 
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Figure 160: Design Group Attribute data collection 

 

I32 : Attribute Type 

Attribute Type specifies the attribute type.  Valid types include the following: 

 

= 1 Integer 

= 2 Double 

= 3 String 

I32 : Integer Value 

Integer Value specifies the value for “integer” Attribute Types. 

F64 : Double Value 

Double Value specifies the value for “double” Attribute Types. 

I32 : Attribute Type 

Attribute Type = =  1 

I32 : Integer Value 

Attribute Type = =  2 

F64 : Double Value 

Attribute Type = =  3 

I32 : String Value String ID 

I32 : Label String ID 

I32 : Description String ID 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 187  

I32 : String Value String ID 

String Value String ID specifies the string identifier value for “string” Attribute Types.  This identifier is an index to a 

particular character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table.  An identifier value of “-1” 

indicates no string. 

I32 : Label String ID 

Label String ID specifies the string identifier for the attribute label.  This identifier is an index to a particular character string 

in the PMI String Table as defined in 7.2.6.2.4 PMI String Table.  An identifier value of “-1” indicates no string. 

I32 : Description String ID 

Description String ID specifies the string identifier for the attribute description.  This identifier is an index to a particular 

character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table.  An identifier value of “-1” indicates no 

string. 

7.2.6.2.1.13 PMI Coordinate System Entities 

The PMI Coordinate System Entities data collection defines data for a list of Coordinate Systems.   

Figure 161: PMI Coordinate System Entities data collection 

 

I32 : Coord Sys Count 

Coord Sys Count specifies the number of Coordinate System entities. 

I32 : Name String ID 

Name String ID specifies the string identifier for the Coordinate System name.  This identifier is an index to a particular 

character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table.  An identifier value of “-1” indicates no 

string. 

CoordF32 : Origin 

Origin defines the origin of the coordinate system. 

I32 : Coord Sys Count 

Coord Sys 

Count 

I32 : Name String ID 

CoordF32 : Origin 

CoordF32 : X-Axis Point 

CoordF32 :  Y-Axis Point 
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CoordF32 : X-Axis Point 

X-Axis Point defines a point along the X-Axis of the coordinate system. 

CoordF32 :  Y-Axis Point 

Y-Axis Point defines a point along the Y-Axis of the coordinate system. 

7.2.6.2.2 PMI Associations 

The PMI Associations data collection defines data for a list of associations.  An association defines a link (“relationship”) 

between two PMI, B-Rep, or Wireframe Rep entities where one entity is defined as the “source” and the other entity is 

defined as the “destination”. 

Figure 162: PMI Associations data collection 

 

I32 : Association Count 

Association Count specifies the number of associations. 

I32 : Source Data 

Source Data is a collection of source entity information encoded/packed within a single I32 using the following bit allocation.  

All undocumented bits are reserved. 

 

I32 : Association Count 

Association 

Count 

I32 : Source Data 

I32 : Destination Data 

I32 : Reason Code 

I32 : Source Owning Entity String ID 

I32 : Destination Owning Entity String ID 

PMI Version Number > 5 
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Bits 0 - 23 Source Entity Identifier.  The interpretation of this identifier data is dependent upon the 

value of Bit 31 documented below. 

 

Bits 24 -30 Source Entity PMI or B-Rep type.  Valid types include the following: 

= 0 PMI - Dimension 

= 1 PMI - Note 

= 2 PMI - Datum Feature Symbol 

= 3 PMI - Datum Target 

= 4 PMI - Feature Control Frame 

= 5 PMI - Line Weld 

= 6 PMI - Spot Weld 

= 7 PMI - Measurement Point 

= 8 PMI - Surface Finish 

= 9 PMI - Locator Designator 

= 10 PMI - Reference Geometry 

= 11 PMI - Coordinate System 

= 12 PMI - Design Group 

= 13 PMI - User Attribute 

= 14 B-Rep - Vertex 

= 15 B-Rep - Edge 

= 16 B-Rep - Face 

= 17 PMI - Model View 

= 18 PMI - Generic 

= 19 Wireframe Rep - Edge 

= 20 PMI - Unspecified  type 

= 21 Part Instance 

   

Bit 31 Indirect Identifier Flag 

= 0 – Value in Bits 0-23 is not the actual CAD identifier, instead Bits 0-23 is an index 

into the source type‟s PMI array or index of the edge/face in B-Rep or Wireframe Rep 

for the source entity. 

= 1 – Value in Bits 0-23 is not the actual CAD identifier; instead Bits 0-23 is an index 

into the list of CAD Tags (as documented in 7.2.6.2.7 PMI CAD Tag Data) identifying 

the CAD Tag belonging to the particular source entity. 

I32 : Destination Data 

Destination Data is a collection of destination entity information encoded/packed within a single I32.  The encoding schema 

and interpretation of this data is the same as that documented in Source Data. 

I32 : Reason Code 

Reason Code specifies the “reason” for the association.  Valid Reason Codes include the following: 
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= 0 Association is to the primary entity being dimensioned 

= 1 Association is to the secondary entity being dimensioned 

= 2 Association is to the dimension plane 

= 5 Association is to the entity used to specify the Z-Axis of a coordinate system 

= 10 Association is to an entity "associated" to or "included in" a PMI symbol 

= 11 Association is to an entity used to "attach" a PMI symbol. 

= 12 Association is to first entity used to “attach” a PMI symbol 

= 13 Association is to second entity used to “attach” a PMI symbol 

= 14 Specifying PMI grouping, source is PMI/B-Rep entity and destination is design group. 

= 15 Association is to a weld line entity 

= 16 Association is to a “hot spot” 

= 17 Association is to a child in a PMI stack 

= 72 Association is for PMI miscellaneous relation. 

= 73 Association is for PMI related entity. 

= 98 Association is to show the PMI when associated Model View is selected. Source is the 

PMI, and destination is Model View. 

= 99 Association is to show/select PMI B, if showing/selecting PMI A. Source is PMI A, and 

destination is PMI B.  This is different from an “attached” PMI , where the convention is 

to show the PMI visibly linked to one another. 

= 100 Association is to show all parts except the associated part instance. Source is the part 

instance, and destination is Model View 

I32 : Source Owning Entity String ID 

Source Owning Entity String ID specifies the string identifier for the string which contains the unique CAD identifier of the 

component (part or assembly) that owns the source PMI or B-Rep entity.  This identifier is an index to a particular character 

string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table.  An identifier value of “-1” indicates no string and 

implies that the entity is to be found on the current node„s PMI/B-Rep/Wireframe-Rep segment.  It is valid for the source 

owning entity to be the same as the destination owning entity (i.e. an association between two PMI or B-Rep entities in the 

same part/assembly).  This data field is only present if Version Number, as defined in 7.2.6.2 PMI Manager Meta Data 

Element, is greater than “5”. 

I32 : Destination Owning Entity String ID 

Destination Owning Entity String ID specifies the string identifier for the string which contains the unique CAD identifier of 

the component (part or assembly) that owns the destination PMI or B-Rep entity.  This identifier is an index to a particular 

character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table.  An identifier value of “-1” indicates no 

string and implies that the entity is to be found on the current node„s PMI/B-Rep/Wireframe-Rep segment.  It is valid for the 

source owning entity to be the same as the destination owning entity (i.e. an association between two PMI or B-Rep entities 

in the same part/assembly).  This data field is only present if Version Number, as defined in 7.2.6.2 PMI Manager Meta Data 

Element, is greater than “5”. 

7.2.6.2.3 PMI User Attributes 

The PMI User Attributes collection defines data for a list of user attributes.  PMI User Attributes are used to add attribute 

data to a part/assembly.  Each user attribute is composed of key/value pair of strings. 
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Figure 163: PMI User Attributes data collection 

 

I32 : User Attribute Count 

User Attribute Count specifies the number of user attributes. 

I32 : Key String ID 

Key String ID specifies the string identifier for the user attribute key.  This identifier is an index to a particular character 

string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table.  An identifier value of “-1” indicates no string. 

I32 : Value String ID 

Value String ID specifies the string identifier for the user attribute value.  This identifier is an index to a particular character 

string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table.  An identifier value of “-1” indicates no string. 

7.2.6.2.4 PMI String Table 

The PMI String Table data collection defines data for a list of character strings and serves as a central repository for all 

character strings used by other PMI Entities within the same PMI Manager Meta Data Element.  PMI Entities reference into 

this list/array of character strings to define usage of a particular character string using a simple list/array “index” (i.e. String 

ID). 

Figure 164: PMI String Table data collection 

 

I32 : String Count 

String Count specifies the number of character strings in the string table. 

String : PMI String 

PMI String specifies the character string. 

I32 : String Count 

String Count 

String : PMI String 

I32 : User Attribute Count 

User Attribute 

Count 

I32 : Key String ID 

I32 : Value String ID 
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7.2.6.2.5 PMI Model Views 

The PMI Model Views data collection defines data for a list of Model Views.  A fully annotated part/assembly may contain 

so much PMI information, that it becomes very difficult to interpret the design intent when viewing a 3D Model (with PMI 

visible) of the part/assembly.  Model Views provide a means to capture and organize PMI information about a 3D model so 

that the design intent can be clearly interpreted and communicated to others in later stages of the Product Lifecycle 

Management (PLM) process (e.g. manufacturing, inspection, assembly).  This organization is achieved via PMI Associations 

(see 7.2.6.2.2 PMI Associations), where specific PMI entities are associated as “destinations” to a “source” PMI Model 

View.  

Figure 165: PMI Model Views data collection 

 

I32 : Model View Count 

Model View 

Count 

DirF32 : Eye Direction 

F32 : Angle 

CoordF32 : Eye Position 

CoordF32 : Target Point 

CoordF32 : View Angle 

F32 : Viewport Diameter 

F32 : Reserved Field 

I32 : Reserved Field 

I32 : Active Flag 

I32 : View ID 

I32 : View Name String ID 
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I32 : Model View Count 

Model View Count specifies the number of Model Views. 

DirF32 : Eye Direction 

Eye Direction specifies the camera direction vector. 

F32 : Angle 

Angle specifies the camera rotation angle (in degrees where positive is counter-clockwise) about the Eye Direction.  So this 

Angle in combination with the Eye Direction is equivalent to specifying a rotation using axis-angle representation. 

CoordF32 : Eye Position 

Eye Position specifies the WCS coordinates of the eye/camera “look from” position. 

CoordF32 : Target Point 

Target Point specifies the WCS coordinates of the eye/camera “look at” position. 

CoordF32 : View Angle 

View angle specifies the X, Y, Z rotation angles (in degrees) of the model‟s axis.  The rotations are defined with respect to an 

initial orientation where the model‟s axis are aligned with the screen‟s axis (i.e. +X axis points to right, +Y axis points up, +Z 

axis points out at you). 

F32 : Viewport Diameter 

Viewport Diameter specifies the diameter in WCS coordinates of the largest possible circle that could be inscribed within 

viewport.  If a large diameter value is specified, the model appears very small in relation to the viewport; whereas if a small 

diameter value is specified a close-up (“zoomed-in)” view of the model results.  

F32 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion. 

I32 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion 

I32 : Active Flag 

Active Flag is a flag specifying whether this Model View is the “active” view.  Valid values include the following: 

 

= 0 Is not the active Model View. 

= 1 Is the active Model View 

I32 : View ID 

View ID specifies the Model View unique identifier. 

I32 : View Name String ID 

View Name String ID specifies the string identifier for the Model View‟s name.  This identifier is an index to a particular 

character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table.  An identifier value of “-1” indicates no 

string. 

7.2.6.2.6 Generic PMI Entities 

The Generic PMI Entities data collection provides a “generic” format for defining various PMI entity types, including user 

defined types.  The generic format defines the data making up the PMI Entity through a combination of the PMI 2D Data 

collection and a list of PMI Property data collections. 
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Figure 166: Generic PMI Entities data collection 

 

Complete description for PMI 2D Data can be found in 7.2.6.2.1.1.1 PMI 2D Data. 

I32 : Generic Entity Count 

Generic Entity Count specifies the number of Generic PMI Entities. 

I32 : Property Count 

Property Count specifies the number of PMI Properties. 

I32 : Entity Type Name String ID 

Entity Type Name String ID specifies the string identifier for the name of the Generic PMI Entity Type.  This identifier is an 

index to a particular character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table.  An identifier value of 

“-1” indicates no string.   

I32 : Generic Entity Count 

Generic 

Entity Count 

I32 : Property Count 

PMI 2D Data 

I32 : Parent Type Name String ID 

Property 

Count 

I32 : Entity Type Name String ID 

PMI Property 

U16 : Entity Type 

U16 : Parent Type 

U16 : User Flags 

PMI Version Number > 6 
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I32 : Parent Type Name String ID 

Parent Type Name String ID specifies the string identifier for the name of the parent Generic PMI Entity Type.  This 

identifier is an index to a particular character string in the PMI String Table as defined in 7.2.6.2.4 PMI String Table.  An 

identifier value of “-1” indicates no string.  

U16 : Entity Type 

Entity Type specifies the Generic PMI Entity Type.  The valid Entity Type values (in hexadecimal format) are documented in 

the following table.  Note that for “user defined” Generic PMI Entities a hexadecimal value of “0x0114” (as documented in 

table below) should be used. 

 

0x0001 PMI (generally only used as a Parent Type) 

0x0002 Weld 

0x0004 Spot Weld 

0x0008 Line Weld 

0x0010 Groove Weld 

0x0011 Fillet Weld 

0x0012 Slot Weld 

0x0014 Edge Weld 

0x0018 Arc Spot Weld 

0x0020 Resistance Spot Weld 

0x0021 Resistance Seam Weld 

0x0022 Structural Adhesive Bead Shaped 

0x0024 Structural Adhesive Tape Shaped 

0x0028 Structural Adhesive Dollop Shaped 

0x0040 Mechanical Clinch Connector 

0x0041 Surface Finish 

0x0042 Measurement Point 

0x0044 Datum Locator 

0x0048 Certification Point 

0x0080 Geometric Dimensioning and Tolerancing 

0x0081 Feature Control Frame 

0x0082 Dimension 

0x0084 Datum Feature Symbol 

0x0088 Datum Target 

0x0100 Note 

0x0101 Face Attribute Note 

0x0102 Model View Label Note 

0x0104 Coordinate System 
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0x0108 Reference Geometry 

0x0110 Reference Point 

0x0111 Reference Axis 

0x0112 Reference Plane 

0x0114 User Defined 

0x0118 Measurement Locator 

0x0120 Datum Point 

0x0121 Surface Vector Measurement Point 

0x0122 Hole Vector Measurement Point 

0x0124 Trimmed Sheet Vector Measurement Point 

0x0128 Hem Vector Measurement Point 

U16 : Parent Type 

Parent Type specifies the parent Generic PMI Entity Type.  The valid Parent Type values are the same as that documented 

above for Entity Type.  The Parent Type is used to create a class hierarchy of PMI when presenting the PMI contents from a 

JT file. 

U16 : User Flags 

User Flags is a collection of flags.  The flags are combined using the binary OR operator and store various state information 

for the Generic PMI Entity.  All undocumented bits are reserved. 

 

0x0001 Show PMI Entity “flat to screen only” flag 

= 0 – Allow PMI display plane to rotate with model. 

= 1 – Display PMI entity in the plane of the screen, so that it does not rotate with model. 

7.2.6.2.6.1 PMI Property 

A PMI Property data collection consists of a key/value pair and is used to describe attributes of Generic PMI Entity or other 

specific data. 

Figure 167: PMI Property data collection 

 

Both Key PMI Property Atom and Value PMI Property Atom have the same format as that documented in  7.2.6.2.6.1.1 PMI 

Property Atom. 

Although there is no reference compliant requirements for what the PMI Property key/value pairs must be for each Generic 

PMI Entity type, there are some common PMI Property keys and corresponding value formats that appear in JT File.  The 

below table documents these common PMI Property keys (i.e. the keys encoded string value) and what the format of the 

value data is in the values encoded string (see 7.2.6.2.6.1.1 PMI Property Atom for an explanation of what is meant by 

“encoded string value” for the “key” and “value” data). 

Key PMI Property Atom  

Value PMI Property Atom 
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Table 7: Common Property Keys and Their Value Encoding formats 

“Key” Property Atom 

Value String 

“Value” 

Property Atom 

Value String 

Encoding 

Format 

Decoding Notes 

“PMI_PROP_ANCHOR_POINT" “Px Py Pz” Each Px, Py, Pz is a F32 value using “%f” format  

“PMI_PROP_NOTE_HAS_URL” “0” or “1” 0 = = False;   1 = = True 

“PMI_PROP_NORMAL_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format 

“PMI_PROP_APPROACH_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format 

“PMI_PROP_CLAMPING_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format 

“PMI_PROP_MEAS_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format 

“PMI_PROP_COORD_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format 

“PMI_PROP_MEAS_LEVEL” “#” Integer representing level number 

“PMITextForegroundColor” “#” Hexadecimal integer representing RGB color where 

value has “0x00bbggrr” form. The low-order byte 

contains a value for the relative intensity of red; the 

second byte contains a value for the relative 

intensity of green; and the third byte contains a 

value for the relative intensity of blue.  The high-

order byte must be zero. The maximum value for a 

single byte is 0xFF (i.e. intensity value is in the 

range [0:255]). 

“PMITextBackgroundColor” “#” Same as “PMITextForegroundColor” 

“PMITextBackgroundOpacity” “#” Unsigned decimal integer representing opacity 

percentage.  Actual opacity is: decoded# / 100.0 

“PMITextShowBorder” “#” Unsigned decimal integer: 0 = = False;   1 = = True 

“PMITextSize” “#” Unsigned decimal integer representing text size in 

units of pixels. 

“PMITextInPlane” “#” Unsigned decimal integer: 0 = = False;   1 = = True 

where “1” indicates that text should be displayed in 

the plane of the entity so that it rotates with view. 

“PMIGeometryColor” “#” Same as “PMITextForegroundColor” 

“PMIGeometryWidth” “#” Unsigned decimal integer representing line width in 

units of pixels. 

CLIP_NORMAL “#,#,#” Used for Entity Type = “0x0114” and Entity Type 

Name String = “Section” to specify the normal to 

the clipping plane.  The clipping normal points 

toward the piece of the model that will be clipped 

away.  Each # is a F64 value using “%lf” format. 

CLIP_POSITION “#,#,#” Used for Entity Type = “0x0114” and Entity Type 

Name String = “Section” to specify one point on the 

clipping plane.  Each # is a F64 value using “%lf” 

format. 
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“Key” Property Atom 

Value String 

“Value” 

Property Atom 

Value String 

Encoding 

Format 

Decoding Notes 

TRANSFORMATION_MATRIX “#,#,#,#,#,#,#,#, 

#,#,#,#,#,#,#,#” 

Used for Entity Type = “0x0114” and Entity Type 

Name String = “Part Transform” to specify a 

transformation matrix.  Each # is a F32 value using 

“%f” format. 

7.2.6.2.6.1.1 PMI Property Atom 

PMI Property Atom data collection represents the data format for both the key and value data of a PMI Property key/value 

pair. 

Figure 168: PMI Property Atom data collection 

 

MbString : Value 

Value specifies the property atom value encoded into a String.  See Table 7: Common Property Keys and Their Value 

Encoding formats above for encoding formats of the Value string. 

U32 : Hidden Flag 

Hidden Flag specifies if the property is “hidden” or not.  A JT file reader could use this flag to control whether read 

properties should be exposed to the end user of the application reading the JT file.  Valid values include the following: 

 

= 0 Property is not hidden. 

= 1 Property is hidden. 

7.2.6.2.7 PMI CAD Tag Data 

The PMI CAD Tag Data collection contains the list of persistent IDs, as defined in the CAD System, to uniquely identify 

individual PMI entities. The existence of this PMI CAD Tag Data collection is dependent upon the value of previously read 

data field CAD Tags Flag as documented in 7.2.6.2 PMI Manager Meta Data Element. 

If PMI CAD Tag Data collection is present, there will be a CAD Tag for each PMI entity as specified by the below 

documented CAD Tag Index Count formula. 

MbString : Value 

PMI Version Number > 6 

U32 : Hidden Flag 
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Figure 169: PMI CAD Tag Data collection 

 

Complete description for Compressed CAD Tag Data can be found in 8.1.16 Compressed CAD Tag Data. 

I32 : CAD Tag Index Count 

CAD Tag Index Count specifies the total number of CAD Tag indices.  This value must be equal to the summation of the 

previously read count values for all the PMI entities supporting CAD Tags.  The formula is the sum of the following: 

 Line Weld Count 

 Spot Weld Count 

 SF Count  

 MP Count  

 Reference Geometry Count  

 Datum Target Count 

 FCF Count 

 Locator Count 

 Dimension Count 

 DFS Count 

 Note Count 

 Model View Count 

 Design Group Count 

 Coord Sys Count 

 Generic Entity Count 

I32 : CAD Tag Index 

CAD Tag Index specifies an index into a list of CAD Tags, identifying the CAD Tag belonging to a particular PMI entity.  

There will be a total of CAD Tag Index Count number of CAD Tag Indices and the order of the indices will be as defined by 

the above documented CAD Tag Index Count formula (i.e. Line Weld CAD Tag Indices are first, followed by the Spot Weld 

CAD Tag Indices, followed by the Surface Finish CAD Tag Indices, etc.) 

7.2.6.2.8 PMI Polygon Data 

The PMI Polygon Data collection contains a list of vertices classified as polygonal primitives. Its composition is shown in the 

figure 177. Each block of PMI PolygonData contains a list of 0 or more PolygonData elements. Empty PolygonData elements 

are written with 0 vertices and no additional fields.  

 

I32 : CAD Tag Index CAD Tag Index 

Count 

I32 : CAD Tag Index Count 

Compressed CAD 

Tag Data 
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Figure 170: PMI Polygon Data 

 

 

I16: Version Number 

I32: Reserved Field 

VecI32: vNumVerts 

VecF32: Colors 

ColorBinding == 1 

Length Of 

vNumVerts 

NormalBinding == 1 

I16 : Reserved Field 

TextureBinding == 1 

iNumVerts > 0 

I32: NormalBinding 

I32: ColorBinding 

I32: TextureBinding 

I32: PolygonDimension 

VecI32: PrimTypes 

VecI32: PrimIndices 

VecI32: VertIndices 

VecF32: Vertices 

VecF32: Vertices 
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I16: Version Number 

Version number is the version identifier for this PMI Polygon Data Element. V9.5 format only supports version 1 of the PMI 

Polygon data 

I32: Reserved Field 

Reserved Field is a data field reserved for future JT format expansion 

VecI32: vNumVerts 

An integer vector used to record the number of vertices in each polygon data element. The length of this vector is equal to the 

number of PolygonData elements written in this block of PMI PolygonData. The presence of additional data fields in each 

PolygonData element is hinged upon that element having more than 0 vertices recorded in this vector.  

Retrieve next vertCount from vNumVerts 

If the next element in the vNumVerts vector is non-zero, proceed to read other fields that make up a single PMI PolygonData 

element. Otherwise, skip reading more data for this element and loop back to seek the next element in the vector.  

iNumVerts 

Number of vertices for the i
th

 PolygonData element.  

Length Of vNumVerts 

Number of Polygon Data elements.  

I32: NormalBinding 

A Boolean value that indicates if there are normals present along with the list of coordinates at each vertex.  

I32: ColorBinding 

A Boolean value that indicates if there are colors present along with the list of coordinates at each vertex.  

I32: TextureBinding 

A Boolean value that indicates if there are Texture Coordinates present along with the list of coordinates at each vertex.  

I32: PolygonDimension 

Indicates the dimension of vertex coordinates.  

VecI32: PrimTypes 

An array indicating the type of  each of the primitive stored in the PrimIndices array. Adjacent numbers in the array form 

tuples of the form [PrimIndex, PrimType]. All primitives to the left of the PrimIndex are of type PrimType unless they are 

already to the left of an earlier PrimIndex in this array.  

VecI32: PrimIndices 

Indices of vertices that form a single primitive. The difference between two adjacent values in this array determines the 

length of the primitive. An extra element is stored at the end of this array to identify the length of the last primitive. Values in 

this array are indices into the VertIndices array.  

VecI32: VertIndices 

An array of indices into the Vertices array. This index array eliminates the need to duplicate floating point vertices that are 

shared by multiple primitives.  

VecF32: Vertices 

The list of vertex coordinates. Each vertex is made of PolygonDimension coordinates. The length of this list is equal to 

number of vertices multiplied by PolygonDimension.  
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VecF32: Normals 

An optional list of Normals for each vertex. Presence of this list is indicated by the NormalBinding flag. Each normal 

consists of PolygonDimension components. The size of this list is equal to number of vertices multiplied by 

PolygonDimension. 

VecF32: Colors 

An optional list of Colors for each vertex. Presence of this list is indicated by the ColorBinding flag. Each color consists of 

PolygonDimension components. The size of this list is equal to number of vertices multiplied by PolygonDimension. 

VecF32: Texture Coords 

An optional list of Texture coordinates for each vertex. Presence of this list is indicated by the TexCoordBinding flag. Each 

TexCoord consists of 2 components. The size of this list is equal to number of vertices multiplied by 2. 

7.2.7 PMI Data Segment 

The PMI Manager Meta Data Element (as documented in 7.2.6.2 PMI Manager Meta Data Element) can sometimes also be 

represented in a PMI Data Segment.  This can occur when a pre JT 8 version file is migrated to JT 9.5 version file.  So from a 

parsing point of view a PMI Data Segment should be treated exactly the same as a 7.2.6 Meta Data Segment. 

7.2.8   JT ULP Segment 

JT ULP Segment contains an Element that defines the semi-precise geometric Boundary Representation data for a particular 

Part in JT ULP format.  Note that there is also two other Boundary Representation formats (i.e. JT B-Rep and XT B-Rep) 

supported by the JT file format within a different file Segment Type.  Complete description for the JT B-Rep and the XT B-

Rep can be found in 7.2.3 JT B-Rep Segment and  

7.2.4 XT B-Rep Segment respectively. 

JT ULP Segments are typically referenced by Part Node Elements (see 7.2.1.1.1.5Part Node Element) using Late Loaded 

Property Atom Elements (see 0 Late Loaded Property Atom Element).  The JT ULP Segment type supports ZLIB 

compression on all element data, so all elements in JT ULP Segment use the Logical Element Header ZLIB form of element 

header data. 

Figure 171: JT ULP Segment data collection 

 

Complete description for Segment Header can be found in 7.1.3.1Segment Header. 

7.2.8.1 JT ULP Element 

Object Type ID: 0xf338a4af, 0xd7d2, 0x41c5, 0xbc, 0xf2, 0xc5, 0x5a, 0x88, 0xb2, 0x1e, 0x73 

JT ULP Element represents a particular Part‟s ultra-lightweight semi-precise B-Rep data.  Like JT B-Rep Element or XT B-

Rep Element, JT ULP Element contains all the topological and geometric information that describes the shape of a part.  The 

difference is that the size of JT ULP Element is typically around 10% of a typical JT file with B-Rep and LODs, and this is 

achieved by sophisticated compression techniques.  In addition, JT ULP Element is semi-precise meaning that its geometric 

description is not as precise as either JT B-Rep Element or XT B-Rep Element.  The precision loss of JT ULP Element, 

however, is carefully controlled to be equal to or better than 0.01% of the part size or 0.1mm, whichever is smaller. 

Segment Header 

JT ULP Element 
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Figure 172: JT ULP Element data collection 

 

Complete description for Logical Element Header ZLIB can be found in 7.1.3.2.3 Logical Element Header ZLIB. 

I16:Version Number 

Version Number is the version identifier for this JT ULP Element.  Version numbers “1” and “2” are currently supported. 

I32:Material Attribute Element Count 

Material Attribute Element Count is the number of material attribute elements. 

Complete description for Material Attribute Element can be found in 7.2.1.1.2.2 Material Attribute Element.   

Logical Element Header ZLIB 

I16:Version Number 

I32:Material Attribute Element Count 

Material Attribute Element 

Topology Data  

Geometric Data 

Material Attribute Element Count 

Version Number > 1  

Material Attribute Element Properties 

Material Attribute Element Count 

Information Recovery 
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7.2.8.1.1 Topology Data 

Figure 173: Topology Data collection 

 

7.2.8.1.1.1 Topological Entity Counts 

Topological Entity Counts data collection defines the counts for each of the various topological entities within a ULP. 

Topological Entity Counts 

Regions Topology Data 

Shells Topology Data 

Faces Topology Data 

Loops Topology Data 

CoEdges Topology 

Data 

Edges Topology Data 

Vertices Topology Data 

Region Count > 1 

Shell Count  > 1 

Face Count > 0 

Loop Count > 0 

CoEdge Count > 0 

Edge Count > 0 

Vertex Count > 0 
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Figure 174: Topological Entity Counts data collection 

 

I32 : Region Count 

Region Count indicates the number of topological region entities in the ULP. 

I32 : Shell Count 

Shell Count indicates the number of topological shell entities in the ULP. 

I32 : Face Count 

Face Count indicates the number of topological face entities in the ULP. 

I32 : Loop Count 

Loop Count indicates the number of topological loop entities in the ULP. 

I32 : CoEdge Count 

CoEdge Count indicates the number of topological coedge entities in the ULP. 

I32 : Edge Count 

Edge Count indicates the number of topological edge entities in the ULP. 

I32 : Vertex Count 

Vertex Count indicates the number of topological vertex entities in the ULP. 

7.2.8.1.1.2 Combined Predictor Type 

A predictor type may be combined with additional processing.  When Combined Predictor Type is used, the additional 

processing step is encoded.  For example, combined predictor type Combined:NULL means that the data collection follows 

the logical diagram in Figure 175 with ePredictorType set to be NULL.    

I32 : Region Count 

I32 : Shell Count 

I32 : Face Count 

I32 : Loop Count 

I32 : CoEdge Count 

I32 : Edge Count 

I32 : Vertex Count 
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Figure 175: Combined Predictor Type data collection 

 

VecI32{Int32CDP2, ePredictorType}: BasicArray 

BasicArray is an integer array, compressed and encoded using the Int32 version of second generation CODEC.   

U8: ProcessingType 

Two bits of this value are currently used.  If bit 0x02 is set, then the integer array is a list of elements with unique values and 

Element Mapping step is needed to recover the original values.  If bit 0x01 is set, then the some elements in the integer array 

may be repeated, and Multiplicity Expansion is used to recover the original values.   

VecI32{Int32CDP2, ePredictorType}: MapArray 

MapArray is an integer array, where each element represents the index mapping information.  MapArray is compressed and 

encoded using the Int32 version of second generation CODEC. 

Element Mapping 

Element Mapping recovers the original array from BasicArray and MapArray, using relationship                  
                       .  After Element Mapping, the value of            is updated with              . 

VecI32{Int32CDP2, ePredictorType}: MultiplicityArray 

MultiplicityArray is an integer array, where each element represents the multiplicity of each element in BasicArray.  

MultiplicityArray is compressed and encoded using the Int32 version of second generation CODEC. 

Multiplicity Expansion 

Multiplicity Expansion recovers the original array from BasicArray and MultiplicityArray.  The original array is an 

expansion of the BasicArray.  If the corresponding multiplicity value is greater than 1, the element in BasicArray  is 

contiguously repeated in the original array according to multiplicity value. 

VecI32{Int32CDP2, ePredictorType}: BasicArray 

 

 U8: ProcessingType  

VecI32{Int32CDP2, ePredictorType}: MapArray 

 

ProcessingType & 0x02 != 0 

Element Mapping 

VecI32{Int32CDP2, ePredictorType}: MultiplicityArray 

 

Multiplicity Expansion 

ProcessingType & 0x01 != 0 
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7.2.8.1.1.3 Regions Topology Data 

Regions Topology Data defines the disjoint set of non-overlapping Shells making up each Region.  Each Region is defined 

by one or more non-overlapping Shells.  The volume of a Region is that volume lying inside each “anti-hole Shell” and 

outside each simply-contained “hole Shell” belonging to the particular Region.  A Region is analogous to a dimensionally 

elevated face where Region corresponds to Face and Shell corresponds to Trim Loop. 

Each Region‟s defining Shells are identified in a list of Shells by an index for both the first Shell and the last Shell in each 

Region (i.e. all Shells inclusive between the specified first and last Shell list index define the particular Region).  In addition, 

the indices of all the shells in a single Region are contiguous.  The first shell index of the first region is 0, and the first shell 

index of other regions is one greater than the last shell index of the previous region.  Therefore only the number of shells of 

each region is stored.  In the special case when the number of regions is 1, no information needs be stored since its last Shell 

index is known to be Shell Count-1. 

Figure 176: Regions Topology Data collection 

 

VecI32{Int32CDP2, Combined:NULL}: Shell Index Difference 

Shell Index Difference is a vector of indices representing the integer value by subtracting first shell index from last shell 

index in each region, encoded using Combined Predictor Type.  Shell Index Difference is compressed and encoded using the 

Int32 version of second generation CODEC. 

Recover First and Last Shell Indices 

The first shell index of the first region is 0, and the last shell index of the first region is element 0 of Shell Index Difference.  

The first shell index of region       equals to the last shell index of region     plus 1.  The last shell index of region 

      equals to the first shell index of region   plus element   of Shell Index Difference array. 

7.2.8.1.1.4 Shells Topology Data 

Shells Topology Data defines the set of topological adjacent Faces making up each Shell.  A Shell‟s set of topological 

adjacent Faces define a single (usually closed) two manifold solid that in turn defines the boundary between the finite volume 

of space enclosed within the Shell and the infinite volume of space outside the Shell.  In addition, each Shell has a flag that 

denotes whether the Shell refers to the finite interior volume (i.e. a “hole Shell”) or the infinite exterior volume (i.e. an “anti-

hole Shell”). 

Each Shell‟s defining Faces are identified in a list of Faces by an index for both the first Face and the last Face in each Shell 

(i.e. all Faces inclusive between the specified first and last Face list index define the particular Shell).  In addition, the indices 

of all the faces  in a single Shell are contiguous.  The first face index of the first shell is 0, and the first face index of other 

shells is one greater than the last face index of the previous shell.  Therefore only the number of faces of each shell is stored.  

In the special case when the number of shells is 1, no information needs be stored since its last face index is known to be 

Face Count-1. 

VecI32{Int32CDP2, Combined:NULL}: Shell Index Difference 

  

Recover First and Last Shell 

Indices 
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Figure 177: Shells Topology Data collection 

 

VecI32{Int32CDP2, Combined:NULL}: Face Index Difference 

Face Index Difference is a vector of indices representing the integer value by subtracting first face index from last face index 

in each shell, encoded using Combined Predictor Type.  Face Index Difference is compressed and encoded using the Int32 

version of second generation CODEC. 

Recover First and Last Face Indices 

The first face index of the first shell is 0, and the last face index of the first shell is element 0 of Face Index Difference.  The 

first face index of shell       equals to the last face index of shell     plus 1.  The last face index of shell       

equals to the first face index of shell   plus element   of Face Index Difference array. 

VecI32{Int32CDP2, NULL}: Shell Anti-Hole Flags 

Each Shell has a flag identifying whether the Shell is an anti-hole Shell. Shell Anti-Hole Flags is a vector of anti-hole flags 

for a set of Shells.  

In an uncompressed/decoded form the flag values have the following meaning: 

 

= 0 Shell is not an anti-hole Shell 

= 1 Shell is an anti-hole Shell 

Shell Anti-Hole Flags uses the Int32 version of the CODEC to compress and encode data. 

7.2.8.1.1.5 Faces Topology Data 

A Face must be trimmed with at least one “anti-hole” Trim Loop and may be trimmed with one or more “hole” Trim Loops.  

The complete description of face and its relation to the trim loops can be found in 7.2.3.1.3.3 Faces Topology Data. 

Each Face‟s defining Trim Loops are identified in a list of trim Loops by an index for both the first Trim Loop and the last 

Trim Loop in each Face (i.e. all Trim Loops inclusive between the specified first and last Trim Loop list index define the 

particular Face).  In addition, the indices of all the loops  in a single Face are contiguous.  The first loop index of the first face 

is 0, and the first loop index of other faces is one greater than the last loop index of the previous face.  Therefore only the 

number of loops of each face is stored.  In the special case when the number of faces is 1, no information needs be stored 

since its last loop index is known to be Loop Count-1. 

Each Face‟s underlying Geometric Surface is identified by an index into a list of Geometric Surfaces.  Each face‟s material is 

identified by an index into the list of Material Attribute Elements. 

VecI32{Int32CDP2, Combined:NULL}: Face Index Difference 

Recover First and Last Face 

Indices  

VecI32{Int32CDP2, NULL}: Shell Anti-Hole Flags  
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Figure 178: Faces Topology Data collection 

 

U8: Face Array Flag 

Face Array Flag indicates which arrays of face topology data are not trivial and therefore encoded. 

VecI32{Int32CDP2, Combined:NULL}: Index Difference Array 

Index Difference Array is a combined vector of indices encoded using Int32 version of CODEC and Combined Predictor 

Type, with its content decided by the value of Face Array Flag.  If Face Array Flag has bit 0x01 set, then the vector of integer 

values obtained by subtracting first loop index from last loop index in each face is appended to the end of Index Difference 

Array.   If Face Array Flag has bit 0x02 set, then the vector of integer values obtained by subtracting surface index from face 

index in each face is appended to the end of Index Difference Array.   If Face Array Flag has bit 0x04 set, then the vector of 

integer values representing the material index of each face is appended to the end of Index Difference Array.    

U8: Face Array Flag 

Face Array Flag & 0x07 != 0  

VecI32{Int32CDP2, Combined:NULL}: Index Difference 

Array 

Recover First and Last Loop 

Indices 

Recover Surface Indices 

Recover Material Indices 

Face Array Flag & 0x08 != 0  

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array 

Recover Flag Bits 

Compressed CAD 

Tag Data 
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Recover First and Last Loop Indices 

The first loop index of the first face is 0, and the last loop index of the first face is element 0 of Index Difference Array if the 

array is encoded, or 0 if bit 0x01 of Face Array Flag is not set.   The first loop index of face       equals to the last loop 

index of face      plus 1.  The last loop index of face       equals to the first loop index of face   plus element   of 

Index Difference Array, or 0 if bit 0x01 of Face Array Flag is not set. 

Recover Surface Indices 

The surface index of each face equals to the face index if bit 0x02 of Face Array Flag is not set.  Otherwise the surface index 

of face   is obtained by substracting element          of Index Difference Array from face index  , where        is 

equal to Face Count if bit 0x01 of Face Array Flag is set and 0 if the bit is not set. 

Recover Material Indices 

The material index of each face equals to 0 if bit 0x04 of Face Array Flag is not set.  Otherwise the material index of face   

equals to the element          of Index Difference Array, where        is equal to twice of Face Count if both bit 0x01 

and bit 0x02 of  Face Array Flag are set, is equal to Face Count if either bit 0x01 or bit 0x02 of  Face Array Flag is set, and is 

equal to 0 if neither bit is set. 

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array 

Only the lower 24 bits of the four integer indices, namely first loop index, last loop index, surface index, and material index, 

are used as integer identifiers.  The other bits of these integers are either used to encode additional information, or reserved 

for future usage. 

 

  24 25 26 27 28 29 30 31 

First Loop Index Surface Type U Knot Type V Knot Type isNormalReversed 

Last Loop Index isIsolated Reserved 

Surface Index Reserved 

Material Index Reserved 

Each element of Flag Bit Array is a 32 bit integer obtained by combining all 32 flag bits from four different integers.  More 

specifically: 

 Bits 0~7 of Flag Bit Array are equal to bits 24~31 of First Loop Index 

 Bits 8~15 of Flag Bit Array are equal to bits 24~31 of Last Loop Index 

 Bits 16~23 of Flag Bit Array are equal to bits 24~31 of Surface Index 

 Bits 24~31 of Flag Bit Array are equal to bits 24~31 of Material Index 

Supported Surface Type 

In an uncompressed/decoded form, the supported surface types are listed below.   

 

0 Nurbs 

1 Plane 

2 Cylinder 

3 Cone 

4 Sphere 

5 Torus 

6 Reserved 

7 Reserved 
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Supported Knot Type 

In an uncompressed/decoded form, the supported knot types are listed below.  The knot type of the underlying surface along 

both U and V parameter directions are encoded. 

 

0 No Pattern 

1 
No knot value in between the clamped end 

knots 

2 
All knot values in between the end knots 

increase with an even interval 

3 

All knot values in between the end knots repeat 

exactly once, and the distinct values increase 

with an even interval 

In an uncompressed/decoded form, the Face Reverse Normal Flag has the following meaning: 

 

= 0 Face normal is not reversed 

= 1 Face normal is reversed. 

Recover Flag Bits 

If Face Array Flag & 0x08 is equal to 0, then each element in Flag Bit Array is set to have value 0.  The flag bits are 

recovered by assigning bits 0~7 of Flag Bit Array to bits 24~31 of First Loop Index, bits 8~15 of Flag Bit Array to bits 24~31 

of Last Loop Index, bits 16~23 of Flag Bit Array to bits 24~31 of Surface Index, and bits 24~31 of Flag Bit Array to bits 

24~31 of Material Index. 

7.2.8.1.1.6 Loops Topology Data 

A Loop (often called Trimming Loop) defines in parameter space a 1D boundary around which geometric surfaces are 

trimmed to form a Face.  Loops Topology Data specifies the CoEdges making up each Loop along with an anti-hole flag and 

identifier tag for each Loop.  The complete description of loop and its relation to the CoEdges can be found in 7.2.3.1.3.4 

Loops Topology Data. 
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Figure 179: Loops Topology Data collection 

 

U8: Loop Array Flag 

Loop Array Flag indicates which arrays of loop topology data are not trivial and therefore encoded. 

VecI32{Int32CDP2, Combined:NULL}: CoEdge Index Difference 

CoEdge Index Difference is a vector of indices representing the integer value by subtracting first CoEdge index from last 

CoEdge index in each loop, encoded using Combined Predictor Type.  CoEdge Index Difference is compressed and encoded 

using the Int32 version of second generation CODEC. 

Recover First and Last CoEdge Indices 

The first CoEdge index of the first loop is 0, and the last CoEdge index of the first loop is element 0 of CoEdge Index 

Difference.  The first CoEdge index of loop       equals to the last CoEdge index of loop     plus 1.  The last CoEdge 

index of loop       equals to the first CoEdge index of loop   plus element   of CoEdge Index Difference array. 

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array 

Only the lower 24 bits of the two integer indices, namely first CoEdge index and last CoEdge index are used as integer 

identifiers.  The other bits of these integers are either used to encode additional information, or reserved for future usage. 

 

  24 25 26 27 28 29 30 31 

First CoEdge Index Reserved isAntiHoleLoop 

Last CoEdge Index Reserved 

Bits 0~7 of Flag Bit Array are equal to bits 24~31 of First CoEdge Index 

Bits 8~15 of Flag Bit Array are equal to bits 24~31 of Last CoEdge Index 

Bits 16~31 of Flag Bit Array are set to be 0 

 

U8: Loop Array Flag 

Loop Array Flag & 0x01 != 0  

VecI32{Int32CDP2, Combined:NULL}: CoEdge Index Difference 

Recover First and Last CoEdge Indices 

 

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array 

Recover Flag Bits 

Loop Array Flag & 0x02 != 0  
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In an uncompressed/decoded form, the AntiHole Loop Flag has the following meaning: 

 

= 0 Loop is not an anti-hole Loop 

= 1 Loop is an anti-hole Loop 

Recover Flag Bits 

The flag bits are recovered by assigning bits 0~7 of Flag Bit Array to bits 24~31 of First CoEdge Index, and bits 8~15 of Flag 

Bit Array to bits 24~31 of Last CoEdge Index. 

7.2.8.1.1.7 CoEdges Topology Data 

A CoEdge defines a parameter space edge trim Loop segment (i.e. the projection of an Edge into the parameter space of the 

Face).  CoEdges Topology Data specifies the underlying Edge and PCS Curve making up each CoEdge along with a MCS 

curve reversed flag and tag for each CoEdge.  The complete description of CoEdge and its relation to the Edge can be found 

in 7.2.3.1.3.5 CoEdges Topology Data. 
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Figure 180: CoEdges Topology Data collection 

 

U8: CoEdge Array Flag 

CoEdge Array Flag indicates which arrays of coedge topology data are not trivial and therefore encoded. 

VecI32{Int32CDP2, Combined:NULL}: Edge Index Difference 

Edge Index Difference is a vector of indices representing the integer value by subtracting the Edge index from the CoEdge 

index for each CoEdge, encoded using Combined Predictor Type.  Edge Index Difference is compressed and encoded using 

the Int32 version of second generation CODEC. 

 

U8: CoEdge Array 

Flag 

CoEdge Array Flag & 0x01 != 0  

VecI32{Int32CDP2, Combined:NULL}: Edge Index Difference 

Recover Flag Bits 

CoEdge Array Flag & 0x02 != 0  

VecI32{Int32CDP2, Combined:NULL}: PCS Curve Index 

Difference 

Recover Edge Indices 

 

Recover PCS Curve Indices 

 

CoEdge Array Flag & 0x04 != 0  

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array 
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Recover Edge Indices 

If CoEdge Array Flag & 0x01 is equal to 0, then the Edge index of each CoEdge is equal to the CoEdge index.  Otherwise, 

the Edge index of CoEdge with index    can be computed by substracting element   of Edge Index Difference array from  , 

the CoEdge index. 

VecI32{Int32CDP2, Combined:NULL}: PCS Curve Index Difference 

PCS Curve Index Difference is a vector of indices representing the integer value by subtracting the PCS Curve index from 

the CoEdge index for each CoEdge, encoded using Combined Predictor Type.  PCS Curve Index Difference is compressed 

and encoded using the Int32 version of second generation CODEC. 

Recover PCS Curve Indices 

If CoEdge Array Flag & 0x02 is equal to 0, then the PCS Curve index of each CoEdge is equal to the CoEdge index.  

Otherwise, the PCS Curve index of CoEdge with index    can be computed by substracting element   of PCS Curve Index 

Difference array from  , the CoEdge index. 

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array 

Only the lower 24 bits of the two integer indices, namely Edge index and PCS Curve index, are used as integer identifiers.  

The other bits of these integers are either used to encode additional information, or reserved for future usage. 

 

  24 25 26 27 28 29 30 31 

Edge Index Knot Type Domain Type PCS Curve Type isXYZReversed 

PCS Curve Index isUvInc Reserved 

Bits 0~7 of Flag Bit Array are equal to bits 24~31 of Edge Index 

Bits 8~15 of Flag Bit Array are equal to bits 24~31 of PCS Curve Index 

Bits 16~31 of Flag Bit Array are set to be 0 

The Knot Type, defined in Supported Knot Type, is an integer with its value between 0 and 3. 
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Domain Type 

Figure 181: Surface Domain Classification 

 

In an uncompressed/decoded form, the supported PCS Curve types are listed below.   

 

0 General 

1 PCS curve is coincident with iso-umin curve in the surface parameter domain 

2 PCS curve is coincident with iso-umax curve in the surface parameter domain 

3 PCS curve is coincident with iso-vmin curve in the surface parameter domain 

4 PCS curve is coincident with iso-vmax curve in the surface parameter domain 

5 Reserved 

6 Reserved 

7 PCS curve is to be derived from MCS curve and surface geometry 

PCS Curve Type 

In an uncompressed/decoded form, the supported PCS Curve types are listed below.   

 

0 Nurbs 

1 Line 

2 Circle 

3 Reserved 

In an uncompressed/decoded form, the XYZReversed Flag has the following meaning:  

 

= 0 Directional sense of associated edges MCS curve should not be interpreted as opposite the 

direction its parameterization implies. 

Surface Parameter Domain

iso-vmin

iso-umax

iso-vmax

iso-umin

u

v
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= 1 Directional sense of associated edges MCS curve should be interpreted as opposite the 

direction its parameterization implies. 

In an uncompressed/decoded form, the isUVInc Flag has the following meaning:  

 

= 0 PCS Curve is iso-parameteric in surface parameter domain in one direction and the 

parameter increases in the other direction 

= 1 PCS Curve is iso-parameteric in surface parameter domain in one direction and the 

parameter decreases in the other direction 

The isUVInc flag is set only if the Domain Type of this CoEdge has value between 1 and 4 inclusive. 

Recover Flag Bits 

If CoEdge Array Flag & 0x04 is equal to 0, then each element in Flag Bit Array is set to have value 0.  The flag bits are 

recovered by assigning bits 0~7 of Flag Bit Array to bits 24~31 of Edge Index, and bits 8~15 of Flag Bit Array to bits 24~31 

of PCS Curve Index. 

7.2.8.1.1.8 Edges Topology Data 

An Edge defines a model space trim Loop segment.  Edges Topology Data specifies the underlying MCS Curve and start and 

end Vertex making up each Edge along with an identification tag for each Edge.  The complete description of Edge can be 

found in 7.2.3.1.3.6 Edges Topology Data. 
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Figure 182: Edges Topology Data collection 

 

U8: Edge Array Flag 

Edge Array Flag indicates which arrays of edge topology data are not trivial and therefore encoded. 

VecI32{Int32CDP2, Combined:NULL}: Vertex Index Array 

Vertex Index Array is a vector of indices representing the start and end vertex indices of each Edge, encoded using Combined 

Predictor Type.  Vertex Index Array is compressed and encoded using the Int32 version of second generation CODEC. 

 

U8: Edge Array Flag 

Edge Array Flag & 0x01 != 0  

VecI32{Int32CDP2, Combined:NULL}: Vertex Index Array 

Recover Flag Bits 

Edge Array Flag & 0x02 != 0  

VecI32{Int32CDP2, Combined:NULL}: MCS Curve Index Difference 

Recover Vertex Indices 

 

 

Recover MCS Curve Indices 

 

Edge Array Flag & 0x04 != 0  

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array 

Compressed CAD 

Tag Data 
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Recover Vertex Indices 

If Edge Array Flag & 0x01 is equal to 0, then all the vertex indices of each edge are set to be 0.  Otherwise, the start vertex 

index of Edge with index   is set to be equal to element     of Vertex Index Array, while the end vertex index of this Edge 

is set to be equal to element       of Vertex Index Array. 

VecI32{Int32CDP2, Combined:NULL}: MCS Curve Index Difference 

MCS Curve Index Difference is a vector of indices representing the integer value by subtracting the MCS Curve index from 

the Edge index for each Edge, encoded using Combined Predictor Type.  MCS Curve Index Difference is compressed and 

encoded using the Int32 version of second generation CODEC. 

Recover MCS Curve Indices 

If Edge Array Flag & 0x02 is equal to 0, then the MCS Curve index of each Edge is equal to the Edge index.  Otherwise, the 

MCS Curve index of Edge with index    can be computed by substracting element   of MCS Curve Index Difference array 

from  , the Edge index. 

VecI32{Int32CDP2, Combined:NULL}: Flag Bit Array 

Only the lower 24 bits of the three integer indices, namely MCS Curve index, Start Vertex index, and End Vertex index, are 

used as integer identifiers.  The other bits of these integers are either used to encode additional information, or reserved for 

future usage. 

 

  24 25 26 27 28 29 30 31 

MCS Curve Index Knot Type MCS Curve Type Reserved 

Start Vertex Index Reserved 

End Vertex Index Reserved 

The Knot Type, defined in Supported Knot Type, is an integer with its value between 0 and 3. 

MCS Curve Type 

In an uncompressed/decoded form, the supported MCS Curve types are listed below.   

 

0 Nurbs 

1 Line 

2 Circle 

3 
Projection: MCS curve geometry is to be computed from 

surface geometry and/or PCS curve geometry 

Recover Flag Bits 

If Edge Array Flag & 0x04 is equal to 0, then each element in Flag Bit Array is set to have value 0.  The flag bits are 

recovered by assigning bits 0~7 of Flag Bit Array to bits 24~31 of MCS Curve Index. 

7.2.8.1.1.9 Vertices Topology Data 

A Vertex is the simplest topological entity and is basically made up of a geometric Point.  Vertices Topology Data specifies 

the underlying geometric Point making up each Vertex.  A Vertex is usually shared/referenced by two or more Edges (e.g. if 

the corners of four rectangular Faces touches at a common point, this point is represented by a Vertex and is shared by four 

Edges).  
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Figure 183: Vertices Topology Data collection 

 

U8: Vertex Array Flag 

Vertex Array Flag indicates which arrays of vertex topology data are not trivial and therefore encoded. 

VecI32{Int32CDP2, Combined:NULL}: Point Index Difference 

Point Index Difference is a vector of indices representing the integer value obtained by subtracting point index from vertex 

index, encoded using Combined Predictor Type.  Point Index Difference is compressed and encoded using the Int32 version 

of second generation CODEC. 

Recover Point Indices 

If Vertex Array Flag & 0x01 is equal to 0, then the point index of each vertex is equal to the vertex index.  Otherwise, the 

point index of vertex   is recovered by substrating element   of Point Index Difference array from  , the vertex index. 

U8: Vertex Array Flag 

Vertex Array Flag & 0x01 != 0  

VecI32{Int32CDP2, Combined:NULL}: Point Index Difference 

Recover Point Indices 
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7.2.8.1.2 Geometric Data 

Figure 184: Geometric Data collection 

 

CoordF64 : Translation Vector 

Translation Vector is a 3-dimensional vector that represents how the ULP geometry is defined w.r.t. the original B-Rep 

definition from which ULP geometry is derived.  If the Translation Vector is not zero vector, then the ULP geometry read 

from disk is translated from original B-Rep definition by the amount of Translation Vector.  This is usually done by the JT 

writer implementation to improve numerical accuracy of floating point numbers in the ULP geometry.  It is important for all 

the JT readers to take this Translation Vector into consideration when consuming ULP geometry.  For example if a LOD is 

generated from ULP geometry, e.g. by tessellation, then the LOD geometry must be translated to undo the effect of 

U32: Geometric Tabe 
Flag 

Geometric Tabe Flag indicates 

which geometric tables are not 

trivial and therefore encoded. 

Geometric Entity Counts 

Degree Table 

Number of Control Points Table 

Dimension Table 

3D Unit Vector Table 

2D Unit Vector Table 

3D MCS Point Table 

Knot Vector Table 

Geometric Tabe Flag & 0x0001 != 0 

U32: Geometric Tabe Flag 

1D MCS Table 

Geometric Tabe Flag & 0x0002 != 0 

Geometric Tabe Flag & 0x0004 != 0 

Geometric Tabe Flag & 0x0008 != 0 

Geometric Tabe Flag & 0x0010 != 0 

Geometric Tabe Flag & 0x0020 != 0 

Geometric Tabe Flag & 0x0040 != 0 

Geometric Tabe Flag & 0x0080 != 0 

PCS Value Table 

Radian Table 

Geometric Tabe Flag & 0x0100 != 0 

Geometric Tabe Flag & 0x0200 != 0 

Weight Table 

Geometric Tabe Flag & 0x0400 != 0 

CoordF64 : Translation Vector 
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Translation Vector for it be consistent with the original B-Rep definition.  In other words, if we denote the Translation Vector 

as  , then the LOD geometry from ULP must be translated by –  . 

U32: Geometric Tabe Flag 

Geometric Tabe Flag indicates which geometric tables are not trivial and therefore encoded. 

7.2.8.1.2.1 Geometric Entity Counts 

U32: Geometric Tabe Flag 

Geometric Tabe Flag indicates which geometric tables are not trivial and therefore encoded. 

Geometric Entity Counts data collection defines the counts for each of the various geometric entities within a ULP. 

Figure 185: U32: Geometric Tabe Flag 

Geometric Tabe Flag indicates which geometric tables are not trivial and therefore encoded. 

Geometric Entity Counts data collection 

 

I32 : Surface Count 

Surface Count indicates the number of distinct geometric surface entities in the ULP 

I32 : MCS Curve Count 

MCS Curve Count indicates the number of distinct geometric (Model Coordinate Space) curves (i.e. XYZ curve) entities in 

the ULP. 

I32 : PCS Curve Count 

PCS Curve Count indicates the number of distinct geometric Parameter Coordinate Space curves (i.e. UV curve) entities in 

the ULP 

I32 : Point Count 

Point Count indicates the number of distinct geometric point entities in the ULP. 

7.2.8.1.2.2 Degree Table 

Degree Table stores a vector of integers that represent the degree information of Nurbs surfaces and/or curves.  If the ULP 

does not contain any Nurbs entity, then the table is empty and bit 0x0001 in  Geometric Tabe Flag is set to be 0. 

I32 : Surface Count 

I32 : MCS Curve Count 

I32 : PCS Curve Count 

I32 : Point Count 
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Figure 186: Degree Table data collection 

 

VecI32{Int32CDP2, Combined:NULL}: Degree Array 

Degree Array is a vector of integers that stores the degree information for all the Nurbs entities in the ULP, encoded using 

Combined Predictor Type.  Degree Array is compressed and encoded using the Int32 version of second generation CODEC. 

 

Recover Nurbs Degree 

The logic diagram to recover degree information for all the Nurbs entities in the ULP from the Degree Array is shown below.   

VecI32{Int32CDP2, Combined:NULL}: Degree Array 

Recover Nurbs Degree 
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Figure 187: Recover Nurbs Degree 
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 JT File Format Reference Version 9.5 Rev-A Page 225  

7.2.8.1.2.3 Number of Control Points Table 

Number of Control Points Table stores a vector of integers that represent the number of control points information of Nurbs 

surfaces and/or curves.  If the ULP does not contain any Nurbs entity, then the table is empty and bit 0x0002 in  Geometric 

Tabe Flag is set to be 0. 

Figure 188: Number of Control Points Table data collection 

 

VecI32{Int32CDP2, Combined:NULL}: Number of Control Points Array 

Number of Control Points Array is a vector of integers that stores the number of control points information for all the Nurbs 

entities in the ULP, encoded using Combined Predictor Type.  Number of Control Points Array is compressed and encoded 

using the Int32 version of second generation CODEC. 

Recover Number of Control Points 

The logic diagram to recover number of control points information for all the Nurbs entities in the ULP from the Number of 

Control Points Array is shown below.   

VecI32{Int32CDP2, Combined:NULL}: Number of Control Points 

Array 

Recover Number of Control Points 
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Figure 189: Recover Number of Control Points 

 

7.2.8.1.2.4 Dimension Table 

Dimension Table stores a vector of integers that represent the dimension information of Nurbs surfaces and/or curves.  If the 

ULP does not contain any Nurbs entity, then the table is empty and bit 0x0004 in  Geometric Tabe Flag is set to be 0. 
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Figure 190: Dimension Table data collection 

 

VecI32{Int32CDP2, Combined:NULL}: Dimension Array 

Dimension Array is a vector of integers that stores the dimension information for all the Nurbs entities in the ULP, encoded 

using Combined Predictor Type.  Dimension Array is compressed and encoded using the Int32 version of second generation 

CODEC. 

Recover Dimension 

The logic diagram to recover dimension information for all the Nurbs entities in the ULP from the Dimension Array is shown 

below.   

VecI32{Int32CDP2, Combined:NULL}: Dimension Array 

Recover Dimension 
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Figure 191: Recover Dimension 

 

 

7.2.8.1.2.5 3D Unit Vector Table 

3D Unit Vector Table stores an array of unit vectors in 3D that form part of the analytic surface or curve representation in 

ULP.  If the ULP does not contain any analytic entity, then the table is empty and bit 0x0008 in  Geometric Tabe Flag is set 

to be 0.  The supported analytic surface types include plane, cylinder, cone, sphere, and torus, and the supported analytic 
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curve types include line and circle for both parameter space and model space curves.  The analytic representation of ULP 

follows Parasolid convention as detailed in Appendix F: Parasolid XT Format Reference. 

Similar to the coding of 8.1.5 Compressed Vertex Normal Array, each 3D unit vector is encoded as a single 32 bit integer 

using 8.2.4 Deering Normal CODEC. 

Figure 192: 3D Unit Vector Table data collection 

 

U8 : Quantization Bits 

The number of bits used for the Deering Normal CODEC if quantization is enabled.  A value of 0 denotes that quantization is 

disabled. 

VecI32{Int32CDP2, Combined:NULL}: 3D Unit Vector Integer Array 

3D Unit Vector Integer Array is a vector of integers that stores the encoded 3D unit vector from all analytic entities in the 

ULP, encoded using Combined Predictor Type.  3D Unit Vector Integer Array is compressed and encoded using the Int32 

version of second generation CODEC. 

Recover 3D Unit Vector 

The logic diagram to recover 3D unit vector information for all the analytic entities in the ULP from the 3D Unit Vector 

Integer Array is shown below. 

The recovery of a unit vector from an element in the 3D Unit Vector Integer Array is done as part of Deering Normal 

CODEC. 

As described in Appendix F: Parasolid XT Format Reference, the representation of an analytic surface of types plane, 

cylinder, cone, sphere, or torus, includes two 3D unit vectors.  One is called “axis” and the other is called “x_axis”.  These 

two unit vectors of each analytic surface are recovered for each analytic surface.  In addition, the “normal” vector to the plane 

containing a 3D circle is also recovered. 

VecI32{Int32CDP2, Combined:NULL}: 3D Unit Vector Integer Array 

Recover 3D Unit Vector 

 

 

U8 : Quantization Bits 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 230  

Figure 193: Recover Dimension 

 

 

7.2.8.1.2.6 2D Unit Vector Table 

2D Unit Vector Table stores an array of unit vectors in 2D that form part of PCS analytic circle representation in ULP.  If the 

ULP does not contain any analytic circle in the PCS, then the table is empty and bit 0x0010 in  Geometric Tabe Flag is set to 

be 0.  The analytic curve representation of ULP follows Parasolid convention as detailed in Appendix F: Parasolid XT 

Format Reference. 

Similar to the coding of 8.1.5 Compressed Vertex Normal Array, each 2D unit vector is treated as a 3D unit vector with z 

component set to be 0.0, and encoded as a single 32 bit integer using 8.2.4 Deering Normal CODEC.  In addition, the 

Quantization Bits information of Deering Normal CODEC used to encode 2D Unit Vector Table is always the same as the 

one used for 3D Unit Vector Table.    
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Figure 194: 2D Unit Vector Table data collection 

 

VecI32{Int32CDP2, Combined:NULL}: 2D Unit Vector Integer Array 

2D Unit Vector Integer Array is a vector of integers that stores the encoded 2D unit vector from all analytic entities in the 

ULP. 

Recover 2D Unit Vector 

The logic diagram to recover 2D unit vector information for all the analytic entities in the ULP from the 2D Unit Vector 

Integer Array is shown below. 

The recovery of a unit vector from an element in the 2D Unit Vector Integer Array is done as part of Deering Normal 

CODEC.    The Quantization Bits read from 3D Unit Vector Table  should be used for Deering Normal CODEC to decode 

the vector information from each element in 2D Unit Vector Integer Array. 

The “x_axis” vector to the circle in the PCS, as described in Appendix F: Parasolid XT Format Reference, is recovered. 

Figure 195: Recover 2D Unit Vector 

 

7.2.8.1.2.7 3D MCS Point Table 

3D MCS Point Table stores the quantization representation of an array of 3D MCS points in ULP.  If the ULP does not 

contain 3D MCS points, then the table is empty and bit 0x0020 in  Geometric Tabe Flag is set to be 0.   

Each point coordinate is first encoded into an integer with uniform quantizer (see 8.1.12 Uniform Quantizer Data) and then 

all the integers from each coordinate are grouped into an integer array, which is then encoded using the Int32 version of 

second generation CODEC with Combined Predictor Type. 
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Figure 196: 3D MCS Point Table data collection 

 

VecI32{Int32CDP2, Combined: Lag1}: X-Point Coord Codes 

X-Point Coord Codes is a vector of quantizer “codes” for all the X-components of an array of point coordinates.  X-Point 

Coord Codes uses the Int32 version of the second generation CODEC to compress and encode data. 

VecI32{Int32CDP2, Combined: Lag1}: Y-Point Coord Codes 

Y-Point Coord Codes is a vector of quantizer “codes” for all the Y-components of an array of point coordinates.  Y-Point 

Coord Codes uses the Int32 version of the second generation CODEC to compress and encode data. 

VecI32{Int32CDP2, Combined: Lag1}: Z-Point Coord Codes 

Z-Point Coord Codes is a vector of quantizer “codes” for all the Z-components of an array of point coordinates.  Z-Point 

Coord Codes uses the Int32 version of the second generation CODEC to compress and encode data. 

Recover 3D MCS Points 

The logic diagram to recover 3D MCS points information in the ULP from the three arrays, X-Point Coord Codes, Y-Point 

Coord Codes, and Z-Point Coord Codes,  is shown below.  Note that the point coordinates are decoded from the integer 

elements with Uniform Quantizer (see 8.1.12 Uniform Quantizer Data). 
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Figure 197: Recover 3D MCS Points 
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7.2.8.1.2.8 Knot Vector Table 

Knot Vector Table stores the quantization representation of knot vectors in ULP.  If the ULP does not contain any knot vector 

that needs be stored, then the table is empty and bit 0x0040 in  Geometric Tabe Flag is set to be 0.   

In ULP every knot vector starts with 0.0 and ends with 1.0 and is always clamped at both ends.  The encoding of knot vector 

depends on its classified knot type.  The knot values in the middle of a knot vector need be written only if the knot type is 0 
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(see Supported Knot Type).  For all the knot values that need be written, each of them is encoded into an integer with 

uniform quantizer (see 8.1.12 Uniform Quantizer Data) and then all the integers are grouped into an integer array.  The 

integer array is then encoded using the Int32 version of second generation CODEC with Combined Predictor Type. 

Figure 198: Knot Vector Table data collection 

 

VecI32{Int32CDP2, Combined:NULL}: Knot Vector Codes 

Knot Vector Codes is a vector of quantizer “codes” for all the knot vectors.  Knot Vector Codes uses the Int32 version of the 

second generation CODEC with Combined Predictor Type to compress and encode data. 

Recover Knot Vectors 

The logic diagram to recover knot vector information in the ULP from the Knot Vector Codes  is shown below.  Note that 

each integer element in the Knot Vector Codes array is decoded with Uniform Quantizer. 
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Figure 199: Recover Knot Vectors 
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7.2.8.1.2.9 1D MCS Table 

1D MCS Table stores the quantization representation of floating point values in MCS.  If the ULP does not contain any such 

value, then the table is empty and bit 0x0080 in Geometric Tabe Flag is set to be 0.  Each floating point value is encoded into 

an integer with uniform quantizer (see 8.1.12 Uniform Quantizer Data) and then all the integers are grouped into an integer 

array.  The integer array is then encoded using the Int32 version of second generation CODEC with Combined Predictor 

Type. 

Figure 200: 1D MCS Table data collection 
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VecI32{Int32CDP2, Combined:Lag1}: 1D MCS Codes 

1D MCS Codes is a vector of quantizer “codes” for all the 1D floating point values in MCS .  1D MCS Codes uses the Int32 

version of the second generation CODEC with Combined Predictor Type to compress and encode data. 

Recover 1D MCS Table 

The representation of each surface or curve in ULP includes information that describes the extent of the surface or curve in 

the parameter domain.  For curves the extent information is represented by two numbers, umin and umax, while for surfaces 

it is represented by two additional numbers for the other parametric direction, vmin and vmax.  For surfaces or curves of 

NURBS  type such extent information is implied by the knot vector information.  For surfaces or curves of other types the 

extent information needs be read from 1D MCS Table if the parameter value represents value in MCS, or Radian Table if the 

parameter value represents angle information.  The detailed information about how the parameter domain information of 

different entities should be read is listed in Table 8. 

Table 8: Parameter Domain  

 

 

Entity Type umin umax vmin vmax

NURBS Surface n/a (from knot) n/a (from knot)) n/a (from knot) n/a (from knot)

Plane n/a (always 0) 1D MCS Table n/a (always 0) 1D MCS Table

Cylinder n/a (always 0) Radian Table n/a (always 0) 1D MCS Table

Cone n/a (always 0) Radian Table n/a (always 0) 1D MCS Table

Sphere n/a (always 0) Radian Table Radian Table Radian Table

Torus n/a (always 0) Radian Table Radian Table Radian Table

XYZ NURBS Curve n/a (from knot) n/a (from knot) n/a n/a

XYZ Line n/a (always 0) n/a (from vertex geometry) n/a n/a

XYZ Circle n/a (always 0) Radian Table n/a n/a

UV NURBS Curve n/a (from knot) n/a (from knot) n/a n/a

UV Line n/a (always 0) n/a (from next uv curve) n/a n/a

UV Circle Radian Table Radian Table n/a n/a
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Figure 201: Recover 1D MCS Table 

 

The logic diagram to recover 1D MCS table information in the ULP from the 1D MCS Codes is shown in igure 200: 1D 

MCS Table data collectionFigure 201.  Note that each integer element in the 1D MCS Codes array is decoded with Uniform 

Quantizer. 
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7.2.8.1.2.10 PCS Value Table 

PCS Value Table stores the quantization representation of floating point values in PCS.  If the ULP does not contain any such 

value, then the table is empty and bit 0x0100 in  Geometric Tabe Flag is set to be 0.  Each floating point value is encoded into 

an integer with uniform quantizer (see 8.1.12 Uniform Quantizer Data) and then all the integers are grouped into an integer 

array.  The integer array is then encoded using the Int32 version of second generation CODEC with Combined Predictor 

Type. 

Figure 202: PCS Value Table data collection 

 

VecI32{Int32CDP2, Combined:NULL}: PCS Value Codes 

PCS Value Codes is a vector of quantizer “codes” for all the floating point values in PCS .  PCS Value Codes uses the Int32 

version of the second generation CODEC with Combined Predictor Type to compress and encode data. 

Recover PCS Value Table 

The logic diagram to recover PCS Value Table information in the ULP from the PCS Value Codes is shown in Figure 203.  

Note that each integer element in the PCS Value Codes array is decoded with Uniform Quantizer. 
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Figure 203: Recover PCS Value Table 

 

Figure 204: Radian Table data collection 

 

7.2.8.1.2.11 Radian Table 

Radian Table stores the quantization representation of angular values.  If the ULP does not contain any such angular value, 

then the table is empty and bit 0x0200 in Geometric Tabe Flag is set to be 0.  Each angular value is encoded into an integer 

with uniform quantizer (see 8.1.12 Uniform Quantizer Data) and then all the integers are grouped into an integer array.  The 

integer array is then encoded using the Int32 version of second generation CODEC with Combined Predictor Type. 
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VecI32{Int32CDP2, Combined:NULL}: Radian Codes 

Radian Codes is a vector of quantizer “codes” for all the angular values.  Radian Codes uses the Int32 version of the second 

generation CODEC with Combined Predictor Type to compress and encode data. 

Recover Radian Table 

The logic diagram to recover Radian Table information in the ULP from the Radian Codes is shown in Figure 205.  Note that 

each integer element in the Radian Codes array is decoded with Uniform Quantizer. 

Figure 205: Recover Radian Table  
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Figure 206: Weight Table data collection 

 

7.2.8.1.2.12 Weight Table 

Weight Table stores the quantization representation of weight values.  If the ULP does not contain any such weight value, 

then the table is empty and bit 0x0400 in Geometric Tabe Flag is set to be 0.  Each weight value is encoded into an integer 

with uniform quantizer (see 8.1.12 Uniform Quantizer Data) and then all the integers are grouped into an integer array.  The 

integer array is then encoded using the Int32 version of second generation CODEC with Combined Predictor Type. 

VecI32{Int32CDP2, Combined:NULL}:Weight Codes 

Weight Codes is a vector of quantizer “codes” for all the weight values.  Weight Codes uses the Int32 version of the second 

generation CODEC with Combined Predictor Type to compress and encode data.  

Recover Weight Table 

The logic diagram to recover Weight Table information in the ULP from the Weight Codes is shown in Figure 207.  Note 

that each integer element in the Weight Codes array is decoded with Uniform Quantizer. 
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Figure 207: Recover Weight Table  

 

7.2.8.1.3 Material Attribute Element Properties 

The properties attached to material attribute are standard JT properties, and the logic diagram to read the properties attached a 

material attribute is shown in Figure 208. 
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Figure 208: Material Attribute Element Properties 

 

I32 : Property Count 

Property count is the number of properties attached. 

Property Entry 

Standard JT property entry, consisting of key and value pair. 

7.2.8.1.4 Information Recovery 

The information in ULP is classified as “essential information” that is explicitly written on disk, and “derivative information” 

that can be computed from the “essential information”.    How “essential information” of ULP can be read from disk was 

covered in previous sections, and this section focuses on the logic to recover “derivative information” from “essential 

information”. 

The derivative information consists of curve information either in the parameter or model space.  For example, the PCS 

curves associated with an untrimmed face can be inferred from the parameter domain of the surface, or an MCS curve may be 

computed from vertex information and/or the combination of corresponding PCS curve geometry and surface geometry, etc..  

Shown in Figure 209 is the high level diagram to recover “derivative information”.  First, all the PCS line geometry are 

recovered from the associated surface domain information if the domain type of those PCS curves, stored in its associated 

coedge, are of value 1, 2, 3, 4 meaning that the PCS curve is identical to one of the parameter boundaries of the surface.  

Second, the MCS curve geometry is recovered depending on its type.  If the MCS curve type is 0, 1, or 2, then the geometry 

of its two end vertices is used to compute the curve geometry.  If the MCS curve type is 3, then its geometry is computed by 

projecting PCS curve onto the surface geometry.  After all the MCS curve geometry is computed, all the PCS  curves of type 

7 is computed by projecting MCS curve onto the parameter domain.  Some part of PCS curve definition may still be missing 

after all these steps.  At the end, all the information that is still missing in some of the PCS curves is recovered by leveraging 

the knowledge that all PCS curves within the same loop are connected in a head to tail fashion.  The logical steps that are 

displayed with dark color indicate steps that will be elaborated in more detail later. 
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Figure 209: Information Recovery 
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7.2.8.1.4.1 PCS Curve Recovery from Surface Domain 

Shown in Figure 210 is the diagram illustrating how the PCS curve geometry is recovered from surface parameter domain 

information. 
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Figure 210: PCS Curve Recovery from Surface Domain 
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7.2.8.1.4.2 MCS Curve Recovery 

Shown in Figure 211 is the diagram illustrating how MCS curve geometry is recovered from its end vertex geometry, and/or 

its associated PCS curve geometry and surface geometry.  If the associated PCS curve is coincident with one of the parameter 

boundaries of the parent surface, then the MCS curve can be recovered from parent surface geometry.  Otherwise, if the 

surface type is planar and PCS curve is of type NURBS, then the MCS curve geometry can be recovered by projecting the 

PCS curve from parameter domain to model space onto the planar surface. 
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Figure 211: MCS Curve Recovery 
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Shown in Figure 212 is the detailed description of how MCS curve can be recovered from surface geometry. 
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Figure 212: MCS Curve Recovery from Surface Geometry 
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7.2.8.1.4.3 PCS Curve Recovery from MCS Curve and Surface Geometry 

Shown in Figure 213 is the diagram illustrating how PCS curve geometry can be recovered from the combination of MCS 

curve and surface geometry. 
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Figure 213: PCS Curve Recovery from MCS Curve and Surface Geometry 
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7.2.9   JT LWPA Segment 

JT LWPA Segment contains an Element that defines light weight precise analytic data for a particular part.  More specifically 

LWPA contains the collection of analytic surfaces in the B-Rep definition of the part. 

JT LWPA Segments are typically referenced by Part Node Elements (see 7.2.1.1.1.5Part Node Element) using Late Loaded 

Property Atom Elements (see 0Second specifies the date Second value.  Valid values are [0, 59] inclusive. 

Late Loaded Property Atom Element Late Loaded Property Atom ElementLate Loaded Property Atom Element).  The JT 

LWPA Segment type supports ZLIB compression on all element data, so all elements in JT LWPA Segment use the Logical 

Element Header ZLIB form of element header data. 

Figure 214: JT LWPA Segment data collection 
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JT LWPA Segment represents a particular Part‟s precise analytic surfaces.  It can be viewed as a subset of B-Rep 

representation where the subset refers to the complete collection of all the surfaces that are of one of the analytic types shown 

in the Supported Surface Type table, i.e., plane, cylinder, cone, sphere, or torus. Unlike JT B-Rep Element or XT B-Rep 

Element, JT LWPA Element does not contain any B-Rep topology information, nor does it contain geometric curve or point 

information.  LWPA is designed to represent most essential part geometry information with much lighter weight on disk and 

much faster to load than B-Rep.  Typically LWPA is less than 2 percent of B-Rep size on disk, and takes less than 5 percent 

time to load into memory.  The analytic representation of LWPA follows Parasolid convention as detailed in Appendix F: 

Parasolid XT Format Reference. 

Figure 215: JT LWPA Element data collection 

 

I16:Version Number 

Version Number is the version identifier for this JT LWPA Element.  Version numbers “1” is currently supported. 

I32 : Surface Count 

Surface Count indicates the number of surface entries in LWPA.  The number of surface entries is equal to the number of 

surfaces in the B-Rep representation.  The surface entry does not contain any information if the corresponding B-Rep surface 

is not of analytic type. 

I32 : Analytic Surface Count 

Analytic Surface Count indicates the number of analytic surface entries in LWPA. 

7.2.9.1.1 Analytic Surface Geometry 

Analytic Surface Geometry defines a collection of analytic surfaces and their mapping to the original B-Rep surfaces.   
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Figure 216: Analytic Surface Geometry data collection 

 

VecI32{Int32CDP2, Lag1}: Analytic Surface Indices 
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Coordinate Array contains an array of double precision floating point numbers that represent the collection of point 
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Each floating point number in the array is written in binary form. 
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VecF64: Radian Array 

Radian Array contains an array of double precision floating point numbers that represent the collection of radian information 

in the definition of the analytic surface entities.  The composite type VecF64 is defined in Table 2.  Each floating point 

number in the array is written in binary form. 

Analytic Surface Creation 

Analytic surfaces in LWPA is constructed based on the information of the above arrays, as illustrated by logical diagram in 

Figure 217. 

Figure 217: Analytic Surface Creation 
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8 Data Compression and Encoding 

The JT File format utilizes best-in-class compression and encoding algorithms to produce compact and efficient 

representations of data.  The types of compression algorithms supported by the JT format vary from standard data type 

agnostic ZLIB deflation to advanced arithmetic algorithms that exploit knowledge of the characteristics of the data types they 

are compressing.   Some of the JT format data collections are always stored in a compressed format, whereas other data 

collections support multiple compression storage formats that qualitatively vary from “Lossless” compression to more 

aggressive strategies that employ “lossy” compression.  This support by the JT format of varying qualitative levels of 

compression allows producers of JT data to fine tune the tradeoff between compression ratio and fidelity of the data. 

In some instances, data may be encoded/compressed using multiple techniques applied on top of one another in a serial 

fashion (i.e. encoding applied to the output of another encoder).  One common example of this multiple encoding is when an 

array/vector of floating point data is first quantized into some integer codes and then these resulting integer codes are further 

compressed/encoded using an Arithmetic or BitLength CODEC (see 8.2 Encoding Algorithms).   

Beyond the data collection specific compression/encoding, some JT format Data Segment types (see 7.1.3 Data Segment) 

also support having a ZLIB compression conditionally applied to all the bytes of information persisted within the segment.  

So individual fields or collections of data may first have data type specific encoding/compression algorithms applied to them, 

and then if their Data Segment type supports it, the resulting data may be additionally compressed using a ZLIB deflation 

algorithm.   

Whether, and at what qualitative level, a particular Data Segment‟s data is compressed/encoded is indicated through 

compression related data values stored as part of the particular Data Segment storage format. In general, aggressive 

application of advanced compression/encoding techniques is reserved for the heavy-weight renderable geometric data (e.g. 

triangles and wireframe lines) which can exist in a JT File. 

The following sections document the format of the data compression/encoding within the JT file.  Along with documenting 

the format, a technical description of the various compression/encoding algorithms is included and an example 

implementation of the decoding portion of the algorithms can be found within Appendix C: Decoding Algorithms – An 

Implementation. 

8.1 Common Compression Data Collection Formats 

For convenience and brevity in documenting the JT format, this section of the reference documents the format for several 

common “data compression/encoding” related data collections that can exist in the JT format. You will find references to 

these common compression data collections in the 7.2 Data Segments section of the document. 

8.1.1 Int32 Compressed Data Packet 

The Int32 Compressed Data Packet collection represents the format used to encode/compress a collection of data into a series 

of Int32 based symbols.  Note that the Int32 Compressed Data Packet collection can in itself contain another Int32 

Compressed Data Packet collection if there are any “Out-Of-Band data.” In the context of the JT format data compression 

algorithms and Int32 Compressed Data Packet, “out-of-band data” has the following meaning. 

CODECs (e.g. Arithmetic, see 8.2 Encoding Algorithms for technical description) exploit the statistics present in the relative 

frequencies of the values being encoded.  Values that occur frequently enough allow these methods to encode each of the 

values as a “symbol” in fewer bits that it would take to encode the value itself.  Values that occur too infrequently to take 

advantage of this property are written aside into the “out-of-band data” array to be encoded separately.  An “escape” symbol 

is encoded in their place as a placeholder in the primal CODEC  (note, see “Symbol” data field definition in 8.1.1.1.1 Int32 

Probability Context Table Entry for further details on the representation of “escape” symbol). 

Essentially the “out-of-band data” is the high-entropy residue left over after the CODECs have squeezed all the advantage out 

of the original data stream that they can.  However, this “out-of-band data” is sent back around for another pass because 

sometimes there are different statistics to be taken advantage of.  When all other coding options have been exhausted, the 

Bitlength CODEC is invoked.  The Bitlength CODEC directly encodes all values given to it, does not require a probability 

context, and hence never produces additional “out-of-band data”.  The byte stops there, in other words. 

In some cases, all values may be written as "out of band" when the Codec cannot perform any useful compression.  In this 

case, the encoded I32 : CodeText Length field will be 0, and the I32 : Out-Of-Band Value Count will be equal to I32 : Value 
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Element Count.  The implied action in this case is to merely copy the Out-Of-Band value data into the output Value Element 

array instead of invoking the Codec.  

Figure 218: Int32 Compressed Data Packet data collection 
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I32 : Out-Of-Band Value Count 

Out-Of-Band Value Count specifies the number of values that are “Out-Of-Band.” This data field is only present for the 

Arithmetic CODEC Type. 

I32 : CodeText Length 

CodeText Length specifies the total number of bits of CodeText data (CodeText data field is described below).  This data 

field is only present if CODEC Type is not equal to “Null CODEC.” 

I32 : Value Element Count 

Value Element Count specifies the number of values that the CODEC is expected to decode (i.e. it‟s like the “length” field 

written if you‟re just writing out a vector of integers).  This data field is only present if CODEC Type is not equal to “Null 

CODEC.” Upon completion of decoding the CodeText data field below, the number of decoded Values should be equal to 

Value Element Count.  When only a single Probability Context Table is used, Value Element Count will also be equal to the 

number of Symbols decoded upon completion of decoding. 

I32 : Symbol Count 

When two Probability Context Tables are being used, Symbol Count specifies the number of Symbols to be decoded by the 

Arithmetic CODEC.  There is a subtlety present in the method CodecDriver::addOutputSymbol() when it is passed an Escape 

symbol.  Only if the Codec is using Probability Context Table 0 when it receives an Escape symbol does it emit a Value from 

the "Out-Of-Band" data array.  Because of this subtlety, the number of Symbols decoded can be larger than the number of 

Values produced, thus the reason for writing this field distinct from  Value Element Count. 

VecU32 : CodeText 

CodeText is the array/vector of encoded symbols.  For CODEC Type not equal to “Null CODEC”, the total number of bits of 

encoded data in this array is indicated by the previously described CodeText Length data field. 

8.1.1.1 Int32 Probability Contexts 

Int32 Probability Contexts data collection is a list of Probability Context Tables.  The Int32 Probability Contexts data 

collection is only present for the Arithmetic CODEC Type.  A Probability Context Table is a trimmed and scaled histogram 

of the input values.  It tallies the frequencies of the several most frequently occurring values.  It is central to the operation of 

the arithmetic CODEC. 
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Figure 219: Int32 Probability Contexts data collection 
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U32{6} : Number Occurrence Count Bits 

Number Occurrence Count Bits specifies the number of bits used to encode the Occurrence Count range. 

U32{6} : Number Value Bits 

Number Value Bits specifies the number of bits used to encode the Associated Value range.  Note that Number Value Bits is 

only specified in the JT file for the first Probability Context Table.  If a second Probability Context Table is present, the 

Number Value Bits from the first should be used for the second as well. 

U32{6} : Number Next Context Bits 

Number Next Context Field Bits specifies the number of bits used for the Next Context Field in 8.1.1.1.1 Int32 Probability 

Context Table Entry. 

U32{32} : Min Value 

Min Value specifies the minimum of all Associated Values (i.e. one per table entry) stored in this Probability Context Table.  

This value is used to compute the real Associated Value for a Probability Context Table Entry.  See Associated Value 

description in 8.1.1.1.1 Int32 Probability Context Table Entry. 

U32{variable}: Alignment Bits 

Alignment Bits represents the number of additional padding bits stored to arrive at the next even multiple of 8 bits. Values of 

“0” are stored in the alignment bits. 

Note:  Data written into the JT file is always aligned on bytes.  Therefore after reading in a block of bit data such as the 

probability context tables it is necessary to discard any remaining bits on the last byte that is read in.  This is represented by 

the “Alignment Bits” entry. 

8.1.1.1.1 Int32 Probability Context Table Entry 

Figure 220: Int32 Probability Context Table Entry data collection 

 

U32{Number Symbol Bits} : Symbol 

Symbol is a small integer number associated with a specific value in the context table.  It serves only to impose an order on 

the entries in the Probability Context Table.  The symbol is stored with a “+2” added to the value and thus a reader must 

subtract “2” from the read value to get the true symbol value. Complete description for Number Symbol Bits can be found in 

8.1.1.1 Int32 Probability Contexts.  

Note: Even though the symbol is written as a U32{Number Symbol Bits} it is possible to end up with a negative number after 

subtracting “2” from the read in value.   One example that will occur frequently is the escape symbol used for out-of-band 

data which will have the value “0” in the file, however it will become “-2”, its true symbol value, after subtracting “2” from 

the read in “0” value. 

U32{Number Symbol Bits} : Symbol 

U32{Number Occurrence Count Bits} : Occurrence Count 

U32{Number Value Bits} : Associated Value 

U32{Number Next Context Bits} : Next Context  
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U32{Number Occurrence Count Bits} : Occurrence Count 

Occurrence Count specifies the relative frequency of the value.  Complete description for Number Occurrence Count Bits can 

be found in 8.1.1.1 Int32 Probability Contexts. 

Note:  Occurrence Counts for all symbols are normalized (converted to a relative frequency) during the write process in order 

to ensure the minimum amount of bits possible is used to write them.  This has several implications the reader should be 

aware of:  

 The sum of all Occurrence Counts is not guaranteed to equal the number of symbols to be decoded (see Value Element 

Count in section 8.1.1 for number of symbols to be decoded). 

During Arithmetic decoding as described in Appendix C: 3.2. 

pDriver->numSymbolsToRead() – Refers to the total number of symbols to be decoded (i.e. Value Element Count in section 

8.1.1 when the number of Probability Context Tables is equal to 1, or Symbol Count when the number of Probability Context 

Tables is 2). 

pCurrContext->totalCount() – Refers to the sum of the “Occurrence Count” values for all the symbols associated with a 

Probability Context.  

U32{Number Value Bits} : Associated Value 

Associated Value is the value (from the input data) that the symbol represents. The CODECs don‟t directly encode values, 

they encode symbols. Symbols, then, are associated with specific values, so when the CODEC decodes an array of symbols, 

you can reconstruct the array of values that was intended by looking up the symbols in the Probability Context Table. This 

value is stored with “Min Value” subtracted from the value. Complete descriptions for “Min Value” and Number Value Bits 

can be found in 8.1.1.1 Int32 Probability Contexts. 

Note: The associated value for an escape symbol is undefined and therefore can be any valid U32 number. 

U32{Number Next Context Bits} : Next Context  

Next Context field specifies which Probability Context Table to use when decoding the next symbol.  The value of this field 

will be greater than or equal to 0, and less than Probability Context Table Count. 

8.1.2 Int32 Compressed Data Packet Mk. 2 

The Int32 Compressed Data Packet Mk. 2 collection represents an enhanced form of the original Int32 Compressed Data 

Packet. Note that the Int32 Compressed Data Packet Mk. 2 collection can in itself contain another Int32 Compressed Data 

Packet Mk. 2 collection if there are any “Out-Of-Band data.” In the context of the JT format data compression algorithms and 

Int32 Compressed Data Packet Mk. 2, “out-of-band data” has the meaning described below. 

Entropy CODECs (e.g. Arithmetic) exploit the statistics present in the relative frequencies of the values being encoded.  

Values that occur frequently enough allow these methods to encode each of the values as a “symbol” in fewer bits that it 

would take to encode the value itself.  Values that occur too infrequently to take advantage of this property are written aside 

into the “out-of-band data” array to be encoded separately.  An “escape” symbol is encoded in their place as a placeholder in 

the primal CODEC  (note, see “Symbol” data field definition in 8.1.2.1.1 Int32 Probability Context Table Entry Mk. 2 for 

further details on the representation of “escape” symbol). 

Essentially the “out-of-band data” is the high-entropy residue left over after the CODEC has squeezed all the advantage out 

of the original data stream that it can.  However, this “out-of-band data” is sent back around for another pass because 

sometimes there are new or different statistics to be exploited.   

The Int32 Compressed Data Packet Mk. 2 brings the new Chopper pseudo-CODEC to the table.  Its job is to identify fields of 

bits in a sequence of otherwise incompressible data that may be hiding low-entropy statistics that can be profitably exploited.  

In other words, it "chops" the input data up into bit fields, and then encodes them separately using the Arithmetic or 

BitLength CODECs, or in some cases, another round of chopping.  The Chopper also removes value bias from the original 

input data array.  Some input data arrays may contain values that are clustered around a certain central value.  In these cases, 

it is profitable to first subtract out a bias value from the original input data.  In some cases, this simple expedient may 

dramatically reduce the apparent field width necessary to code the variation in the original sequence. 
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In some cases, all values may be written as "out of band" when the Codec cannot perform any useful compression.  In this 

case, the encoded I32 : CodeText Length field will be 0, and the I32 : Out-Of-Band Value Count will be equal to I32 : Value 

Element Count.  The implied action in this case is to merely copy the Out-Of-Band value data into the output Value Element 

array instead of invoking the Codec.  

When all other coding options have been exhausted, the Bitlength CODEC is invoked.  The Bitlength CODEC directly 

encodes all values given to it, does not require a probability context, and hence never produces additional “out-of-band data”.  

The byte stops there, in other words. 

Note that in the diagram below, encoding can loop back recursively for Out-Of-Band data and chopper fields.  For JT v9 

files, the maximum recursion depth may not exceed three. 

Figure 221: Int32 Compressed Data Packet Mk. 2 data collection 
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I32 : Value Count 

Value Count specifies the number of values that the CODEC is expected to decode (i.e. it‟s like the “length” field written if 

you‟re just writing out a vector of integers).  Upon completion of decoding the CodeText data field below, the number of 

decoded Values should be equal to Value Count.  When only a single Probability Context Table is used, Value Element 

Count will also be equal to the number of Symbols decoded upon completion of decoding. 

U8 : CODEC Type 

CODEC Type specifies the algorithm used to encode/decode the data.  See 8.2 Encoding Algorithms for complete 

explanation of each of the encoding algorithms. 

 

= 0 Null CODEC 

= 1 Bitlength CODEC 

= 3 Arithmetic CODEC 

= 4 Chopper CODEC 

I32 : CodeText Length 

CodeText Length specifies the total number of bits of CodeText data (CodeText data field is described below). 

VecU32 : CodeText 

CodeText is the array/vector of encoded symbols.  For CODEC Type not equal to “Null CODEC”, the total number of bits of 

encoded data in this array is indicated by the previously described CodeText Length data field. 

U8 : Chop Bits 

Chop Bits specifies the number of high-order bits "chopped off" from the biased input data array and coded separately from 

the low-order bits.  Repeated applications of the Chopper pseudo-CODEC can expose low-entropy bit fields that would be 

inaccessible by directly coding the data array.  Chop Bits is the number of bits coded into the Chopped MSB Data field. 

I32 : Value Bias 

Value Bias is the (signed) number that is subtracted from the original input data array elements before computing Value Span 

Bits and Chop Bits.  See Chopped LSB Data below for a full explanation of how to reconstitute the original data values using 

Value Bias and the two chopped fields. 

U8 : Value Span Bits 

Value Span Bits specifies the total bit width of the biased input data array.  Note that Value Span Bits minus Chop Bits is the 

number of low-order bits present in the Chopped LSB Data field. 

Int32 Compressed Data Packet Mk. 2 : Chopped MSB Data 

This field contains the separately compressed most significant bits of the biased input data array, whose elements contain 

Value Span Bits bits of significance.  In other words, this field contains the bit field from the biased data array beginning at 

bit number ValueSpan-ChopBits and ending at bit number ValueSpan-1 inclusive.  This field may contain negative numbers.  

Int32 Compressed Data Packet Mk. 2 : Chopped LSB Data 

This field contains the separately compressed most significant bits of the original input data array, whose elements contain 

Value Span Bits bits of significance.  In other words, this field contains the bit field from the original data array beginning at 

bit number 0 and ending at bit number ValueSpan-ChopBits-1 inclusive.  This field may only contain positive numbers; all 

bits above this range must encode to 0.  A pseudo-code representation of the re-constituting the original data values is as 

follows: 

 

OrigValue[i] = (LSBValue[i] | (MSBValue[i] << (ValSpanBits - ChopBits))) + ValueBias; 
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Int32 Compressed Data Packet Mk. 2 : OOB Data Values 

This field encodes the out-of-band values associated with the Arithmetic CODEC. 

8.1.2.1 Int32 Probability Contexts Mk. 2 

Int32 Probability Contexts Mk. 2 data collection encodes a Probability Context Table, and is present only for the Arithmetic 

CODEC Type.  A Probability Context Table is a trimmed and scaled histogram of the input values.  It tallies the frequencies 

of the several most frequently occurring values.  It is central to the operation of the Arithmetic CODEC. 

Figure 222: Int32 Probability Contexts Mk. 2 data collection 
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U32{6} : Number Value Bits 

Number Value Bits specifies the number of bits used to encode the Associated Value range.  Note that Number Value Bits is 

only specified in the JT file for the first Probability Context Table.  If a second Probability Context Table is present, the 

Number Value Bits from the first should be used for the second as well. 

U32{32} : Min Value 

Min Value specifies the minimum of all Associated Values (i.e. one per table entry) stored in this Probability Context Table.  

This value is used to compute the real Associated Value for a Probability Context Table Entry.  See Associated Value 

description in 8.1.1.1.1 Int32 Probability Context Table Entry. 

U32{variable}: Alignment Bits 

Alignment Bits represents the number of additional padding bits stored to arrive at the next even multiple of 8 bits. Values of 

“0” are stored in the alignment bits. 

Note:  Data written into a JT file is always aligned on bytes.  Therefore after reading in a block of bit data such as the 

probability context tables it is necessary to discard any remaining bits on the last byte that is read in.  This is represented by 

the “Alignment Bits” entry. 

8.1.2.1.1 Int32 Probability Context Table Entry Mk. 2 

 

Figure 223: Int32 Probability Context Table Entry Mk. 2 data collection 

 

 

U32{Number Symbol Bits} : Symbol 

Symbol is a small integer number associated with a specific value in the context table.  It serves only to impose an order on 

the entries in the Probability Context Table.  The symbol is stored with a “+2” added to the value and thus a reader must 

subtract “2” from the read value to get the true symbol value. Complete description for Number Symbol Bits can be found in 

8.1.2.1 Int32 Probability Contexts Mk. 2.  

Note: Even though the symbol is written as a U32{Number Symbol Bits} it is possible to end up with a negative number after 

subtracting “2” from the read in value.   One example that will occur frequently is the escape symbol used for out-of-band 

data which will have the value “0” in the file, however it will become “-2”, its true symbol value, after subtracting “2” from 

the read in “0” value. 

U32{Number Occurrence Count Bits} : Occurrence Count 

Occurrence Count specifies the relative frequency of the value.  Complete description for Number Occurrence Count Bits can 

be found in 8.1.2.1 Int32 Probability Contexts Mk. 2. 

Note:  Occurrence Counts for all symbols are normalized (converted to a relative frequency) during the write process in order 

to ensure the minimum amount of bits possible is used to write them while closely approximating their actual frequency.  

This has several implications the reader should be aware of:  

U32{Number Symbol Bits} : Symbol 

U32{Number Occurrence Count Bits} : Occurrence Count 

U32{Number Value Bits} : Associated Value 
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The sum of all Occurrence Counts is not guaranteed to equal the number of symbols to be decoded (see I32 : Value Count in 

section 8.1.2 for number of symbols to be decoded). 

During Arithmetic decoding as described in Appendix C: 3.2. 

pDriver->numSymbolsToRead() – Refers to the total number of symbols to be decoded (i.e. I32 : Value Count in section 

8.1.2). 

pCurrContext->totalCount() – Refers to the sum of the “Occurrence Count” values for all the symbols associated with a 

Probability Context.  

U32{Number Value Bits} : Associated Value 

Associated Value is the value (from the input data) that the symbol represents. The CODECs don‟t directly encode values, 

they encode symbols. Symbols, then, are associated with specific values, so when the CODEC decodes an array of symbols, 

you can reconstruct the array of values that was intended by looking up the symbols in the Probability Context Table. This 

value is stored with “Min Value” subtracted from the value. Complete descriptions for “Min Value” and Number Value Bits 

can be found in 8.1.2.1 Int32 Probability Contexts Mk. 2. 

Note: The associated value for an escape symbol is undefined and therefore can be any valid U32 number. 

8.1.3 Float64 Compressed Data Packet 

The Float64 Compressed Data Packet collection represents the format used to encode/compress a collection of data into a 

series of Float64 based symbols.  This compression format also uses the concept of “out-of-band data” in its data contents 

definition. In the context of the JT format data compression algorithms and Float64 Compressed Data Packet, “out-of-band 

data” has the following meaning. 

The Arithmetic CODEC (see 8.2 Encoding Algorithms for technical description) can exploit the statistics present in the 

relative frequencies of the values being encoded.  Values that occur frequently enough allow the CODEC to encode each of 

the values as a “symbol” in fewer bits that it would take to encode the value itself.  Values that occur too infrequently to take 

advantage of this property are written aside into the “out-of-band data” array.  An “escape” symbol (i.e. value of “-2”) is 

encoded in their place as a marker in the primal CODEC.  Essentially the “out-of-band data” is the high-entropy 

junk/residue/slag left over after the CODECs have squeezed all the advantage out that it can.    

Whereas the Int32 Compressed Data Packet (see 8.1.1 Int32 Compressed Data Packet) then sends this “out-of-band data” 

back around through a new CODEC looking for different statistics to be taken advantage of, the Float64 Compressed Data 

Packet simply writes out the “out-of-band data” array with no additional encoding attempted. 

In some cases, all values may be written as "out of band" when the Codec cannot perform any useful compression.  In this 

case, the encoded I32 : CodeText Length field will be 0, and the I32 : Out-Of-Band Value Count will be equal to I32 : Value 

Element Count.  The implied action in this case is to merely copy the Out-Of-Band value data into the output Value Element 

array instead of invoking the Codec.  
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Figure 224: Float64 Compressed Data Packet data collection 

 

U8 : CODEC Type 

CODEC Type specifies the algorithm used to encode/decode the data.  See 8.2 Encoding Algorithms for complete 

explanation of each of the encoding algorithms. 
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F64 : Value Range Min 

Value Range Min specifies the minimum of the value range used to encode the values.  This data field is only present if 

CODEC Type is not equal to “Null CODEC.” 

F64 : Value Range Max 

Value Range Max specifies the maximum of the value range used to encode the values.  This data field is only present if 

CODEC Type is not equal to “Null CODEC.” 

I32 : Out-Of-Band Value Count 

Out-Of-Band Value Count specifies the number of values that are “Out-Of-Band.”  This data field is only present if CODEC 

Type is not equal to “Null CODEC.” 

VecF64 : Out-Of-Band Values 

Out-Of-Band Values specifies the vector/list of “Out-Of-Band” values.  This data field is only present if CODEC Type is not 

equal to “Null CODEC.” 

I32 : CodeText Length 

CodeText Length specifies the total number of bits of CodeText data (described below).  This data field is only present if 

CODEC Type is not equal to “Null CODEC.” 

I32 : Value Element Count 

Value Element Count specifies the number of values that the CODEC is expected to decode (i.e. it‟s like the “length” field 

written if you‟re just writing out a vector of integers).  This data field is only present if CODEC Type is not equal to “Null 

CODEC.” Upon completion of decoding the CodeText data field below, the number of decoded symbol values should be 

equal to Value Element Count. 

I32 : Symbol Count 

When two Probability Context Tables are being used, Symbol Count specifies the number of Symbols to be decoded by the 

Arithmetic CODEC.  There is a subtlety present in the method CodecDriver::addOutputSymbol() when it is passed an Escape 

symbol.  Only if the Codec is using Probability Context Table 0 when it receives an Escape symbol does it emit a Value from 

the "Out-Of-Band" data array.  Because of this subtlety, the number of Symbols decoded can be larger than the number of 

Values produced, thus the reason for writing this field distinct from Value Element Count. 

VecU32 : CodeText 

CodeText is the array/vector of encoded symbols.  For CODEC Type not equal to “Null CODEC”, the total number of bits of 

encoded data in this array is indicated by the previously described CodeText Length data field. 

8.1.3.1 Float64 Probability Contexts 

Float64 Probability Contexts data collection is a list of Probability Context Tables.  A Probability Context Table is a trimmed 

and scaled histogram of the input values.  It tallies the frequencies of the several most frequently occurring values.  It is 

central to the operation of the arithmetic CODEC. 
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Figure 225: Float64 Probability Contexts data collection 

 

I32 : Probability Context Table Count 

Probability Context Table Count specifies the number of Probability Context Tables to follow and will always have a value 

of either “1” or “2”. 

I32 : Probability Context Table Entry Count 

Probability Context Table Entry Count specifies the number of entries in this Probability Context Table. 

8.1.3.1.1 Float64 Probability Context Table Entry 

Figure 226: Float64 Probability Context Table Entry data collection 

 

I32 : Symbol 

Symbol is a small integer number associated with a specific value in the context table.  It serves only to impose an order on 

the entries in the Probability Context Table.  Note that a value of “-2” represents the “escape” symbol placeholder encoded 

for  “out-of-band data” (see 8.1.3 Float64 Compressed Data Packet for additional details). 

I32 : Occurrence Count 

Occurrence Count specifies the relative frequency of the value.  
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F64 : Associated Value 

Associated Value is the value (from the input data) that the symbol represents.  The CODECs don‟t directly encode values, 

they encode symbols.  Symbols, then, are associated with specific values, so when the CODEC decodes an array of symbols, 

you can reconstruct the array of values that was intended by looking up the symbols in the Probability Context Table. 

I32 : Reserved Field 

Reserved Field is a data field reserved for future JT format expansion. 

8.1.4 Compressed Vertex Coordinate Array 

The Compressed Vertex Coordinate Array data collection contains the quantization data/representation for a set of vertex 

coordinates. 

Figure 227: Compressed Vertex Coordinate Array data collection 

 

Complete description for Point Quantizer Data can be found in 8.1.4 Point Quantizer Data. 

I32 : Unique Vertex Count 

Vertex Count specifies the count (number of unique) vertices in the Vertex Codes arrays.  Identical values are only stored 

once therefore it may be necessary to smear out the vertices as described in TopoMesh Compressed Rep Data V1 and 

TopoMesh Topologically Compressed LOD Data. 
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Number Components specifies the number of vertex components present for each vertex record in the set of vertex records. 
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VecU32{Int32CDP2, Lag1} : Vertex Coord Exponents 

Vertex Coord Exponents is a vector of Floating Point Exponents and Sign for all the ith component values of a set of vertex 

coordinates.  Vertex Coord Exponents uses the Int32 version of the CODEC to compress and encode data. 

VecU32{Int32CDP2, Lag1} : Vertex Coord Mantissae 

Vertex Coord Mantissae is a vector of Floating Point Mantissae for all the ith component values of a set of vertex 

coordinates.  Vertex Coord Mantissae uses the Int32 version of the CODEC to compress and encode data. 

VecU32{Int32CDP2, Lag1} : Vertex Coord Codes 

Vertex Coord Codes is a vector of quantizer “codes” for all the ith component values of a set of vertex coordinates.  Vertex 

Coord Codes uses the Int32 version of the CODEC to compress and encode data. 

I32 : Vertex Coordinate Hash 

The Vertex Coordinate Hash is the combined hash of the unique vertex coordinate records.   If the number of quantization 

bits is equal to zero the hash value is equal to the combined hash of the vertex coordinate values for each of  the component 

arrays.  If the number of quantization bits is greater than 0 the hash value is equal to the combined hash of the vertex 

coordinates codes for each of the component arrays.  Refer to section 9.5 for a more detailed description on hashing. 

UInt32 uHash    = 0; 

uInt32 nUniqVtx = 0; 

vecF32 vCoord[nUniqVtx][3];  

vecU32 vCodes[3]; 

... 

if ( uQuantBits == 0 ) { 

  for ( int i=0 ; i<nComp ; i++ ) { 

    for ( int j=0 ; j<nUniqVtx ; j++) { 

      uHash = hash32( (UInt32*)(&vCoord[j][i]), 1, uHash ); 

    } 

  } 

} else { 

  for ( int i=0 ; i<nComp ; i++ ) { 

 uHash = hash32( &vCodes[i], nUniqVtx, uHash ); 

  } 

} 

8.1.5 Compressed Vertex Normal Array 

The Compressed Vertex Normal Array data collection contains the compressed data/representation for a set of vertex 

normals.  Compressed Vertex Normal Array data collection is only present if previously read vertex bindings denote normals 

are presents (See Vertex Shape LOD Data U64 : Vertex Bindings for complete explanation of the vertex bindings). 

A variation of the CODEC developed by Michael Deering at Sun Microsystems is used to encode the normals when 

quantization is enabled.  The variation being that the “Sextants” are arranged differently than in Deering‟s scheme [6], for 

better delta encoding.  See 8.2.4 Deering Normal CODEC for a complete explanation on the Deering CODEC used.  
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Figure 228: Compressed Vertex Normal Array data collection 

 

I32 : Normal Count 

Normal count specifies the number of normals.  This number should equal the total number of vertex records. 

U8 : Number Components 

Number Components specifies the number of normal components present for each vertex record in the set of vertex records. 

U8 : Quantization Bits 

The number of bits used when the Deering Normal CODEC if quantization is enabled.  A value of 0 denotes that quantization 

is disabled. 

VecU32{Int32CDP2} : Vertex Normal Exponents 

Vertex Normal Components is a vector of Floating Point Exponents for all the ith component values of a set of vertex 

coordinates.  Vertex Normal Components uses the Int32 version of the CODEC to compress and encode data. 

VecU32{Int32CDP2} : Vertex Normal Mantissae 

Vertex Normal Components is a vector of Floating Point Mantissae for all the ith component values of a set of vertex 

coordinates.  Vertex Normal Components uses the Int32 version of the CODEC to compress and encode data. 

U8 : Number Components 
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VecU32{Int32CDP2} : Sextant Codes 

Sextant Codes is a vector of “codes” (one per normal) for a set of normals identifying which Sextant of the corresponding 

sphere Octant each normal is located in.  Sextant Codes uses the Int32 version of the CODEC to compress and encode data. 

VecU32{Int32CDP2} : Octant Codes 

Octant Codes is a vector of “codes” (one per normal) for a set of normals identifying which sphere Octant each normal is 

located in.  Octant Codes uses the Int32 version of the CODEC to compress and encode data. 

VecU32{Int32CDP2} : Theta Codes 

Theta Codes is a vector of “codes” (one per normal) for a set of normals representing in Sextant coordinates the quantized 

theta angle for each normal‟s location on the unit radius sphere; where theta angle is defined as the angle in spherical 

coordinates about the Y-axis on a unit radius sphere.  Theta Codes uses the Int32 version of the CODEC to compress and 

encode data. 

VecU32{Int32CDP2} : Psi Codes 

Psi Codes is a vector of “codes” (one per normal) for a set of normals representing in Sextant coordinates the quantized Psi 

angle for each normal‟s location on the unit radius sphere; where Psi angle is defined as the longitudinal angle in spherical 

coordinates from the y = 0 plane on the unit radius sphere.  Psi Codes uses the Int32 version of the CODEC to compress and 

encode data 

U32 : Vertex Normal Hash 

The Vertex Normal Hash is the combined hash of the vertex normals.   If the number of quantization bits is equal to zero the 

hash value is equal to the combined hash of the vertex normal values for each of the component arrays.  If the number of 

quantization bits is greater than 0 the hash value is equal to the combined hash of the Sextant, Octant, Theta, and Psi Codes 

for all vertex records.  Refer to section 9.5 for a more detailed description on hashing. 

UInt32 uHash   = 0; 

uInt32 nVtxRec = 0; 

vecF32 vNorm[nVtxRec][3];  

vecU32 vSextant, vOctant. vTheta, vPsi; 

... 

if ( uQuantBits == 0 ) { 

  for ( int i=0 ; i<nComp ; i++ ) { 

    for ( int j=0 ; j<nVtxRec ; j++) { 

      uHash = hash32( (UInt32*)(&vNorm[j][i]), 1, uHash ); 

    } 

  } 

} else { 

 uHash = hash32( &vSextant, nVtxRec, uHash ); 

 uHash = hash32( &vOctant, nVtxRec, uHash ); 

 uHash = hash32( &vTheta, nVtxRec, uHash ); 

 uHash = hash32( &vPsi, nVtxRec, uHash ); 

} 

8.1.6 Compressed Vertex Texture Coordinate Array 

The Compressed Vertex Texture Coordinate Array data collection contains the quantization data/representation for a set of 

vertex texture coordinates.  Compressed Vertex Texture Coordinate Array data collection is only present if previously read 

vertex bindings denote texture coordinates are presents (See Vertex Shape LOD Data U64 : Vertex Bindings for complete 

explanation of the vertex bindings). 
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Figure 229: Compressed Vertex Texture Coordinate Array data collection 

 

 Complete description for Texture Quantizer Data can be found in 8.1.10 Texture Quantizer Data. 

I32 : Texture Coord Count 

Color count specifies the number of Texture Coordinates.  This number should equal the total number of vertex records. 

U8 : Number Components 

Number Components specifies the number of Texture Coordinate components present for each vertex record in the set of 

vertex records. 

U8 : Quantization Bits 

Number of Bits specifies the quantized size (i.e. the number of bits of precision) for each of the components.  The actual 

number of quantization bits used is specified within Texture Quantizer Data.  Value must be within range [0:24] inclusive. 

VecU32{Int32CDP2} : Vertex Texture Coord Exponents 

Vertex Texture Coordinate Components is a vector of Floating Point Exponents for all the ith component values of a set of 

vertex coordinates.  Vertex Texture Coordinate Components uses the Int32 version of the CODEC to compress and encode 

data. 

U8 : Number Components 

U8 : Quantization Bits 

I32 : Texture Coord Count 

QuantBits = 0  

VecU32{Int32CDP2} : Vertex Texture Coord Exponents 
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VecU32{Int32CDP2} : Vertex Texture Coord Mantissae 

Vertex Texture Coordinate Components is a vector of Floating Point Mantissae for all the ith component values of a set of 

vertex coordinates.  Vertex Texture Coordinate Components uses the Int32 version of the CODEC to compress and encode 

data. 

VecU32{Int32CDP2, Lag1} : Texture Coord Codes 

V-Texture Coord Codes is a vector of quantizer “codes” for all the nth-component of a set of vertex texture coordinates.  V-

Texture Coord Codes uses the Int32 version of the CODEC to compress and encode data. 

U32 : Vertex Texture Coord Hash 

The Vertex Texture Coord Hash is the combined hash of the Vertex Texture Coordinates.   If the number of quantization bits 

is equal to zero the hash value is equal to the combined hash of the vertex texture coordinate values for each of  the 

component arrays.  If the number of quantization bits is greater than 0 the hash value is equal to the combined hash of the 

vertex texture coordinates codes for each of the component arrays.  Refer to section 9.5 for a more detailed description on 

hashing. 

UInt32 uHash    = 0; 

uInt32 nVtxRec = 0; 

vecF32 vTexCoord[nVtxRec][4];  

vecU32 vCodes[4]; 

... 

if ( uQuantBits == 0 ) { 

  for ( int i=0 ; i<nComp ; i++ ) { 

    for ( int j=0 ; j<nVtxRec ; j++) { 

      uHash = hash32( (UInt32*)(&vTexCoord[j][i]), 1, uHash ); 

    } 

  } 

} else { 

  for ( int i=0 ; i<nComp ; i++ ) { 

 uHash = hash32( &vCodes[i], nVtxRec, uHash ); 

  } 

} 

8.1.7 Compressed Vertex Color Array 

The Compressed Vertex Color Array data collection contains the quantization data/representation for a set of vertex colors.  

Compressed Vertex Color Array data collection is only present if previously read Color Binding value is not equal to zero 

(See Vertex Shape LOD Data for complete explanation of Color Binding data field). 
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Figure 230: Compressed Vertex Color Array data collection 

 

Complete description for Color Quantizer Data can be found in 8.1.11  Color Quantizer Data. 

I32 : Color Count 

Color count specifies the number of color records.  This number should equal the total number of vertex records. 

U8 : Number Components 

Number Components specifies the number of Color components present for each vertex record in the set of vertex records. 

U8 : Quantization Bits 

Number of Bits specifies the quantized size (i.e. the number of bits of precision) for each of the 3 or 4 color components.  

This value must satisfy the following condition:  “0 <= Number Of Bits <= 8”. 

U8 : Number Components 

U8 : Quantization Bits 

I32 : Color Count 

QuantBits = 0  

VecU32{Int32CDP2} : Vertex Color Exponents 

U32 : Vertex Color Hash 

VecU32{Int32CDP2} : Vertex Color Mantissae 

Number Components  

VecU32{Int32CDP2, Lag1} : Sat/Green Codes 

VecU32{Int32CDP2, Lag1} : Value/Blue Codes 

VecU32{Int32CDP2, Lag1} : Hue/Red Codes 

VecU32{Int32CDP2, Lag1} : Alpha Codes 

QuantBits = 0  

Color Quantizer Data 
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VecU32{Int32CDP2} : Vertex Color Exponents 

Vertex Normal Components is a vector of Floating Point Exponents for all the ith component values of a set of vertex 

coordinates.  Vertex Normal Components uses the Int32 version of the CODEC to compress and encode data. 

VecU32{Int32CDP2} : Vertex Color Mantissae 

Vertex Normal Components is a vector of Floating Point Mantissae for all the ith component values of a set of vertex 

coordinates.  Vertex Normal Components uses the Int32 version of the CODEC to compress and encode data. 

VecU32{Int32CDP2, Lag1} : Hue/Red Codes 

Hue/Red Codes is a vector of quantizer “codes” for all the Hue/Red color components of a set of vertex colors.  Hue/Red 

Codes uses the Int32 version of the CODEC to compress and encode data.   

VecU32{Int32CDP2, Lag1} : Sat/Green Codes 

Sat/Green Codes is a vector of quantizer “codes” for all the Saturation/Green color components of a set of vertex colors.  

Sat/Green Codes uses the Int32 version of the CODEC to compress and encode data.   

VecU32{Int32CDP2, Lag1} : Value/Blue Codes 

Value/Blue Codes is a vector of quantizer “codes” for all the Value/Blue color components of a set of vertex colors.  

Value/Blue Codes uses the Int32 version of the CODEC to compress and encode data.   

VecU32{Int32CDP2, Lag1} : Alpha Codes 

Alpha Codes is a vector of quantizer “codes” for all the Alpha color components of a set of vertex colors.  Alpha Codes uses 

the Int32 version of the CODEC to compress and encode data.   

U32 : Vertex Color Hash 

The Vertex Color Hash is the combined hash of the vertex colors.   If the number of quantization bits is equal to zero the hash 

value is equal to the combined hash of the vertex color values for each of the component arrays.  If the number of 

quantization bits is greater than 0 the hash value is equal to the combined hash of the Hue/Red, Sat/Green, Value/Blue, and 

Alpha Codes for all vertex records.  Refer to section 9.5 for a more detailed description on hashing. 

UInt32 uHash    = 0; 

uInt32 nVtxRec = 0; 

vecF32 vCol[nVtxRec][3];  

vecU32 vHue, vSat, vVal, vAlp; 

... 

if ( uQuantBits == 0 ) { 

  for ( int i=0 ; i<nComp ; i++ ) { 

    for ( int j=0 ; j<nVtxRec ; j++) { 

      uHash = hash32( (UInt32*)(&vCol[j][i]), nVtxRec, uHash ); 

    } 

  } 

} else { 

 uHash = hash32( &vHue, nVtxRec, uHash ); 

 uHash = hash32( &vSat, nVtxRec, uHash ); 

 uHash = hash32( &vVal, nVtxRec, uHash ); 

 uHash = hash32( &vAlp, nVtxRec, uHash ); 

} 

8.1.8 Compressed Vertex Flag Array 

The Compressed Vertex Flag Array data collection contains the quantization data/representation for per vertex flags.  

Compressed Vertex Flag Array data collection is only present if previously read Vertex Flag Binding value is not equal to 

zero. 
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Figure 231: Compressed Vertex Flag Array data collection 

 

I32 : Vertex Flag Count 

Vertex flag count specifies the number of vertex flags.  This number should be equal to the total number of vertex records. 

VecU32{Int32CDP2} : Vertex Flags 

Vertex Flags is a vector of per vertex bit flags encoded as integers with valid values of either 0 (false) or 1 (true).  Vertex 

Flags uses the Int32 version of the CODEC to compress and encode data. 

8.1.9 Point Quantizer Data 

A Point Quantizer Data collection is made up of three Uniform Quantizer Data collections; there is a separate Uniform 

Quantizer Data collection for the X, Y, and Z values of point coordinates. 

Figure 232: Point Quantizer Data collection 

 

 

Complete description for X Uniform Quantizer Data, Y Uniform Quantizer Data and Z Uniform Quantizer Data can be found 

in 8.1.12 Uniform Quantizer Data. 

8.1.10 Texture Quantizer Data 

A Texture Quantizer Data collection is made up of n Uniform Quantizer Data collections; there is a separate Uniform 

Quantizer Data collection for each component of the texture coordinates.  The number of components is not specified within 

the quantizer, but rather is determined by the number of texture components present in the underlying data (See Compressed 

Vertex Texture Coordinate Arrays U8 : Number Components). 

X Uniform Quantizer Data 

Y Uniform Quantizer Data 

Z Uniform Quantizer Data 

I32 : Vertex Flag Count 

 

VecU32{Int32CDP2} : Vertex Flags 
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Figure 233: Texture Quantizer Data collection 

 

Complete description for U Uniform Quantizer Data, and V Uniform Quantizer Data can be found in 8.1.12 Uniform 

Quantizer Data. 

8.1.11 Color Quantizer Data 

A Color Quantizer Data collection contains the quantizer information for each of the color components.  The Color Quantizer 

utilizes a separate Uniform Quantizer Data collection for each of the 4 color components, but if the HSV color model is being 

used, then it is not necessary to store a complete Uniform Quantizer Data Collection.   

For the HSV model, since the range values for each color component are constant, only the Number of Bits of precision for 

each color component‟s Uniform Quantizer is stored.  The Uniform Quantizer range values for the HSV color components 

should always be assumed to be the following: 

 

Component 
Quantizer Range 

Min Max 

Hue 
0.0 6.0 

Saturation 
0.0 1.0 

Value 
0.0 1.0 

Alpha 
0.0 1.0 

i
th

 Comp Uniform Quantizer Data 

Number of Components  
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Figure 234: Color Quantizer Data collection 

 

Complete descriptions for Red Uniform Quantizer Data, Green Uniform Quantizer Data, Blue Uniform Quantizer Data, and 

Alpha Uniform Quantizer Data can be found in 8.1.12 Uniform Quantizer Data.  These four Uniform Quantizer Data 

collections are only present when data field HSV Flag = = 0. 

U8 : HSV Flag 

HSV Flag is a flag indicating whether color component data is stored in HSV color model form.  

 

= 0 Color component data stored in RGB color model form. 

= 1 Color component data stored in HSV color model form. 

 

U8 : Number of Hue Bits 

Number of Hue Bits specifies the quantized size (i.e. the number of bits of precision) for the Hue component of the color.  

Number of Hue Bits data is only present when data field HSV Flag = = 1. 

U8 : Number of Saturation Bits 

Number of Saturation Bits specifies the quantized size (i.e. the number of bits of precision) for the Saturation component of 

the color.  Number of Saturation Bits data is only present when data field HSV Flag = = 1. 

U8 : Number of Value Bits 

Number of Value Bits specifies the quantized size (i.e. the number of bits of precision) for the Value component of the color.  

Number of Value Bits data is only present when data field HSV Flag = = 1. 

Red Uniform Quantizer Data 

Green Uniform Quantizer Data 

Blue Uniform Quantizer Data 

U8 : HSV Flag 

U8 : Number of Hue Bits 

U8 : Number of Saturation Bits 

U8 : Number of Value Bits 

U8 : Number of Alpha Bits 

Alpha Uniform Quantizer Data 

HSV Flag = = 1 
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U8 : Number of Alpha Bits 

Number of Alpha Bits specifies the quantized size (i.e. the number of bits of precision) for the Alpha component of the color.  

Number of Alpha Bits data is only present when data field HSV Flag = = 1. 

8.1.12 Uniform Quantizer Data 

The Uniform Quantizer Data collection contains information that defines a scalar quantizer/dequantizer (encoder/decoder) 

whose range is divided into levels of equal spacing. 

Figure 235: Uniform Quantizer Data collection 

 

F32 : Min 

Min specifies the minimum of the quantized range. 

F32 : Max 

Max specifies the maximum of the quantized range. 

U8 : Number Of Bits 

Number of Bits specifies the quantized size (i.e. the number of bits of precision). In general, this value must satisfy the 

following condition:  “0 <= Number Of Bits <= 32”.  

8.1.13 Compressed Entity List for Non-Trivial Knot Vector 

Compressed Entity List for Non-Trivial Knot Vector data collection specifies index identifiers (i.e. indices to particular 

entities within a list of entities) for a set of entities that contain Non-Trivial Knot Vectors.  The entity types which can 

contain non-trivial knot vectors include: 

JT B-Rep NURBS Surfaces 

JT B-Rep PCS NURBS Curves 

JT B-Rep MCS NURBS Curves 

Wireframe MCS NURBS Curves 

Note that any one occurrence of Compressed Entity List for Non-Trivial Knot Vector data collection will only contain index 

identifiers for one particular type of the above listed entities.  The entity type is inferred based on the data collection which 

includes/references the Compressed Entity List for Non-Trivial Knot Vector. 

A trivial knot vector is one which completely satisfies all conditions of at least one of the following cases: 

 

Case-1 for trivial knot vector 

Number of knots is an even number 

Knot vector has a [0:1] knot range 

There are no interior knots (i.e. NumberKnots = = 2 * (NurbsEntityDegree + 1) 

U8 : Number Of Bits 

F32 : Max 

F32 : Min 
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Case-2 for trivial knot vector 

Number of knots is an even number. 

Knot vector has a [0:1] knot range 

NurbsEntityDegree < 3 

Difference between successive non-repeating knots (i.e. KnotDelta) is: 

KnotDelta  = 2.0 / (NumberKnots – (2.0 * NurbsEntityDegree)) 

 

Any knot vector which does not satisfy one of the above cases for “trivial knot vector” is classified as a “non-trivial knot 

vector.” 

Figure 236: Compressed Entity List for Non-Trivial Knot Vector data collection 

 

VecI32 : Entities of Knot Type Exist Flags 

Entities of Knot Type Exist Flags[0] = = 1  

VecI32{Int32CDP, Stride1} : Entity Index Codes 

Entities of Knot Type Exist Flags[1] = = 1  

VecI32{Int32CDP, Stride1} : Entity Index Codes 

Entities of Knot Type Exist Flags[2] = = 1  

VecI32{Int32CDP, Stride1} : Entity Index Codes 

Entities of Knot Type Exist Flags[3] = = 1  

VecI32{Int32CDP, Stride1} : Entity Index Codes 
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VecI32 : Entities of Knot Type Exist Flags 

Entities of Knot Type Exist Flags, is a vector of flags indicating for each knot vector type whether Entity Index ID data 

collections exist/follow for that knot vector type.  Knot Vectors are categorized into types based on the following 

characteristics: whether internal knots occur in adjacent pairs and whether the knot range is [0:1] or some other [x1:x2] range. 

Currently there are four knot vector types, so this Entities of Knot Type Exist Flags vector should be of length four. The four 

flags have the following meaning: 

 

[0] 
Flag indicating whether Entity IDs data collection exists for “Even Count [0:1] Range” knot 

type.  Knots in this category have their knot range on [0:1], internal knots occur in adjacent 

pairs, except when there are no internal knots, in which case Type = 1 instead. 

= 0 – No Entity IDs data collection exists. 

= 1 – Entity IDs data collection exists. 

[1] Flag indicating whether Entity IDs data collection exists for “Even Count [x1:x2] Range” 

knot type.  Knots in this category have their knot range on [x1:x2], and internal knots occur in 

adjacent pairs. 

= 0 – No Entity IDs data collection exists. 

= 1 – Entity IDs data collection exists. 

[2] Flag indicating whether Entity IDs data collection exists for “Odd Count [0:1] Range” knot 

type.  Knots of this type have their knot range on [0:1], and are not Type 0. 

= 0 – No Entity IDs data collection exists. 

= 1 – Entity IDs data collection exists. 

[3] Flag indicating whether Entity IDs data collection exists for “Odd Count [x1:x2] Range” knot 

type.  Knots of this type have their knot range on [x1:x2], and are not Type 1. 

= 0 – No Entity IDs data collection exists. 

= 1 – Entity IDs data collection exists. 

Examples of knot vectors of Type 0: 

    0 0 X X 1 1 

    0 0 X X Y Y 1 1 

    0 0 X X Y Y Z Z 1 1 

Examples of knot vectors of Type 1: 

    0 0 1 1         (Note: This is the exception to Type 0) 

    X X Y Y 

    X X Y Y Z Z 

    X X Y Y Z Z W W 

Examples of knot vectors of Type 2: 

    0 0 X 1 1 

    0 0 X Y 1 1 

    0 0 X Y Z 1 1 

    0 0 X X X 1 1 

    0 0 X X Y Z Z 1 1 

Examples of knot vectors of Type 3: 

    X X Y Z Z 

    X X Y Z W W 

With this information in hand, the reader is able to reconstruct complete knot vectors in the following manner.  When 

reconstructing the knot vector, you only take just enough values from the decoded knot value array.  This may be as few as 

one.  All the other values are inferred. Here's a sketch of the reconstruction algorithm: 

// Number of knots in the knot vector 

cNumKnots = numCtlPts + degree + 1; 

// Necessary knot multiplicity at both ends of the knot vector 

cClamping = degree + 1; 

switch (knotType) { 
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    // Clamping is 0..1, internal knots occur in ADJACENT PAIRS 

    // *EXCEPT* when there are no internal knots, in which case 

    // Type = 1 instead. 

    case 0: numVals = (cNumKnots - 2 * cClamping)/2; 

    // Clamping is X1..X2, internal knots occur in ADJACENT PAIRS 

    case 1: numVals = (cNumKnots - 2 * cClamping)/2 + 2; 

    // Clamping is 0..1, and not Type 0 

    case 2: numVals = (cNumKnots - 2 * cClamping); 

    // Clamping is X1..X2, and not Type 1 

    case 3: numVals = (cNumKnots - 2 * cClamping) + 2; 

} 

// numVals is the number of non-inferrable knot values needed 

// Let vVals be the knot vector value array 

// vKnot will be the final output knot vector 

if (knotType is either 0 or 2) 

    Set vKnot[0 .. cClamping-1] to 0 

    Set vKnot[cNumKnots-cClamping .. cNumKnots-1] to 1 

else 

    Set vKnot[0 .. cClamping-1] to vVals[0] 

    Set vKnot[cNumKnots-cClamping .. cNumKnots-1] to vVals[numVals-1] 

Set vKnot[cClamping .. cNumKnots-cClamping-1] from vVals[1 .. numVals-2] 

VecI32{Int32CDP, Stride1} : Entity Index Codes 

Entity Index Codes is a vector of quantizer “codes” representing entity index identifiers for a set of entities (i.e. indices to 

particular entities within a list of entities).  Entity Index Codes uses the Int32 version of the CODEC to compress and encode 

data. 

8.1.14 Compressed Control Point Weights Data 

Compressed Control Point Weights Data collection is the compressed and/or encoded representation of weight data for some 

set of Control Points.  All NURBS based geometry use this data collection to compress/encode Control Point Weight data. 

Figure 237: Compressed Control Point Weights Data collection 

 

I32 : Weights Count 

Weights Count specifies the total number of Weights.  This count can differ from the Control Point count (see 7.2.3.1.4.1.3 

NURBS Surface Control Point Counts) because if the Control Point Dimensionality is non-rational (see data field NURBS 

Surface Control Point Dimensionality in 7.2.3.1.4.1 Surfaces Geometric Data), then no Weight values are stored for the 

particular Control Point.  Weights Count value also does not necessarily equate to the actual number of Weights stored, since 

if a particular Control Point‟s Weight values is “1”, then no actual Weight value is stored (i.e. JT file loaders/readers can infer 

that the Weight Value is “1” for Control Points that don‟t have a Weight value stored). 

VecI32{Int32CDP, Stride1} : Weight Indices 

Weight Indices is a vector of indices representing the index identifiers for the conditional set of weights for which an actual 

Weight Values is stored in Weight Values.  Weight Indices uses the Int32 version of the CODEC to compress and encode 

data. 

I32 : Weights Count 

VecI32{Int32CDP, Stride1} : Weight Indices 

VecF64{Float64CDP, NULL} : Weight Values 
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VecF64{Float64CDP, NULL} : Weight Values 

Weight Values is a vector of weight values for the conditional set of weights.  Weight Values uses the Float64 version of the 

CODEC to compress and encode data. 

8.1.15 Compressed Curve Data 

Compressed Curve Data collection contains JT B-Rep or Wireframe Rep compressed/encoded geometric Curve data.  

Currently only NURBS Curve types are supported as part of this data collection. Complete documentation for JT B-Rep and 

Wireframe Rep can be found in sections 7.2.3.1 JT B-Rep Element and 7.2.5.1 Wireframe Rep Element respectively. 

Figure 238: Compressed Curve Data collection 

 

Non-Trivial Knot Vector 

NURBS Curve Indices 

NURBS Curve Control 

Point Weights 

NURBS Curve Control 

Points 

VecI32{Int32CDP, Lag1} : Curve Base Types 

VecI32{Int32CDP, Lag1} : NURBS Curve Degrees 

VecI32{Int32CDP, Lag1} : NURBS Curve Control Point Counts 

VecI32{Int32CDP, Lag1} : NURBS Curve Control Point Dimensionality 

VecI32{Int32CDP, Lag1} : NURBS Curve Reserved Fields 

VecF64{Float64CDP, NULL} : NURBS Curve Knot Vectors 
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VecI32{Int32CDP, Lag1} : Curve Base Types 

Each Curve is assigned a base type identifier. Curve Base Types is a vector of base type identifiers for each Curve in a list of 

Curves.  Currently only NURBS Curve Base Type is supported, but a type identifier is still included in the specification to 

allow for future expansion of the JT Format to support other curve types. 

 

 In an uncompressed/decoded form the Curves base type identifier values have the following meaning: 

 

= 1 Curve is a NURBS curve 

Curve Base Types uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : NURBS Curve Degrees 

NURBS Curve Degrees is a vector of Curve degree values for each NURBS Curve in a list of Curves (there is a stored value 

for each NURBS Curve in the list).  NURBS Curve Degrees uses the Int32 version of the CODEC to compress and encode 

data. 

VecI32{Int32CDP, Lag1} : NURBS Curve Control Point Counts 

NURBS Curve Control Point Counts is a vector of control point counts for each NURBS Curve in a list of curves (there is a 

stored value for each NURBS Curve in the list).  NURBS Curve Control Point Counts uses the Int32 version of the CODEC 

to compress and encode data.  

VecI32{Int32CDP, Lag1} : NURBS Curve Control Point Dimensionality 

NURBS Curve Control Point Dimensionality is a vector of control point dimensionality values for each NURBS Curve in a 

list of Curve s(i.e. there is a stored values for each NURBS Curve in the list).   

In an uncompressed/decoded form the control point dimensionality values meaning is dependent upon the NURBS Entity 

type. 

For NURBS UV Curve entities the dimensionality value has the following definition: 

 

= 2 Non-Rational (each control point has 2 coordinates) 

= 3 Rational (each control point has 3 coordinates) 

For NURBS XYZ Curve entities the dimensionality value has the following definition: 

 

= 3 Non-Rational (each control point has 3 coordinates) 

= 4 Rational (each control point has 4 coordinates) 

NURBS Curve Control Point Dimensionality uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP, Lag1} : NURBS Curve Reserved Fields 

NURBS Curve Reserved Fields is a vector of data reserved for future expansion of the  JT format.  Each NURBS Curve in a 

list of Curves has one reserved data field entry in this NURBS Curve Reserved Fields vector.  NURBS Curve Reserved 

Fields uses the Int32 version of the CODEC to compress and encode data 

VecF64{Float64CDP, NULL} : NURBS Curve Knot Vectors 

NURBS Curve Knot Vectors is a list of knot vector values for each NURBS Curve having non-trivial knot vectors in a list of 

Curves (i.e. there are stored values for each non-trivial knot vector NURBS Curve in the list).  All these NURBS Curve non-

trivial knot vectors are accumulated into this single list in the same order as the Curve appears in the Curve list (i.e. Curve-N 

Non-Trivial Knot Vector, Curve-M Non-Trivial Knot Vector, etc.).  The NURBS Curves for which knot vectors are stored 

(i.e. those containing non-trivial knot vectors) are identified in data collection Non-Trivial Knot Vector NURBS Curve 
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Indices documented in 8.1.15.1 Non-Trivial Knot Vector NURBS Curve Indices.  NURBS Curve Knot Vectors uses the 

Float64 version of the CODEC to compress and encode data. 

8.1.15.1 Non-Trivial Knot Vector NURBS Curve Indices 

Non-Trivial Knot Vector NURBS Curve Indices data collection specifies the Curve index identifiers (i.e. indices to particular 

NURBS Curves within a list of Curves) for all NURBS Curves containing non-trivial knot vectors.  A description/definition 

for “non-trivial knot vector” can be found in 8.1.13 Compressed Entity List for Non-Trivial Knot Vector. 

This Curve index data is stored in a compressed format. 

Figure 239: Non-Trivial Knot Vector NURBS Curve Indices data collection 

 

Complete description for Compressed Entity List for Non-Trivial Knot Vector can be found in 8.1.13 Compressed Entity List 

for Non-Trivial Knot Vector. 

8.1.15.2 NURBS Curve Control Point Weights 

NURBS Curve Control Point Weights data collection defines the Weight values for a conditional set of Control Points for a 

list of NURBS Curves.  The storing of the Weight value for a particular Control Point is conditional, because if NURBS 

Curve Control Point Dimension is “non-rational” or the actual Control Point‟s Weight value is “1”, then no Weight value is 

stored for the Control Point (i.e. Weight value can be inferred to be “1”). 

The NURBS Curve Control Point Weights data is stored in a compressed format.  

Figure 240: NURBS Curve Control Point Weights data collection 

 

Complete description for Compressed Control Point Weights Data can be found in 8.1.14 Compressed Control Point Weights 

Data. 

8.1.15.3 NURBS Curve Control Points 

NURBS Curve Control Points is the compressed and/or encoded representation of the Control Point coordinates for each 

NURBS Curve in a list of Curves (i.e. there are stored values for each NURBS Curve in the list).  Note that these are non-

homogeneous coordinates (i.e. Control Point coordinates have been divided by the corresponding Control Point Weight 

values).    

Figure 241: NURBS Curve Control Points data collection 

 

VecF64{Float64CDP, NULL} : Control Points 

Control Points is a vector of Control Point coordinates for all the NURBS Curves in a list of Curves.  All the NURBS Curve 

Control Point coordinates are accumulated into this single vector in the same order as the Curve appears in the Curve list (i.e. 

Curve-1 Control Points, Curve-2 Control Points, etc.).  Control Points uses the Float64 version of the CODEC to compress 

and encode data in a “lossless” manner. 

VecF64{Float64CDP, NULL} : Control Points 

Compressed Control 

Point Weights Data 

Compressed Entity List 

for Non-Trivial Knot 

Vector 
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8.1.16 Compressed CAD Tag Data 

The Compressed CAD Tag Data collection contains the persistent IDs, as defined in the CAD System, to uniquely identify 

individual CAD entities (e.g. Faces and Edges of a JT B-Rep, PMI, etc.).  Exactly what CAD entity types have CAD Tags 

and what order they are stored in Compressed CAD Tag Data is defined by users of this data collection (e.g. 7.2.3.1.6 B-Rep 

CAD Tag Data,  7.2.6.2.7 PMI CAD Tag Data) 

 What constitutes a CAD Tag is outside the scope of the JT File format and is indeed part of the CAD system.  The JT File 

format simply provides a way to store any kind of CAD Tag as provided by the CAD system which produced the CAD 

entity. 

Figure 242: Compressed CAD Tag Data collection 

 

I32 : Data Length 

I32 : Version Number 

I32 : CAD Tag Count 

CAD Tag Count > 0  

If “Type-1” CAD Tags exist 

in I32 : Surface Count data. 

Compressed CAD Tag 

Type-2 Data 

If “Type-2” CAD Tags exist 

in I32 : Surface Count data. 

VecI32{Int32CDP2, Lag1} : CAD Tag 

Types 

I16:Version Number 

I16:Version Number 
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I16:Version Number 

Version Number is the version identifier for the CADTag element. Only version number 0x001 is currently supported.  

I32 : Data Length 

Data Length specifies the length in bytes of the Compressed CAD Tag Data collection.  A JT file loader/reader may use this 

information to compute the end position of the Compressed CAD Tag Data within the JT file and thus skip reading the 

remaining Compressed CAD Tag Data. 

I32 : Version Number 

Version Number is the version identifier for the Compressed CAD Tag Data.  Version number “1” is currently the only valid 

value. 

I32 : CAD Tag Count 

CAD Tag Count specifies the number of CAD Tags 

VecI32{Int32CDP2, Lag1} : CAD Tag Types 

CAD Tag Types is a vector of type identifiers for a list of CAD Tags (where each CAD Tag in the list has a type identifier 

value).  

In an uncompressed/decoded form the CAD Tag type identifier values have the following meaning:  

 

= 1 32 Bit Integer CAD Tag Type 

= 2 64 Bit Integer CAD Tag Type 

CAD Tag Types uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP2, Lag1} : CAD Tags Type-1 

CAD Tags Type-1 is a vector of the Type-1 (i.e. 32 Bit Integer Type) CAD Tags for a list of CAD Tags.  CAD Tags Type-1 

uses the Int32 version of the CODEC to compress and encode data.  CAD Tags Type-1  is only present if there are Type-1 

CAD Tags in the CAD Tag Types vector.  Thus a loader/reader of JT file must first uncompress/decode and evaluate the 

previously read CAD Tag Types to determine if there are any Type-1 CAD Tags and if so, then the CAD Tags Type-1 data 

vector is present. 

8.1.16.1 Compressed CAD Tag Type-2 Data 

Compressed CAD Tag Type-2 Data collection contains the Type-2 (i.e. 64 Bit integer Type) CAD Tag data for a list of CAD 

Tags. 

The Compressed CAD Tag Type-2 Data collection is only present if there are Type-2 CAD Tags in the CAD Tag Types 

vector.  Thus a loader/reader of JT file must first uncompress/decode and evaluate the previously read CAD Tag Types vector 

to determine if there are any Type-2 CAD Tags and if so, then the Compressed CAD Tag Type-2 Data collection is present. 

Figure 243: Compressed CAD Tag Type-2 Data collection 

 

VecI32{Int32CDP2, Lag1} : First I32 of Type-2 CAD Tags 

VecI32{Int32CDP2, Lag1} : Second I32 of Type-2 CAD 

Tags 
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VecI32{Int32CDP2, Lag1} : First I32 of Type-2 CAD Tags 

First I32 of Type-2 CAD Tags is a vector of the first 32 bits of each Type-2 CAD Tag in the list of CAD Tags.  First I32 Of 

Type-2 CAD Tags uses the Int32 version of the CODEC to compress and encode data. 

VecI32{Int32CDP2, Lag1} : Second I32 of Type-2 CAD Tags 

Second I32 of Type-2 CAD Tags is a vector of the second 32 bits of each Type-2 CAD Tag in the list of CAD Tags.  Second 

I32 Of Type-2 CAD Tags uses the Int32 version of the CODEC to compress and encode data. 

8.2 Encoding Algorithms 

The following sections give a brief technical overview/descriptions of the various encoding algorithms used in the JT format.  

Additional information on each of the algorithms can be found within references listed in 3 References and Additional 

Information section of this document.  Also, a sample implementation of the decoding portion of each algorithm can be found 

in Appendix C: Decoding Algorithms – An Implementation. 

8.2.1 Uniform Data Quantization  

Uniform Data Quantization is a lossy encoding algorithm in which a continuous set of input values (floating point data) is 

approximated with integral multiples (i.e. integers) of a common factor.  How close the quantization output approximates the 

original input data is dependent upon the quantization data range and the number of bits specified to hold the resulting integer 

value.   

The quantization is considered “uniform” because the algorithm divides the data input range into levels of equal spacing (i.e. 

a uniform scale).  The form of Uniform Data Quantization used by the JT format is also considered scalar in nature, in that 

each input value is treated separately in producing the output integer value.  

Given the following definitions: 

inputVal:  Input floating point data to quantize 

outputval:  Resulting quantized output integer value 

minInputRange: Specified minimum value of input data range 

maxInputRange: Specified maximum value of input data  range 

nBits:   Specified number of bits of precision (quantized size) 

The basic algorithm (using C++ style syntax) for Uniform Data Quantization is as follows: 

UInt32 iMaxCode = (nBits < 32) ? (0x1 << nBits) - 1 : 0xffffffff; 

Float64 encodeMultiplier = Float64(iMaxCode) / (maxInputRange – minInputRange); 

UInt32 outputVal = UInt32( (inputVal - minInputRange) * encodeMultiplier + 0.5 ); 

Note: For reasons of robustness, “outputVal” must also be explicitly clamped to the range [0,iMaxCode].  This is because 

floating-point roundoff error in the calculation of “encodeMultiplier” can otherwise cause “outputVal” to sometimes come 

out equal to “iMaxCode + 1”. 

Note that all compression algorithms in the following sections operate on quantized integer data.    

8.2.2 Bitlength CODEC 

This is a very simple compression algorithm that runs an adaptive-width bit field encoding for each value. As each input 

value is encountered, the number of bits needed to represent it is calculated and compared to the current "field width". The 

current field width is then adjusted upwards or downwards by a constant “step_size” number of bits (i.e. 2 bits for the JT 

format) to accommodate the input value storage.  This increment or decrement of the current field width is indicated for each 

encoded value by a prefix code stored with each value.  

The prefix code will be one of the following two forms: 

A single '0' bit to denote the same (i.e. current) field width is to be used for the next value. 

A '1' bit followed by a series of one or more bits where each bit indicates whether the field width is to be incremented (a '1' 

bit) or decremented (a '0' bit) by the field step_size, followed by a single terminator bit (which is complement of the previous 

increment/decrement bit).  Note that there can only be increments or decrements in a given prefix code, never both, and that 
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is why the prefix code terminator bit can be recognized as bits are read by simply looking for the complement of the previous 

increment/decrement bit. 

Some examples of prefix codes and their interpretation are as follows: 

Example 1: Prefix code to maintain same (current) field width. 

 

Example 2: Prefix code to increment field width four times (8 bits). 

 

Example 3: Prefix code to decrement field width two times. 

 

A pseudo-code sample implementation of bit length decoding is available in Appendix C: Decoding Algorithms – An 

Implementation.  

8.2.3 Arithmetic CODEC 

In 1948, Claude Shannon of Bell Laboratories published his seminal paper “A mathematical theory of communication” that 

launched the new field of Information Theory.  In that same year, two Doctoral students at the Massachusetts Institute of 

Technology (MIT) made breakthroughs in the coding of information.  The first to press was David Huffman, whose coding 

scheme we now know as Huffman Coding. In that same class with Huffman was Peter Elias who reportedly developed the 

first articulation of arithmetic coding, but it lay unpublished until 1976, when Jorma Rissanen and Richard Pasco, of IBM, 

refined it into a practically useful algorithm. 

Arithmetic encoding is a lossless compression algorithm that replaces an input stream of symbols or bytes with a single fixed 

point output number (i.e. only the mantissa bits to the right of the binary point are output from MSB to LSB).   The total 

number of bits needed in the output number is dependent upon the length/complexity of the input message (i.e. the longer the 

input message the more bits needed in the output number).  This single fixed point number output from an arithmetic 

encoding process must be uniquely decodable to create the exact stream of input symbols that were used to create it.  

Initially all symbols being encoded have a probability value assigned to them based on the likelihood that the symbol will 

occur next in the input stream (i.e. the frequency of the symbol in the input stream). Given probability value assignments, 

each individual symbol is then assigned an interval range along a nominal 0 to 1 “probability line”, where the size of each 

range corresponds to the symbol‟s probability value.  Note that a particular symbol owns all values within its assigned range 

up to, but not including, the range high value, and that it does not matter which symbols are assigned which segment of the 

range as long it is done in the same manner by both the encoder and the decoder.  

Given the above described input stream probability and interval range assignments, a high level description of the arithmetic 

encoding process is as follows: 

1001 
Indicates bit field width change 

Indicates decrement width by step_size 

Indicates decrement width by step_size 

Termination bit 

111110 
Indicates bit field width change 

Indicates increment width by step_size 

Indicates increment width by step_size 

Indicates increment width by step_size 

Indicates increment width by step_size 

Termination bit 

0 
Indicates no bit field width change 
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Begin with a “current interval” initialized to [0,1).  Note, that in interval range notation (i.e. “[0,1)”), the “[“ symbol indicates 

inclusive of the interval low limit and “)” symbol indicates exclusive of the interval high limit. 

Sequentially for each symbol of the input stream, perform two steps 

Subdivide the current interval into subintervals based on the input stream symbol probability values as described above. 

Select the subinterval corresponding to the current input stream symbol being sequentially processed and make it the new 

“current interval”. 

After all input stream symbols have been sequentially processed; output enough bits to distinguish the final “current interval” 

from all other possible final intervals. 

In pseudo code form, the algorithm to accomplish the above described arithmetic encoding for an input stream message of 

any length could look as follows: 

Set low to 0.0 

Set high to 1.0 

While there are still input symbols do 

 cur_symbol = get next input symbol 

 range = high – low 

 high = low + range * high_range(cur_symbol) 

 low = low + range * low_range(cur_symbol) 

End of While 

Output low 

So the arithmetic encoding process is simply one in which we narrow the range of possible numbers with every new 

sequentially processed input symbol; where the new narrowed range is proportional to the predefined probability values 

assigned to each symbol in the input stream.  

The arithmetic decoding process is the inverse procedure; where the range is expanded in proportion to the probability of 

each symbol as it is extracted.  For the arithmetic decoding process we find the first symbol in the message by seeing which 

symbol owns the interval range that our encoded message falls in. Then, since we know the low and high range limit values 

of the first symbol we can remove their effects by reversing the process that put them in.  

In pseudo code form, the algorithm for decoding the incoming number could look as follows: 

Get encoded_number 

Do 

 find symbol whose range straddles the encoded_number 

 output the symbol 

 range = symbol_high_value – symbol_low_value 

 encoded_number = encoded_number – symbol_low_value 

 encoded_number = encoded_number / range 

until no more symbols 

8.2.3.1 Example 

Following is an example to demonstrate in practice the basic principles of arithmetic coding. 

Suppose you want to compress, using arithmetic coding, the following sequence/array of integer data: 

{2, 9, 12, 12, 0, 7, 1, 20, 5, 19} 

For this input stream of data, the assigned probability values will be as follows: 

 

Number Probability 

0 1/10 

1 1/10 

2 1/10 

5 1/10 
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Number Probability 

7 1/10 

9 1/10 

12 2/10 

19 1/10 

20 1/10 

Then based on each input numbers probability value, an interval range along a 0 to 1 “probability line” can be assigned to 

each input number as follows:  

 

Number Probability Range 

0 1/10 [0.00, 0.10) 

1 1/10 [0.10, 0.20) 

2 1/10 [0.20, 0.30) 

5 1/10 [0.30, 0.40) 

7 1/10 [0.40, 0.50) 

9 1/10 [0.50, 0.60) 

12 2/10 [0.60, 0.80) 

19 1/10 [0.80, 0.90) 

20 1/10 [0.90, 1.00) 

Now proceeding with encoding the example input integer sequence {2, 9, 12, 12, 0, 7, 1, 20, 5, 19}, the first number to be 

encoded is “2”; so the final encoded value will be a number that is greater than or equal to 0.20 and less than 0.30.  Now as 

each subsequent number in the input stream is sequentially processed for encoding, the possible range of the output number is 

further restricted.  In our example the next number to be encoded is “9” which owns the range [0.50, 0.60) within the new 

sub-range of [0.20, 0.30); which now further restricts our output number to the range [0.25, 0.26).  If we continue this logic 

for the complete input integer sequence we end up with the following: 

 

New integer 

number 

Low value High value 

 0.0 1.0 

2 0.2 0.3 

9 0.25 0.26 

12 0.256 0.258 

12 0.2572 0.2576 

0 0.25720 0.25724 

7 0.257216 0.257220 

1 0.2572164 0.2572168 

20 0.25721676 0.2572168 

5 0.257216772 0.257216776 

19 0.2572167752 0.2572167756 

From the above table, are final low values is “0.2572167752” which is the output number that uniquely encodes the integer 

number sequence {2, 9, 12, 12, 0, 7, 1, 20, 5, 19}. 

Given this encoding scheme, the decoding would simply follow the process previously described. We find the first number in 

the sequence by looking up in the probability range for the value, whose range, our encoded number “0.2572167752” falls 
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within. In our example this equates to the value “2” and so our first decoded value must be “2”.  Then we apply the 

previously described decoding subtraction and division steps to arrive at a new encoded value of “0.572167752”.  Using this 

new “0.572167752” encoded value and the same logic of the first step, the second decoded value will be “9”.  We continue 

this process until there are no more numbers to decode. 

In practice, due to floating point size (i.e. number of bits) restrictions and possible differences in floating point formats on 

machines, arithmetic encoding is best implemented using 16 bit or 32 bit integer math.  Using 16 bit or 32 bit integer math, 

an incremental transmission scheme can be implemented, where fixed size integer state variables receive new bits in at the 

low end and shift them out the high end, forming a single number that can be as many bits long as are available on the 

computer‟s storage medium. 

Using our example as a guide, define the starting range [0.0, 1.0) to instead be 0 to 0.999 (which is .111 in binary).  Then in 

order to use integer registers to store these numbers, justify the values so that the implied decimal point is at the left hand side 

of the word.  Now load the initial range values based on the word size we are using.  In the case of a 16 bit implementation 

the initial range values will be low equals 0x0000 and high equals 0xFFFF.  Since we know these values will go on forever 

(e.g. 0.999… will continue with FFs) we can shift those extra bits in as needed with no detrimental effects. 

Going back to our example and using a 5 digit register, we start with the range: 

High:  99999 

Low: 00000 

Applying the previously described encoding algorithm we first calculate the range between the low and high values; which in 

this case is 100000 (not 9999 since we assume the high value has an infinite number of 9‟s).  Next, we calculate the new high 

value which in this example will be 30000. But before we store the new high value we must decrement it to account for the 

implied digits appended to it; so new high value will be 29999.  Applying similar logic to computing the new low value 

results in a new range of: 

 High: 29999  (999…) 

Low: 20000  (000…) 

In looking at the newly computed high and low range values, it can be seen that the most significant digits of high and low 

match.  A property of arithmetic coding is that as this encoding process continues, the high and low values will continue to 

get closer, but will never match exactly.  Given this property, once the most significant digit of high and low match, it will 

never change, and thus we can output this most significant digit as the first number in the coded word and continue working 

with just 16 bit high and low values.  This output process is accomplished by shifting both the high and low values left by 

one digit and shifting in a “9” in the least significant digit of the high value. 

Applying the previously described encoding algorithm and continuing the above described process of shifting out most 

significant digit into the coded word as high and low continually grow closer together looks as follows for encoding our 

example integer number sequence {2, 9, 12, 12, 0, 7, 1, 20, 5, 19}: 

 

 High Low Range Cumulative 

output 

Initial State 99999 00000 100000 
 

Encode “2”  [0.2, 0.3) 29999 20000 
  

Shift out 2 99999 00000 100000 
.2 

Encode “9”  [0.5, 0.6) 59999 50000 
 .2 

Shift out 5 99999 00000 100000 
.25 

Encode “12”  [0.6, 0.8) 79999 60000 20000 
.25 

Encode “12”  [0.6, 0.8) 75999 72000 
 .25 

Shift out 7 59999 20000 40000 
.257 

Encode “0”  [0.0, 0.1) 23999 20000 
 .257 
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 High Low Range Cumulative 

output 

Shift out 2 39999 00000 40000 
.2572 

Encode “7”  [0.4, 0.5) 19999 16000 
 .2572 

Shift out 1 99999 60000 40000 
.25721 

Encode “1”  [0.1, 0.2) 67999 64000 
 .25721 

Shift out 6 79999 40000 40000 
.257216 

Encode “20”  [0.9, 1.0) 79999 76000 
 .257216 

Shift out 7 99999 60000 40000 
.2572167 

Encode “5”  [0.3, 0.4) 75999 72000 
 .2572167 

Shift out 7 59999 20000 40000 
.25721677 

Encode “19”  [0.8, 0.9) 55999 52000 
 .25721677 

Shift out 5 59999 20000 40000 
.257216775 

Shift out 2 
   .2572167752 

Shift out 0 
   .25721677520 

As can be seen in the above table, after all values in the input stream have been encoded and any final matching most 

significant digit has been output, the arithmetic coding algorithm requires that two extra digits be shifted out of either the 

high or low value to finish up the cumulative output word. 

Although the above example incrementally encodes very nicely with the arithmetic coding algorithm, there are certain cases 

where the computed high and low values get closer, but never actually converge to one value in the most significant digit 

(e.g. High = 0.300001, Low = 0.29992).  Thus after a few iterations the difference between high and low becomes so small 

that 16 bits is not sufficient to represent any difference between the values (i.e. all calculations return the same values).  This 

conditions is known as “underflow” and special logic must added to the arithmetic coding algorithm to recognize that 

“underflow” is occurring and thus head it off before the computations reach an impasse. 

The additional logic for recognizing that “underflow” is occurring would be executed after each recalculation of High and 

Low value set, and in pseudo code form this logic would look as follows: 

underflow = FALSE 

if(  (High and Low value‟s significant digits don‟t match but are on adjacent numbers) && 

 (2
nd

 most significant digit of High is “0” and the 2
nd

 most significant digit of low is “9”)  ) 

{ 

underflow = TRUE 

} 

When/If it is identified that “underflow” is occurring, the encoding algorithm must perform the following steps to stop the 

current “underflow”:  

Delete the 2
nd

 most significant digit from both the High and Low value. 

Shift the other digits (those to the right of the deleted 2
nd

 digit) to the left to fill up the space (note that the most significant 

digit stays in place). 

Increment a counter to remember that we threw away a digit and don‟t know whether it was going to converge to “0” or “9”. 

A before and after example of performing the above steps to the High and Low values when „underflow” occurs is as 

follows: 
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    Before  After 

High   40344  43449 

Low   39810  38100 

Underflow_counter 0  1 

Now as the encoding algorithm continues and the most significant digit of High and Low values once again converge to a 

common value, then that value must be output to the coded word along with “Underflow_counter” number of “underflow” 

digits that were previously deleted.  The underflow digits output to the coded word will either be all 9s or 0s, depending on 

whether the High and Low value converged to the higher or lower value. 

A pseudo-code sample implementation of arithmetic decoding is available in Appendix C: Decoding Algorithms – An 

Implementation.  

8.2.4 Deering Normal CODEC 

Michael Deering first published his work on geometry compression in 1995 [5] and later helped present a course on the 

subject at SIGGRAPH‟99 [6].  Although Deering‟s approach to geometric compression involves compression of vertices, 

colors and normals, the description detailed here will focus solely on compression of normals since this is the only 

component of Deering‟s approach used in the JT format.  

Through both theoretical examination and empirical testing, Deering found that an angular density of 0.01 radians between 

normals (about 100,000 normalized normals distributed over unit sphere) gave results that were not visually distinguishable 

from results obtained from finer normal representations.  This observation reduced the problem of having to “exactly” 

represent any general surface normal, to only having to represent about 100,000 specific normals (i.e. general surface normal 

replaced by the appropriate one of the 100,000 specific normals). 

If there were no run-time memory concerns and no concerns for on disk footprint size, these specific 100,000 normals could 

be simply represented in a table that is indexed into, to reference a particular normal.  Instead, Deering‟s approach leverages 

symmetrical properties of the unit sphere to reduce the size of the table and allow any normal to be represented by, at max, an 

18 bit index as summarized below: 

 All normals are normalized (i.e. can be represented as points on the surface of the unit sphere). 

 Unit sphere is divided into eight symmetrical octants based on sign bits of normal‟s X,Y,Z rectilinear 

representation (see Figure 244). Using three bits to represent the three sign bits of the normals XYZ components 

reduces the problem space to one eighth of the unit sphere 

 Each octant of the unit sphere is divided into six identical sextants by folding about the planes of symmetry; x=y, 

x=z, and y=z (see Figure 244). The particular sextant can be encoded using another three bits.  So now unit 

sphere is divided into 48 identically shaped triangle patches reducing the normal look-up table to about 2000 

entries (i.e. 100000/48). 

 Then, a local rectangular orthogonal two dimensional grid is created on the sextant and all normals within the 

sextant are represented as two n-bit angular addresses (i.e. a quantization of two angular values along the unit 

sphere) where “n” is in the range from 0 to 6 bits.   

 Resulting in a max grand total of 18 bits (3 + 3 + 6 + 6) to represent any normal on the unit sphere. 

In the figure below, the sphere is divided into eight octants and each octant is divided into six sextants.  Each sextant is 

assigned an identifying three bit code. 
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Figure 244: Sextant Coding on the Sphere 

 

 

Note that the sextant three bit code assignments used by the JT format (as seen in Figure 244) are slightly modified from the 

original assignments as specified by Deering. 

The representation of all normals within a sextant by two n-bit angular addresses, as summarized above, is based on the 

following: 

 In spherical coordinates, points on a unit sphere can be parameterized by two angles, θ and φ; where θ is the 

angle about the y axis and φ is the longitudinal angle from the y=0 plane. 

 Mapping between rectangular and spherical coordinates is: 

 x = cosθ * cosφ                    y = sinφ               z = sinθ * cosφ 

 All encoding takes place in the positive octant. 

 Angles θ and φ can be quantized into two n-bit integers θ‟n and φ‟n (where “n” is in the range of 0 to 6) and the 

relationship between these n-bit integers and angles θ and φ for a given “n” is: 

 θ (θ‟n) = asin tan (φmax * (n – θ‟n) / 2n ) 

 φ (φ‟n) = φmax * φ‟n / 2n 

Thus to encode (i.e. quantize) a given normal N into θ‟n and φ‟n: 

 N must be first represented (see Figure 244) in the positive octant and appropriate sextant within that octant, 

resulting in N‟.  

 Then N‟ must be dotted with all quantized normals in the sextant.  

 For a fixed “n”, the corresponding θ‟n and φ‟n values of the quantized sextant normal that result in the largest 

(nearest unity) dot product defines the proper θ‟n and φ‟n encoding of N. 

With this encoding of normal N into θ‟n and φ‟n n-bit integers the complete bit representation of normal N can now be 

defined as follows: 

 Uppermost three bits specify the octant. 

 Next three bits specify the sextant code as defined in Figure 244. 

 Next two n-bit fields specify θ‟n and φ‟n values respectively. 

8.3 ZLIB Compression 

ZLIB compression is a lossless data compression algorithm and is essentially the same as that in gzip and Zip.  Zlib‟s 

compression method, called deflation, creates compressed data as a sequence of blocks.  The JT format uses Version 1.1.2 of 

the ZLIB compression library.  

9 Best Practices 

The proceeding sections of this document specify the mandatory clauses for creating a reference compliant Version 9.5 JT 

file.  This “Best Practices” section focusing on documenting format conventions that although not required to have a 
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reference compliant JT file, have become commonplace within JT format translators to the point where these conventions are 

considered best practices for constructing JT files. 

9.1 Late-Loading Data 

The JT format was designed and structured to load entities from a JT file on a deferred or as-needed basis..  This concept is 

referred to within this JT Format Reference document as “late-loading data”.  The JT format has many structures in support 

of this and it is recommended as a best practice that writers/loaders of JT data leverage these capabilities.  

Initial loading only requires the Table of Contents and the LSG.  All Meta Data Node Elements, JT B-Rep Elements, XT B-

Rep Elements, Wireframe Rep Elements, PMI Manager Meta Data Elements, JT ULP Elements, JT LWPA Elements, and 

Shape LOD Elements may be ignored until they are actually needed.   These Late-Loaded data containers are accessed via a 

Late Loaded Property Atom Element which appears in a LSG Node's Property list.  Contained in this Property is the GUID 

associated with the segment to be loaded.  This GUID can be looked up in the TOC Segment, which will give the location in 

the JT from which to load the actual Element via the Data Segment convention. 

9.2 Bit Fields 

In the 7 File Format section of this reference many bit field data descriptions (e.g. 7.2.1.1.1.1.1 Base Node Data “Node 

Flags” field) contain the words “All undocumented bits are reserved.”  These words should be interpreted to mean that these 

undocumented bits should be set to “0” when writing the bit field data to a JT file. 

9.3 Reserved Field 

In the 7 File Format section of this reference some data fields may be named/documented “Reserved Field” (e.g. 

7.2.1.1.1.7.1LOD Node Data ”Reserved Field” field).  A “Reserved Field” exists for potential future expansion of the Format 

and best practices suggests that these fields should be treated as follows: 

If you are writing a JT file whose data did not originate from reading a previous JT file, then Reserved Fields should be set to 

a value a “0” when writing the field to a JT file. 

If you are writing a JT file whose data originated from reading a previous JT file (i.e. rewriting a JT File), then “Reserved 

Fields” should be written with the same value that was read from the originating JT file. 

9.4 Local Version 

The local version values seen throughout the data collections provides a simple means by which those data collections can be 

extended within current and future minor versions of the 9.x file format.  The standard convention followed by each data 

collection, unless explicitly specified otherwise, is to write the data from each local version in order.  This allows readers to 

read up to the maximum local version they support and then use the segment length that was read in the Segment Header to 

skip over any data they may not understand.  

9.5 Hash Value 

Hashing is a means by which a large chunk of values can be represented by single value through the use of a mathematical 

function that provides a distinctive value for each unique set of ordered values.  The hash function used within the v9.x 

format was published by Bob Jenkins in Dr Dobbs back in 1997 and its implementation is provided in Appendix D: .   

The hash function takes  a pointer to a set of values, the number of values,  and a seed hash value.  It returns the resulting 

hash value.  Initially the seed value is set to 0, however when hashing multiple data fields together the hash of previous data 

field is used as the seed  hash value of the next data field: 

UInt32 uHash = 0; 

uHash = hash32( pVal0, nVal0, uHash ); 

uHash = hash32( pVal1, nVal1, uHash ); 

The order that individual fields are hashed is extremely important since v9.x readers are strongly encouraged to assert that the 

stored hash value matches the calculated hash value of the corresponding fields after reading in all the corresponding data. To 

this end each hash value stored within the v9.x format carefully documents which fields it encompasses and the order in 

which they should be hashed. 
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9.6 Metadata Conventions 

Although there are really no restrictions/limits/requirements on what metadata (i.e. properties) can/must be attached to nodes 

in the LSG in order to have a reference compliant JT file, there are some conventions that have been generally followed in the 

industry when translating CAD data to the JT file format.  See 7.2.1.2 Property Atom Elements section of this document for 

complete description of the file Elements used to attach this property information to nodes. 

9.6.1 CAD Properties 

The following table lists the conventions that CAD data translators typically (although not always) follow in placing CAD 

information in a JT file as properties on various LSG nodes.  Some of these properties are considered required in order for the 

data in the file to be interpreted correctly while other properties are optional.  See flowing sub-sections for additional 

information on required versus optional properties. 

The convention is to place these Units properties on every Part and Assembly grouping node in the LSG.   By following this 

convention, JT file format readers/writers are provided maximum flexibility in understanding/indicating the appropriate JT 

data unit processing for both, monolithic and shattered JT file Assembly structures.  

 

JT Property Key Meaning 

JT File 

Data 

Type 

Encoded 

Data Type 

Valid 

Values 

Required / 

Optional 

JT_PROP_MEASUREMENT_UNITS Model Units MbString MbString millimeters 

centimeters 

meters 

inches 

feet 

yards 

micrometers 

decimeters 

kilometers 

mils 

miles 

Required 

CAD_MASS_UNITS Units of mass MbString MbString micrograms 

milligrams 

grams 

kilograms 

ounces 

pounds 

Required 

CAD_SURFACE_AREA Surface area of solids 

within part. 
MbString F64 numeric Optional 

CAD_VOLUME Volume of solids 

within part 
MbString F64 numeric Optional 

CAD_DENSITY Density of solids 

within part (6) 
MbString F64 numeric Optional 

CAD_MASS Mass or weight of 

solids within part 
MbString F64 numeric Optional 

CAD_CENTER_OF_GRAVITY Center of gravity of 

solids within part 
MbString 3 space 

separated 

F64 

3 numeric 

values 
Optional 

CAD_PROP_MATERIAL_THICKNESS Sheet thickness within 

part 
MbString F64 numeric Optional 

CAD_PART_NAME Component name from 

translator 
MbString MbString <string> Optional 

CAD_SOURCE CAD program the Part 

originated from  

MbString MbString <string> Optional 
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Table 9: CAD Property Conventions 

9.6.1.1 Required Properties 

The required unit properties are really necessary for viewers of JT file data to properly interpret numeric data for analysis 

operations (e.g. measure) and support the building of assemblies through the reading of multiple JT files in disparate units. 

There are two units of measure that are relevant, units of distance and units of weight.   

The JT_PROP_MEASURMENT_UNITS property is used to specify units of distance.  The CAD_MASS_UNITS property is 

used to specify units for weight.  JT_PROP_MEASURMENT_UNITS property is strictly required, while 

CAD_MASS_UNITS property is "optionally required".  By “optionally required”, we mean, it is required if other optional 

metadata intends to specify properties that would depend on these units of measure (e.g. CAD_DENSITY and 

CAD_MASS).  Notice that the Mass units are specified, instead of the Density units, since Density is a derived unit of 

Mass/Volume.   

9.6.1.2 Optional Properties 

Optional properties can be provided, but if the property is a units based value, then the value must be in units that are 

consistent with the JT_PROP_MEASURMENT_UNITS and CAD_MASS_UNITS properties.  Thus the units for the 

optional units based properties must be as follows: 

 

Optional Property Units 

CAD_SURFACE_AREA (JT_PROP_MEASUREMENT_UNITS)
2
 

CAD_VOLUME (JT_PROP_MEASUREMENT_UNITS)
3
 

CAD_DENSITY CAD_MASS_UNITS/(JT_PROP_MEASUREMENT_UNITS)
3
 

CAD_MASS CAD_MASS_UNITS 

CAD_CENTER_OF_GRAVITY JT_PROP_MEASUREMENT_UNITS 

CAD_PROP_MATERIAL_THICKNESS JT_PROP_MEASUREMENT_UNITS 

Table 10: CAD Optional Property Units 

 

Note of caution regarding the node placement for the CAD_DENSITY property.  Following the recommended convention for 

the placing of CAD properties (see description in 9.6.1CAD Properties) implies that all solids within a single JT part are of a 

uniform density, which may not be true in all cases. 

9.6.2 Tessellation Properties 

When dealing with facetted graphical representations (i.e. LODs) of precise models (e.g. JT B-Rep), depending on the 

desired use it is often useful/necessary to know what tessellation tolerances were used to generate the facetted representation.  

To that end, two properties are typically stored on Part Node Elements (if part also has precise model) to indicate the 

tessellation tolerances used to generate each LOD.  These two tessellation properties are as follows 

 

JT 

Property 

Key 

Meaning 

JT File 

Data 

Type 

Encoded 

Data 

Type 

Valid 

Values 

Chordal:: Chordal deviation tessellation tolerance in MCS units 

for each LOD.  Measure of maximum allowable 

distance a linear approximation for a curve/surface may 

deviate from the true curve/surface.  Encoded value 

string would look as follows for the case of two LODs: 

 

MbString space 

separated 

F32 values 

Numeric  
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JT 

Property 

Key 

Meaning 

JT File 

Data 

Type 

Encoded 

Data 

Type 

Valid 

Values 

“0.045603 0.069245” 
Angular:: Angular tessellation tolerance for each LOD in degrees. 

Two consecutive segments in a linear approximation of 

a curve/surface form an angle; this value specifies the 

maximum angle allowed.  Encoded value string would 

look as follows for the case of two LODs: 

 

“30.000000 40.000000” 

MbString space 

separated 

F32 values 

Numeric 

9.6.3 Miscellaneous Properties 

The below table documents some miscellaneous properties often placed on various nodes in the LSG to communicate 

specific information about the node or its contents. 

 

JT Property Key Meaning 

JT File 

Data 

Type 

Encoded 

Data 

Type 

Valid Values 

PMI_TYPE_TABLE May be attached to Part Node 

Element to indicate the list of PMI 

type values and associated names for 

all PMI types (basically equivalent to 

the Entity Type field documented in 

Generic PMI Entities). The string is a 

“.” and “,” delimited string of the 

following form: 

 

“10.Groove Weld,11.Fillet 

Weld,12.Plug/Slot Weld,14.Edge 

Weld” 

MbString <string>  

JT_PROP_SHAPE_DATA_TYPE May be attached to Shape Node 

Elements to indicate what geometry 

type the shape data represents. 

MbString <string> “Surface” 

“Wire” 

JT_PROP_TRISTRIP_DATA_LAYOUT This property is deprecated, and is no 

longer used. 

   

JT_PROP_ORIGINATING_BREPTYPE May be attached to Part Node 

Element to indicate the type of B-Rep 

associated with the Part. 

MbString <string> “None” 

“JtBrep” 

“XTBrep” 

JT_PROP_NAME May be attached to any form of node 

or attribute with which one wants to 

associate a textual name (e.g. 

Part/Assembly/Instance name, 

Material name, Light Set name, etc.). 

 

For Part/Assembly/Instance names 

this string has the following encoded 

form where “;” is a delimiter and “:‟ 

is a terminator: 

MbString <string>  
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JT Property Key Meaning 

JT File 

Data 

Type 

Encoded 

Data 

Type 

Valid Values 

 
 

For attribute names this string has the 

following encoded form: 

 
 

 

9.7 LSG Attribute Accumulation Semantics 

For applications producing or consuming JT format data, it is important that the JT format semantics of how attributes are 

meant to be applied and accumulated down the LSG are followed.  If not followed, then consistency between the applications 

in terms of 3D positioning and rendering of LSG model data will not be achieved.   

Although each attribute type defines its own application and accumulation LSG semantics (the details of which can be found 

in each attribute type sub-section under 7.2.1.1.2 Attribute Elements), there are some general rules which apply: 

Attributes at lower level in the LSG take precedence and replace or accumulate with attributes set at higher levels.  When 

multiple Attributes of the same type are present on a Node, they accumulate in the order they are specified (i.e. from the front 

of the Attribute list toward the back). 

Nodes with no associated attributes inherit those of their parents. 

Attributes are inherited only from a node's parents.  Thus a given node‟s attributes do not affect those on the node's siblings. 

The root of a partition inherits the attributes in effect at the referring partition node. 

Attributes can be marked “final”, which terminates accumulation of that attribute type at that marked attribute and propagates 

the accumulated value at that point to all descendants of the associated node.  Descendants can override a "final” attribute 

using the “force” flag.  Note that “force” does not turn OFF “final” – it is simply a one-shot override of “final” for the 

specific attribute marked as “forcing.”  Multiple attributes of the same type may be marked as "forcing" and in this case, the 

last one wins.  Both of these flags are OFF by default.  An analogy for this “force” and “final” interaction is that “final” is a 

back-door in the attribute accumulation semantics, and that “force” is the doggy-door in the back-door! 

9.8 LSG Part Structure 

The JT Format Reference does not mandate that a particular node hierarchy be used for modeling physical Parts within a 

LSG structure.  In fact there are many node hierarchies for representing Parts in LSG that will function correctly in most JT 

enabled applications.  Still, there is a convention that most JT translators follow (and some JT enabled applications may 

assume exists) for modeling Parts within a LSG.  The convention is to model each Part within a LSG structure with the 

following node hierarchy: 

“Chrome material” 

Name 

“AlignmentPin.part;0;1:” 

Name 

Version # 

Instance # 
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Figure 245: JT Format Convention for Modeling each Part in LSG 

 

9.9 Range LOD Node Alternative Rep Selection 

Best practices suggest that LSG traversers apply the following strategy, at Range LOD Nodes (see 7.2.1.1.1.8 Range LOD 

Node Element), when making alternative representation selection decisions based on Range Limits:  The first alternate 

representation is valid when the world coordinate distance between the center and the eye point is less than or equal to the 

first range limit (and when no range limits are specified). The second alternate representation is valid when the distance is 

greater than the first limit and less than or equal to the second limit, and so on. The last alternate representation is valid for all 

distances greater than the last specified limit. 

9.10 Brep Face Group Associations 

The original purpose of the face group concept was to provide associativity between Brep faces and geometry.  Exactly how a 

Brep face associates to a face group number is the topic of this section.  An implicit scheme has been chosen for face group 

associativity, rather than storing some kind of explicit data on either the  Vertex Shape LOD Data or the Brep.  The primary 

motivation for this implicit scheme is to keep the JT files simple and small; additional association information would not only 

be redundant, but also wasteful.  Tessellators must exercise this policy when producing  Vertex Shape LOD Data from Breps, 

grouping the triangles into face groups according to its rules.  Tristrips may not cross face groups.    Applications must be 

able to count on this policy so that, for example, they can map a picking action back to its corresponding Brep face reliably. 

JTBrep/ULP: In the case of JtBrep and ULP reps, the mapping is simple.  These Reps have a consistent, sequential, index 

origin-0 numbering scheme for their regions, shells, and faces.  So the Brep faces are simply assigned sequentially to face 

group by increasing region and shell.  For example, suppose we have a JTBrep with 2 regions, each with 2 shells, each with 2 

faces.  The Face Group  Region/Shell/Face mapping will be as follows: 

FG0  R0 S0 F0 

FG1  R0 S0 F1 

FG2  R0 S1 F0 

FG3  R0 S1 F1 

FG4  R1 S0 F0 

FG5  R1 S0 F1 

FG6  R1 S1 F0 

FG7  R1 S1 F1 

Part 

Node 

Element 

 Group 

Node 

Element 

Shape 

Node 

Shape 

Node 

... 

 Group 

Node 

Element 

Shape 

Node 

Shape 

Node 

... 

Range 

LOD Node 

Element 

LOD-0 LOD-N ... 
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JtXTBrep: In the case of JtXTBrep, the mapping is based on Parasolid identifier of each XT face that is persisted on disk.  

The identifier is unique within each Parasolid body, but it is not an index.  XTBrep maintains a zero-based contiguous index 

of XT face based on increasing identifier value within the same XT body.  If XTBrep contains multiple XT bodies, then the 

sequence of those XT bodies are fixed across different Parasolid releases and therefore the index of each XT body is implied. 

 In the case when multiple bodies are present in JtXTBrep, face index is assigned sequentially by increasing XT body index.  

For example, suppose we have a JtXTBrep with 2 bodies, each with 2 faces, then the Face Group to Body/Face mapping will 

be as follows: 

FG0  B0 F0 

FG1  B0 F1 

FG2  B1 F0 

FG3  B1 F1 
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Appendix A:  Object Type Identifiers 

All objects stored in a JT file are classified by type and thus include an object type identifier as part of their persisted data.  

The data format for these Object Type identifiers is a GUID. These Object Type identifiers are consistent for all objects, of a 

particular type, in all Version 8.1 JT files.  

Table 11: Object Type Identifiers lists the assigned identifier for each Object Type that can exist in a Version 9.5 JT file. 

 

GUID Object Type 

0xffffffff, 0xffff, 0xffff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff Identifier to signal End-Of-Elements. 

  

Types Stored Within LSG Segment (Segment Type = 1) 

0x10dd1035, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Base Node Element 

0x10dd101b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

 Group Node Element 

0x10dd102a, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Instance Node Element 

0x10dd102c, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

LOD Node Element 

0xce357245, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 

0xe1 

Meta Data Node Element  

0xd239e7b6, 0xdd77, 0x4289, 0xa0, 0x7d, 0xb0, 0xee, 0x79, 0xf7, 

0x94, 0x94 

NULL Shape Node Element 

0xce357244, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 

0xe1 

Part Node Element 

0x10dd103e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Partition Node Element 

0x10dd104c, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Range LOD Node Element 

0x10dd10f3, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Switch Node Element 

  

0x10dd1059, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Base Shape Node Element 

0x98134716, 0x0010, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83, 

0x5d, 0x5a 

Point Set Shape Node Element 

0x10dd1048, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Polygon Set Shape Node Element 

0x10dd1046, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Polyline Set Shape Node Element 

0xe40373c1, 0x1ad9, 0x11d3, 0x9d, 0xaf, 0x0, 0xa0, 0xc9, 0xc7, 0xdd, 

0xc2 

Primitive Set Shape Node Element 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 303  

GUID Object Type 

0x10dd1077, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Tri-Strip Set Shape Node Element 

0x10dd107f, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Vertex Shape Node Element 

0x10dd1001, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Base Attribute Data 

0x10dd1014, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Draw Style Attribute Element 

0xad8dccc2, 0x7a80, 0x456d, 0xb0, 0xd5, 0xdd, 0x3a, 0xb, 0x8d, 0x21, 

0xe7 

Fragment Shader Attribute Element 

0x10dd1083, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Geometric Transform Attribute Element 

0x10dd1028, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Infinite Light Attribute Element 

0x10dd1096, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Light Set Attribute Element 

0x10dd10c4, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Linestyle Attribute Element 

0x10dd1030, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Material Attribute Element 

0x10dd1045, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Point Light Attribute Element 

0x8d57c010, 0xe5cb, 0x11d4, 0x84, 0xe,  0x00, 0xa0, 0xd2, 0x18, 0x2f, 

0x9d 

Pointstyle Attribute Element 

0xaa1b831d, 0x6e47, 0x4fee, 0xa8, 0x65, 0xcd, 0x7e, 0x1f, 0x2f, 0x39, 

0xdb 

Shader Effects Attribute Element 

0x10dd1073, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Texture Image Attribute Element 

0x2798bcad, 0xe409, 0x47ad, 0xbd, 0x46, 0xb, 0x37, 0x1f, 0xd7, 0x5d, 

0x61 

Vertex Shader Attribute Element 

0xad8dccc2, 0x7a80, 0x456d, 0xb0, 0xd5, 0xdd, 0x3a, 0xb, 0x8d, 0x21, 

0xe7 

Fragment Shader Attribute Element 

0xaa1b831d, 0x6e47, 0x4fee, 0xa8, 0x65, 0xcd, 0x7e, 0x1f, 0x2f, 0x39, 

0xdc 

Texture Coordinate Generator 

Attribute Element 

0xa3cfb921, 0xbdeb, 0x48d7, 0xb3, 0x96, 0x8b, 0x8d, 0xe, 0xf4, 0x85, 

0xa0 

Mapping Plane Element 

0x3e70739d, 0x8cb0, 0x41ef, 0x84, 0x5c, 0xa1, 0x98, 0xd4, 0x0, 0x3b, 

0x3f 

Mapping Cylinder Element 

0x72475fd1, 0x2823, 0x4219, 0xa0, 0x6c, 0xd9, 0xe6, 0xe3, 0x9a, 

0x45, 0xc1 

Mapping Sphere Element 
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GUID Object Type 

0x92f5b094, 0x6499, 0x4d2d, 0x92, 0xaa, 0x60, 0xd0, 0x5a, 0x44, 

0x32, 0xcf 

Mapping TriPlanar Element 

0x10dd104b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Base Property Atom Element 

0xce357246, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 

0xe1 

Date Property Atom Element 

0x10dd102b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Integer Property Atom Element 

0x10dd1019, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Floating Point Property Atom Element 

0xe0b05be5, 0xfbbd, 0x11d1, 0xa3, 0xa7, 0x00, 0xaa, 0x00, 0xd1, 

0x09, 0x54 

Late Loaded Property Atom 

ElementSecond specifies the date 

Second value.  Valid values are [0, 59] 

inclusive. 

Late Loaded Property Atom Element 

0x10dd1004, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

JT Object Reference Property Atom 

Element 

0x10dd106e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

String Property Atom Element 

  

Types Stored Within JT B-Rep Segment (Segment Type = 2) 

0x873a70c0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

JT B-Rep Element 

  

Types Stored Within Meta Data Segment (Segment Type = 4) 

0xce357249, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 

0xe1 

PMI Manager Meta Data Element 

0xce357247, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 

0xe1 

Property Proxy Meta Data Element 

  

Types Stored Within Shape LOD Segment (Segment Type = 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16) 

0x3e637aed, 0x2a89, 0x41f8, 0xa9, 0xfd, 0x55, 0x37, 0x37, 0x3, 0x96, 

0x82 

Null Shape LOD Element 

0x98134716, 0x0011, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83, 

0x5d, 0x5a 

Point Set Shape LOD Element 

0x10dd10a1, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Polyline Set Shape LOD Element 

0xe40373c2, 0x1ad9, 0x11d3, 0x9d, 0xaf, 0x0, 0xa0, 0xc9, 0xc7, 0xdd, 

0xc2 

Primitive Set Shape Element 

0x10dd10ab, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Tri-Strip Set Shape LOD Element 
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GUID Object Type 

0x10dd10b0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Vertex Shape LOD Element 

  

Types Stored Within XT B-Rep Segment (Segment Type = 17) 

0x873a70e0, 0x2ac9, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

XT B-Rep Element 

  

Types Stored Within Wireframe Segment (Segment Type = 18) 

0x873a70d0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 

0x59, 0x97 

Wireframe Rep Element 

  

Types Stored Within JT ULP Segment (Segment Type = 20) 

0xf338a4af, 0xd7d2, 0x41c5, 0xbc, 0xf2, 0xc5, 0x5a, 0x88, 0xb2, 0x1e, 

0x73 
JT ULP Element 

 

         Types Stored Within JT LWPA Segment (Segment Type = 24)            

0xd67f8ea8, 0xf524, 0x4879, 0x92, 0x8c, 0x4c, 0x3a, 0x56, 0x1f, 0xb9, 

0x3a 
JT LWPA Element 

  

Table 11: Object Type Identifiers 
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Appendix B:  Semantic Value Class Shader Parameter Values 

7.2.1.1.2.12 Vertex Shader Attribute Element and 7.2.1.1.2.13 Fragment Shader Attribute Element contain shader parameters.  

These shader parameters can be of a “Semantic” Value Class which indicates that the shader parameter is implicitly 

tied/bound to a piece of either OpenGL or JT graphics system state. Table 12 below documents all the possible “Semantic” 

Value Class shader parameter Values (i.e. the graphics system state the parameter is bound to). 

Table 12: Semantic Value Class Shader Parameter Values 

Value Description of Semantically Bound Graphics State Notes 

= 0  Unknown  

Related to Current OpenGL State 
= 30  View Transform Matrix   Cg only 

= 31  Combined Model-View Transform Matrix Cg only 

= 32  Projection Transform Matrix Cg only 

= 33  Texture Transform Matrix Cg only 

= 34  Combined Model-View-Projection Transform Matrix Cg only 

= 35  View Matrix Transposed Cg only 

= 36  Combined Model-View Transform Matrix Transposed Cg only 

= 37  Projection Transform Matrix Transposed Cg only 

= 38  Texture Transform Matrix Transposed Cg only 

= 39  Combined Model-View-Projection Transform Matrix  Transposed Cg only 

= 40  View Transform Matrix Inverse Cg only 

= 41  Combined Model-View Transform Matrix Inverse Cg only 

= 42  Projection Transform Matrix Inverse Cg only 

= 43  Texture Transform Matrix Inverse Cg only 

= 44  Combined Model-View-Projection Transform Matrix Inverse Cg only 

= 45  View Transform Matrix Inverse Transposed  Cg only 

= 46  Combined Model-View Transform Matrix Inverse Transposed Cg only 

= 47  Projection Transform Matrix Inverse Transposed Cg only 

= 48  Texture Transform Matrix Inverse Transposed  Cg only 

= 49  Combined Model-View-Projection Transform Matrix Inverse 

Transposed 

Cg only 

   

Related to Current JT State 
= 70  Current Model Transform  

= 71  Current Model Transform Transposed  

= 72  Current Model Transform Inverse  

= 73  Current Model Transform Inverse Transposed  

= 75  Current Material Emissive Color  

= 76  Current Material Diffuse Color  

= 77  Current Material Specular Color  

= 78  Current Material Ambient Color  

= 79  Current Material Shininess  

= 80  Current Fog Color  

= 81  Separate Specular Color Flag  

= 82  Global Ambient Light Color  

= 83  Exposure  

= 84  Bumpiness  

= 85  Environment Reflectivity  

= 86  Depth Peeling Texture 0  
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= 87  Depth Peeling Texture 1  

   

= 99  Number of VPCS Lights  

= 101  VPCS Light-0  Specular Color  

= 102  VPCS Light-0  Ambient Color  

= 103  VPCS Light-0  Attenuation  

= 104  VPCS Light-0  Position  

= 105  VPCS Light-0  Direction  

= 106  VPCS Light-0 Spot Direction  

= 107  VPCS Light-0  Spot Cone Angle  

= 108  VPCS Light-0 Cosine of Spot Cone Angle  

= 109  VPCS Light-0  Spot Exponent  

= 110  VPCS Light-0  Shadow Opacity  

= 120 → 130  Same as values 100 → 110 except for VPCS Light-1  

= 140 → 150  Same as values 100 → 110 except for VPCS Light-2  

= 160 → 170  Same as values 100 → 110 except for VPCS Light-3  

= 180 → 190  Same as values 100 → 110 except for VPCS Light-4  

= 200 → 210  Same as values 100 → 110 except for VPCS Light-5  

= 220 → 230  Same as values 100 → 110 except for VPCS Light-6  

= 240 → 250  Same as values 100 → 110 except for VPCS Light-7  

   

= 499  Number of MCS Lights  

= 500 → 510  Same as values 100 → 110 except for MCS Light-0  

= 520 → 530  Same as values 100 → 110 except for MCS Light-1  

= 540 → 550  Same as values 100 → 110 except for MCS Light-2  

= 560 → 570  Same as values 100 → 110 except for MCS Light-3  

= 580 → 590  Same as values 100 → 110 except for MCS Light-4  

= 600 → 610  Same as values 100 → 110 except for MCS Light-5  

= 620 → 630  Same as values 100 → 110 except for MCS Light-6  

= 640 → 650  Same as values 100 → 110 except for MCS Light-7  

   

= 899  Number of WCS Lights  

= 900 → 910  Same as values 100 → 110 except for WCS Light-0  

= 920 → 930  Same as values 100 → 110 except for WCS Light-1  

= 940 → 950  Same as values 100 → 110 except for WCS Light-2  

= 960 → 970  Same as values 100 → 110 except for WCS Light-3  

= 980 → 990  Same as values 100 → 110 except for WCS Light-4  

= 1000 → 1010  Same as values 100 → 110 except for WCS Light-5  

= 1020 → 1030  Same as values 100 → 110 except for WCS Light-6  

= 1040 → 1050  Same as values 100 → 110 except for WCS Light-7  

   

= 1500  Current Texture Object-0 Cg only 

= 1501  Current Texture Object-1 Cg only 

= 1502  Current Texture Object-2 Cg only 

= 1503  Current Texture Object-3 Cg only 

= 1504  Current Texture Object-4 Cg only 

= 1505  Current Texture Object-5 Cg only 

= 1506  Current Texture Object-6 Cg only 

= 1507  Current Texture Object-7 Cg only 
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= 1600  Current Texture Unit-0 GLSL only 

= 1601  Current Texture Unit-1 GLSL only 

= 1602  Current Texture Unit-2 GLSL only 

= 1603  Current Texture Unit-3 GLSL only 

= 1604  Current Texture Unit-4 GLSL only 

= 1605  Current Texture Unit-5 GLSL only 

= 1606  Current Texture Unit-6 GLSL only 

= 1607  Current Texture Unit-7 GLSL only 

   

= 1700  Texture Channel-0 VCS Texture Coordinate Generation S-Plane  

= 1701  Texture Channel-0 VCS Texture Coordinate Generation T-Plane  

= 1702  Texture Channel-0 VCS Texture Coordinate Generation R-Plane  

= 1703  Texture Channel-0 VCS Texture Coordinate Generation Q-Plane  

= 1710 → 1713  Same as 1700 → 1703 except for Chanel-1 VCS  

= 1720 → 1723  Same as 1700 → 1703 except for Chanel-2 VCS  

= 1730 → 1733  Same as 1700 → 1703 except for Chanel-3 VCS  

= 1740 → 1743  Same as 1700 → 1703 except for Chanel-4 VCS  

= 1750 → 1753  Same as 1700 → 1703 except for Chanel-5 VCS  

= 1760 → 1763  Same as 1700 → 1703 except for Chanel-6 VCS  

= 1770 → 1773  Same as 1700 → 1703 except for Chanel-7 VCS  

   

= 2000 → 2003  Same as 1700 → 1703 except for Chanel-0 MCS  

= 2010 → 2013  Same as 1700 → 1703 except for Chanel-1 MCS  

= 2020 → 2023  Same as 1700 → 1703 except for Chanel-2 MCS  

= 2030 → 2033  Same as 1700 → 1703 except for Chanel-3 MCS  

= 2040 → 2043  Same as 1700 → 1703 except for Chanel-4 MCS  

= 2050 → 2053  Same as 1700 → 1703 except for Chanel-5 MCS  

= 2060 → 2063  Same as 1700 → 1703 except for Chanel-6 MCS  

= 2070 → 2073  Same as 1700 → 1703 except for Chanel-7 MCS  

   

= 3000  Texture Channel-0 Matrix  

= 3001  Texture Channel-1 Matrix  

= 3002  Texture Channel-2 Matrix  

= 3003  Texture Channel-3 Matrix  

= 3004  Texture Channel-4 Matrix  

= 3005  Texture Channel-5 Matrix  

= 3006  Texture Channel-6 Matrix  

= 3007  Texture Channel-7 Matrix  

   

= 3100  Texture Channel-0 Map Resolution  

= 3101  Texture Channel-1 Map Resolution  

= 3102  Texture Channel-2 Map Resolution  

= 3103  Texture Channel-3 Map Resolution  

= 3104  Texture Channel-4 Map Resolution  

= 3105  Texture Channel-5 Map Resolution  

= 3106  Texture Channel-6 Map Resolution  

= 3107  Texture Channel-7 Map Resolution  

   

= 3200  Texture Channel-0 Map Resolution Inverses (i.e. 1.0 /”Map Resolution”)  

= 3201  Texture Channel-1 Map Resolution Inverses  
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= 3202  Texture Channel-2 Map Resolution Inverses  

= 3203  Texture Channel-3 Map Resolution Inverses  

= 3204  Texture Channel-4 Map Resolution Inverses  

= 3205  Texture Channel-5 Map Resolution Inverses  

= 3206  Texture Channel-6 Map Resolution Inverses  

= 3207  Texture Channel-7 Map Resolution Inverses  

   

= 3300  Texture Channel-0 Blend Color  

= 3301  Texture Channel-1 Blend Color  

= 3302  Texture Channel-2 Blend Color  

= 3303  Texture Channel-3 Blend Color  

= 3304  Texture Channel-4 Blend Color  

= 3305  Texture Channel-5 Blend Color  

= 3306  Texture Channel-6 Blend Color  

= 3307  Texture Channel-7 Blend Color  
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Appendix C:  Decoding Algorithms – An Implementation 

This Appendix provides a sample C++ implementation for the decoding portion of the various compression CODECs (as 

detailed in 8.2 Encoding Algorithms) used in the JT format.  This sample code is not intended to be fully functional decoder 

class implementations, but is instead intended to demonstrate the fundamentals of implementing the decoding portion of the 

CODEC algorithms used in the JT format. 

1 Common classes 

The following sub-sections define some general classes used by  all the decoding algorithms.  

1.1 CntxEntry class 

// 

// Type used to build probability context tables.  

// Used by ProbabilityContext class. 

// 

class CntxEntry 

{ 

public: 

 

 Int32 iSym;          // Symbol 

 Int32 cCount;        // Number of occurrences 

 Int32 cCumCount;     // Cumulative number of occurrences 

 Int32 iNextCntx = 0; // Next context if this symbol seen 

}; 

1.2 ProbabilityContext class 

// 

// Type used to build probability context tables.  

// Used by CodecDriver class. 

// 

class ProbabilityContext 

{ 

public: 

 

 // Returns total cumulative count for all context entries 

 Int32 totalCount();     

 

 // Returns number of context entries 

 Int32 numEntries();   

 

 // Returns context entry of index iEntry 

 Bool getEntry(Int32 iEntry, CntxEntry& rpEntry);  

 

 // Looks up the next context field given by the context entry 

 // with input symbol „iSymbol‟ 

 Bool lookupNextContext(Int32 iSymbol, Int32& iNextContext);  

 

 // Looks up the index of the context entry for the given  

 // input symbol „iSymbol‟ 

 Bool lookupSymbol(Int32 iSymbol, Int32& iOutEntry); 

 

 // Looks up the index of the context entry that falls just above 

 // the accumulated count. 

 Bool lookupEntryByCumCount(Int32 iCount, Int32& iOutEntry); 

}; 

1.3 CodecDriver class 

// 

// A class that deals with the conversions from SYMBOL to VALUE and 

// provides end-consumer APIs for using the codecs. 

// 

class CodecDriver 
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{ 

public: 

 // ---------- Codec Decoding Interface ---------- 

 // Returns the number of symbols to be read 

 Int32 numSymbolsToRead(); 

 

 // Returns index of the first context entry and total number of bits 

 Bool getDecodeData(Int32& iFirstContext, Int32& nTotalBits); 

 

 // Returns the next 32 bits of CodeText 

 Bool getNextCodeText(UInt32& uCodeText, Int32& nBits); 

 

 // Adds the decoded symbol back to the driver 

 Bool addOutputSymbol(Int32 iSymbol, Int32& iNextContext) ; 

 

 // ---------- Symbol Probability Context Interface ---------- 

 Bool clearAllContexts(); 

 

 // Retrieves a new probability context 

 Bool getNewContext(ProbabilityContext& rpCntx); 

 

 // Returns the total number of contexts 

 Int32 numContexts(); 

 

 // Returns the probability context for a given index 

 Bool getContext(Int32 iSymContext, ProbabilityContext& rpCntx); 

 

 // ---------- Predictor Type Residual Unpacking ---------- 

 

 typedef enum 

 { 

  PredLag1       = 0, 

  PredLag2       = 1, 

  PredStride1    = 2, 

  PredStride2    = 3, 

  PredStripIndex = 4, 

  PredRamp       = 5, 

  PredXor1       = 6, 

  PredXor2       = 7, 

  PredNULL       = 8 

 } PredictorType; 

 

 // Returns the original values from the predicted residual values. 

 static Bool unpackResiduals(Vector<Int32>& rvResidual, 

           Vector<Int32>& rvVals, 

           PredictorType  ePredType); 

 

 static Bool unpackResiduals(Vector<Float64>& rvResidual, 

           Vector<Float64>& rvVals, 

           PredictorType  ePredType); 

 

 // Predict values 

 static Int32 predictValue(Vector<Int32>& vVal,  

           Int32 iIndex, 

           PredictorType ePredType); 

 

 static Float64 predictValue(Vector<Float64>& vVal, 

           Int32 iIndex, 

           PredictorType ePredType); 

} 

 

Bool CodecDriver::unpackResiduals(Vector<Int32>& rvResidual, 

            Vector<Int32>& rvVals, 

            PredictorType  ePredType) 

{ 

 Int32 iPredicted; 

 

 Int32 len = rvResidual.length(); 

 rvVals.setLength(len); 

 Int32* aVals = (Int32 *) rvVals; 

 Int32* aResidual = (Int32 *) rvResidual; 
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 for( Int32 i = 0; i < len; i++ ) 

 { 

  if( i < 4 ) 

  { 

   // The first four values are just primers 

   aVals[i] = aResidual[i]; 

  } 

  else 

  { 

   // Get a predicted value 

   iPredicted = predictValue(rvVals, i, ePredType); 

 

   if( ePredType == PredXor1 || ePredType == PredXor2 ) 

   { 

    // Decode the residual as the current value XOR predicted 

    aVals[i] = aResidual[i] ^ iPredicted; 

   } 

   else 

   { 

    // Decode the residual as the current value plus predicted 

    aVals[i] = aResidual[i] + iPredicted; 

   } 

  } 

 } 

 

 return True; 

} 

 

Bool CodecDriver::unpackResiduals(Vector<Float64>& rvResidual, 

            Vector<Float64>& rvVals, 

            PredictorType  ePredType) 

{ 

 if( ePredType == PredXor1 || ePredType == PredXor2 ) 

  return False; 

 

 if( ePredType == PredNULL ) 

 { 

  rvVals = rvResidual; 

  return True; 

 } 

 

 Float64 iPredicted; 

 Int32 len = rvResidual.length(); 

 rvVals.setLength(len); 

 

 for( Int32 i = 0; i < len; i++ ) 

 { 

  if( i < 4 ) 

  { 

   // The first four values are just primers 

   rvVals[i] = rvResidual[i]; 

  } 

  else 

  { 

   // Get a predicted value 

   iPredicted = predictValue(rvVals, i, ePredType); 

 

   // Decode the value as the residual plus predicted 

   rvVals[i]   = rvResidual[i] + iPredicted; 

  } 

 } 

 

 return True; 

} 

 

Int32 CodecDriver::predictValue(Vector<Int32>& vVal,  

            Int32 iIndex, 

            PredictorType ePredType) 

{ 

 Int32* aVals = (Int32 *) rvVals; 
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 JtInt32 iPredicted, 

     v1 = aVals[iIndex-1], 

     v2 = aVals[iIndex-2], 

     v3 = aVals[iIndex-3], 

     v4 = aVals[iIndex-4]; 

 

 switch( ePredType ) 

 { 

  default: 

  case PredLag1: 

  case PredXor1: 

   iPredicted = v1; 

   break; 

 

  case PredLag2: 

  case PredXor2: 

   iPredicted = v2; 

   break; 

 

  case PredStride1: 

   iPredicted = v1 + (v1 - v2); 

   break; 

 

  case PredStride2: 

   iPredicted = v2 + (v2 - v4); 

   break; 

 

  case PredStripIndex: 

   if( v2 - v4 < 8 && v2 - v4 > -8 ) 

    iPredicted = v2 + (v2 - v4); 

   else 

    iPredicted = v2 + 2; 

   break; 

 

  case PredRamp: 

   iPredicted = iIndex; 

   break; 

 } 

 

 return iPredicted; 

} 

 

 

Float64 CodecDriverBase::predictValue(Vector<Float64>& vVal, 

              Int32 iIndex, 

              PredictorType ePredType) 

{ 

 Float64* aVals = (Float64 *) rvVals; 

 Float64 iPredicted, 

     v1 = aVals[iIndex-1], 

     v2 = aVals[iIndex-2], 

     v3 = aVals[iIndex-3], 

     v4 = aVals[iIndex-4]; 

 

 switch( ePredType ) 

 { 

  default: 

  case PredLag1: 

   iPredicted = v1; 

   break; 

 

  case PredLag2: 

   iPredicted = v2; 

   break; 

 

  case PredStride1: 

   iPredicted = v1 + (v1 - v2); 

   break; 

 

  case PredStride2: 

   iPredicted = v2 + (v2 - v4); 
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   break; 

 

  case PredStripIndex: 

   if( v2 - v4 < 8 && v2 - v4 > -8 ) 

    iPredicted = v2 + (v2 - v4); 

   else 

    iPredicted = v2 + 2; 

   break; 

 

  case PredRamp: 

   iPredicted = iIndex; 

   break; 

 } 

 

 return iPredicted; 

} 

1.4 CodecDriver2 class 

2 Bitlength decoding classes 

The following sub-sections contain a sample implementation of the decoding portion of the  Bitlength CODEC algorithm.  A 

summary technical explanation of the Bitlength CODEC can be found in 8.2.2 Bitlength CODEC.  

2.1 BitLengthCodec class 

class BitLengthCodec 

{ 

public: 

 // This method decodes a given stream of symbols into their values. 

 // The stream is described by the codec driver 

 Bool decode(CodecDriver* pDriver); 

 

 Int32 cStepBits = 2; 

}; 

 

Bool BitLengthcodec::decode(CodecDriver* pDriver) 

{ 

 Int32 iBit;     // Codetext bit number 

 Int32 nBits = 0;   // Number of codetext bits decoded so far 

 Int32 nTotalBits = 0; // Total number of codetext bits expected 

 Int32 nValBits = 0;  // Number of accumulated value bits 

 Int32 iContext = 0;  // Probability context number 

 Int32 iSymbol;    // Decoded symbol value 

 UInt32 uVal = 0;   // Current chunk of codetext bits 

 UInt32 uAccVal = 0;  // Number of valid bits returned from 

         // getNextCodeText 

 UInt32 uLastIncBit = 0; // Used to calculate whether terminator bit 

         // is 0 or 1 

 Int32 cNumCurBits = 0; // Current field width in bits 

 Int32 nAccBits = 0;  // Number of bits accum'ed in uAccVal 

 Int32 iDecodeState = 0; // State of decoder; see below 

 

 // Get codetext from the driver and loop over it until it's gone! 

 pDriver->getDecodeData(iContext, nTotalBits); 

 

 while( nBits < nTotalBits ) 

 { 

  // Get the next 32 bits from the input stream 

  pDriver->getNextCodeText(uVal, nValBits); 

 

  // Scan through each bit either walking the Huffman code 

  // tree or accumulating escaped bit values. 

  Int32 n = min(32, min(nValBits, nTotalBits - nBits)); 

  for( iBit = 0; iBit < n ; iBit++ ) 

  { 

   // Code-accumulation mode is handled is this block 

   // as many bits at a time as possible. 
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   if( iDecodeState == 2 ) 

   { 

 

    // Slice off as many bits as we can all at once. 

    Int32 m = min(n - iBit, cNumCurBits - nAccBits); 

    if( m < 32 ) 

    { 

     uAccVal <<= m; 

     uAccVal |= ((uVal >> (32 - m)) & ((1 << m) - 1)); 

     nAccBits += m; 

     iBit += m - 1; 

 

     // Advance the bit-marching counters 

     uVal <<= m; 

     nBits += m; 

     nValBits -= m; 

    } 

    else 

    { 

     uAccVal = uVal; 

     nAccBits += m; 

     iBit += m - 1; 

 

     // Advance the bit-marching counters 

     uVal = 0; 

     nBits += m; 

     nValBits -= m; 

    } 

 

    if( nAccBits >= cNumCurBits ) 

    { 

     // Convert and sign-extend the symbol 

     iSymbol = Int32(uAccVal); 

     iSymbol <<= (32 - cNumCurBits); 

     iSymbol >>= (32 - cNumCurBits); 

 

     // Output the symbol and restart 

     pDriver->addOutputSymbol(iSymbol, iContext); 

     iDecodeState = 0; 

     uAccVal  = 0; 

     nAccBits = 0; 

    } 

   } 

   else 

   { 

    // All other decode states are handled one bit at a time 

    // inside this block. 

    // Get the next bit 

    uAccVal = (uVal >> 31); 

 

    switch( iDecodeState ) 

    { 

 

     // DecodeState = 0: Recognize prefix bit (0=Same size 

     // code, 1=Different size code). 

     case 0: 

      // Recognize "same length" prefix code 

      if( uAccVal == 0 ) 

       iDecodeState = 2; 

      else 

      { 

       // Recognize "different length" prefix code 

       iDecodeState = 1; 

       uLastIncBit = 2; 

      } 

 

      uAccVal  = 0; 

      break; 

 

     case 1:  // Length adjustment mode 

      // Recognize the terminator bit 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 316  

      if( uLastIncBit != 2 && (uAccVal ^ uLastIncBit) ) 

      { 

       iDecodeState = 2; 

       uLastIncBit = 2; 

      } 

      else 

      { 

       // Recognize the "increment" prefix code 

       if( uAccVal == 1 ) 

       { 

        cNumCurBits += cStepBits; 

       } 

       else 

       { 

        // Recognize the "decrement" prefix code 

        cNumCurBits -= cStepBits; 

       } 

 

       uLastIncBit = uAccVal; 

      } 

 

      uAccVal  = 0; 

      break; 

    } 

 

    // Advance the bit-marching counters that keep track of the 

    // "current codetext bit", and how many bits are left. 

    uVal <<= 1; 

    nBits++; 

    nValBits--; 

   } 

  } 

 } 

 

 // If the last symbol was zero and the current bit length 

 // is also zero, then the above loop terminated before 

 // actually decoding the last zero-valued symbol.  Test 

 // for that condition here and decode it if necessary. 

 if( iDecodeState == 2 && cNumCurBits == 0 ) 

 { 

  // Output the symbol and restart 

  iSymbol = Int32(0); 

  pDriver->addOutputSymbol(iSymbol, iContext); 

 } 

 

 return True; 

} 

3 Arithmetic decoding classes 

The following sub-sections contain a sample implementation of the decoding portion of the  Arithmetic CODEC algorithm.  

A summary technical explanation of the Arithmetic CODEC can be found in 8.2.3 Arithmetic CODEC.  

3.1 ArithmeticProbabilityRange class 

class ArithmeticProbabilityRange  

{ 

public: 

 UInt16 low_count; 

 UInt16 high_count; 

 UInt16 scale; 

} 

3.2 ArithmeticCodec class 

ArithmeticCodec class is the class that decodes arithmetic encoded data. 

class ArithmeticCodec 

{ 
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public: 

 ArithmeticCodec() : 

  code = 0x0000, 

  low = 0x0000, 

  high = 0xffff, 

  nUnderflowBits = 0, 

  bitBuffer =0x00000000, 

  nBits = 0 

 { 

 } 

 

 // Decodes a list of symbols. The codecDriver provides the range 

 // info for the symbols to decode.  It also stores the symbols as 

 // they are decoded.  

 Bool decode(CodecDriver* pDriver); 

 

private: 

 // Remove the most recently decoded symbol from the front of the 

 // list of encoded symbols. 

 Bool removeSymbolFromStream(ArithmeticProbabilityRange& sym, 

                               CodecDriver* pDriver); 

 

 //State variables used in decoding. 

 UInt16 code;      // Present input code value, for decoding only 

 UInt16 low;       // Start of the current code range 

 UInt16 high;      // End of the current code range 

 

 UInt32 bitBuffer; // Temporary i/o buffer 

 Int32  nBits;     // Number of bits in _bitBuffer 

}; 

 

Bool ArithmeticCodec::decode(CodecDriver* pDriver ) 

{ 

 ArithmeticProbabilityRange newSymbolRange; 

 Int32 iCurrContext, nDummyTotalBits, cSymbolsCurrCtx, iCurrEntry; 

             

 Int32 nSymbols = pDriver->numSymbolsToRead(); 

              

 ProbabilityContext* pCurrContext = NULL; 

 CntxEntry* pCntxEntry = NULL;  

 

 // Initialize decoding process 

 Int32 nBitsRead = -1; 

 pDriver->getNextCodeText(bitBuffer, nBitsRead); 

 

 low  = 0; 

 high = 0xffff; 

 code = (bitBuffer >> 16); 

 

 bitBuffer <<= 16; 

 nBits = 16; 

 

 // Begin decoding 

 pDriver->getDecodeData(iCurrContext, nDummyTotalBits); 

 for( Int32 ii = 0; ii < nSymbols; ii++ ) 

 { 

  pDriver->getContext(iCurrContext, pCurrContext); 

 

  cSymbolsCurrCtx = pCurrContext->totalCount(); 

  UInt16 rescaledCode = 

   ((((UInt32)(code - low) + 1) * (UInt32) cSymbolsCurrCtx - 1) / 

    ((UInt32)(high - low) + 1)); 

 

  pCurrContext->lookupEntryByCumCount((Int32)rescaledCode, 

             iCurrEntry); 

 

  pCurrContext->getEntry(iCurrEntry, pCntxEntry); 

 

  newSymbolRange.high_count = pCntxEntry->cCumCount +  

              pCntxEntry.cCount; 

  newSymbolRange.low_count  = pCntxEntry->cCumCount; 
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  newSymbolRange.scale      = cSymbolsCurrCtx; 

 

  removeSymbolFromStream(newSymbolRange, pDriver); 

 

  pDriver->addOutputSymbol(pCntxEntry); 

 

  iCurrContext = pCntxEntry->iNextCntx; 

 } 

 

 return True; 

} 

 

Bool ArithmeticCodec::removeSymbolFromStream( 

         ArithmeticProbabilityRange& sym,  

         CodecDriver* pDriver) 

{ 

 // First, the range is expanded to account for the symbol removal. 

 UInt32 range = UInt32(high - low)  + 1; 

 high = low + (UInt32)((range * sym.high_count) / sym.scale - 1); 

 low  = low + (UInt32)((range * sym.low_count ) / sym.scale); 

 

 //Next, any possible bits are shipped out. 

 for (;;) 

 { 

  // If the most signif digits match, the bits will be shifted out. 

  if( (~(high^low)) & 0x8000 ) 

  { 

  } 

  else if( (low & 0x4000) && !(high & 0x4000) ) 

  { 

   // Underflow is threatening, shift out 2nd most signif digit. 

   code ^= 0x4000; 

   low  &= 0x3fff; 

   high |= 0x4000; 

  } 

  else 

  { 

   // Nothing can be shifted out, so return. 

   return True; 

  } 

 

  low  <<= 1; 

  high <<= 1; 

  high |=  1; 

  code <<= 1; 

 

  if( nBits == 0 ) 

  { 

         // The returned nBits here will always be 32 

   pDriver->getNextCodeText(bitBuffer, nBits); 

  } 

         

  code |= (UInt16)(bitBuffer >> 31); 

  bitBuffer <<= 1; 

  nBits--; 

 } 

} 

4 Deering Normal decoding classes 

The following sub-sections contain a sample implementation of the decoding portion of the Deering Normal CODEC 

algorithm.  A summary technical explanation of the Deering Normal CODEC can be found in 8.2.4 Deering Normal 

CODEC.  
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4.1 DeeringNormalLookupTable class 

The DeeringNormalLookupTable class represents a lookup table used by the DeeringNormalCodec class for faster 

conversion from the compressed normal representation to the standard 3-float representation.  The tables hold precomputed 

results of the trig functions called during conversion. 

class DeeringNormalLookupTable 

{ 

public: 

 DeeringNormalLookupTable(); 

 

 // Lookup and return the result of converting iTheta and iPsi to 

 // real angles and taking the sine and cosine of both.  This gives 

 // a slight speedup for normal decoding. 

 Bool lookupThetaPsi(Int32 iTheta, 

         Int32 iPsi, 

         UInt32 numberBits, 

         Float32 outCosTheta, 

         Float32 outSinTheta, 

         Float32 outCosPsi, 

         Float32 outSinPsi ); 

 

 UInt32 numBitsPerAngle() {return nBits;} 

 

private: 

 UInt32 nBits; 

 Vector vCosTheta; 

 Vector vSinTheta; 

 Vector vCosPsi; 

 Vector vSinPsi; 

}; 

 

DeeringNormalLookupTable::DeeringNormalLookupTable() 

{ 

 UInt32 numberbits = 8; 

 nBits = min(numberbits, (UInt32)31); 

 

 Int32 tableSize = (1 << nBits); 

 

 vCosTheta.setLength(tableSize+1); 

 vSinTheta.setLength(tableSize+1); 

 vCosPsi.setLength(tableSize+1); 

 vSinPsi.setLength(tableSize+1); 

 

 Float32 fPsiMax = 0.615479709; 

 Float32 fTableSize = (Float32)tableSize; 

 

 for( Int32 ii = 0; ii <= tableSize; ii++ ) 

 { 

 Float32 fTheta =  

  asin(tan(fPsiMax * Float32(tableSize - ii) / fTableSize)); 

 

  Float32 fPsi  = fPsiMax * (((Float32)ii) / fTableSize); 

  vCosTheta[ii] = cos(fTheta); 

  vSinTheta[ii] = sin(fTheta); 

  vCosPsi[ii]   = cos(fPsi); 

  vSinPsi[ii]   = sin(fPsi); 

 } 

} 

 

Bool DeeringNormalLookupTable::lookupThetaPsi(Int32 iTheta, 

                 Int32 iPsi, 

                 UInt32 numberBits, 

    Float32 outCosTheta, 

    Float32 outSinTheta, 

    Float32 outCosPsi, 

    Float32 outSinPsi) 

{ 

 Int32 offset = nBits - numberBits; 

 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 320  

 outCosTheta = vCosTheta[iTheta << offset]; 

 outSinTheta = vSinTheta[iTheta << offset]; 

 outCosPsi   = vCosPsi[iPsi << offset]; 

 outSinPsi   = vSinPsi[iPsi << offset]; 

 

 return True; 

} 

4.2 DeeringNormalCodec class 

The DeeringNormalCodec class converts a normal vector to and from the standard 3-float representation and a lower-

precision representation.  The precision can be adjusted using the nbits parameter.  

class DeeringNormalCodec 

{ 

public: 

 DeeringNormalCodec(Int32 numberbits = 6) 

 { 

  numBits = numberbits; 

 } 

 

 // Converts a compressed normal into a vector. 

 Bool convertCodeToVec(UInt32 code, Vector& outVec); 

 

 // Converts a compressed normal into a vector. 

 Bool convertCodeToVec(UInt32 iSextant, 

 UInt32 iOctant, 

 UInt32 iTheta, 

 UInt32 iPsi,  

 Vector& outVec); 

 

 // Separates an encoded normal into its 4 pieces 

 Bool unpackCode(UInt32  code,  

 UInt32& outSextant, 

 UInt32& outOctant, 

 UInt32& outTheta, 

 UInt32& outPsi ); 

 

 private: 

  Int32 numBits; 

} 

 

Bool DeeringNormalCodec::convertCodeToVec(UInt32 code, Vector& outVec) 

{ 

 UInt32 s=0, o=0, t=0, p=0; 

 unpackCode(code, s, o, t, p); 

 

 convertCodeToVec(s, o, t, p, outVec); 

 

 return True;  

} 

 

Bool DeeringNormalCode::convertCodeToVec(UInt32 iSextant, 

                 UInt32 iOctant, 

                 UInt32 iTheta, 

                 UInt32 iPsi,  

                 Vector& outVec) 

{ 

 // Size of code = 6+2*numBits, and max code size is 32 bits,  

 // so numBits must be <= 13. 

 

 // Code layout: [sextant:3][octant:3][theta:numBits][psi:numBits] 

 

 outVec.setValues(0,0,0); 

 Float32 fPsiMax = 0.615479709; 

 

 UInt32  iBitRange = 1<<numBits; 

 Float32 fBitRange = Float32(iBitRange); 

     

 // For sextants 1, 3, and 5, iTheta needs to be incremented 
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 iTheta += (iSextant & 1); 

 

 Float32 fCosTheta, fSinTheta, fCosPsi, fSinPsi; 

     

 DeeringNormalLookupTable LookupTable; 

     

 if( (LookupTable.numBitsPerAngle() < (UInt32)numBits) || 

   !LookupTable.lookupThetaPsi(iTheta, iPsi, numBits,  

             fCosTheta, fSinTheta,  

             fCosPsi, fSinPsi) )  

 { 

  Float32 fTheta = asin(tan(fPsiMax * Float32(iBitRange - iTheta) / 

            fBitRange)); 

 

  Float32 fPsi = fPsiMax * (iPsi / fBitRange); 

  fCosTheta = cos(fTheta); 

  fSinTheta = sin(fTheta); 

  fCosPsi   = cos(fPsi); 

  fSinPsi   = sin(fPsi); 

 } 

     

 Float32 x,y,z; 

 Float32 xx = x = fCosTheta * fCosPsi; 

 Float32 yy = y = fSinPsi; 

 Float32 zz = z = fSinTheta * fCosPsi; 

     

 //Change coordinates based on the sextant 

 switch( iSextant ) 

 { 

  case 0:     // No op 

   break; 

         

  case 1:     // Mirror about x=z plane 

   z = xx; 

   x = zz; 

   break; 

         

  case 2:     // Rotate CW 

   z = xx; 

   x = yy; 

   y = zz; 

   break; 

 

  case 3:     // Mirror about x=y plane 

   y = xx; 

   x = yy; 

   break; 

         

  case 4:     // Rotate CCW 

   y = xx; 

   z = yy; 

   x = zz; 

   break; 

         

  case 5:     // Mirror about y=z plane 

   z = yy; 

   y = zz; 

   break; 

 }; 

     

 //Change some more based on the octant 

 

 //if first bit is 0, negate x component 

 if( !(iOctant & 0x4) ) 

  x = -x; 

 

 //if second bit is 0, negate y component 

 if( !(iOctant & 0x2) ) 

  y = -y; 

 

 //if third bit is 0, negate z component 
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 if( !(iOctant & 0x1) ) 

  z = -z; 

     

 outVec.setValues(x,y,z); 

 

 return True;    

} 

 

Bool DeeringNormalCodec::unpackCode(UInt32 code,  

            UInt32& outSextant, 

            UInt32& outOctant, 

            UInt32& outTheta, 

            UInt32& outPsi) 

{ 

 UInt32 mask = (1<<numBits)-1; 

 

 outSextant = (code >> (numBits+numBits+3)) & 0x7; 

 outOctant  = (code >> (numBits+numBits))   & 0x7; 

 outTheta   = (code >> (numBits))           & mask; 

 outPsi     = (code)                        & mask; 

 

 return True; 

} 
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Appendix D:  Hashing – An Implementation 

This Appendix provides a sample C++ implementation for the creation of hash values (as detailed in 8.2 Encoding 

Algorithms) used in the JT format.   
 

unsigned int hash32( const unsigned int *pWords,  

                     int nWords,  

                     unsigned int uSeedHashValue ) 

{ return hash2(pWords, nWords, uSeedHashValue); } 

 

unsigned int jthash16(const unsigned short *pBytes, 

                      int nShort, 

                      unsigned int uSeedHashValue) 

{ return hash3(pBytes, nShort, uSeedHashValue); } 

 

//-------------------------------------------------------------------- 

//  mix -- mix 3 32-bit values reversibly. 

// For every delta with one or two bit set, and the deltas of all three 

//   high bits or all three low bits, whether the original value of a,b,c 

//   is almost all zero or is uniformly distributed, 

// * If mix() is run forward or backward, at least 32 bits in a,b,c 

//   have at least 1/4 probability of changing. 

// * If mix() is run forward, every bit of c will change between 1/3 and 

//   2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.) 

// mix() was built out of 36 single-cycle latency instructions in a  

//   structure that could supported 2x parallelism, like so: 

//       a -= b;  

//       a -= c; x = (c>>13); 

//       b -= c; a ^= x; 

//       b -= a; x = (a<<8); 

//       c -= a; b ^= x; 

//       c -= b; x = (b>>13); 

//       ... 

//   Unfortunately, superscalar Pentiums and Sparcs can't take advantage  

//   of that parallelism.  They've also turned some of those single-cycle 

//   latency instructions into multi-cycle latency instructions.  Still, 

//   this is the fastest good hash I could find.  There were about 2^^68 

//   to choose from.  I only looked at a billion or so. 

-------------------------------------------------------------------- 

 

#define mix(a,b,c) \ 

{ \ 

  a -= b; a -= c; a ^= (c>>13); \ 

  b -= c; b -= a; b ^= (a<<8); \ 

  c -= a; c -= b; c ^= (b>>13); \ 

  a -= b; a -= c; a ^= (c>>12);  \ 

  b -= c; b -= a; b ^= (a<<16); \ 

  c -= a; c -= b; c ^= (b>>5); \ 

  a -= b; a -= c; a ^= (c>>3);  \ 

  b -= c; b -= a; b ^= (a<<10); \ 

  c -= a; c -= b; c ^= (b>>15); \ 

} 

 

-------------------------------------------------------------------- 

// hash() -- hash a variable-length key into a 32-bit value 

//   k     : the key (the unaligned variable-length array of bytes) 

//   len   : the length of the key, counting by bytes 

//   level : can be any 4-byte value 

// Returns a 32-bit value.  Every bit of the key affects every bit of 

// the return value.  Every 1-bit and 2-bit delta achieves avalanche. 

// About 36+6len instructions. 

 

// The best hash table sizes are powers of 2.  There is no need to do 

// mod a prime (mod is sooo slow!).  If you need less than 32 bits, 

// use a bitmask.  For example, if you need only 10 bits, do 

//   h = (h & hashmask(10)); 

// In which case, the hash table should have hashsize(10) elements. 

//  
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// If you are hashing n strings (JtUInt8 **)k, do it like this: 

//   for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h); 

//  

// By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this 

// code any way you wish, private, educational, or commercial.  It's free. 

// 

// See http://burtleburtle.net/bob/                  // 2010/02/12 

// See http://burtleburtle.net/bob/hash/doobs.html   // 2010/02/12 

//  

// Use for hash table lookup, or anything where one collision in 2^32 is 

// acceptable.  Do NOT use for cryptographic purposes. 

//-------------------------------------------------------------------- 

 

//-------------------------------------------------------------------- 

// This works on all machines.  hash2() is identical to hash() on  

// little-endian machines, except that the length has to be measured 

// in ub4s instead of bytes.  It is much faster than hash().  It  

// requires 

// -- that the key be an array of UInt32's, and 

// -- that all your machines have the same endianness, and 

// -- that the length be the number of UInt32's in the key 

// -------------------------------------------------------------------- 

unsigned int hash(const usigned char *k,        // key  

                  unsigned int        length,   // length of the key  

                  unsigned int        initval)  // prev hash, or an arbitrary value  

{ 

   register unsigned int a,b,c,len; 

 

   /* Set up the internal state */ 

   len = length; 

   a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */ 

   c = initval;           /* the previous hash value */ 

   /*---------------------------------------- handle most of the key */ 

   while (len >= 12) { 

      a += (k[0] +((UInt32)k[1]<<8) +((UInt32)k[2]<<16) +((UInt32)k[3]<<24)); 

      b += (k[4] +((UInt32)k[5]<<8) +((UInt32)k[6]<<16) +((UInt32)k[7]<<24)); 

      c += (k[8] +((UInt32)k[9]<<8) +((UInt32)k[10]<<16)+((UInt32)k[11]<<24)); 

      mix(a,b,c); 

      k += 12; len -= 12; 

   } 

   /*------------------------------------- handle the last 11 bytes */ 

   c += length; 

   switch(len) {            /* all the case statements fall through */ 

     case 11: c+=((UInt32)k[10]<<24); 

     case 10: c+=((UInt32)k[9]<<16); 

     case 9 : c+=((UInt32)k[8]<<8); 

      /* the first byte of c is reserved for the length */ 

     case 8 : b+=((UInt32)k[7]<<24); 

     case 7 : b+=((UInt32)k[6]<<16); 

     case 6 : b+=((UInt32)k[5]<<8); 

     case 5 : b+=k[4]; 

     case 4 : a+=((UInt32)k[3]<<24); 

     case 3 : a+=((UInt32)k[2]<<16); 

     case 2 : a+=((UInt32)k[1]<<8); 

     case 1 : a+=k[0]; 

     /* case 0: nothing left to add */ 

   } 

   mix(a,b,c); 

   /*-------------------------------------------- report the result */ 

   return c; 

} 

 

unsigned int hash3(const unsigned short *k,       /* the key */ 

                   unsigned int          length,  /* the length of the key */ 

                   unsigned int          initval) /* the previous hash, or an arbitrary value */ 

{ 

   unsigned int a,b,c,len; 

 

   /* Set up the internal state */ 

   len = length; 

   a = b = 0x9e3779b9;    /* the golden ratio; an arbitrary value */ 
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   c = initval;           /* the previous hash value */ 

 

   /*---------------------------------------- handle most of the key */ 

   while (len >= 6) 

   { 

      a += (k[0] + (UInt32(k[1]) << 16)); 

      b += (k[2] + (UInt32(k[3]) << 16)); 

      c += (k[4] + (UInt32(k[5]) << 16)); 

      mix(a,b,c); 

      k += 6; len -= 6; 

   } 

 

   /*-------------------------------------- handle the last 2 uint32s */ 

   c += length; 

   switch(len)              /* all the case statements fall through */ 

   { 

       case 5 : c+=(UInt32(k[4]) << 16); 

       /* c is reserved for the length */ 

       case 4 : b+=(UInt32(k[3]) << 16); 

       case 3 : b+=k[2]; 

       case 2 : a+=(UInt32(k[1]) << 16); 

       case 1 : a+=k[0]; 

       /* case 0: nothing left to add */ 

   } 

   mix(a,b,c); 

   /*-------------------------------------------- report the result */ 

   return c; 

} 
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Appendix E:  Polygon Mesh Topology Coder 

The topology coding algorithm described here is used to code the dual of the desired mesh.  Thus, for example, the reader 

will need to take the dual of the decoded mesh in order to obtain the original primal mesh.  Presented below are classes 

suitable for representing the dual of a polygon mesh and the dual topology decoding algorithm.   

At a high level, the topology coder works by traversing the dual mesh to be encoded one vertex and one face at a time.  The 

coder maintains a queue of faces to be processed; the initial queue is created using the valence of an arbitrary vertex of the 

mesh followed by the degrees of the faces adjacent to that vertex, and adds the adjacent faces to the face queue.  Each time it 

visits a face, it encodes the degree of that face and emits any incident vertices that have not yet been visited.  Each time the 

coder visits a vertex, it encodes the valence of the vertex (usually 3 in the current case), and emits any incident faces that 

have not yet been visited.  It works its way through the mesh in this fashion until all vertices and faces have been encoded.  

Thus, the primary output from the topology coder is a list of vertex valences and face degrees.  These two fields plus two 

more encoding so-called split faces, coupled with the exact coder implementation completely encode the mesh topology in a 

very compact manner
1
. 

In addition to these two basic fields are added a number of other fields that organize the dual vertices into vertex groups, and 

also encode the vertex attributes (e.g. normals, colors, and texture coordinates) around each dual face's degree ring. 

The topological coder can only encode closed, manifold meshes.  It cannot encode boundaries; it can only encode edges with 

exactly two incident faces.  But, as we know, real-world data is chock full of meshes with boundaries.  In order to encode 

these types of meshes, it is necessary to add cover faces incident to all boundary loops whose sole job is to turn the mesh into 

a closed mesh.  It is the dual of this closed, manifold mesh that is actually encoded.  Thus, most meshes encoded in JT files 

contain a few cover faces.  These faces may be of arbitrarily high degree, and they represent the only exceptions to the 

general rule that the numbers in the dual vertex valence array are usually three.  It is necessary to flag all such artificially 

introduced cover faces so that they can be removed by the loader.  These flags are encoded below in the Face Flags array.  

Primal faces are flagged with zero, while cover faces are flagged with one. 

Now, let us make the connection between topological vertices and how vertex attributes relate to them.  Several faces may be 

incident on the same topological mesh vertex.  While this topological vertex has only a single 3D coordinate, it may have a 

different set of vertex attributes for each incident face.  Vertex attributes include color, normal, and texture coordinates.  An 

important observation in real-world data is that adjacent faces tend to share the same vertex attributes.  Thus, a natural way to 

encode which vertex attributes map to which faces within a given valence ring (the counter-clockwise ordered set of faces 

incident on a given vertex) is by way of a bit vector.  The bit vector begins at the first face the coder encounters that is 

incident to the vertex, and proceeds counter clockwise around the vertex, allocating one bit per incident face.  A value of 0 is 

assigned to the bit if all vertex attributes for the face are the same as the face immediately clockwise.  A value of 1 is 

assigned if the vertex attributes for the face are different.  Recall that these bits from the original primal mesh are encoded as 

face attributes in the dual mesh. 

Thus, at the end of the coding process, there will be one such bit vector per topological vertex in the mesh.  These bit vectors 

will be of disparate lengths because all vertex valences are not the same.  Though there is no theoretical limit to the valence 

of any given vertex, in practice, the vertex valences seldom rise above six, and only rarely rise into the dozens.  As a matter 

of practicality, then, we break this list of bit vectors into those of length 64 and smaller into one group, and all others into a 

list of so-called “high-valence” bit vectors.  The low-valence bit vectors are encoded into three fields of 30, 30, and 4 bits 

respectively.  The high-valence bit vectors are adjoined end-to-end into a single long bit vector, and encoded as a single array 

of integers.  As an additional optimization, the low-valence bit vectors are grouped into 8 “context groups” depending on the 

valence of the vertex being coded.  This is done in order to improve compression performance because the valence bit vectors 

in each of the most common groups typically share similar statistics.  Context group number 8 is the only one that encodes 

valence rings up to valence 64.  Again, recall that these attribute bits from the original primal mesh are encoded as face 

attribute bits in the dual mesh. 

                                                           
1
 Similar methods of topology coding are described in [18] and US patent # 7,098,916.  The topology coding algorithm 

described herein differs from such methods in that while they utilize a queue of active vertices, the instant algorithm utilizes a 

queue of active faces.  Other differences include the tracking of face group numbers and per-vertex attributes such as 

normals, colors, and texture coordinates. 
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1 DualVFMesh 

The DualVFMesh (Dual Vertex-Facet Mesh) is a support class paired with the topology decoder itself, and represents a 

closed two-manifold polygon mesh.  The topology decoder reconstructs the encoded dual mesh into a DualVFMesh, building 

it one vertex and one facet at a time.  When the decoder is finished, it will have visited each vertex and each face of the dual 

mesh exactly once.  DualVFMesh is not intended as a work horse in-memory storage container because its way of encoding 

the topological connections between faces and vertices is memory-intensive. 

 

class DualVFMesh 

{ 

  public: 

    // ========== Housekeeping Interface ========== 

    DualVFMesh(); 

    DualVFMesh (const DualVFMesh &rhs); 

    DualVFMesh &operator=(const DualVFMesh &rhs); 

 

    // ========== Topology Interface ========== 

 

    // Vtx creation 

    bool          isValidVtx (Int32  iVtx) const; 

    bool          newVtx     (Int32  iVtx, 

                              Int32  iValence, 

                              UInt16 uFlags = 0); 

    bool          setVtxFlags(Int32  iVtx, 

                              UInt16 uFlags); 

    bool          setVtxGrp  (Int32  iVtx, 

                              Int32  iVGrp); 

    UInt16        vtxFlags   (Int32  iVtx) const; 

    Int32         vtxGrp     (Int32  iVtx) const; 

 

    // Face creation 

    bool          isValidFace  (Int32  iFace) const; 

    bool          newFace      (Int32  iFace, 

                                Int32  cDegree, 

                                Int32  cFaceAttrs = 0, 

                                UInt64 uFaceAttrMask = 0, 

                                UInt16 uFlags = 0); 

    bool          newFace      (Int32  iFace, 

                                Int32  cDegree, 

                                Int32  cFaceAttrs, 

                                const BitVec *pvbFaceAttrMask, 

                                UInt16 uFlags); 

    bool          setFaceFlags (Int32  iFace, 

                                UInt16 uFlags); 

    UInt16        faceFlags    (Int32  iVtx) const; 

    bool          setFaceAttr  (Int32  iFace, 

                                Int32  iAttrSlot, 

                                Int32  iFaceAttr); 

    Int32         faceAttr     (Int32  iFace, 

                                Int32  iAttrSlot) const; 

 

    // Topology connection 

    bool          setVtxFace(Int32  iVtx, 

                             Int32  iFaceSlot, 

                             Int32  iFace); 

    bool          setFaceVtx(Int32  iFace, 

                             Int32  iVtxSlot, 

                             Int32  iVtx); 

 

    // Queries 

    Int32         valence    (Int32  iVtx) const 

        { return _vVtxEnts[iVtx].cVal; } 

    Int32         degree   (Int32  iFace ) const 

        { return _vFaceEnts[iFace].cDeg; } 

    Int32         face    (Int32  iVtx, 

                           Int32  iFaceSlot) const 

          { return _viVtxFaceIndices[(_vVtxEnts[iVtx]).iVFI + iFaceSlot]; } 

    Int32         vtx      (Int32  iFace, 

                            Int32  iVtxSlot) const 
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          { return _viFaceVtxIndices[_vFaceEnts[iFace].iFVI + iVtxSlot]; } 

    Int32         numVts       () const 

        { return _vVtxEnts.length(); } 

    Int32         numFaces     () const 

        { return _vFaceEnts.length(); } 

    Int32         numAttrs     () const 

        { return _viFaceAttrIndices.length(); } 

    Int32         numAttrs       (Int32 iFace) const 

        { return _vFaceEnts[iFace].cFaceAttrs; } 

    UInt64        attrMask       (Int32 iFace) const 

        { return _vFaceEnts[iFace].u.uAttrMask; } 

    const BitVec *attrMaskV      (Int32 iFace) const 

        { return _vFaceEnts[iFace].u.pvbAttrMask; } 

    Int32         findVtxSlot   (Int32 iFace, 

                                 Int32 iTargVtx) const; 

    Int32         findFaceSlot    (Int32 iVtx, 

                                   Int32 iTargFace) const; 

    Int32         emptyFaceSlots  (Int32 iFace) const 

        { return _vFaceEnts[iFace].cEmptyDeg; } 

 

    // ========== VFMesh Data Members ========== 

  public: 

    class VtxEnt { 

      public: 

        VtxEnt() : cVal(0), uFlags(0), iVGrp(-1), iVFI(-1) {} 

        UInt16    cVal;   // Vtx valence 

        UInt16    uFlags; // User flags 

        Int32     iVGrp;  // Vtx group 

        Int32     iVFI;   // Idx into _viVtxFaceIndices of cVal incident faces 

    }; 

 

    // Number of optimized mask bits. 

    static const Int32 cMBits = 64; 

 

    class FaceEnt { 

      public: 

        FaceEnt() : cDeg(0), uFlags(0), cEmptyDeg(0),  

                   cFaceAttrs(0), iFVI(-1), iFAI(-1) { u.uAttrMask = 0; } 

        FaceEnt(const FaceEnt &rhs) : cDeg(rhs.cDeg), cEmptyDeg(rhs.cEmptyDeg), 

                                    cFaceAttrs(rhs.cFaceAttrs), iFVI(rhs.iFVI), 

                                    iFAI(rhs.iFAI) 

        { 

            if (cDeg <= cMBits) 

                u.uAttrMask = rhs.u.uAttrMask; 

            else 

                JtWrapNew(u.pvbAttrMask, new BitVec(*rhs.u.pvbAttrMask)); 

        } 

        ~FaceEnt() { if (cDeg > cMBits && u.pvbAttrMask) delete u.pvbAttrMask; } 

        UInt16    cDeg;       // Face degree 

        UInt16    cEmptyDeg;  // Empty degrees (opt for emptyFaceSlots()) 

        UInt16    cFaceAttrs;  // Number of face attributes 

        UInt16    uFlags;     // User flags 

        union { 

            UInt64  uAttrMask;    // Degree-ring attr mask as a UInt64 

            BitVec *pvbAttrMask;  // Degree-ring attr mask as a BitVec 

        } u; 

        Int32     iFVI; // Idx into _viFaceVtxIndices of cDeg incident vts 

        Int32     iFAI; // Idx into _viFaceAttrIndices of cAttr attributes 

    }; 

 

  protected: 

    // Subscripted by atom number, the entry contains the vtx valence and  

    // points to the location in _viVtxFaceIndices of valence consecutive 

    // integers that in turn contain the indices of the incident faces 

    // in _vFaceRecs to the vtx. 

    JtVec<VtxEnt>  _vVtxEnts; 

 

    // Subscripted by unique vertex record number, the entry contains the 

    // face degree and points to the location in _viFaceVtxIndices of 

    // cDeg consecutive integers that in turn contain the indices of the 

    // vertices indicent upon the face, in CCW order, in _vVtxRecs. 
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    JtVec<FaceEnt>   _vFaceEnts; 

 

    // Combined storage for all vtxs. 

    JtVeci          _viVtxFaceIndices; 

 

    // Combined storage for all faces. 

    JtVeci          _viFaceVtxIndices; 

 

    // Combined storage for all face attribute record identifiers 

    JtVeci          _viFaceAttrIndices; 

}; 

 

bool 

DualVFMesh::isValidVtx(Int32 iVtx) const 

{ 

    bool bRet = JtFalse; 

    if (iVtx >= 0 && iVtx < _vVtxEnts.length()) { 

        const VtxEnt &rFE = _vVtxEnts[iVtx]; 

        bRet = (rFE.cVal != 0); 

    } 

    return bRet; 

} 

 

bool 

DualVFMesh::newVtx(Int32 iVtx, 

                   Int32 iValence, 

                   UInt16 uFlags) 

{ 

    VtxEnt &rFE = _vVtxEnts[iVtx]; 

    if (rFE.cVal != iValence) { 

        rFE.cVal   = iValence; 

        rFE.uFlags = uFlags; 

        rFE.iVFI   = _viVtxFaceIndices.length(); 

        _viVtxFaceIndices.verify(rFE.iVFI + iValence - 1); 

        for (Int32 i = rFE.iVFI ; i < rFE.iVFI + iValence ; i++) 

            _viVtxFaceIndices[i] = -1; 

    } 

    return true; 

} 

 

bool 

DualVFMesh::setVtxGrp(Int32  iVtx, 

                     Int32  iVGrp) 

{ 

    VtxEnt &rFE = _vVtxEnts[iVtx]; 

    rFE.iVGrp = iVGrp; 

    return true; 

} 

 

bool 

DualVFMesh::setVtxFlags(Int32  iVtx, 

                       UInt16 uFlags) 

{ 

    VtxEnt &rFE = _vVtxEnts[iVtx]; 

    rFE.uFlags = uFlags; 

    return true; 

} 

 

Int32 

DualVFMesh::vtxGrp   (Int32  iVtx) const 

{ 

    Int32 u = -1; 

    if (iVtx >= 0 && iVtx < _vVtxEnts.length()) { 

        const VtxEnt &rFE = _vVtxEnts[iVtx]; 

        u = rFE.iVGrp; 

    } 

    return u; 

} 

 

UInt16 

DualVFMesh::vtxFlags   (Int32  iVtx) const 
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{ 

    UInt16 u = 0; 

    if (iVtx >= 0 && iVtx < _vVtxEnts.length()) { 

        const VtxEnt &rFE = _vVtxEnts[iVtx]; 

        u = rFE.uFlags; 

    } 

    return u; 

} 

 

 

bool 

DualVFMesh::isValidFace(Int32 iFace) const 

{ 

    bool bRet = JtFalse; 

    if (iFace >= 0 && iFace < _vFaceEnts.length()) { 

        const FaceEnt &rVE = _vFaceEnts[iFace]; 

        bRet = (rVE.cDeg != 0); 

    } 

    return bRet; 

} 

 

bool 

DualVFMesh::newFace(Int32  iFace, 

                    Int32  cDegree, 

                    Int32  cFaceAttrs, 

                    UInt64 uFaceAttrMask, 

                    UInt16 uFlags) 

{ 

    FaceEnt &rVE = _vFaceEnts[iFace]; 

    if (rVE.cDeg != cDegree) { 

        rVE.cDeg        = cDegree; 

        rVE.cEmptyDeg   = cDegree; 

        rVE.cFaceAttrs   = cFaceAttrs; 

        rVE.uFlags      = uFlags; 

        rVE.u.uAttrMask = uFaceAttrMask; 

        rVE.iFVI        = _viFaceVtxIndices.length(); 

        rVE.iFAI        = _viFaceAttrIndices.length(); 

        _viFaceVtxIndices.verify(rVE.iFVI + cDegree  - 1); 

        if (cFaceAttrs > 0) 

            _viFaceAttrIndices.verify(rVE.iFAI + cFaceAttrs - 1); 

        for (Int32 i = rVE.iFVI ; i < rVE.iFVI + cDegree ; i++) 

            _viFaceVtxIndices[i] = -1; 

        for (Int32 i = rVE.iFAI ; i < rVE.iFAI + cFaceAttrs ; i++) 

            _viFaceAttrIndices[i] = -1; 

    } 

    return true; 

} 

 

bool 

DualVFMesh::newFace(Int32  iFace, 

                    Int32  cDegree, 

                    Int32  cFaceAttrs, 

                    const BitVec *pvbFaceAttrMask, 

                    UInt16 uFlags) 

{ 

    FaceEnt &rVE = _vFaceEnts[iFace]; 

    if (rVE.cDeg != cDegree) { 

        rVE.cDeg        = cDegree; 

        rVE.cEmptyDeg   = cDegree; 

        rVE.cFaceAttrs   = cFaceAttrs; 

        rVE.uFlags      = uFlags; 

        rVE.u.pvbAttrMask = new BitVec(*pvbFaceAttrMask); 

        rVE.iFVI        = _viFaceVtxIndices.length(); 

        rVE.iFAI        = _viFaceAttrIndices.length(); 

        _viFaceVtxIndices.verify(rVE.iFVI + cDegree  - 1); 

        if (cFaceAttrs > 0) 

            _viFaceAttrIndices.verify(rVE.iFAI + cFaceAttrs - 1); 

        for (Int32 i = rVE.iFVI ; i < rVE.iFVI + cDegree ; i++) 

            _viFaceVtxIndices[i] = -1; 

        for (Int32 i = rVE.iFAI ; i < rVE.iFAI + cFaceAttrs ; i++) 

            _viFaceAttrIndices[i] = -1; 
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    } 

    return true; 

} 

 

bool 

DualVFMesh::setFaceFlags(Int32  iFace, 

                         UInt16 uFlags) 

{ 

    FaceEnt &rVE = _vFaceEnts[iFace]; 

    rVE.uFlags = uFlags; 

    return true; 

} 

 

UInt16 

DualVFMesh::faceFlags   (Int32  iFace) const 

{ 

    UInt16 u = 0; 

    if (iFace >= 0 && iFace < _vFaceEnts.length()) { 

        const FaceEnt &rVE = _vFaceEnts[iFace]; 

        u = rVE.uFlags; 

    } 

    return u; 

} 

 

bool 

DualVFMesh::setFaceAttr(Int32  iFace, 

                        Int32  iAttrSlot, 

                        Int32  iFaceAttr) 

{ 

    FaceEnt &rVE = _vFaceEnts[iFace]; 

    Int32 *paiFAI = _viFaceAttrIndices.ptr(); 

    paiFAI[rVE.iFAI + iAttrSlot] = iFaceAttr; 

    return true; 

} 

 

Int32 

DualVFMesh::faceAttr(Int32  iFace, 

                     Int32  iAttrSlot) const 

{ 

    Int32 u = 0; 

    if (iFace >= 0 && iFace < _vFaceEnts.length()) { 

        const FaceEnt &rVE = _vFaceEnts[iFace]; 

        if (iAttrSlot >= 0 && iAttrSlot < rVE.cDeg) { 

            const Int32 *paiFAI = _viFaceAttrIndices.ptr(); 

            u = paiFAI[rVE.iFAI + iAttrSlot]; 

        } 

    } 

    return u; 

} 

 

// Attaches VF face iFace to VF vertex iVtx in the vertex's 

// face slot iFaceSlot 

bool 

DualVFMesh::setVtxFace(Int32 iVtx, 

                       Int32 iFaceSlot, 

                       Int32 iFace) 

{ 

    VtxEnt &rFE = _vVtxEnts[iVtx]; 

    _viVtxFaceIndices[rFE.iVFI + iFaceSlot] = iFace;  

    return true; 

} 

 

// Attaches VF vertex iVtx to VF face iFace in the face's 

// vertex slot iVtxSlot 

bool 

DualVFMesh::setFaceVtx(Int32 iFace, 

                       Int32 iVtxSlot, 

                       Int32 iVtx) 

{ 

    FaceEnt &rVE = _vFaceEnts[iFace]; 

    Int32 *paiFVI = _viFaceVtxIndices.ptr(); 
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    rVE.cEmptyDeg -= (paiFVI[rVE.iFVI + iVtxSlot] != iVtx); 

    paiFVI[rVE.iFVI + iVtxSlot] = iVtx; 

    return true; 

} 

 

// Searches the list of incident vts to face iFace for 

// iTargVtx and returns the vtx slot at which it is found 

// or -1 if iTargVtx is not found. 

Int32 

DualVFMesh::findVtxSlot(Int32 iFace, 

                        Int32 iTargVtx) const 

{ 

    const FaceEnt &rVE = _vFaceEnts[iFace]; 

    const Int32 *const pFaceVtxIndices = _viFaceVtxIndices.ptr() + rVE.iFVI; 

    Int32 cDeg = rVE.cDeg; 

    Int32 iSlot = -1; 

    for (Int32 iVtxSlot = 0 ; iVtxSlot < cDeg ; iVtxSlot++) { 

        if (pFaceVtxIndices[iVtxSlot] == iTargVtx) { 

            iSlot = iVtxSlot; 

            break; 

        } 

    } 

    return iSlot; 

} 

 

// Searches the list of incident faces to vertex iVtx for 

// iTargFace and returns the face slot at which it is found 

// or -1 if iTargFace is not found. 

Int32 

DualVFMesh::findFaceSlot (Int32 iVtx, 

                          Int32 iTargFace) const 

{ 

    const VtxEnt &rFE = _vVtxEnts[iVtx]; 

    const Int32 *const pVtxFaceIndices = _viVtxFaceIndices.ptr() + rFE.iVFI; 

    for (Int32 iFaceSlot = 0 ; iFaceSlot < rFE.cVal ; iFaceSlot++) { 

        if (pVtxFaceIndices[iFaceSlot] == iTargFace) { 

            return iFaceSlot; 

        } 

    } 

    return -1; 

} 

2 Topology Decoder 

Partial implementations of three classes are given here for MeshCoderDriver, MeshCodec, and MeshDecoder.  MeshCodec 

contains the abstract implementation of the topology coder.  MeshDecoder implements the functionality needed to decode a 

mesh from the input data read from a JT file (see 7.2.2.1.2.5 Topologically Compressed Rep Data).  MeshCoderDriver 

manages the input data, the output VFMesh, and the MeshDecoder itself, providing a simple three-step API. 

2.1 MeshCoderDriver class 

// This class serves as a coordinating driver for mesh coding and decoding. 

class MeshCoderDriver 

{ 

  public: 

    MeshCoderDriver (); 

 

    // ========== Operations Interface ========== 

    void      setInputData(const Veci   vviOutValSyms[/*8*/], 

                           const Veci  &viOutDegSyms, 

                           const Veci  &viOutFGrpSyms, 

                           const Vecus &vuOutFaceFlags, 

                           const Veclu  vvuOutAttrMasks[/*8*/], 

                           const Vecu  &vuOutAttrMasksLrg, 

                           const Veci  &viOutSplitVtxSyms, 

                           const Veci  &viOutSplitPosSyms) 

                           { /* Copy into 22 fields below */ } 

    void      decode(); 

    VFMesh   *vfm() const { return _pOutVFM; } 
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    // ========== Utility Methods ========== 

    Int32         _nextDegSymbol    (Int32 iCCntx); 

    Int32         _nextValSymbol    (); 

    Int32         _nextFGrpSymbol   (); 

    UInt16        _nextVtxFlagSymbol(); 

    UInt64        _nextAttrMaskSymbol(Int32 iCCntx);     // <= 64-bit attrmask 

    void          _nextAttrMaskSymbol(BitVec *iopvbAttrMask, 

                                      Int32   cDegree);  // > 64 bit attrmask 

    Int32         _nextSplitFaceSymbol(); 

    Int32         _nextSplitPosSymbol(); 

    Int32         _faceCntxt(Int32 iVtx, JtDualVFMesh *pVFM); 

 

    // ========== Member Data ========== 

  protected: 

    SharedPtr<MeshCodec>     _pMC;      // The mesh coder or decoder being used 

    SharedPtr<JtDualVFMesh>  _pOutVFM;  // Back-end VFMesh built by decoder 

    SharedPtr<MeshDecoder>   _pMeshDecoder; 

 

    // Coding symbols generated by encoding operation, auxiliary data such as 

    // offsets, etc. 

    Veci          _vviOutDegSyms[8];  // Face degree + SPLIT symbols for multiple contexts 

    Veci          _viOutValSyms;      // Vtx valence symbols 

    Veci          _viOutVGrpSyms;     // Vtx group of each encoded vtx 

    Vecus         _vuOutVtxFlags;     // Vtx flags; parallel to _viOutValSyms. 

    Veclu         _vvuOutAttrMasks[8];// Attribute bitmasks per face for multiple contexts. 

                                      //  One per non-split entry in _viOutValSyms. 

    Vecu          _vuOutAttrMasksLrg; // > 64-bit attrmasks 

    Veci          _viOutSplitFaceSyms;// Split face offsets 

    Veci          _viOutSplitPosSyms; // Split face vtx slots 

 

    // The next symbol to be consumed by _next*Symbol() 

    Int32         _iValReadPos[8]; 

    Int32         _iDegReadPos; 

    Int32         _iVGrpReadPos; 

    Int32         _iFFlagReadPos; 

    Int32         _iAttrMaskReadPos[8]; 

    Int32         _iAttrMaskLrgReadPos; 

    Int32         _iSplitFaceReadPos; 

    Int32         _iSplitPosReadPos; 

}; 

 

void MeshCoderDriver::decode() 

{ 

    // Allocate a coder 

    if (!_pMeshDecoder) { 

        _pMeshDecoder = new MeshDecoder(this); 

    } 

    _pMC = _pMeshDecoder; 

    _pMC->setTopoDualMeshCoder(this); 

 

    // Reset the symbol counters 

    for (Int32 i = 0 ; i < 8 ; i++) { 

        _iValReadPos[i] = 0; 

        _iAttrMaskReadPos[i] = 0; 

    } 

    _iDegReadPos = 0; 

    _iVGrpReadPos = 0; 

    _iFFlagReadPos = 0; 

    _iAttrMaskLrgReadPos = 0; 

    _iSplitFaceReadPos = 0; 

    _iSplitPosReadPos = 0; 

 

    // Run the decoder 

    _pMC->run(); 

 

    // Assert that ALL symbols have been consumed 

    for (Int32 i = 0 ; i < 8 ; i++) { 

        Assert(_iValReadPos[i]         == _vviOutDegSyms[i].length()); 

        Assert(_iAttrMaskReadPos[i]    == _vvuOutAttrMasks[i].length()); 

    } 
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    Assert(_iDegReadPos         == _viOutValSyms.length()); 

    Assert(_iVGrpReadPos        == _viOutVGrpSyms.length()); 

    Assert(_iFFlagReadPos       == _vuOutVtxFlags.length()); 

    Assert(_iAttrMaskLrgReadPos == _vuOutAttrMasksLrg.length()); 

    Assert(_iSplitFaceReadPos    == _viOutSplitFaceSyms.length()); 

    Assert(_iSplitPosReadPos    == _viOutSplitPosSyms.length()); 

 

    // Set output VFMesh 

    _pOutVFM = _pMC->vfm(); 

} 

 

Int32 MeshCoderDriver::_nextDegSymbol  (Int32 iCCntx) 

{ 

    Int32 eSym = -1; 

    if (_iValReadPos[iCCntx] < _vviOutDegSyms[iCCntx].length()) 

        eSym = _vviOutDegSyms[iCCntx].value(_iValReadPos[iCCntx]++); 

    return eSym; 

} 

 

Int32 

MeshCoderDriver::_nextValSymbol  () 

{ 

    Int32 eSym = -1; 

    if (_iDegReadPos < _viOutValSyms.length()) 

        eSym = _viOutValSyms.value(_iDegReadPos++); 

    return eSym; 

} 

 

Int32 MeshCoderDriver::_nextFGrpSymbol() 

{ 

    Int32 eSym = -1; 

    if (_iVGrpReadPos < _viOutVGrpSyms.length()) 

        eSym = _viOutVGrpSyms.value(_iVGrpReadPos++); 

    return eSym; 

} 

 

UInt16 MeshCoderDriver::_nextVtxFlagSymbol  () 

{ 

    UInt16 eSym = 0; 

    if (_iFFlagReadPos < _vuOutVtxFlags.length()) 

        eSym = _vuOutVtxFlags.value(_iFFlagReadPos++); 

    return eSym; 

} 

 

UInt64 MeshCoderDriver::_nextAttrMaskSymbol  (Int32 iCCntx) 

{ 

    UInt64 eSym = 0; 

    if (_iAttrMaskReadPos[iCCntx] < _vvuOutAttrMasks[iCCntx].length()) 

        eSym = _vvuOutAttrMasks[iCCntx].value(_iAttrMaskReadPos[iCCntx]++); 

    return eSym; 

} 

 

void MeshCoderDriver::_nextAttrMaskSymbol(BitVec *iopvbAttrMask, Int32 cDegree) 

{ 

    if (_iAttrMaskLrgReadPos < _vuOutAttrMasksLrg.length()) { 

        iopvbAttrMask->setLength(cDegree); 

        UInt32 *pu = iopvbAttrMask->ptr(); 

        Int32 nWords = (cDegree + BitVec::cWordBits - 1) >> BitVec::cBitsLog2; 

        memcpy(pu, &_vuOutAttrMasksLrg.value(_iAttrMaskLrgReadPos), nWords * sizeof(UInt32)); 

        _iAttrMaskLrgReadPos += nWords; 

    } 

    else { 

        iopvbAttrMask->setLength(0); 

    } 

} 

 

Int32 MeshCoderDriver::_nextSplitFaceSymbol  () 

{ 

    Int32 eSym = -1; 

    if (_iSplitFaceReadPos < _viOutSplitFaceSyms.length()) 

        eSym = _viOutSplitFaceSyms.value(_iSplitFaceReadPos++); 
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    return eSym; 

} 

 

Int32 MeshCoderDriver::_nextSplitPosSymbol  () 

{ 

    Int32 eSym = -1; 

    if (_iSplitPosReadPos < _viOutSplitPosSyms.length()) 

        eSym = _viOutSplitPosSyms.value(_iSplitPosReadPos++); 

    return eSym; 

} 

 

// Computes a "compression context" from 0 to 7 inclusive for 

// faces on vertex iVtx.  The context is based on the vertex's 

// valence, and the total _known_ degree of already-coded 

// faces on the vertex at the time of the call. 

Int32 MeshCoderDriver::_faceCntxt(JtInt32 iVtx, JtDualVFMesh *pVFM) 

{ 

    // Here, we are going to gather data to be used to determine a 

    // compression contest for the face degree. 

    JtInt32 cVal = pVFM->valence(iVtx); 

    JtInt32 nKnownFaces = 0; 

    JtInt32 cKnownTotDeg = 0; 

    for (JtInt32 i = 0 ; i < cVal ; i++) { 

        JtInt32 iTmpFace = pVFM->face(iVtx, i); 

        if (!pVFM->isValidFace(iTmpFace)) 

            continue; 

        nKnownFaces++; 

        cKnownTotDeg += pVFM->degree(iTmpFace); 

    } 

    JtInt32 iCCntxt = 0; 

    if (cVal == 3) { 

        // Regular tristrip-like meshes tend to have degree 6 faces 

        iCCntxt = (cKnownTotDeg <  nKnownFaces * 6) ? 0 : 

                  (cKnownTotDeg == nKnownFaces * 6) ? 1 : 2; 

    } 

    else if (cVal == 4) { 

        // Regular quadstrip-like meshes tend to have degree 4 faces 

        iCCntxt = (cKnownTotDeg <  nKnownFaces * 4) ? 3 : 

                  (cKnownTotDeg == nKnownFaces * 4) ? 4 : 5; 

    } 

    else if (cVal == 5) 

        // Pentagons are all lumped into context 6 

        iCCntxt = 6; 

    else 

        // All other polygons are lumped into context 7 

        iCCntxt = 7; 

 

    return iCCntxt; 

} 

2.2 MeshCodec class 

// This class serves as the abstract base class from which two concrete classes 

// are derived to implement the core operations for a polygonal 

// mesh coder or decoder.  An instance of this object is used by the 

// MeshCoderDriver to encode and decode polygonal meshes. 

// 

// This class makes extensive use of DualVFMesh objects as the primary source and 

// destination mesh topology storage data structures. This mediating data 

// structure is necessary because the mesh coding scheme is deeply cooperative 

// with and dependent upon such a vertex-facet data structure.  Please refer to 

// DualVFMesh for more information. 

class MeshCodec { 

  public: 

    // ========== Housekeeping Interface ========== 

    MeshCodec (MeshCoderDriver *pTMC = NULL); 

  protected: 

    virtual ~MeshCodec() {} 

  public: 
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    // ========== Setup and Apply Interface ========== 

    void setMeshCoderDriver(MeshCoderDriver *pTMC) { _pTMC = pTMC; } 

    JtDualVFMesh *vfm() const                      { return _pDstVFM; } 

    void  run(); 

 

    // ========== Generic encode/decode Driver Chain ========== 

    void  clear(); 

    void  runComponent(bool &obFoundComponent); 

    void  initNewComponent(bool &obFoundComponent); 

    void  completeV(Int32 iFace); 

    Int32 activateV(Int32 iVtx,  Int32 iVSlot); 

    Int32 activateF(Int32 iFace, Int32 iFSlot); 

    void  completeF(Int32 iVtx,  Int32 jFSlot); 

    void  addVtxToFace (Int32 iVtx, Int32 iVSlot, 

                        Int32 iFace,  Int32 iFSlot); 

 

    // Active face list management 

    void  addActiveFace(Int32 iFace); 

    Int32 nextActiveFace(); 

    void  removeActiveFace(Int32 iFace); 

    Int32 activeFaceOffset(Int32 iFace) const; 

 

  private: 

    // ========== Polymorphic I/O Interface ========== 

    virtual Int32 ioVtxInit   ()                          = 0; 

    virtual Int32 ioVtx       (Int32 iFace, Int32 jFSlot) = 0; 

    virtual Int32 ioFace      (Int32 iVtx,  Int32 iVSlot) = 0; 

    virtual Int32 ioSplitFace (Int32 iVtx,  Int32 iVSlot) = 0; 

    virtual Int32 ioSplitPos  (Int32 iVtx,  Int32 iVSlot) = 0; 

 

    // ========== Member Data ========== 

  protected: 

    MeshCoderDriver         *_pTMC;          // TopoDualMeshCoder this codec is attached to 

    SharedPtr<JtDualVFMesh>  _pSrcVFM;       // Input VFMesh 

    SharedPtr<JtDualVFMesh>  _pDstVFM;       // Output VFMesh 

    Veci                     _viActiveFaces; // Stack of incomplete "active faces" 

    BitVec                   _vbRemovedActiveFaces;   // Helper bitvec parallel to above 

    // Used by decoder to assign running attr indices 

    Int32              _iFaceAttrCtr; 

}; 

 

 

// Runs the mesh encoder/decoder machine. 

// If decoding is being performed, it consumes the mesh 

// coding symbols from pre-filled member variables to produce 

// the output VFMesh _pDstVFM. 

void MeshCodec::run() 

{ 

    // Assert state is consistent and ready to co/dec 

    if (!_pDstVFM) 

        _pDstVFM = new JtDualVFMesh(); 

    Assert(_pDstVFM); 

    _pDstVFM->clear(); 

    clear(); 

 

    // Co/dec connected mesh components one at a time 

    bool bFoundComponent = JtTrue; 

    while (bFoundComponent) { 

        runComponent(bFoundComponent); 

    } 

} 

 

void MeshCodec::clear() 

{ 

    // Setup 

    _viActiveFaces.setLength(0); 

    _vbRemovedActiveFaces.setLength(0); 

    _iFaceAttrCtr = 0; 

} 

 

// Decodes one "connected component" (contiguous group of polygons) into 
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// _pDstVFM. Because the polygonal model may be formed of multiple 

//  disconnected mesh components, it may be necessary for run() to call this 

// method multiple times.  This method returns obFoundComponent = True 

// if it actually encoded a new mesh component, and obFoundComponent = False 

// if it did not. 

void MeshCodec::runComponent(bool &obFoundComponent) 

{ 

    Int32 iFace; 

    initNewComponent(obFoundComponent); 

    if (!obFoundComponent) 

        return; 

    while ((iFace = nextActiveFace()) != -1) { 

        completeF(iFace); 

        removeActiveFace(iFace); 

    } 

} 

 

// Locates an unencoded vertex and begins the encoding 

// process for the newly-found mesh component. 

void MeshCodec::initNewComponent(bool &obFoundComponent) 

{ 

    obFoundComponent = JtTrue; 

 

    // Call ioVtxInit() to start us off with the seed face 

    // from a new "connected component" of polygons. 

    Int32 iVtx, i; 

    if ((iVtx = ioVtxInit()) == -1) { 

        obFoundComponent = JtFalse;  // All vtxs are processed 

        return; 

    } 

    Int32 cVal = _pDstVFM->valence(iVtx); 

    for (i = 0 ; i < cVal ; i++) 

        activateF(iVtx, i);    // Process all faces 

} 

 

// Completes the VFMesh face iFace on _pDstVFM by calling activateV() and 

// completeV() for each as-yet inactive incident vertexes in the face's 

// degree ring. 

void MeshCodec::completeF(Int32 iFace) 

{ 

    // While there is an empty vtx slot on the face 

    Int32 jVtxSlot, iVtx; 

    Int32 iVSlot = 0; 

    while ((jVtxSlot = _pDstVFM->findVtxSlot(iFace, -1)) != -1) { 

        // Create and return a vtx iVtx, attaching it to iFace at vtx 

        // slot jVtxSlot. 

        iVtx = activateV(iFace, jVtxSlot); 

 

        // Assert FV consistency 

        Assert(_pDstVFM->vtx (iFace,  jVtxSlot) == iVtx && 

               _pDstVFM->face(iVtx,   iVSlot)   == iFace   ); 

 

        // Process the faces of iVtx starting from face slot 

        // jVtxSlot where iVtx is incident on iFace. 

        completeV(iVtx, jVtxSlot); 

 

        // Invariant "VF": vtx(iVtx).face(iVSlot) == iFace && 

        //                 face(iFace).vtx(jVtxSlot) == iVtx 

    } 

} 

 

// "Activates" the VFMesh face, on _pDstVFM, at face iFace vertex slot iVSlot 

// by calling ioFace() to obtain a new vertex number and hooking it up to the 

// topological structure.  If the face is a SPLIT face, then call 

// ioSplitFace() and ioSplitPos() to get the information necessary to connect 

// to an already-active face.  Note that we use the term "activate" here to 

// mean "read" for mesh decoding. 

Int32 MeshCodec::activateF(Int32 iVtx, Int32 iVSlot) 

{ 

    Int32 jFSlot; 

    // ioFace might return -2 as an error condition 
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    Int32 iFace = ioFace(iVtx, iVSlot); 

    if (iFace >= 0) {   // If a new active face 

        if (!_pDstVFM->setVtxFace(iVtx, iVSlot, iFace) || 

            !_pDstVFM->setFaceVtx(iFace, 0, iVtx)      || 

            !addActiveFace(iFace)                          ) 

        { 

            return -2; 

        } 

    } 

    else if (iFace == -1) {                   // Face already exists, so Split 

        iFace = ioSplitFace(iVtx, iVSlot);    // v's index in ActiveSet, returns v 

        jFSlot = ioSplitPos(iVtx, iVSlot);    // Position of iVtx in v 

        _pDstVFM->setVtxFace(iVtx, iVSlot, iFace); 

        addVtxToFace(iVtx, iVSlot, iFace, jFSlot); 

    } 

    return iFace; 

} 

 

// "Activates" the VFMesh vertex, on _pDstVFM, at face iFace vertex slot iVSlot 

// by calling ioFace() to obtain a new face number and hooking it up to the 

// topological structure.  Note that we use the term "activate" here to 

// mean "read" for mesh decoding. 

Int32 MeshCodec::activateV(Int32 iFace, Int32 iVSlot) 

{ 

    Int32 iVtx = ioVtx(iFace, iVSlot);   // I/O valence; create a vtx 

    _pDstVFM->setVtxFace(iVtx, 0, iFace); 

    addVtxToFace (iVtx, 0, iFace, iVSlot); 

    return iVtx; 

} 

 

// Completes the vertex iVtx on _pDstVFM by activating all inactive faces 

// incident upon it.  As an optimization, the user must also pass in iVSlot 

// which is the vertex slot on face 0 of iVtx where iVtx is located.  This 

// method begins its examination of iVtx's faces at face 0 by working its 

// way around the vertex in both CCW and CW directions, checking to see if there 

// are any faces that can be hooked into iVtx without calling activateF(). 

// This can happen when a face is completed by a nearby vertex before coming 

// here.  The situation can be detected by traversing the topology of the 

// _pDstVFM over to the neighboring vertex and checking if it already has a 

// face number for the corresponding face entry on iVtx.  If so, then 

// iVtx and the already completed face are connected together, and the 

// next face around iVtx is examined. When the process can go no further, 

// this method calls _activateF() on the remaining unresolved span of faces 

// around the vertex. 

void MeshCodec::completeF(Int32 iVtx, Int32 iVSlot) 

{ 

    JtDualVFMesh *pDstVFM = _pDstVFM; 

    Int32 i, vp, vn, jp, jn, 

            iVtx2, 

            cVal = pDstVFM->valence(iVtx); 

 

    // Walk CCW from face slot 0, attempting to link in as many 

    // already-reachable faces as possible until we reach one 

    // that is inactive. 

    vp = pDstVFM->face(iVtx, 0); 

    jp = iVSlot; 

    i = 1; 

    JtDebugOnly(_assertParallelValRings(vp);) 

    while ((vn = pDstVFM->face(iVtx, i)) != -1) {  // Forces "FV" in the "next" direction 

        DecModN(jp, pDstVFM->degree(vp)); 

        iVtx2 = pDstVFM->vtx(vp, jp); 

        if (iVtx2 == -1) 

            break; 

        jn = pDstVFM->findVtxSlot(vn, iVtx2); 

        Assert(jn > -1); 

        DecModN(jn, pDstVFM->degree(vn)); 

        addVtxToFace(iVtx, i, vn, jn); 

        vp = vn; 

        jp = jn; 

        i++; 

        if (i >= cVal) 
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            return; 

    } 

 

    // Walk CW from face slot 0, attempting to link in as many 

    // already-reachable faces as possible until we reach one 

    // that is inactive. 

    Int32 ilast = i; 

    vp = pDstVFM->face(iVtx, 0); 

    jp = iVSlot; 

    i = pDstVFM->valence(iVtx) - 1; 

    while ((vn = pDstVFM->face(iVtx, i)) != -1) { // Forces "VF" in "prev" direction 

        IncModN(jp, pDstVFM->degree(vp)); 

        iVtx2 = pDstVFM->vtx(vp, jp); 

        if (iVtx2 == -1) 

            break; 

        jn = pDstVFM->findVtxSlot(vn, iVtx2); 

        Assert(jn > -1); 

        IncModN(jn, pDstVFM->degree(vn)); 

        addVtxToFace(iVtx, i, vn, jn); 

        vp = vn; 

        jp = jn; 

        i--; 

        if (i < ilast) 

            return; 

    } 

 

    // Activate the remaining faces on iVtx that cannot be decuced from 

    // the already-assembled topology in the destination VFMesh. 

    for (; ilast <= i ; ilast++) { 

        Int32 iFace = activateV(iVtx, ilast); 

        JtDemandState(iFace >= -1); 

    } 

} 

 

// This method connects vertex iVtx into the topology of 

// _pDstVFM at and around iFace.  First, it connects iVtx 

// to iFace's degree ring at position iVSlot.  Next, it 

// will connect iVtx into the faces at the other ends of 

// the shared edges between iVtx and the next vertices CS and 

// CCW about iFace if necessary. 

void MeshCodec::addVtxToFace (Int32 iVtx,  Int32 jFSlot, 

                              Int32 iFace, Int32 iVSlot) 

{ 

    Int32   iVSlotCW  = iVSlot, 

            iVSlotCCW = iVSlot, 

            fp, ip, 

            fn, in; 

    JtDualVFMesh *pDstVFM = _pDstVFM; 

    IncModN(iVSlotCCW, pDstVFM->degree(iFace)); 

    DecModN(iVSlotCW,  pDstVFM->degree(iFace)); 

     

    // Connect iVtx to iFace/iVSlot 

    JtRethrow(pDstVFM->setFaceVtx(iFace, iVSlot, iVtx)); 

 

    // Connect iVtx across the shared edge between iVtx and the vtx CW 

    // from iVtx at iFace.  Connect iVtx into the face at the other 

    // end of this edge if it is not already connected there. 

    if ((fp = pDstVFM->vtx(iFace, iVSlotCW)) != -1) { 

        ip = pDstVFM->findFaceSlot(fp, iFace); 

        Int32 iVSlotCCW = jFSlot; 

        IncModN(iVSlotCCW, pDstVFM->valence (iVtx)); 

        if (pDstVFM->face(iVtx, iVSlotCCW) == -1) { 

            DecModN(ip, pDstVFM->valence(fp)); 

            pDstVFM->setVtxFace(iVtx, iVSlotCCW, pDstVFM->face(fp, ip)); 

        } 

    } 

 

    // Connect iVtx across the shared edge between iVtx and the vtx CCW 

    // from iVtx at iFace.  Connect iVtx into the face at the other 

    // end of this edge if it is not already connected there. 

    if ((fn = pDstVFM->vtx(iFace, iVSlotCCW)) != -1) { 
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        in = pDstVFM->findFaceSlot(fn, iFace); 

        Int32 iVSlotCW  = jFSlot; 

        DecModN(iVSlotCW,  pDstVFM->valence (iVtx)); 

        if (pDstVFM->face(iVtx, iVSlotCW) == -1) { 

            IncModN(in, pDstVFM->valence(fn)); 

            pDstVFM->setVtxFace(iVtx, iVSlotCW, pDstVFM->face(fn, in)); 

        } 

    } 

} 

 

void MeshCodec::addActiveFace(Int32 iFace) 

{ 

    JtRethrow(_viActiveFaces.pushBack(iFace)); 

} 

 

// Returns a face from the active queue to be completed. This needn't be the 

// one at the end of the queue, because the choice of the next active face 

// can affect how many SPLIT symbols are produced.  This method employs a 

// fairly simple scheme of searching the most recent 16 active faces for the 

// fist one with the smallest number of incomplete slots in its degree ring. 

Int32 MeshCodec::nextActiveFace() 

{ 

    Int32 iFace = -1; 

    // Search the 16 face record at the end of the 

    // queue for the one with lowest remaining degree. 

    while (_viActiveFaces.length() > 0 && _vbRemovedActiveFaces.test(_viActiveFaces.back())) 

        _viActiveFaces.popBack(); 

    Int32 cLowestEmptyDegree = 9999999; 

    Int32 i, iFace0, cEmptyDeg; 

    const Int32 cWidth = 16; 

    JtDualVFMesh *pDstVFM = _pDstVFM; 

    for (i = _viActiveFaces.length() - 1 ; 

         i >= ::jtmax(0, _viActiveFaces.length() - cWidth) ; 

         i--) 

    { 

        iFace0 = _viActiveFaces[i]; 

        if (_vbRemovedActiveFaces.test(iFace0)) { 

            _viActiveFaces.remove(i); // TOXIC: O(N^2) 

            continue; 

        } 

        cEmptyDeg = pDstVFM->emptyFaceSlots(iFace0); 

        if (cEmptyDeg < cLowestEmptyDegree) { 

            cLowestEmptyDegree = cEmptyDeg; 

            iFace = iFace0; 

        } 

    } 

 

    // Return the selected active face 

    return iFace; 

} 

 

// Removes iFace from the active face queue. 

void MeshCodec::removeActiveFace(Int32 iFace) 

{ 

    _vbRemovedActiveFaces.set(iFace); 

} 

 

// Searches the active face queue for iFace and returns 

// its index position from the _end_ of the queue.  This is 

// needed by the ioFace() method when encoding a SPLIT 

// symbol. 

Int32 MeshCodec::activeFaceOffset(Int32 iFace) const 

{ 

    Int32 iOffset = -1; 

    Int32 i, cLen = _viActiveFaces.length(); 

    const Int32 *paiActiveFaces = _viActiveFaces.ptr(); 

    for (i = cLen - 1 ; i >= 0 ; i--) { 

        if (paiActiveFaces[i] == iFace) { 

            // The offset is how far FROM THE END of the active 

            // face list we found iFace.  This serves the make 

            // the iOffset a much smaller number, which is better 
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            // for compression! 

            iOffset = cLen - i; 

            break; 

        } 

    } 

    return iOffset; 

} 

2.3 MeshDecoder class 

// This class implements the five abstract methods from 

// MeshCodec to realize a mesh decoder. 

class MeshDecoder : public MeshCodec { 

  public: 

    // ========== Housekeeping Interface ========== 

    MeshDecoder (MeshCoderDriver *pTMC = NULL); 

  protected: 

    virtual ~MeshDecoder() {} 

 

  private: 

    // ========== Polymorphic I/O Interface ========== 

    virtual Int32 ioVtxInit  ()                         ; 

    virtual Int32 ioVtx      (Int32 iFace, Int32 iVSlot); 

    virtual Int32 ioFace     (Int32 iVtx , Int32 jFSlot); 

    virtual Int32 ioSplitFace(Int32 iVtx , Int32 jFSlot); 

    virtual Int32 ioSplitPos (Int32 iVtx , Int32 jFSlot); 

}; 

 

// Begins decoding a new connected mesh component by calling 

// ioVtx() to read the next vertex from the symbol stream. 

Int32 MeshDecoder::ioVtxInit()                              

{ 

    return ioVtx(-1, -1); 

} 

 

// Read a vertex valence symbol, vertex group number, and vertex 

// flags from the input symbols stream.  Create a new vertex 

// on _pDstVFM with this data, and return the new vertex number. 

// It is this method's responsibility to detect the end of 

// the input symbol stream by returning -1 when that happens. 

Int32 MeshDecoder::ioVtx (Int32 /*iFace*/ , Int32 /*iVSlot*/) 

{ 

    // Obtain a VERTEX VALENCE symbol 

    Int32 eSym = _pTMC->_nextValSymbol(); 

    Int32 iVtxVal, iVtx = -1; 

    if (eSym > -1) { 

        // Create a new vtxt on the VFMesh 

        iVtx = _pDstVFM->numVts(); 

        iVtxVal = eSym; 

        _pDstVFM->newVtx     (iVtx, iVtxVal); 

        _pDstVFM->setVtxGrp  (iVtx, _pTMC->_nextFGrpSymbol()); 

        _pDstVFM->setVtxFlags(iVtx, _pTMC->_nextVtxFlagSymbol()); 

    } 

 

    return iVtx; 

} 

 

// Read a face degree symbol, and attribute mask bit 

// vector, create a new DualVFMesh face, initialize the 

// face attribute record numbers from a running counter, 

// and return the new face number.  If the degree symbol 

// read from the input symbol stream is 0, signify this by 

// returning -1. 

Int32 

MeshDecoder::ioFace     (Int32 iVtx, Int32 /*jFSlot*/) 

{ 

    // Obtain a FACE DEGREE symbol 

    Int32 iCntxt = _pTMC->_faceCntxt(iVtx, _pDstVFM); 

    Int32 eSym = _pTMC->_nextDegSymbol(iCntxt); 

    Int32 cDeg, iFace = -1; 
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    if (eSym != 0) { 

        // Create a new face on the VFMesh 

        iFace = _pDstVFM->numFaces(); 

        cDeg = eSym; 

        Int32 nFaceAttrs = 0; 

        if (cDeg <= JtDualVFMesh::cMBits) { 

            UInt64 uAttrMask = _pTMC->_nextAttrMaskSymbol(/*iCntxt*/::jtmin(7,::jtmax(0,cDeg-2))); 

            for (UInt64 uMask = uAttrMask ; uMask ; nFaceAttrs += (uMask & 1), uMask >>= 1); 

            _pDstVFM->newFace(iFace, cDeg, nFaceAttrs, uAttrMask); 

        } 

        else { 

            BitVec vbAttrMask; 

            _pTMC->_nextAttrMaskSymbol(&vbAttrMask, cDeg); 

            for (Int32 i = 0 ; i < cDeg ; i++) { 

                if (vbAttrMask.test(i)) 

                    nFaceAttrs++; 

            } 

            _pDstVFM->newFace(iFace, cDeg, nFaceAttrs, &vbAttrMask, 0); 

        } 

 

        // Error check for a corrupt degree or attrmask 

        if (nFaceAttrs > cDeg) { 

            Assert (nFaceAttrs <= cDeg); 

            return -2; 

        } 

 

        // Set up the face attributes 

        for (Int32 iAttrSlot = 0 ; iAttrSlot < nFaceAttrs ; iAttrSlot++) { 

            _pDstVFM->setFaceAttr(iFace, iAttrSlot, _iFaceAttrCtr++); 

        } 

    } 

 

} 

 

// Consumes a split offset symbol from the SPLIT offset 

// symbol stream, and determines the face number referenced 

// by the offset.  Returns the referenced face number. 

Int32 MeshDecoder::ioSplitFace(Int32 /*iVtx*/, Int32 /*jFSlot*/) 

{ 

    // Obtain a SPLITFACE symbol 

    Int32 eSym = _pTMC->_nextSplitFaceSymbol(); 

    Assert(eSym >= -1); 

    Int32 iOffset = -1, iFace = -1; 

    if (eSym > -1) { 

        // Use the offset to index into the active face queue 

        // to determine the actual face number. 

        iOffset = eSym; 

        Int32 cLen = _viActiveFaces.length(); 

        Assert(iOffset > 0 && iOffset <= cLen); 

        iFace = _viActiveFaces[cLen - iOffset]; 

    } 

 

    return iFace; 

} 

 

// Consumes a split position symbol from the associated symbol 

// stream, and returns the vertex slot number on the current 

// split face at which the topological split/merge occurred. 

Int32 MeshDecoder::ioSplitPos   (Int32 /*iVtx*/, Int32 /*jFSlot*/) 

{ 

    // Obtain a SPLITVTX symbol 

    Int32 eSym = _pTMC->_nextSplitPosSymbol(); 

    Assert(eSym >= -1); 

    Int32 iVSlot = -1; 

    if (eSym > -1) { 

        // Return the vtx slot number 

        iVSlot = eSym; 

    } 

 

    return iVSlot; 

} 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 343  

 



 
 

 JT File Format Reference Version 9.5 Rev-A Page 344  

Appendix F:  Parasolid XT Format Reference 
 

November 2008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 JT v9.5 Format Reference  

 

 - 345 - 

Table of Contents 

Introduction to the Parasolid XT Format ........................................................................ 348 
Types of File Documented .............................................................................................. 348 
Text and Binary Formats ................................................................................................. 349 
Standard File Names and Extensions .............................................................................. 349 
Logical Layout.................................................................................................................. 350 
Schema ............................................................................................................................ 352 
Embedded schemas ........................................................................................................ 352 

Physical layout ........................................................................................................................ 353 
XT format ................................................................................................................................ 353 

Space compression ......................................................................................................... 354 
Field types ....................................................................................................................... 354 
Point 355 
Pointer classes ................................................................................................................ 356 
Variable-length nodes ..................................................................................................... 356 
Unresolved indices .......................................................................................................... 356 
Simple example ............................................................................................................... 356 
Physical Layout ................................................................................................................ 358 
Common header ............................................................................................................. 358 

Keyword Syntax ...................................................................................................................... 359 

Text 360 
Binary .............................................................................................................................. 361 

bare binary .............................................................................................................................. 361 
typed binary ............................................................................................................................ 361 
neutral binary .......................................................................................................................... 361 

Model Structure .............................................................................................................. 363 
Topology.......................................................................................................................... 363 
General points ................................................................................................................. 363 
Entity definitions ............................................................................................................. 363 

Assembly ................................................................................................................................. 363 
Instance ................................................................................................................................... 363 
Body 363 
Region 364 
Shell 364 
Face 365 
Loop 365 
Fin 365 
Edge 366 
Vertex 366 
Attributes ................................................................................................................................. 366 
Groups 366 
Node-ids .................................................................................................................................. 367 

Entity matrix .................................................................................................................... 367 
Representation of manifold bodies ................................................................................ 367 

Body types .............................................................................................................................. 367 



 JT v9.5 Format Reference  

 

 - 346 - 

Schema Definition ........................................................................................................... 369 
Underlying types ............................................................................................................. 369 
Geometry ........................................................................................................................ 369 

Curves 371 
LINE.................................................................................................................................................. 371 
CIRCLE ............................................................................................................................................ 372 
ELLIPSE ........................................................................................................................................... 373 
B_CURVE (B-spline curve) .............................................................................................................. 375 
INTERSECTION .............................................................................................................................. 381 
TRIMMED_CURVE ........................................................................................................................ 384 
PE_CURVE (Foreign Geometry curve) ............................................................................................ 385 
SP_CURVE ....................................................................................................................................... 387 

Surfaces ................................................................................................................................... 388 
PLANE .............................................................................................................................................. 389 
CYLINDER....................................................................................................................................... 390 
CONE ................................................................................................................................................ 391 
SPHERE ............................................................................................................................................ 393 
TORUS .............................................................................................................................................. 394 
BLENDED_EDGE (Rolling Ball Blend) .......................................................................................... 395 
BLEND_BOUND (Blend boundary surface) .................................................................................... 397 
OFFSET_SURF ................................................................................................................................ 398 
B_SURFACE .................................................................................................................................... 399 
SWEPT_SURF .................................................................................................................................. 404 
SPUN_SURF..................................................................................................................................... 405 
PE_SURF (Foreign Geometry surface) ............................................................................................. 407 

Point 408 
Transform ................................................................................................................................ 408 
Curve and Surface Senses ....................................................................................................... 410 
Geometric_owner .................................................................................................................... 410 

Topology.......................................................................................................................... 412 
WORLD ............................................................................................................................................ 412 
ASSEMBLY ..................................................................................................................................... 413 
INSTANCE ....................................................................................................................................... 415 
BODY ............................................................................................................................................... 416 
REGION ............................................................................................................................................ 420 
SHELL .............................................................................................................................................. 421 
FACE ................................................................................................................................................ 422 
LOOP ................................................................................................................................................ 423 
FIN .................................................................................................................................................... 424 
VERTEX ........................................................................................................................................... 425 
EDGE ................................................................................................................................................ 426 

Associated Data .............................................................................................................. 427 
LIST .................................................................................................................................................. 427 
POINTER_LIS_BLOCK: ................................................................................................................. 428 
ATT_DEF_ID ................................................................................................................................... 429 
FIELD_NAMES ............................................................................................................................... 429 
ATTRIB_DEF ................................................................................................................................... 430 
ATTRIBUTE..................................................................................................................................... 433 
INT_VALUES .................................................................................................................................. 435 
REAL_VALUES ............................................................................................................................... 436 
CHAR_VALUES .............................................................................................................................. 436 
UNICODE_VALUES ....................................................................................................................... 436 
POINT_VALUES ............................................................................................................................. 436 
VECTOR_VALUES ......................................................................................................................... 437 



 JT v9.5 Format Reference  

 

 - 347 - 

DIRECTION_VALUES .................................................................................................................... 437 
AXIS_VALUES ................................................................................................................................ 437 
TAG_VALUES ................................................................................................................................. 438 
GROUP ............................................................................................................................................. 438 
MEMBER_OF_GROUP ................................................................................................................... 439 

Node Types ..................................................................................................................... 441 
Node Classes ................................................................................................................... 444 
System Attribute Definitions........................................................................................... 445 
Hatching .......................................................................................................................... 445 

Planar Hatch ............................................................................................................................ 446 
Radial Hatch ............................................................................................................................ 446 
Parametric Hatch ..................................................................................................................... 447 

Density Attributes ........................................................................................................... 447 
Density (of a body) ................................................................................................................. 447 
Region Density ........................................................................................................................ 447 
Face Density ............................................................................................................................ 448 
Edge Density ........................................................................................................................... 448 
Vertex Density ........................................................................................................................ 448 

Region ............................................................................................................................. 449 
Colour .............................................................................................................................. 450 
Reflectivity ...................................................................................................................... 450 
Translucency ................................................................................................................... 450 
Name ............................................................................................................................... 451 
Incremental faceting ....................................................................................................... 451 
Transparency ................................................................................................................... 451 
Non-mergeable edges ..................................................................................................... 451 
Group merge behavior .................................................................................................... 452 
 

  



 JT v9.5 Format Reference  

 

 - 348 - 

 

Introduction to the Parasolid 
XT Format 

 

This Parasolid
®
 Transmit File Format manual describes the formats in which Parasolid represents model 

information in external files. Parasolid is a geometric modeling kernel that can represent wireframe, surface, solid, 

cellular and general non-manifold models.  

Parasolid stores topological and geometric information defining the shape of models in transmit files. These files 

have a published format so that applications can have access to Parasolid models without necessarily using the 

Parasolid kernel.  

This manual documents the Parasolid transmit file format. This format will change in subsequent Parasolid 

releases at which time this manual will be updated. As new versions of Parasolid can read and write older transmit 

file formats these changes will not invalidate applications written based on the information herein. 

Types of File Documented 
There are a number of different interface routines in Parasolid for writing transmit files. Each of these routines 

can write slightly different combinations of Parasolid data, the ones that are documented herein are: 

 Individual components (or assemblies) written using  SAVMOD 

 Individual components written using PK_PART_transmit 

 Lists of components written using PK_PART_transmit 

 Partitions written using PK_PARTITION_transmit 

The basic format used to write data in all the above cases is identical; there are a small number of node types that 

are specific to each of the above file types. 
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Text and Binary Formats 
Parasolid can encode the data it writes out in four different formats: 

1. Text (usually ASCII) 

2. Neutral binary 

3. Bare binary (this is not recommended) 

4. Typed binary 

In text format all the data is written out as human readable text, they have the advantage that they are readable but 

they also have a number of disadvantages. They are relatively slow to read and write, converting to and from text 

forms of real numbers introduces rounding errors that can (in extreme cases) cause problems and finally there are 

limitations when dealing with multi-byte character sets. Carriage return or line feed characters can appear 

anywhere in a text transmit file but other unexpected non-printing characters will cause Parasolid to reject the file 

as corrupt. 

Neutral binary is a machine independent binary format. 

Bare binary is a machine dependent binary format. It is not a recommended format since the machine type which 

wrote it must be known before it can be interpreted. 

Typed binary is a machine dependent binary format, but it has a machine independent prefix describing the 

machine type that wrote it and so can be read on all machine types.  

Standard File Names and Extensions 
Due to changing operation system restrictions on file names over the years Parasolid has used several different 

file extensions to denote file contents. The recommended set of file extensions is: 

 .X_T and .X_B for part files, .P_T and .P_B for partition files. 

Extensions that have been used in the past are: 

 xmt_txt, xmp_txt - text format files on VMS or Unix platforms 

 xmt_bin, xmp_bin - binary format files on VMS or Unix platforms 
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Logical Layout 

The logical layout of a Parasolid transmit file is: 

 A human-oriented text header. 

 The initial text header is read and written by applications' Frustrums and is not accessible to Parasolid. Its 

detailed format is described in the section `Physical layout'. 

 A short flag sequence describing the file format, followed by modeller identification information and user 

field size. 

 The various flag sequences (mixtures of text and numbers) are documented under `Physical layout'; the 

content of the modeller identification information is: 

the modeller version used to write the file, as a text string of the form:     

: TRANSMIT FILE created by modeller version 1200123 

This information is used by routines such as PK_PART_ask_kernel_version. 

the schema version describing the field sequences of the part nodes as a text string of the form: 

SCH_1200123_12006 

This example denotes a file written by Parasolid V12.0.123 using schema number 12006: there will be a 

corresponding file sch_12006 in the Parasolid schema distribution. 

Note that applications writing XT files should use version 1200000 and schema number 12006. 

 The user field size is a simple integer. 

 The objects (known as „nodes‟) in the file in an unordered sequence, followed by a terminator. 

 Every node in the file is assigned an integer index from 1 upwards (some indices may not be used). 

Pointer fields are output as these indices, or as zero for a null pointer. 

 Each node entry begins with the node type. If the node is of variable length (see below), this is followed 

by the length of the variable field. The index of the node is then output, followed by the fields of the node. If 

the file contains user fields, and the node is visible at the PK interface, then the fields are followed by the user 

field, in integers. 

 The terminator which follows the sequence of nodes is a two-byte integer with value 1, followed by an 

index with value 0. The index is output as „0‟ in a text file, and as a 2-byte integer with value 1 in a binary 

file. 

 The node with index 1 is the root node of the transmit file as follows: 

  

Contents of file Type of root node 

Body BODY 

Assembly ASSEMBLY 

Array of parts POINTER_LIS_BLOCK 

Partition WORLD 
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Schema 
Parasolid permanent structures are defined in a special language akin to C which generates the appropriate files 

for a C compiler, the runtime information used by Parasolid, along with a schema file used during transmit and 

receive. The schema file for version 12.0 is named sch_12006 and is distributed with Parasolid. It is not necessary 

to have a copy of this file to understand the XT format. 

For each node type, the schema file has a node specifier of the form 

<nodetype> <nodename>; <description>; <transmit 1/0> <no. of fields> <variable 1/0> 

e.g. 

29 POINT; Point; 1 6 0 

This is followed by a list of field specifiers which say what fields, and in what order, occur in the transmit file. 

Field specifiers have the format: 

<fieldname>; <type>; <transmit 1/0> <node class> <n_elements> 

e.g. 

owner; p; 1 1011 1 

Nodes and fields with a transmit flag of zero are ephemeral information not written to a transmit file. Only pointer 

fields have non-zero node class, in which case it specifies the set of node types to which this field is allowed to 

point. The element count is interpreted as follows: 

0    a scalar, a single value 

1     a variable length field (see below) 

n > 1          an array of n values 

 

Note that in the schema file, fins are referred to as „halfedges‟, and groups are referred to as „features‟. These are 

internal names not used elsewhere in this document. 

Embedded schemas 
When reading a part, partition, or delta, Parasolid converts any data that it encounters from older versions of 

Parasolid to the current format using a mixture of automatic table conversion (driven by the appropriate schemas), 

and explicit code for more complex algorithms. 

However, backwards compatibility of file information – that is, reading data created by a newer version of 

Parasolid into an application (such as data created by a subcontractor) –  can never be guaranteed to work using 

this method,  because the older version does not contain any special-case conversion code. 

From Parasolid V14 onwards, parts, partitions and deltas can be transmitted with extra information that is 

intended to replace the schema normally loaded to describe the data layout. This information contains the 

differences between its schema and a defined base schema (currently V13's SCH_13006). 

This enables parts, partitions, and deltas to be successfully read into older versions of Parasolid without loss of 

information.  

The only fields that are included in this information are those which can be referenced in a cut-down version of 

the schema pertaining only to the XT part data that is transmitted. Specifically, a full schema definition can 

contain fields that are not relevant in the context of the transmitted data (fields relating to snapshots, for example), 

and these fields are excluded.  
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Fields that are included are referred to as effective fields, and are either transmittable (xmt_code == 1) or have 

variable-length (n_elts == 1) 

Physical layout 

Most of the data are composed of integers, logical flags, and strings, but are of restricted ranges and so 

transmitted specially in binary format. The binary representation is given in bold type, such as “integer (byte)”. 

This is relevant to applications that attempt to read or write Parasolid data directly. Two important elements are 

 short strings  

These are transmitted as an integer length (byte) followed by the characters (without trailing zero). 

 positive integers  

These are transmitted similarly to the pointer indices which link individual objects together, i.e., small values 

0..32766 are transmitted as a single short integer, larger ones encoded into two. 

XT format 

Presence of the new format is indicated by a change to the standard header: the archive name is extended by the 

number of the base schema, e.g., SCH_1400068_14000_13006, and then the maximum number of node types is 

inserted (short). 

Transmission then continues as normal, except that when transmitting the first node of any particular type, extra 

information is inserted between the nodetype and the variable-length, index data as follows: 

 The arrays of effective fields in the base schema node and the current schema node are assembled.  

 If the nodetype does not exist in the base schema then it is output as follows:  

 number of fields (byte)  

 name and description (short strings)  

 fields one by one as  

name short string  

ptr_class Short  

n_elts Positive integer  

type short string 
The field type. Allowed values are 

described in “Field types”, below. Omitted 

if ptr_class non-zero 

xmt_code logical (byte) Omitted for fixed-length (n_elts != 1) 
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 If the two arrays match (equal length and all fields match in name, xmt_code, ptr_class, n_elts and 

type) then output the flag value 255 (byte 0xff).  

 If the two arrays do not match, output the number of effective fields in the current schema (byte), and an edit 

sequence as follows.  

 Initialize pointers to the first base field and first current field, then while there are still unprocessed base 

and current fields, output a sequence of Copy, Delete and Insert instructions 

 If the base field matches the current field, output 'C' (char) to indicate an unchanged (Copied) field 

and advance to the next base and current fields;  

 If the base field does not match any unprocessed current field, output 'D' (char) to indicate a Deleted 

field and advance to the next base field;  

 Otherwise, output 'I' (char) to indicate an Inserted field, followed by the current field in the above 

format, and advance to the next current field.  

 If there are any unprocessed current fields, then output an Append sequence, each instruction being 'A' 

(char) followed by the field. 

 Finally, output 'Z' (char) to signal the end. 

Space compression 
For text data in transmit formats PK_transmit_format_text_c and PK_transmit_format_xml_c, a new escape 

sequence is defined: the 2-character sequence \9 denotes a sequence of nine spaces. At V14, this applies to 

attribute definition names, field names, and attribute strings. 

Field types 
The XT format is not itself a binary protocol, and so does not define data sizes; the only requirement is that a 

runtime implementation has sufficient room for the information. The available implementations run with 8bit 

ASCII characters, 8bit unsigned bytes (0..255), 16bit short integers (0..65535 or -32768..32767), 32bit integers 

(0..4G-1, -2G..2G-1) and IEEE reals. The implementation used in a given binary file is specified by the 

"PS<code>" at the start of the file. See the chapter on “Physical Layout” for more information. 

The full list of field types used in transmit files is as follows: 

 

u    unsigned byte 0-255 

c    char   

l unsigned byte 0-1 (i.e. logical) 

          typedef char logical; 

n short int 

w unicode character, output as a short int 

d int 

p     pointer-index 

Small indices (less than 32767) are treated specially in binary files to save space. 

See the section below on binary format.  

f     double   
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i These correspond to a region of the real line: 

    typedef struct { double low, high; }interval; 

v     array [3] of doubles 

These correspond to a 3-space position or direction: 

 typedef struct { double x,y,z; } vector; 

b  array [6] of doubles 

These correspond to a 3-spce region: 

 typedef struct { interval x,y,z; } box; 

Note that the ordering is not the same as presented at Parasolid's external PK or KI 

interfaces. 

h     array [3] of doubles 

These represent points of intersection between two surfaces; only the position 

vector is written to a transmit file, as Parasolid will recalculate other data as 

required. The structure is documented further in the section on intersection curves.  

Point 
As an example, consider a POINT; its formal description is 

 

struct POINT_s          // Point 

{   

int                      node_id;                 // $d 

union  ATTRIB_GROUP_u      attributes_groups;     // $p 

union  POINT_OWNER_u     owner;                   // $p 

struct POINT_s         *next;                    // $p 

struct POINT_s         *previous;                // $p 

vector                   pvec;                    // $v 

};   

typedef struct POINT_s     *POINT; 

 

Its corresponding schema file entry is 

29 POINT; Point; 1 6 0 

node_id; d; 1 0 0 

attributes_groups; p; 1 1019 0 

owner; p; 1 1011 0 

next; p; 1 29 0 

previous; p; 1 29 0 
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pvec; v; 1 0 0 

Pointer classes 
In the above example, the attributes_groups field must be of class ATTRIB_GROUP_cl, the owner must be of 

class POINT_OWNER_cl, and the next and previous fields must refer to POINTs. A full list of node types and 

node classes is given at the end of the document. 

Each node class corresponds to a union of pointers given in the Schema Definition section. 

Variable-length nodes 
Variable-length nodes differ from fixed-length nodes in that their last field is of variable length, i.e. different 

nodes of the same type may have different lengths. In the schema the length is notionally given as 1, e.g. 

 

struct REAL_VALUES_s            // Real values 

{   

Double values[1]; // $f[] 

};   

 

Its schema file entry would be 

83 REAL_VALUES;  Real values; 1 1 1 

values; f; 1 0 1 

 

The number of entries in each such node is indicated by an integer in the transmit file between its nodetype and 

index, so an example might be 

     83 3 15 1 2 3 

Unresolved indices 
In some cases a node will contain an index field which does not correspond to a node in the transmit file, in this 

case the index is to be interpreted as zero.  

Simple example 
Here is a reformatted text example of a sheet circle with a color attribute on its single edge: 

 

**ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz************ 

**PARASOLID !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~0123456789************ 

**PART1;MC=osf65;MC_MODEL=alpha;MC_ID=sdlosf6;OS=OSF1;OS_RELEASE=V4.0;FRU=sdl_parasolid

_test_osf64;APPL=unknown;SITE=sdl-cambridge-

u.k.;USER=davidj;FORMAT=text;GUISE=transmit;DATE=29-mar-2000; 

**PART2;SCH=SCH_1200000_12006;USFLD_SIZE=0; 

**PART3; 
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**END_OF_HEADER*************************************************** 

T51 : TRANSMIT FILE created by modeller version 120000017 SCH_1200000_120060 

12 1 12 0 2 0 0 0 0 1e3 1e-8 0 0 0 1 0 3 1 3 4 5 0 6 7 0   body 

 70 2 0 1 0 0 4 1 20 8 8 8 1 T                           list 

13 3 3 0 1 0 9 0 0 6 9                                     shell 

 50 4 11 0 9 0 0 0 +0 0 0 0 0 1 1 0 0                      plane 

 31 5 10 0 7 0 0 0 +0 0 0 0 0 1 1 0 0 1                    circle 

 19 6 5 0 1 0 0 3 V                                        region 

16 7 6 0 ?10 0 0 5 0 0 1                                   edge 

 17 10 0 11 10 10 0 12 7 0 0 +                               fin 

15 11 7 0 10 9 0                                           loop 

 17 12 0 0 0 0 0 10 7 0 0 -                                  fin (dummy)  

14 9 2 13 ?0 0 11 3 4 +0 0 0 0 3                           face 

 81 1 13 12 14 9 0 0 0 0 15                                attribute (variable 1) 

 80 1 14 0 16 8001 0 0 0 0 3 5 0 0 FFFFTFTFFFFFF2        attrib_def (variable 1) 

83 3 15 1 2 3                                               real_values (variable 3) 

 79 15 16 SDL/TYSA_COLOUR                                 att_def_id (variable 15) 

74 20 8 1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0      pointer_lis_block 

 1 0                                                        terminator 

 

Note that the tolerance fields of the face and edge are unset, and represented as „?‟ in the text transmit file and that 

the annotations in the column „body‟ to „terminator‟ give the node type of each line and are not part of the actual 

file. If the above file had no trailing spaces, it would be a valid XT file (the leading spaces on some of the lines 

are necessary). 
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Physical Layout 

Parasolid transmit files have two headers: 

 a textual introduction containing human-directed information about the part, written by the Frustrum and not 

accessible to Parasolid, and 

 an internal prefix to the part data, describing to Parasolid the format of the part data and thus not seen 

explicitly by an application's Frustrum. 

Common header 
The Parasolid common header recommended to Frustrum writers consists of: 

 A preamble containing all characters in the ASCII printing set. This is used by the KID Frustrum to detect 

obvious network corruption, but could be used to attempt to translate a text file from one character set to 

another. 

 Part 1 data: a sequence of keyword-value pairs, separated by semicolons, of possibly interesting information. 

All are optional. 

MC    =   vax, hppa, sparc, ... 

                  // make of computer 

   MC_MODEL   =   4090, 9000/780, sun4m, ... 

                  //  model of computer 

      MC_ID   =   ... 

                  //  unique machine identifier 

       OS    =   vms, HP-UX, SunOS, ... 

                  //  name of operating system 

OS_RELEASE  =   V6.2, B.10.20, 5.5.1, ... 

                  //  version of operating system 

FRU         =     sdl_parasolid_test_vax, 

                     mdc_ugii_v7.0_djl_can_vrh, ... 

//  frustrum supplier and implementation name 

       APPL    =   kid, unigraphics, ... 

//  application which is using Parasolid 

       SITE    =   ... 

//  site at which application is running 

       USER    =   ... 

                  //  login name of user 

     FORMAT   =   binary, text, applio 

                  //  format of file 

      GUISE   =   transmit, transmit_partition 
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                  //  guise of file 

      KEY    =   ... 

                  //  name of key  

       FILE    =   ... 

                  //  name of file  

       DATE    =   dd-mmm-yyyy 

//  e.g. 5-apr-1998 

The „part 1‟ data is „standard‟ information which should be accessible to the Frustrum (e.g. by operating 

system calls). It is the responsibility of the Frustrum to gather the relevant information and to format it as 

described in this specification.  

 part 2 data: a sequence of keyword-value pairs, separated by semicolons. 

      SCH    =   SCH_m_n 

//  name of schema key e.g.SCH_1200000_12006 

USFLD_SIZE =   m 

//  length of user field (0 - 16 integer words) 

Applications writing XT files must use a schema name of SCH_1200000_12006 

 part 3 data: non-standard information, which is only comprehensible to the Frustrum which wrote it. 

The „part 3‟ data is non-standard information, which is only comprehensible to the Frustrum which wrote it. 

However, other Frustrum implementations must be able to parse it (in order to reach the end of the header), 

and it should therefore conform to the same keyword/value syntax as for „part 1‟ and „part 2‟ data. However, 

the choice and interpretation of keywords for the „part 3‟ data is entirely at the discretion of the Frustrum 

which is writing the header. 

 a trailer record. 

An example is: 

**ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz************ 

**PARASOLID !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~0123456789****************** 

**PART1;MC=vax;MC_MODEL=4090;MC_ID=VAX14;OS=vms;OS_RELEASE=V6.2;FRU=sdl_parasolid_te

st_vax;APPL=unknown;SITE=sdl-cambridge 

u.k.;USER=ALANS;FORMAT=text;GUISE=transmit;KEY=temp;FILE=TEMP.XMT_TXT;DATE=8-sep-1997; 

**PART2;SCH=SCH_701169_7007;USFLD_SIZE=0; 

**PART3; 

**END_OF_HEADER*************************************************** 

Keyword Syntax 

All keyword definitions which appear in the three parts of data are written in the form 

 <name>=<value> e.g. MC=hppa;MC_MODEL=9000/710; 

where 

<name> consists of 1 to 80 uppercase, digit, or underscore characters  
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<value> consists of 1 or more ASCII printing characters (except space) 

Escape sequences provide a way of being able to use the full (7 bit) set of ASCII printing characters and the new 

line character within keyword values. Certain characters must be escaped if they are to appear in a keyword value: 

 

 Character Escape sequence 

newline ^n 

space ^_ 

semicolon ^; 

uparrow ^^ 

 

The two character escape sequences may be split by a new line character as they are written to file. They must not 

cause any output lines to be longer than 80 characters. 

Only those characters which belong to the ASCII (7 bit) printing sequence, plus the new line character, can be 

included as part of a keyword value. 

Text 
Parasolid has no knowledge of how files are stored. On writing, Parasolid produces an internal bytestream which 

is then split into roughly 80-character records separated by newline characters ('\n'). The newlines are not 

significant. 

As operating systems vary in their treatment of text data, on reading all newline and carriage return characters 

('\r') are ignored, along with any trailing spaces added to the records. However, leading spaces are not ignored, 

and the file must not contain adjacent space characters not at the end of a record. 

Text XT files written by version 12.1 and later versions use escape sequences to output the following characters, 

except for '\n' at the end of each line:  

null "\0"  

carriage return "\n"  

line feed "\r"  

backslash "\\"  

These characters are not escaped by versions 12.0 and earlier.  

The flag sequence is the character „T‟. This is followed by the length of the modeler version, separated by a space 

from the characters of the modeler version, similarly the schema version, finally the userfield size. For example: 

T 

51 : TRANSMIT FILE created by modeller version 1200000 

17 SCH_1200000_12006 

0 

NB: because of ignored layout, what Parasolid would read is 
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T51 : TRANSMIT FILE created by modeller version 120000017 SCH_1200000_120060 

For partition files, the modeller version string would be given as 

63 : TRANSMIT FILE (partition) created by modeller version 1200000 

All numbers are followed by a single space to separate them from the next entry. Fields of type c and l are not 

followed  by a space. 

Logical values (0,1) are represented as characters F,T. 

There are two special numeric values (-32764 for integral values, -3.14158e13 for floating point) which are used 

inside Parasolid to mark an „unset‟ or „null‟ value, and they are represented in a text transmit file as the question 

mark „?‟. If a vector has one component null, then all three components must be null, and it will be output in a 

text file as a single „?‟. 

Binary 
There are three types of binary file: `bare' binary, typed binary, and neutral binary. They are distinguished by a 

short flag sequence at the beginning of the file. In all cases, the flag sequence is followed by the length of the 

modeller version as a 2-byte integer, the characters of the modeller version, the length of the schema version as a 

4-byte integer, the characters of the schema version, and finally the userfield size as a 4-byte integer. 

As with text files, there are two special numeric values (-32764 for integral values, -3.14158e13 for floating 

point) which are used inside Parasolid to mark an „unset‟ or „null‟ value, and they are represented in a text 

transmit file as the question mark „?‟. 

bare binary 

In bare binary, data is represented in the natural format of the machine which wrote the data. The flag 

sequence is the single character 'B' (for ASCII machines, '\102'). The data must be read on a machine with 

the same natural format with respect to character set, endianness and floating point format. 

typed binary 

In typed binary, data is represented in the natural format of the machine that wrote the data. The flag 

sequence is the 4-byte sequence “PS” followed by a zero byte and a one byte, i.e., „P‟ „S‟ „\0‟ „\1‟, 

followed by a 3-byte sequence of machine description.  

 Byte order Double 

representation 

Character 

representation 

0 Big-endian IEEE ASCII 

1 Little-endian VAX D-float EBCDIC 

 

neutral binary 

In neutral binary, data is represented in big-endian format, with IEEE floating point numbers and ASCII 

characters. The flag sequence is the 4-byte sequence "PS" followed by two zero bytes, i.e., 'P' 'S' '\0' '\0'. 

At Parasolid V9, the initial letters are ASCII, thus '\120' '\123'. 

 

The nodetype at the start of a node is a 2-byte integer, the variable length which may follow it is a 4-byte integer. 

Logical values (0,1) are represented as themselves in 1 byte. 
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Small pointer indices (in the range 0-32766) are implemented as a 2-byte integer, larger indices are represented as 

a pair, thus: 

 

    if (index < 32767) 

{                        // case: small index 

op_short( index + 1 );   // offset so is > 0 

}  

    else 

{                                  // case: big index 

op_short( -(index % 32767 + 1) );  // remainder: add 1 so > 0 

op_short( index / 32767 );         // nonzero quotient 

}  

 

where op_short outputs a 2-byte integer. 

The inverse is performed on reading: 

 

    short q = 0, r; 

    ip_short( &r ); 

    if (r < 0) 

{ 

ip_short( &q ); 

r = -r; 

} 

    index = q * 32767 + r - 1; 

 

where ip_short reads a 2-byte integer. 
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Model Structure 

Topology 
This section describes the Parasolid Topology model, it gives an overview of how the nodes in an XT file are 

joined together. In this section the word „entity‟ means a node which is visible to a PK application – a table of 

which nodes are visible at the PK interface appears in the section `Node Types'. 

The topological representation allows for:  

 Non-manifold solids  

 Solids with internal partitions  

 Bodies of mixed dimension (i.e. with wire, sheet, and solid `bits')  

 Pure wire-frame bodies  

 Disconnected bodies  

Each entity is described, and its properties and links to other entities given.  

General points 
In this section a set is called finite if it can be enclosed in a ball of finite radius - not that it has a finite number of 

members.  

A set of points in 3-dimensional space is called open if it does not contain its boundary.  

Back-pointers, next and previous pointers in a chain, and derived pointers are not described explicitly here. For 

information on this see the following description of the schema-level model. 

Entity definitions 

Assembly 

An assembly is a collection of instances of bodies or assemblies. It may also contain construction geometry. An 

assembly has the following fields: 

 A set of instances. 

 A set  of geometry (surfaces, curves and points). 

Instance 

An instance is a reference to a body or an assembly, with an optional transform: 

 Body or assembly. 

 Transform. If null, the identity transform is assumed. 

Body 

A body is a collection of faces, edges and vertices, together with the 3-dimensional connected regions into which 

space is divided by these entities. Each region is either solid or void (indicating whether it represents material or 

not).  

The point-set represented by the body is the disjoint union of the point-sets represented by its solid regions, faces, 

edges, and vertices. This point-set need not be connected, but it must be finite.  



 JT v9.5 Format Reference  

 

 - 364 - 

A body has the following fields:  

 A set of regions.  

A body has one or more regions. These, together with their boundaries, make up the whole of 3-space, and do 

not overlap, except at their boundaries. One region in the body is distinguished as the exterior region, which 

must be infinite; all other regions in the body must be finite.  

 A set  of geometry (surfaces, curve and/or points). 

 A body-type. This may be wire, sheet, solid or general. 

Region 

A region is an open connected subset of 3-dimensional space whose boundary is a collection of vertices, edges, 

and oriented faces.  

Regions are either solid or void, and they may be non-manifold. A solid region contributes to the point-set of its 

owning body; a void region does not (although its boundary will).  

Two regions may share a face, one on each side.  

A region may be infinite, but a body must have exactly one infinite region. The infinite region of a body must be 

void.  

A region has the following fields:  

 A logical indicating whether the region is solid.  

 A set of shells. The positive shell of a region, if it has one, is not distinguished. 

The shells of a region do not overlap or share faces, edges or vertices.  

A region may have no shells, in which case it represents all space (and will be the only region in its body, which 

will have no faces, edges or vertices).  

Shell 

A shell is a connected component of the boundary of a region. As such it will be defined by a collection of faces, 

each used by the shell on one `side', or on both sides; and some edges and vertices.  

A shell has the following fields:  

 A set of (face, logical) pairs.  

Each pair represents one side of a face (where true indicates the front of the face, i.e. the side towards which 

the face normal points), and means that the region to which the shell belongs lies on that side of the face. The 

same face may appear twice in the shell (once with each orientation), in which case the face is a 2-

dimensional cut subtracted from the region which owns the shell.  

 A set of wireframe edges.  

Edges are called wireframe if they do not bound any faces, and so represent 1-dimensional cuts in the shell's 

region. These edges are not shared by other shells.  

 A vertex. 

This is only non-null if the shell is an acorn shell, i.e. it represents a 0-dimensional hole in its region, and has 

one vertex, no edges and no faces. 

A shell must contain at least one vertex, edge, or face.  
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Face 

A face is an open finite connected subset of a surface, whose boundary is a collection of edges and vertices. It is 

the 2-dimensional analogy of a region.  

A face has the following fields:  

 A set of loops. A face may have zero loops (e.g. a full spherical face), or any number.  

 Surface. This may be null, and may be used by other faces. 

 Sense. This logical indicates whether the normal to the face is aligned with or opposed to that of the surface.  

Loop 

A loop is a connected component of the boundary of a face. It is the 2-dimensional analogy of a shell. As such it 

will be defined by a collection of fins and a collection of vertices.  

A loop has the following fields:  

 An ordered ring of fins.  

Each fin represents the oriented use of an edge by a loop. The sense of the fin indicates whether the loop 

direction and the edge direction agree or disagree. A loop may not contain the same edge more than once in 

each direction.  

The ordering of the fins represents the way in which their owning edges are connected to each other via 

common vertices in the loop (i.e. nose to tail, taking the sense of each fin into account).  

The loop direction is such that the face is locally on the left of the loop, as seen from above the face and 

looking in the direction of the loop.  

 A vertex. 

This is only non-null if the loop is an isolated loop, i.e. has no fins and represents a 0-dimensional hole in the 

face. 

Consequently, a loop must consist either of:  

 A single fin whose owning ring edge has no vertices, or  

 At least one fin and at least one vertex, or  

 A single vertex. 

Fin 

A fin represents the oriented use of an edge by a loop.  

A fin has the following fields:  

 A logical sense indicating whether the fin's orientation (and thus the orientation of its owning loop) is the 

same as that of its owning edge, or different.  

 A curve. This is only non-null if the fin‟s edge is tolerant, in which case every fin of that edge will reference a 

trimmed SP-curve. The underlying surface of the SP-curve must be the same as that of the corresponding 

face. The curve must not deviate by more than the edge tolerance from curves on other fins of the edge, and 

its ends must be within vertex tolerance of  the corresponding vertices. 

Note that fins are referred to as „halfedges‟ in the Schema file. 
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Edge 

An edge is an open finite connected subset of a curve; its boundary is a collection of zero, one or two vertices. It 

is the 1-dimensional analogy of a region.  

An edge has the following fields:  

 Start vertex.  

 End vertex. If one vertex is null, then so is the other; the edge will then be called a ring edge. 

 An ordered ring of distinct fins.  

The ordering of the fins represents the spatial ordering of their owning faces about the edge (with a right-hand 

screw rule, i.e. looking in the direction of the edge the fin ordering is clockwise). The edge may have zero or 

any number of fins; if it has none, it is called a wireframe edge.  

 A curve. This will be null if the edge has a tolerance. Otherwise, the vertices must lie within vertex tolerance 

of this curve, and if it is a Trimmed Curve, they must lie within vertex tolerance of the corresponding ends of 

the curve. The curve must also lie in the surfaces of the faces of the edge, to within modeller resolution. 

 Sense. This logical indicates whether the direction of the edge (start to end) is the same as that of the curve. 

 A tolerance. If this is null-double, the edge is accurate and is regarded as having a tolerance of half the 

modeller linear resolution, otherwise the edge is called tolerant. 

Vertex 

A vertex represents a point in space. It is the 0-dimensional analogy of a region.  

A vertex has the following fields:  

 A geometric point. 

 A tolerance. If this is null-double, the vertex is accurate and is regarded as having a tolerance of half the 

modeller linear resolution. 

Attributes 

An attribute is an entity which contains data, and which can be attached to any other entity except attributes, fins, 

lists, transforms or attribute definitions. An attribute  has the following fields: 

 Definition. An attribute definition is an entity which defines the number and type of the data fields in a 

specific type of attribute, which entities may have such an attribute attached, and what happens to the attribute 

when its owning entity is changed. An XT document must not contain duplicate attribute definitions. Each 

attribute of a given type should reference the same instance of the attribute definition for that type. It is 

incorrect, for example, to create a copy of an attribute definition for each instance of the attribute of that type. 

Only those attribute definitions referenced by attributes in the part occur in the transmit file. 

 Owner. 

 Fields. These are data fields consisting of one or more integers, doubles, vectors etc. 

There are a number of system attribute definitions which Parasolid creates on startup. These are documented in 

the section `System Attribute Definitions'. Parasolid applications can create user attribute definitions during a 

Parasolid session. These are transmitted along with any attributes that use them. 

Groups 

A group is a collection of entities in the same part. Groups in assemblies may contain instances, surfaces, curves 

and points. Groups in bodies may contain regions, faces, edges, vertices, surfaces, curves and points. Groups have 
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 Owning part. 

 A set of member entities. 

 Type. The type of the group specifies the allowed type of its members, e.g. a „face‟ group in a body may only 

contain faces, whereas a „mixed‟ group may have any valid members. 

Node-ids 

All entities in a part, other than fins, have a non-zero integer node-id which is unique within a part. This is 

intended to enable the entity to be identified within a transmit file. 

Entity matrix 
Thus the relations between entities can be represented in matrix form as follows. The numbers represent the 

number of distinct entities connected (either directly or indirectly) to the given one.  

 

 Body Region Shell Face Loop Fin Edge Vertex 

Body - >0 any any any any any any 

Region 1 - any any any any any any 

Shell 1 1 - any any any any any 

Face 1 1-2 1-2 - any any any any 

Loop 1 1-2 1-2 1 - any any any 

Fin 1 1-2 1-2 1 1 - 1 0-2 

Edge 1 any any any any any - 0-2 

Vertex 1 any any any any any any - 

 

Representation of manifold bodies 

Body types 

Parasolid bodies have a field body_type which takes values from an enumeration indicating whether the body is  

 solid, representing a manifold 3-dimensional volume, possibly with internal voids. It need not be connected. 

 sheet, representing a 2-dimensional subset of 3-space which is either manifold or manifold with boundary 

(certain cases are not strictly manifold – see below for details). It need not be connected. 

 wire, representing a 1-dimensional subset of 3-space which is either manifold or manifold with boundary, and 

which need not be connected. An acorn body, which represents a single 0-dimensional point in space, also 

has body-type wire. 

 general - none of the above. 

A general body is not necessarily non-manifold, but at the same time it is not constrained to be manifold, 

connected, or of a particular dimensionality (indeed, it may be of mixed dimensionality).  

Restrictions on entity relationships for manifold body types 

Solid, sheet, and wire bodies are best regarded as special cases of the topological model; for convenience we call 

them the manifold body types (although as stated above, a general body may also be manifold).  
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In particular, bodies of these manifold types must obey the following constraints:   

 An acorn body must consist of a single void region with a single shell consisting of a single vertex.  

 A wire body must consist of a single void region, with one or more shells, consisting of one or more 

wireframe edges and zero or more vertices (and no faces). Every vertex in the body must be used by exactly 

one or two of the edges (so, in particular, there are no acorn vertices).  

So each connected component will be either: closed, where every vertex has exactly two edges; or open, 

where all but two vertices have exactly two edges each, and the  

A wire is called open if all its components are open, and closed if all its components are closed. 

 Solid and sheet bodies must each contain at least one face; they may not contain any wireframe edges or acorn 

vertices.  

 A solid body must consist of at least two regions; at least one of its regions must be solid. Every face in a 

solid body must have a solid region on its negative side and a void region on its positive side (in other words, 

every face forms part of the boundary of the solid, and the face normals always point away from the solid).  

 Every edge in a solid body must have exactly two fins, which will have opposite senses. Every vertex in a 

solid body must either belong to a single isolated loop, or belong to one or more edges; in the latter case, the 

faces which use those edges must form a single edgewise-connected set (when considering only connections 

via the edges which meet at the vertex).  

These constraints ensure that the solid is manifold.  

 All the regions of a sheet body must be void. It is known as an open sheet if it has one region, and a closed 

sheet if it has no boundary. 

 Every edge in a sheet body must have exactly one or two fins; if it has two, these must have opposite senses. 

In a closed sheet body, all the edges will have exactly two fins. Every vertex in a sheet body must either 

belong to a single isolated loop, or belong to one or more edges; in the latter case, the faces which use those 

edges must either form a single edgewise-connected set where all the edges involved have exactly two fins, or 

any number of edgewise-connected sets, each of which must involve exactly two edges with one fin each 

(again, considering only connections via the edges which meet at the vertex).  

Note that, although the constraints on edges and vertices in a sheet body are very similar to those which apply 

to a solid, in this case they do not guarantee that the body will be manifold; indeed, the rather complicated 

rules about vertices in an open sheet body specifically allow bodies which are non-manifold (such as a body 

consisting of two square faces which share a single corner vertex, say).  
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Schema Definition 

Underlying types 
 

union CURVE_OWNER_u 

{  

struct EDGE_s           *edge; 

struct FIN_s          *fin; 

struct BODY_s           *body; 

struct ASSEMBLY_s       *assembly; 

struct WORLD_s          *world; 

};  

 

union SURFACE_OWNER_u 

{  

struct FACE_s           *face; 

struct BODY_s           *body; 

struct ASSEMBLY_s       *assembly; 

struct WORLD_s          *world; 

};  

 

union ATTRIB_GROUP_u 

{  

struct ATTRIBUTE_s        *attribute; 

struct GROUP_s          *group; 

struct 

MEMBER_OF_GROUP_s  

*member_of_group; 

};  

typedef union ATTRIB_GROUP_u  ATTRIB_GROUP; 

Geometry 
 

union CURVE_u 

{  

struct LINE_s                *line; 
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struct CIRCLE_s              *circle; 

struct ELLIPSE_s             *ellipse; 

struct INTERSECTION_s        *intersection; 

struct TRIMMED_CURVE_s *trimmed_curve; 

struct PE_CURVE_s            *pe_curve; 

struct B_CURVE_s             *b_curve; 

struct SP_CURVE_s            *sp_curve; 

};  

typedef union CURVE_u      CURVE; 

 

union SURFACE_u 

{  

struct PLANE_s               *plane; 

struct CYLINDER_s            *cylinder; 

struct CONE_s                *cone; 

struct SPHERE_s              *sphere; 

struct TORUS_s               *torus; 

struct BLENDED_EDGE_s *blended_edge; 

struct BLEND_BOUND_s *blend_bound; 

struct OFFSET_SURF_s *offset_surf; 

struct SWEPT_SURF_s *swept_surf; 

struct SPUN_SURF_s           *spun_surf; 

struct PE_SURF_s             *pe_surf; 

struct B_SURFACE_s           *b_surface; 

};  

typedef union SURFACE_u    SURFACE;  

 

union GEOMETRY_u 

{  

union  SURFACE_u         surface; 

union  CURVE_u           curve; 

struct POINT_s         *point; 

struct TRANSFORM_s     *transform; 

};  

typedef union GEOMETRY_u GEOMETRY; 
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Curves 

In the following field tables, „pointer0‟ means a reference to another node which may be null. „pointer‟ means a 

non-null reference. 

All curve nodes share the following common fields:  

 

Field name Data type Description 

node_id int Integer value unique to curve in part 

attributes_groups pointer0 Attributes and groups associated with curve 

owner pointer0 topological owner 

next pointer0 next curve in geometry chain 

previous pointer0 previous curve in geometry chain 

geometric_owner pointer0 geometric owner node 

sense char sense of curve: „+‟ or „-‟ (see end of Geometry 

section) 

 

struct ANY_CURVE_s             // Any Curve 

{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  CURVE_OWNER_u   owner; // $p 

union  CURVE_u   next; // $p 

union  CURVE_u  previous; // $p 

struct 

GEOMETRIC_OWNER_s  

*geometric_owner; // $p 

char   sense; // $c 

};   

typedef struct ANY_CURVE_s *ANY_CURVE; 

 LINE 

A straight line has a parametric representation of the form:  

R(t) = P + t D 

where 

 P is a point on the line 
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 D is its direction 

 

Field name Data type Description 

pvec vector point on the line 

direction vector direction of the line (a unit vector) 

 

struct LINE_s == ANY_CURVE_s     // Straight line 

{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  CURVE_OWNER_u   owner; // $p 

union  CURVE_u   next; // $p 

union  CURVE_u   previous; // $p 

struct 

GEOMETRIC_OWNER_s  

*geometric_ owner; // $p 

char   sense; // $c 

vector   pvec; // $v 

vector   direction; // $v 

};   

typedef struct LINE_s      *LINE; 

CIRCLE 

A circle has a parametric representation of the form 

R(t) = C+ r X cos(t) + r Y sin(t) 

Where 

 C is the centre of the circle 

 r is the radius of the circle 

 X and Y are the axes in the plane of the circle. 
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Field 

name 

Data type Description 

centre vector Centre of circle 

normal vector Normal to the plane containing the circle (a unit vector) 

x_axis vector X axis in the plane of the circle (a unit vector) 

radius double Radius of circle 

 

The Y axis in the definition above is the vector cross product of the normal and x_axis. 

struct CIRCLE_s == ANY_CURVE_s                        // Circle 

{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  CURVE_OWNER_u  owner; // $p 

union  CURVE_u  next; // $p 

union  CURVE_u   previous; // $p 

struct 

GEOMETRIC_OWNER_s  

*geometric_owner; // $p 

char   sense; // $c 

vector   centre; // $v 

vector   normal; // $v 

vector   x_axis; // $v 

double   radius; // $f 

};   

typedef struct CIRCLE_s    *CIRCLE; 

 ELLIPSE 

An ellipse has a parametric representation of the form 

R(t) = C+ a X cos(t) + b Y sin(t) 
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where 

 C is the centre of the circle 

 X is the major axis 

 r is the major radius 

 

 Y and b are the minor axis and minor radius respectively. 

 

Field name Data type Description 

centre Vector Centre of ellipse 

normal Vector Normal to the plane containing the ellipse  

(a unit vector) 

x_axis Vector major axis in the plane of the ellipse (a unit vector) 

major_radius Double major radius 

minor_radius Double minor radius 

 

The minor axis (Y) in the definition above is the vector cross product of the normal and x_axis. 

 

struct ELLIPSE_s == ANY_CURVE_s      // Ellipse 

{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  CURVE_OWNER_u   owner; // $p 

union  CURVE_u   next; // $p 

union  CURVE_u   previous; // $p 

struct GEOMETRIC_OWNER_s  *geometric_owner; // $p 

vector   centre; // $v 

char   sense; // $c 
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vector   normal; // $v 

vector   x_axis; // $v 

double   major_radius; // $f 

double   minor_radius; // $f 

    }; 

typedef struct ELLIPSE_s   *ELLIPSE; 

B_CURVE (B-spline curve) 

Parasolid supports B spline curves in full NURBS format. The mathematical description of these curves is: 

 Non Uniform Rational B-splines as (NURBS) 

 

 and the more simple Non Uniform B-spline 

  

 Where: 

n = number of vertices (n_vertices in the PK standard form) 

V0 …Vn-1 are the B-spline vertices 

w0 …wn-1 are the weights 

bi (t),I = 0…n-1 are the B-spline basis functions 

KNOT VECTORS 

The parameter t above is global. The user supplies an ordered set of values of t at specific points. The points are 

called knots and the set of values of t is called the knot vector. Each successive value in the set must be greater 

than or equal to its predecessor. Where two or more such values are the same we say that the knots are coincident, 

or that the knot has multiplicity greater than 1. In this case it is best to think of the knot set as containing a null or 

zero length span. The principal use of coincident knots is to allow the curve to have less continuity at that point 

than is formally required for a spline. A curve with a knot of multiplicity equal to its degree can have a 

discontinuity of first derivative and hence of tangent direction. This is the highest permitted multiplicity except at 

the first or last knot where it can go as high as (degree+1) . 

In order to avoid problems associated, for example with rounding errors in the knot set, Parasolid stores an array 

of distinct values and an array of integer multiplicities. This is reflected in the standard form used by the PK for 

input and output of B-curve data. 

Most algorithms in the literature, and the following discussion refer to the expanded knot set in which a knot of 

multiplicity n appears explicitly n times.  
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 THE NUMBER OF KNOTS AND VERTICES 

The knot set determines a set of basis functions which are bell shaped, and non zero over a span of (degree+1) 

intervals. One basis function starts at each knot, and each one finishes (degree +1) knots higher. The control 

vectors are the coefficients applied to these basis functions in a linear sum to obtain positions on the curve. Thus it 

can be seen that we require the number of knots n_knots = n_vertices + degree + 1 

THE VALID RANGE OF THE B-CURVE 

So if the knot set is numbered {t0 to tn_knots-1 } it can be seen then that it is only after tdegree that sufficient (degree + 

1) basis functions are present for the curve to be fully defined, and that the B-curve ceases to be fully defined after 

tn_knots - 1 - degree. 

The first degree knots and the last degree knots are known as the imaginary knots because their parameter values 

are outside the defined range of the B-curve. 

PERIODIC B-CURVES 

When the end of a B-curve meets its start sufficiently smoothly Parasolid allows it to be defined to have periodic 

parametrisation. That is to say that if the valid range were from tdegree to tn_knots - 1 - degree then the difference between 

these values is called the period and the curve can continue to be evaluated with the same point reoccurring every 

period. 

The minimal smoothness requirement for periodic curves in Parasolid is tangent continuity, but we strongly 

recommend C degree-1 , or continuity in the (degree-1)
th
 derivative. This in turn is best achieved by repeating the 

first degree vertices at the end, and by matching knot intervals so that counting from the start of the defined range, 

tdegree, the first degree intervals between knots match the last degree intervals, and similarly matching the last 

degree knot intervals before the end of the defined range to the first degree intervals. 

CLOSED B-CURVES 

A periodic B-curve must also be closed, but is permitted to have a closed Bcurve that is not periodic. 

In this case the rules for continuity are relaxed so that only C0 or positional continuity is required between the start 

and end. Such closed non-periodic curves are not able to be attached to topology. 

RATIONAL B-CURVE 

In the rational form of the curve, each vertex is associated with a weight, which increases or decreases the effect 

of the vertex without changing the curve hull. To ensure that the convex hull property is retained, the curve 

equation is divided by a denominator which makes the coefficients of the vertices sum to one. 

 

                 Where w0… wn-1 are weights. 

Each weight may take any positive value, and the larger the value, the greater the effect of the associated vertex. 

However, it is the relative sizes of the weights which is important, as may be seen from the fact that in the 

equation given above, all the weights may be multiplied by a constant without changing the equation.  
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In Parasolid the weights are stored with the vertices by treating these as having an extra dimension. In the usual 

case of a curve in 3-d cartesian space this means that vertex_dim is 4, the x, y, z values are multiplied through by 

the corresponding weight and the 4th value is the weight itself. 

B-SURFACE DEFINITION 

 

The B-surface definition is best thought of as an extension of the B-curve definition into two parameters, usually 

called u and v. Two knot sets are required and the number of control vertices is the product of the number that 

would be required for a curve using each knot vector. The rules for periodicity and closure given above for curves 

are extended to surfaces in an obvious way. 

For attachment to topology a B-surface is required to have G1 continuity. That is to say that the surface normal 

direction must be continuous. 

Parasolid does not support modelling with surfaces that are self-intersecting or contain cusps. Although they can 

be created they are not permitted to be attached to topology.  

 

Field name Data type Description 

nurbs Pointer Geometric definition 

data Pointer0 Auxiliary information 

 

struct B_CURVE_s == ANY_CURVE_s                     // B curve 

{   

int   node_id;  // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  CURVE_OWNER_u   owner; // $p 

union  CURVE_u   next; // $p 

union  CURVE_u   previous; // $p 

struct GEOMETRIC_OWNER_s  *geometric_owner; // $p 

char   sense; // $c 

struct NURBS_CURVE_s  *nurbs; // $p 

struct CURVE_DATA_s  *data; // $p 

};   

typedef struct B_CURVE_s       *B_CURVE; 

The data stored in an XT file for a NURBS_CURVE is 
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Field name Data type Description 

degree Short degree of the curve 

n_vertices Int number of control vertices („poles‟) 

vertex_dim Short dimension of control vertices 

n_knots Int number of distinct knots 

knot_type Byte form of knot vector 

periodic Logical true if curve is periodic 

closed Logical true if curve is closed 

rational Logical true if curve is rational 

curve_form Byte shape of curve, if special 

bspline_vertices Pointer control vertices node 

knot_mult Pointer knot multiplicities node 

knots Pointer knots node 

 

The knot_type enum is used to describe whether or not the knot vector has a certain regular spacing or other 

common property: 

typedef enum 

{  

SCH_unset = 1,             // Unknown 

SCH_non_uniform = 2,       // Known to be not special 

SCH_uniform = 3,           // Uniform knot set 

SCH_quasi_uniform = 4,     // Uniform apart from bezier ends 

SCH_piecewise_bezier = 5,  // Internal multiplicity of order-1 

SCH_bezier_ends = 6        // Bezier ends, no other property 

}   

    SCH_knot_type_t; 

A uniform knot set is one where all the knots are of multiplicity one and are equally spaced. A curve has bezier 

ends if the first and last knots both have multiplicity „order‟. 

The curve_form enum describes the geometric shape of the curve. The parameterisation of the curve is not 

relevant. 

typedef enum 

{  

SCH_unset          = 1,          // Form is not known 

SCH_arbitrary      = 2,          // Known to be of no particular shape 
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SCH_polyline       = 3,  

SCH_circular_arc   = 4,  

SCH_elliptic_arc   = 5,  

SCH_parabolic_arc  = 6,  

SCH_hyperbolic_arc = 7  

}  

    SCH_curve_form_t; 

 

struct NURBS_CURVE_s                                // NURBS curve 

{   

short   degree; // $n 

int   n_vertices; // $d 

short   vertex_dim; // $n 

int   n_knots; // $d 

SCH_knot_type_t   knot_type; // $u 

logical   periodic; // $l 

logical   closed; // $l 

logical   rational; // $l 

SCH_curve_form_t   curve_form; // $u 

struct BSPLINE_VERTICES_s  *bspline_vertices; // $p 

struct KNOT_MULT_s        *knot_mult; // $p 

struct KNOT_SET_s         *knots; // $p 

};   

typedef struct NURBS_CURVE_s *NURBS_CURVE; 

 

The bspline vertices node is simply an array of doubles; „vertex_dim‟ doubles together define one control vertex. 

Thus the length of the array is n_vertices * vertex_dim. 

struct BSPLINE_VERTICES_s             // B-spline vertices 

{   

double  vertices[ 1 ]; // $f[] 

};   

typedef struct BSPLINE_VERTICES_s *BSPLINE_VERTICES; 

The knot vector of the NURBS _CURVE is stored as an array of distinct knots and an array describing the 

multiplicity of each distinct knot. Hence the two nodes 

struct KNOT_SET_s                     // Knot set 
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{   

double  knots[ 1 ]; // $f[] 

};    

typedef struct KNOT_SET_s *KNOT_SET; 

and 

struct KNOT_MULT_s                    // Knot multiplicities 

{   

short  mult[ 1 ]; // $n[] 

};    

typedef struct KNOT_MULT_s *KNOT_MULT; 

The data stored in an XT file for a CURVE_DATA node is: 

typedef enum 

{  

SCH_unset = 1,                // check has not been performed 

SCH_no_self_intersections = 2,     // passed checks 

SCH_self_intersects = 3,           // fails checks 

SCH_checked_ok_in_old_version = 4  // see below 

}  

    SCH_self_int_t; 

 

struct CURVE_DATA_s                    // curve_data 

{   

SCH_self_int_t  self_int; // $u 

Struct HELIX_CU_FORM_s *analytic_form // $p 

};   

typedef struct CURVE_DATA_s *CURVE_DATA; 

The self-intersection enum describes whether or not the geometry has been checked for self-intersections, and 

whether such self-intersections were found to exist: 

The SCH_checked_ok_in_old_version enum indicates that the self-intersection check has been performed by a 

Parasolid version 5 or earlier but not since. 

If the analytic_form field is not null, it will point to a HELIX_CU_FORM node, which indicates that the curve 

has a helical shape, as follows: 

struct HELIX_CU_FORM_s  

{   

vector axis_pt // $v 
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vector axis_dir // $v 

vector point // $v 

char hand // $c 

interval turns // $i 

double pitch // $f 

double tol // $f 

};   

typedef struct HELIX_CU_FORM_s *HELIX_CU_FORM; 

The axis_pt and axis_dir fields define the axis of the helix. The hand field is „+‟ for a right-handed and „-‟ for a 

left-handed helix. A representative point on the helix is at turn position zero. The turns field gives the extent of 

the helix relative to the point. For instance, an interval [0 10] indicates a start position at the point and an end 10 

turns along the axis. Pitch is the distance travelled along the axis in one turn. Tol is the accuracy to which the 

owning bcurve fits this specification. 

INTERSECTION 

An intersection curve is one of the branches of a surface / surface intersection. Parasolid represents these curves 

exactly; the information held in an intersection curve node is sufficient to identify the particular intersection 

branch involved, to identify the behavior of the curve at its ends, and to evaluate precisely at any point in the 

curve. Specifically, the data is: 

 The two surfaces involved in the intersection. 

 The two ends of the intersection curve. These are referred to as the „limits‟ of the curve. They identify the 

particular branch involved. 

 An ordered array of points along the curve. This array is referred to as the „chart‟ of the curve. It defines the 

parameterization of the curve, which increases as the array index increases. 

The natural tangent to the curve at any point (i.e. in the increasing parameter direction) is given by the vector 

cross-product of the surface normals at that point, taking into account the senses of the surfaces.  

Singular points where the cross-product of the surface normals is zero, or where one of the surfaces is degenerate, 

are called terminators. Intersection curves do not contain terminators in their interior. At terminators, the tangent 

to the curve is defined by the limit of the curve tangent as the curve parameter approaches the terminating value. 

 

Field name Data type Description 

Surface pointer array [2] Surfaces of intersection curve 

chart Pointer array of hvecs on the curve – see below 

start Pointer start limit of the curve 

end Pointer end limit of the curve 

 

struct INTERSECTION_s == ANY_CURVE_s        // Intersection 

{   

int                         node_id;              // $d 
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union  ATTRIB_GROUP_u       attributes_groups;    // $p 

union  CURVE_OWNER_u        owner;                // $p 

union  CURVE_u              next;                 // $p 

union  CURVE_u              previous;             // $p 

struct GEOMETRIC_OWNER_s  *geometric_owner;      // $p 

char                        sense;                // $c 

union  SURFACE_u            surface[ 2 ];         // $p[2] 

struct CHART_s            *chart;                // $p 

struct LIMIT_s            *start;                // $p 

struct LIMIT_s            *end;                  // $p 

};   

typedef struct INTERSECTION_s  *INTERSECTION; 

A point on an intersection curve is stored in a data structure called an „hvec‟ (hepta-vec, or 7-vector): 

typedef struct hvec_s                  // hepta_vec 

{   

vector                   Pvec;             // position 

double                   u[2];             // surface parameters 

double                   v[2];  

vector                   Tangent;          // curve tangent 

double                   t;                // curve parameter 

} hvec;   

where 

 pvec is a point common to both surfaces 

 u[] and v[] are the u and v parameters of the pvec on each of the surfaces. 

 tangent is the tangent to the curve at pvec. This will be equal to the (normalised) vector cross product of the 

surface normals at pvec, when this cross product is non-zero. These surface normals take account of the 

surface sense fields. 

 t is the parameter of the pvec on the curve 

Note that only the pvec part of an hvec is actually transmitted. 

The chart data structure essentially describes a piecewise-linear (chordal) approximation to the true curve. As well 

as containing the ordered array of hvecs defining this approximation, it contains extra information pertaining to 

the accuracy of the approximation: 

struct CHART_s                               // Chart 

{   

double                  Base_parameter;          // $f 
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double                  Base_scale;              // $f 

int                   Chart_count;             // $d 

double                  Chordal_error;           // $f 

double                  Angular_error;           // $f 

double                  Parameter_error[2];      // $f[2] 

hvec                    Hvec[ 1 ];               // $h[] 

};   

where 

 base_parameter is the parameter of the first hvec in the chart 

 base_scale determines the scale of the parameterisation (see below) 

 chart_count is the length of the hvec array 

 chordal_error is an estimate of the maximum deviation of the curve from the piecewise-linear approximation 

given by the hvec array. It may be null. 

 angular_error is the maximum angle between the tangents of two sequential hvecs. It may be null. 

 parameter_error[] is always [null, null]. 

 hvec[] is the ordered array of hvecs. 

The limits of the intersection curve are stored in the following data structure: 

struct LIMIT_s                           // Limit 

{   

char                    type;             // $c 

hvec                    hvec[ 1 ];        // $h[] 

};   

The „type‟ field may take one of the following values 

const char SCH_help                = 'H';    // help hvec 

const char SCH_terminator          = 'T';    // terminator 

const char SCH_limit               = 'L';    // arbitrary limit 

const char SCH_boundary            = 'B';    // spine boundary 

The length of the hvec array depends on the type of the limit. 

 a SCH_help limit is an arbitrary point on a closed intersection curve. There will be one hvec in the hvec array, 

locating the curve. 

 a SCH_terminator limit is a point where one of the surface normals is degenerate, or where their cross-

product is zero. Typically, there will be more than one branch of intersection between the two surfaces at 

these singularities. Ther will be two values in the hvec array. The first will be the exact position of the 

singularity, and the second will be a point on the curve a small distance away from the terminator. This 

„branch point‟ identifies which branch relates to the curve in question. The branch point is the one which 

appears in the chart, at the corresponding end – so the singularity lies just outside the parameter range of the 

chart. 
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 a SCH_limit limit is an artificial boundary of an intersection curve on an otherwise potentially infinite branch. 

The single hvec describes the end of the curve. 

 a SCH_boundary limit is used to describe the end of a degenerate rolling-ball blend. It is not relevant to 

intersection curves. 

The parameterization of the curve is given as follows. If the chart points are Pi, i = 0 to n, with parameters ti, and 

natural tangent vectors Ti, then define 

 Ci = | Pi+1 – Pi | 

 cos(ai) = Ti . ( Pi+1 – Pi ) 

 cos(bi) = Ti . ( Pi – Pi-1 ) 

Then at any chart point Pi the angles ai and bi are the deviations between the tangent at the chart point and the  

next and previous chords respectively.  

Let  f0 = base_scale 

 fi = ( cos(bi) / cos(ai) ) fi-1 

Then  t0 = base_parameter 

 ti = ti-1 + Ci-1 fi-1 

The parameter of a point between two chart points is given by projecting the point onto the tangent line at the 

previous chart point. The factors fi are chosen so that the parameterization is C1.  

TRIMMED_CURVE  

A trimmed curve is a bounded region of another curve, referred to as its basis curve. It is defined by the basis 

curve and two points and their corresponding parameters. Trimmed curves are most commonly attached to fins 

(fins) of tolerant edges in order to specify which portion of the underlying basis curve corresponds to the tolerant 

edge. They are necessary since the tolerant vertices of the edge do not necessarily lie exactly on the basis curve; 

the „point‟ fields of the trimmed curve lie exactly on the basis curve, and within tolerance of the relevant vertex. 

The rules governing the parameter fields and points are: 

 point_1 and point_2 correspond to parm_1 and parm_2 respectively. 

 If the basis curve has positive sense, parm_2 > parm_1. 

 If the basis curve has negative sense, parm_2 < parm_1. 

In addition, 

For open basis curves. 

 Both parm_1 and parm_2 must be in the parameter range of the basis curve. 

 point_1 and point_2 must not be equal. 

For periodic basis curves 

 parm_1 must lie in the base range of the basis curve. 

 If the whole basis curve is required then parm_1 and parm_2 should be a period apart and point_1 = point_2. 

Equality of parm_1 and parm_2 is not permitted. 

 parm_1 and parm_2 must not be more than a period apart. 

For closed but non-periodic basis curves 
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 Both parm_1 and parm_2 must be in the parameter range of the basis curve. 

 If the whole of the basis curve is required, parm_1 and parm_2 must lie close enough to each end of the valid 

parameter range in order that point_1 and point_2 are coincident to Parasolid tolerance (1.0e-8 by default). 

The sense of a trimmed curve is positive. 

Field name Data type Description 

basis_curve pointer Basis curve 

point_1 vector start of trimmed portion 

point_2 vector end of trimmed portion 

parm_1 double parameter on basis curve corresponding to point_1 

parm_2 double parameter on basis curve corresponding to point_2 

 

struct TRIMMED_CURVE_s == ANY_CURVE_s             // Trimmed Curve 

{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  CURVE_OWNER_u   owner; // $p 

union  CURVE_u   next; // $p 

union  CURVE_u   previous; // $p 

struct GEOMETRIC_OWNER_s  *geometric_owner; // $p 

char   sense; // $c 

union  CURVE_u   basis_curve; // $p 

vector   point_1; // $v 

vector   point_2; // $v 

double   parm_1; // $f 

double   parm_2; // $f 

};   

typedef struct TRIMMED_CURVE_s      *TRIMMED_CURVE; 

PE_CURVE (Foreign Geometry curve) 

Foreign geometry in Parasolid is a type used for representing customers‟ in-house proprietary data. It is also 

known as PE (parametrically evaluated) geometry. It can also be used internally for representing geometry 

connected with this data (for example, offsets of foreign surfaces). These two types of foreign geometry usage are 

referred to as „external‟ and „internal‟ PE data respectively. Internal PE curves are not used at present. 

Applications not using foreign geometry will never encounter either external or internal PE data structures at Parasolid V9 

or beyond. 
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Field name Data type Description 

type char whether internal or external 

data pointer internal or external data 

tf pointer0 transform applied to geometry 

internal geom pointer array reference to other related geometry 

 

union PE_DATA_u                             // PE_data_u 

{   

struct EXT_PE_DATA_s    *external;               // $p 

struct INT_PE_DATA_s    *internal;               // $p 

};   

typedef union PE_DATA_u PE_DATA; 

The PE internal geometry union defined below is used by internal foreign geometry only. 

union PE_INT_GEOM_u                                 

{   

union SURFACE_u           surface;                // $p 

union CURVE_u             curve;                  // $p 

};   

typedef union PE_INT_GEOM_u PE_INT_GEOM; 

 

struct PE_CURVE_s == ANY_CURVE_s                 // PE_curve 

{   

int                         node_id;                 // $d 

union  ATTRIB_GROUP_u       attributes_groups;       // $p 

union  CURVE_OWNER_u        owner;                   // $p 

union  CURVE_u              next;                    // $p 

union  CURVE_u              previous;                // $p 

struct 

GEOMETRIC_OWNER_s  

*geometric_owner;         // $p 

char                        sense;                   // $c 

char                        type;                    // $c 

union  PE_DATA_u            data;                    // $p 

struct TRANSFORM_s        *tf;                      // $p 

union  PE_INT_GEOM_u        internal_geom[ 1 ];      // $p[] 
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};   

typedef struct PE_CURVE_s       *PE_CURVE; 

 

The type of the foreign geometry (whether internal or external) is identified in the PE curve node  by means of  

the char „type‟ field, taking one of the values 

const char SCH_external  = 'E';    // external PE geometry 

const char SCH_interna   = 'I';    // internal PE geometry 

 

The PE_data union is used in a PE curve or surface node to identify the internal or external evaluator 

corresponding to the geometry, and also holds an array of real and/or integer parameters to be passed to the 

evaluator. The data stored corresponds exactly to that passed to the PK routine PK_FSURF_create when the 

geometry is created. 

struct EXT_PE_DATA_s                       // ext_PE_data 

{   

struct KEY_s           *key;              // $p 

struct REAL_VALUES_s   *real_array;        // $p 

struct INT_VALUES_s    *int_array;        // $p 

};   

typedef struct EXT_PE_DATA_s *EXT_PE_DATA; 

 

struct INT_PE_DATA_s                       // int_PE_data 

{   

int                     geom_type;       // $d 

struct REAL_VALUES_s  *real_array;        // $p 

struct INT_VALUES_s   *int_array;        // $p 

};   

typedef struct INT_PE_DATA_s *INT_PE_DATA; 

The only internal pe type in use at the moment is the offset PE surface, for which the geom_type is 2. 

SP_CURVE  

An SP curve is the 3D curve resulting from embedding a 2D curve in the parameter space of a surface.  

The 2D curve must be a 2D BCURVE; that is it must either be a rational B curve with a vertex dimensionality of 

3, or a non-rational B curve with a vertex dimensionality of 2. 

 

Field name Data type Description 

surface pointer surface 

b_curve pointer 2D Bcurve 
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original pointer0 not used 

tolerance_to_original double not used 

 

struct   SP_CURVE_s == ANY_CURVE_s                   // SP curve 

{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  CURVE_OWNER_u   owner; // $p 

union  CURVE_u   next; // $p 

union  CURVE_u   previous; // $p 

struct 

GEOMETRIC_OWNER_s 

*geometric_owner; // $p 

char   sense; // $c 

union  SURFACE_u   surface; // $p 

struct B_CURVE_s         *b_curve; // $p 

union  CURVE_u   original; // $p 

double   tolerance_to_original; // $f 

};   

typedef struct SP_CURVE_s   *SP_CURVE; 

Surfaces 

All surface nodes share the following common fields: 

Field name Data type Description 

node_id int Integer value unique to surface in part 

attributes_groups pointer0 Attributes and groups associated with surface 

owner pointer topological owner 

next pointer0 next surface in geometry chain 

previous pointer0 previous surface in geometry chain 

geometric_owner pointer0 geometric owner node 

sense char sense of surface: „+‟ or „-‟(see end of Geometry 

section) 

 

struct ANY_SURF_s                                  // Any Surface 

{   

int   node_id; // $d 



 JT v9.5 Format Reference  

 

 - 389 - 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  SURFACE_OWNER_u   owner; // $p 

union  SURFACE_u   next; // $p 

union  SURFACE_u   previous; // $p 

struct 

GEOMETRIC_OWNER_s  

*geometric_owner; // $p 

char   sense; // $c 

};   

typedef struct ANY_SURF_s  *ANY_SURF; 

PLANE 

A plane has a parametric representation of the form 

R( u, v ) = P + uX + vY 

where 

 P is a point on the plan 

 

 X and Y are axes in the plane. 

 

Field name Data type Description 

pvec vector point on the plane 

normal vector normal to the plane (a unit vector) 

x_axis vector X axis of the plane (a unit vector) 

 

The Y axis in the definition above is the vector cross product of the normal and x_axis. 

 

struct PLANE_s == ANY_SURF_s                       // Plane 

{   
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int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  SURFACE_OWNER_u   owner; // $p 

union  SURFACE_u   next; // $p 

union  SURFACE_u   previous; // $p 

struct 

GEOMETRIC_OWNER_s  

*geometric_owner; // $p 

char   sense; // $c 

vector   pvec; // $v 

vector  normal; // $v 

vector  x_axis; // $v 

};   

typedef struct PLANE_s     *PLANE; 

CYLINDER 

A cylinder has a parametric representation of the form:  

R(u,v) = P + rXcos(u) + rYsin(u) + vA 

where 

 

 P is a point on the cylinder axis 

 r is the cylinder radius 

 A is the cylinder axis 

 X and Y are unit vectors such that A, X and Y form an orthonormal set 

 

Field name Data type Description 
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pvec vector point on the cylinder axis 

axis vector direction of the cylinder axis (a unit vector) 

radius double radius of cylinder 

x_axis vector X axis of the cylinder (a unit vector) 

 

The Y axis in the definition above is the vector cross product of the axis and x_axis. 

struct CYLINDER_s == ANY_SURF_s                    // Cylinder 

{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  SURFACE_OWNER_u   owner; // $p 

union  SURFACE_u  next; // $p 

union  SURFACE_u   previous; // $p 

struct GEOMETRIC_OWNER_s  *geometric_owner; // $p 

char   sense; // $c 

vector   pvec; // $v 

vector   axis; // $v 

double   radius; // $f 

vector   x_axis; // $v 

};   

typedef struct CYLINDER_s  *CYLINDER; 

CONE 

A cone in Parasolid is only half of a mathematical cone. By convention, the cone axis points away from the half 

of the cone in use. A cone has a parametric representation of the form:  

R( u, v ) = P - vA + ( Xcos( u ) + Ysin( u ) )( r + vtan( a ) ) 

where 

 P is a point on the cone axis 

 r is the cone radius at the point P 

 A is the cone axis 

 X and Y are unit vectors such that A, X and Y form an orthonormal set, i.e. Y = A x X.  
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 a is the cone half angle. 

 

Field name Data type Description 

pvec vector point on the cone axis 

axis vector direction of the cone axis (a unit vector) 

radius double radius of the cone at its pvec 

sin_half_angle double sine of the cone‟s half angle 

cos_half_angle double cosine of the cone‟s half angle 

x_axis vector X axis of the cone (a unit vector) 

 

The Y axis in the definition above is the vector cross product of the axis and x_axis. 

 

struct CONE_s == ANY_SURF_s                        // Cone 

{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  SURFACE_OWNER_u   owner; // $p 

union  SURFACE_u   next; // $p 

union  SURFACE_u   previous; // $p 

struct 

GEOMETRIC_OWNER_s  

*geometric_owner; // $p 

char   sense; // $c 

vector   pvec; // $v 

vector   axis; // $v 

double  radius; // $f 

double   sin_half_angle; // $f 
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double   cos_half_angle; // $f 

vector   x_axis; // $v 

};   

typedef struct CONE_s      *CONE; 

SPHERE 

A sphere has a parametric representation of the form:  

R( u, v ) = C + ( Xcos( u ) + Ysin( u ) ) rcos( v ) + rAsin( v ) 

where 

 C is centre of the sphere 

 r is the sphere radius 

 

 A, X and Y form an orthonormal axis set. 

Field name Data type Description 

centre vector centre of the sphere 

radius double radius of the sphere 

axis vector A axis of the sphere (a unit vector) 

x_axis vector X axis of the sphere (a unit vector) 

 

The Y axis of the sphere is the vector cross product of its A and X axes. 

 

struct SPHERE_s == ANY_SURF_s                      // Sphere 

{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  SURFACE_OWNER_u   owner; // $p 

union  SURFACE_u   next; // $p 

union  SURFACE_u   previous; // $p 
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struct 

GEOMETRIC_OWNER_s  

*geometric_owner; // $p 

char   sense; // $c 

vector   centre; // $v 

double   radius; // $f 

vector   axis; // $v 

vector   x_axis; // $v 

};   

typedef struct SPHERE_s    *SPHERE; 

TORUS 

A torus has a parametric representation of the form 

R( u, v ) = C + ( X cos( u ) + Y sin(u) )( a + b cos(v) ) + b A sin( v ) 

where 

 C is center of the torus 

 A is the torus axis 

 a is the major radius 

 b is the minor radius 

 X and Y are unit vectors such that A, X and Y form an orthonormal set. 

In Parasolid, there are three types of torus:  

Doughnut - the torus is not self-intersecting (a > b) 

Apple - the outer part of a self-intersecting torus (a <= b, a > 0) 

Lemon - the inner part of a self-intersecting torus (a < 0, |a| < b) 

The limiting case a = b is allowed; it is called an „osculating apple‟, but there is no „lemon‟ surface corresponding 

to this case.  

The limiting case a = 0 cannot be represented as a torus; this is a sphere. 

 

Field name Data type Description 

centre vector centre of the torus 

axis vector axis of the torus (a unit vector) 

major_radius double major radius 

minor_radius double minor radius 

x_axis vector X axis of the torus (a unit vector) 

 

The Y axis in the definition above is the vector cross product of the axis of the torus and the x_axis. 
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struct TORUS_s == ANY_SURF_s                       // Torus 

{   

    int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  SURFACE_OWNER_u   owner; // $p 

union  SURFACE_u   next; // $p 

union  SURFACE_u   previous; // $p 

struct GEOMETRIC_OWNER_s  *geometric_owner; // $p 

char   sense; // $c 

vector   centre; // $v 

vector   axis; // $v 

double   major_radius; // $f 

double   minor_radius; // $f 

vector   x_axis; // $v 

};   

 

typedef struct TORUS_s     *TORUS; 

BLENDED_EDGE (Rolling Ball Blend) 

Parasolid supports exact rolling ball blends. They have a parametric representation of the form 

R( u, v ) = C( u ) + rX( u )cos( v a( u ) ) + rY( u )sin( va( u ) ) 

where 

 C( u ) is the spine curve 

 r is the blend radius 

 X( u ) and Y( u ) are unit vectors such that C‟(u) . X( u ) = C‟(u) . Y( u ) = 0 

 a( u ) is the angle subtended by points on the boundary curves at the spine 

 

X, Y and a are expressed as functions of u, as their values change with u. 

The spine of the rolling ball blend is the center line of the blend; i.e. the path along which the center of the ball moves. 
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Field name Data type Description 

type char type of blend: „R‟ or „E‟ 

surface pointer[2] supporting surfaces (adjacent to original edge) 

spine pointer spine of blend 

range double[2] offsets to be applied to surfaces 

thumb_weight double[2] always [1,1]  

boundary pointer0[2] always [0, 0] 

start pointer0 Start LIMIT in certain degenerate cases 

end pointer0 End LIMIT in certain degenerate cases 

 

struct BLENDED_EDGE_s == ANY_SURF_s         // Blended edge 

{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  SURFACE_OWNER_u   owner; // $p 

union  SURFACE_u   next; // $p 

union  SURFACE_u  previous; // $p 

struct 

GEOMETRIC_OWNER_s  

*geometric_owner; // $p 

char   sense; // $c 

char   blend_type; // $c 

union  SURFACE_u   surface[2]; // $p[2] 

union  CURVE_u  spine; // $p 

double   range[2]; // $f[2] 

double   thumb_weight[2]; // $f[2] 

union  SURFACE_u   boundary[2]; // $p[2] 

struct LIMIT_s  *start; // $p 

struct LIMIT_s  *end; // $p 

};   

typedef struct BLENDED_EDGE_s *BLENDED_EDGE; 

. 

The parameterisation of the blend is as follows. The u parameter is inherited from the spine, the constant u lines 

being circles perpendicular to the spine curve. The v parameter is zero at the blend boundary on the first surface, 

and one on the blend boundary on the second surface; unless the sense of the spine curve is negative, in which 

case it is the other way round. The v parameter is proportional to the angle around the circle. 

Transmit files can contain blends of the following types: 
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const char SCH_rolling_ball = 'R'; //  rolling ball blend 

const char SCH_cliff_edge   = 'E';    //  cliff edge blend 

 

For rolling ball blends, the spine curve will be the intersection of the two surfaces obtained by offsetting the 

supporting surfaces by an amount given by the respective entry in range[]. Note that the offsets to be applied may 

be positive or negative, and that the sense of the surface is significant; i.e. the offset vector is the natural unit 

surface normal, times the range, times –1 if the sense is negative. 

For cliff edge blends, one of the surfaces will be a blended_edge with a range of [0,0]; its spine will be the cliff 

edge curve, and its supporting surfaces will be the surfaces of the faces adjacent to the cliff edge. Its type will be 

R. 

The limit fields will only be non-null if the spine curve is periodic but the edge curve being blended has 

terminators – for example if the spine is elliptical but the blend degenerates. In this case the two LIMIT nodes, of 

type „L‟, determine the extent of the spine. 

BLEND_BOUND (Blend boundary surface) 

A blend_bound surface is a construction surface, used to define the boundary curve where a blend becomes 

tangential to its supporting surface. It is an implicit surface defined internally so that it intersects one of the 

supporting surfaces along the boundary curve. It is orthogonal to the blend and the supporting surface along this 

boundary curve. Since the actual shape of the surface is not significant for the blend geometry, it is not described 

here. 

Blend boundary surfaces are most commonly referenced by the intersection curve representing the boundary 

curve of the blend. 

The data stored in an XT file for a blend_bound is only that necessary to identify the relevant blend and 

supporting surface: 
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Field name Data type Description 

boundary short index into supporting surface array 

blend pointer corresponding blend surface 

 

struct BLEND_BOUND_s == ANY_SURF_s          // Blend boundary 

{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  SURFACE_OWNER_u   owner; // $p 

union  SURFACE_u   next; // $p 

union  SURFACE_u   previous; // $p 

struct 

GEOMETRIC_OWNER_s  

*geometric_owner; // $p 

char   sense; // $c 

short   boundary; // $n 

union  SURFACE_u   blend; // $p 

};   

typedef struct BLEND_BOUND_s  *BLEND_BOUND; 

The supporting surface corresponding to the blend_bound is 

blend_bound->blend.blended_edge->surface[1 - blend_bound->boundary]. 

OFFSET_SURF  

An offset surface is the result of offsetting a surface a certain distance along its normal, taking into account the 

surface sense. It inherits the parameterization of this underlying surface. 

 

Field name Data type Description 

check char check status 

true_offset logical not used 

surface pointer underlying surface 

offset double signed offset distance 

scale double for internal use only – may be set to null 

 

struct OFFSET_SURF_s == ANY_SURF_s       // Offset surface 

{   

int   node_id; // $d 
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union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  SURFACE_OWNER_u   owner; // $p 

union  SURFACE_u   next; // $p 

union  SURFACE_u   previous; // $p 

struct GEOMETRIC_OWNER_s  *geometric_owner; // $p 

char   sense; // $c 

char   check; // $c 

logical   true_offset; // $l 

union  SURFACE_u   surface; // $p 

double   offset; // $f 

double  scale; // $f 

};   

typedef struct OFFSET_SURF_s    *OFFSET_SURF; 

 

The offset surface is subject to the following restrictions: 

 The offset distance must not be within modeller linear resolution of zero 

 The sense of the offset surface must be the same as that of the underlying surface 

 Offset surfaces may not share a common underlying surface 

 

The „check‟ field may take one of the following values: 

const char SCH_valid       = 'V';    // valid 

const char SCH_invalid     = 'I';    // invalid 

const char SCH_unchecked   = 'U';    // has not been checked 

B_SURFACE  

Parasolid supports B spline curves in full NURBS format. 

Field name Data type Description 

nurbs pointer Geometric definition 

data pointer0 Auxiliary information 

 

struct B_SURFACE_s == ANY_SURF_s                  // B surface 

{   

int   node_id; // $d 

union ATTRIB_GROUP_u   attributes_groups; // $p 

union  SURFACE_OWNER_u   owner; // $p 
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union  SURFACE_u   next; // $p 

union  SURFACE_u   previous; // $p 

struct GEOMETRIC_OWNER_s  *geometric_owner; // $p 

char   sense; // $c 

struct NURBS_SURF_s  *nurbs; // $p 

struct SURFACE_DATA_s  *data; // $p 

};   

typedef struct B_SURFACE_s       *B_SURFACE; 

 

The data stored in an XT file for a NURBS surface is 

Field name Data type Description 

u_periodic logical true if surface is periodic in u parameter 

v_periodic logical true if surface is periodic in v parameter 

u_degree short u degree of the surface 

v_degree short v degree of the surface 

n_u_vertices int number of control vertices („poles‟) in u direction 

n_v_vertices int number of control vertices („poles‟) in v direction 

u_knot_type byte form of u knot vector – see “B curve” 

v_knot_type byte form of v knot vector 

n_u_knots int number of distinct u knots 

n_v_knots int number of distinct v knots 

rational logical true if surface is rational 

u_closed logical true if surface is closed in u 

v_closed logical true if surface is closed in v 

surface_form byte shape of surface, if special 

vertex_dim short dimension of control vertices 

bspline_vertices pointer control vertices (poles) node 

u_knot_mult pointer multiplicities of u knot vector 

v_knot_mult pointer multiplicities of v knot vector 

u_knots pointer u knot vector 

v_knots pointer v knot vector 

 

The surface form enum is defined below. 

typedef enum 
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{  

SCH_unset = 1,               // Unknown 

SCH_arbitrary = 2,           // No particular shape 

SCH_planar = 3,  

SCH_cylindrical = 4,  

SCH_conical = 5,  

SCH_spherical = 6,  

SCH_toroidal = 7,  

SCH_surf_of_revolution = 8,  

SCH_ruled = 9,  

SCH_quadric = 10,  

SCH_swept = 11  

}  

    SCH_surface_form_t; 

 

struct NURBS_SURF_s                         // NURBS surface 

{   

logical                      u_periodic;           // $l 

logical                      v_periodic;           // $l 

short                        u_degree;             // $n 

short                        v_degree;             // $n 

int                        n_u_vertices;         // $d 

int                        n_v_vertices;         // $d 

SCH_knot_type_t              u_knot_type;          // $u 

SCH_knot_type_t              v_knot_type;          // $u 

int                        n_u_knots;            // $d 

int                        n_v_knots;            // $d 

logical                      rational;             // $l 

logical                      u_closed;             // $l 

logical                      v_closed;             // $l 

SCH_surface_form_t           surface_form;         // $u 

short                        vertex_dim;           // $n 

struct BSPLINE_VERTICES_s  *bspline_vertices;     // $p 

struct KNOT_MULT_s         *u_knot_mult;          // $p 
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struct KNOT_MULT_s         *v_knot_mult;          // $p 

struct KNOT_SET_s          *u_knots;              // $p 

struct KNOT_SET_s          *v_knots;              // $p 

};   

typedef struct NURBS_SURF_s *NURBS_SURF; 

 

The „bspline_vertices‟, „knot_set‟ and „knot_mult‟ nodes and the „knot_type‟ enum are described in the 

documentation for BCURVE. 

The „surface data‟ field in a B surface node is a structure designed to hold auxiliary or „derived‟ data about the 

surface: it is not a necessary part of the definition of the B surface. It may be null, or the majority of its individual 

fields may be null. It is recommended that it only be set by Parasolid. 

struct  SURFACE_DATA_s          // auxiliary surface data 

{   

interval                    original_uint;         // $i 

interval                  original_vint;         // $i 

interval                    extended_uint;         // $i 

interval   extended_vint; // $i 

SCH_self_int_t   self_int; // $u 

char   original_u_start; // $c 

char   original_u_end; // $c 

char   original_v_start; // $c 

char   original_v_end; // $c 

char   extended_u_start; // $c 

char   extended_u_end; // $c 

char   extended_v_start; // $c 

char   extended_v_end; // $c 

char   analytic_form_type; // $c 

char   swept_form_type; // $c 

char   spun_form_type; // $c 

char   blend_form_type; // $c 

void                            *analytic_form; // $p 

void                            *swept_form; // $p 

void                            *spun_form; // $p 

void                            *blend_form; // $p 

};   

typedef struct SURFACE_DATA_s *SURFACE_DATA; 
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The „original_‟ and „extended_‟ parameter intervals and corresponding character fields original_u_start etc. are all 

connected with Parasolid‟s ability to extend B surfaces when necessary – functionality which is commonly 

exploited in “local operation” algorithms for example. This is done automatically without the need for user 

intervention. 

In cases where the required extension can be performed by adding rows or columns of control points, then the 

nurbs data will be modified accordingly – this is referred to as an „explicit‟ extension. In some rational B surface 

cases, explicit extension is not possible - in these cases, the surface will be „implicitly‟ extended. When a B 

surface is implicitly extended, the nurbs data is not changed, but it will be treated as being larger by allowing out-

of-range evaluations on the surface. Whenever an explicit or implicit extension takes place, it is reflected in the 

following fields: 

 “original_u_int” and “original_v_int” are the original valid parameter ranges for a B surface before it was 

extended 

 “extended_u_int” and “extended_v_int” are the valid parameter ranges for a B surface once it has been 

extended. 

The character fields „original_u_start‟ etc. all refer to the status of the corresponding parameter boundary of the 

surface before or after an extension has taken place. For B surfaces, the character can have one of the following 

values: 

const char SCH_degenerate = 'D';    // Degenerate edge 

const char SCH_periodic   = 'P';    // Periodic parameterisation 

const char SCH_bounded    = 'B'; // Parameterisation bounded 

const char SCH_closed     = 'C';    // Closed, but not periodic 

 

The separate fields original_u_start and extended_u_start etc. are necessary because an extension may cause the 

corresponding parameter boundary to become degenerate. 

If the surface_data node is present, then the original_u_int, original_v_int, original_u_start, original_u_end, 

original_v_start and original_v_end fields should be set to their appropriate values. If the surface has not been 

extended, the extended_u_int and extended_v_int fields should contain null, and the extended_u_start etc. fields 

should contain 

const char SCH_unset_char = '?'; // generic uninvestigated value 

As soon as any parameter boundary of the surface is extended, all the fields should be set, regardless of whether 

the corresponding boundary has been affected by the extension. 

The SCH_self_int_t enum is documented in the corresponding curve_data structure under B curve. 

The „swept_form_type‟, „spun_form_type‟ and „blend_form_type‟ characters and the corresponding pointers 

swept_form, spun_form and blend_form, are for future use and are not implemented in Parasolid V12.0. The 

character fields should be set to SCH_unset_char („?‟) and the pointers should be set to null pointer. 

If the analytic_form field is not null, it will point to a HELIX_SU_FORM node, which indicates that the surface 

has a helical shape. In this case the analytic_form_type field will be set to „H‟. 

struct HELIX_SU_FORM_s  

{   

vector axis_pt // $v 
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vector axis_dir // $v 

char hand // $c 

interval turns // $i 

double pitch // $f 

double gap // $f 

double tol // $f 

};   

typedef struct HELIX_SU_FORM_s *HELIX_SU_FORM; 

The axis_pt and axis_dir fields define the axis of the helix. The hand field is „+‟ for a right-handed and „-‟ for a 

left-handed helix. The turns field gives the extent of the helix relative to the profile curve which was used to 

generate the surface. For instance, an interval [0 10] indicates a start position at the profile curve and an end 10 

turns along the axis. Pitch is the distance travelled along the axis in one turn. Tol is the accuracy to which the 

owning bsurface fits this specification. Gap is for future expansion and will currently be zero. The v parameter 

increases in the direction of the axis. 

SWEPT_SURF 

A swept surface has a parametric representation of the form: 

R( u, v ) = C( u ) + vD 

where 

 C(u) is the section curve. 

 D is the sweep direction (unit vector).  

 

 C must not be an intersection curve or a trimmed curve. 

 

Field name Data type Description 

section pointer section curve 

sweep vector sweep direction (a unit vector) 

scale double for internal use only – may be set to null 

 

struct SWEPT_SURF_s == ANY_SURF_s            // Swept surface 
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{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  SURFACE_OWNER_u   owner; // $p 

union  SURFACE_u   next; // $p 

union  SURFACE_u   previous; // $p 

struct 

GEOMETRIC_OWNER_s  

*geometric_owner; // $p 

char   sense; // $c 

union  CURVE_u   section; // $p 

vector   sweep; // $v 

double   scale; // $f 

};   

typedef struct SWEPT_SURF_s *SWEPT_SURF; 

SPUN_SURF 

A spun surface has a parametric representation of the form:  

R( u, v ) = Z( u ) + ( C( u ) - Z( u ))cos( v ) + A X ( C( u ) - Z( u ) ) sin( v) 

where 

 C(u) is the profile curve 

 Z(u) is the projection of C(u) onto the spin axis 

 A is the spin axis direction (unit vector)  

 C must not be an intersection curve or a trimmed curve 

NOTE: Z(u) = P + ( ( C( u ) - P ) . A )A where P is a reference point on the axis. 
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Field name Data type Description 

profile pointer profile curve 

base vector point on spin axis 

axis vector spin axis direction (a unit vector) 

start vector position of degeneracy at low u (may be null) 

end vector position of degeneracy at low v (may be null) 

start_param double curve parameter at low u degeneracy (may be null) 

end_param double curve parameter at high u degeneracy (may be null) 

x_axis vector unit vector in profile plane if common with spin axis 

scale double for internal use only – may be set to null 

 

struct SPUN_SURF_s == ANY_SURF_s                   // Spun surface 

{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  SURFACE_OWNER_u   owner; // $p 

union  SURFACE_u   next; // $p 

union  SURFACE_u   previous; // $p 

struct 

GEOMETRIC_OWNER_s  

*geometric_owner; // $p 

char   sense; // $c 

union  CURVE_u   profile; // $p 

vector   base; // $v 

vector   axis; // $v 

vector   start; // $v 

vector   end; // $v 

double   start_param; // $f 

double   end_param; // $f 

vector   x_axis; // $v 

double  scale; // $f 

};   

typedef struct SPUN_SURF_s *SPUN_SURF; 

The „start‟ and „end‟ vectors correspond to physical degeneracies on the spun surface caused by the profile curve 

crossing the spin axis at that point. The values start_param and end_param are the corresponding parameters on 

the curve. These parameter values define the valid range for the u parameter of the surface. If either value is null, 

then the valid range for u is infinite in that direction. For example, for a straight line profile curve intersecting the 
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spin axis at the parameter t=1, values of null for start_param and 1 for end_param would define a cone with u 

parameterisation (-infinity, 1]. 

If the profile curve lies in a plane containing the spin axis, then x_axis must be set to a vector perpendicular to the 

spin axis and in the plane of the profile, pointing from the spin axis to a point on the profile curve in the valid 

range. If the profile curve is not planar, or its plane does not contain the spin axis, then x_axis should be set to 

null. 

PE_SURF (Foreign Geometry surface) 

Foreign (or „PE‟) geometry in Parasolid is a type used for representing customers‟ in-house proprietary data. It 

can also be used internally for representing geometry connected with this data (for example, offset foreign 

surfaces). These two types of foreign geometry usage are referred to as „external‟ and „internal‟ respectively. The 

only internal PE surface is the offset PE surface. 

Applications not using foreign geometry will never encounter either external or internal PE data structures at 

Parasolid V9 or beyond. 

 

Field name Data type Description 

type char whether internal or external 

data pointer internal or external data 

tf pointer0 transform applied to geometry 

internal geom pointer array reference to other related geometry 

 

struct PE_SURF_s == ANY_SURF_s                  // PE_surface 

{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  SURFACE_OWNER_u   owner; // $p 

union  SURFACE_u   next; // $p 

union  SURFACE_u   previous; // $p 

struct GEOMETRIC_OWNER_s  *geometric_owner; // $p 

char   sense; // $c 

char   type; // $c 

union  PE_DATA_u   data; // $p 

struct TRANSFORM_s    *tf; // $p 

union  PE_INT_GEOM_u   internal_geom[ 1 ]; // $p[] 

};   

typedef struct PE_SURF_s  *PE_SURF; 

The PE_DATA and PE_INT_GEOM unions are defined under „PE curve‟. 
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Point 

 

Field name Data type Description 

node_id int integer unique within part 

attributes_groups pointer0 attributes and groups associated with point 

owner pointer Owner 

next pointer0 next point in chain 

previous pointer0 previous point in chain 

pvec vector position of point 

 

union POINT_OWNER_u 

{  

struct VERTEX_s         *vertex; 

struct BODY_s           *body; 

struct ASSEMBLY_s *assembly; 

struct WORLD_s          *world; 

};  

 

struct POINT_s                                     // Point 

{   

int   node_id; // $d 

union  ATTRIB_GROUP_u   attributes_groups; // $p 

union  POINT_OWNER_u   owner; // $p 

struct POINT_s         *next; // $p 

struct POINT_s         *previous; // $p 

vector   pvec; // $v 

};   

typedef struct POINT_s    *POINT; 

Transform 

 

Field name Data type Description 

node_id int integer unique within part 

owner pointer owning instance or world 

next pointer0 next transform in chain 
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previous pointer0 previous pointer in chain 

rotation_matrix double[3][3] rotation component 

translation_vector vector translation component 

scale double scaling factor 

flag byte binary flags indicating non-trivial components 

perspective_vector vector perspective vector (always null vector) 

 

The transform acts as 

 

 x‟   =     (rotation_matrix . x + translation_vector) * scale 

 

The „flag‟ field contains various bit flags which identify the components of the transformation: 

 

Flag Name Binary Value Description 

translation 00001 set if translation vector non-zero 

rotation 00010 set if rotation matrix is not the identity 

scaling 00100 set if scaling component is not 1.0 

reflection 01000 set if determinant of rotation matrix is negative 

general affine 10000 set if the rotation_matrix is not a rigid rotation 

 

union TRANSFORM_OWNER_u 

{  

struct INSTANCE_s      *instance; 

struct WORLD_s         *world; 

};  

 

struct TRANSFORM_s                    // Transformation 

{   

int   node_id; // $d 

union  

TRANSFORM_OWNER_u  

 owner; // $p 

struct TRANSFORM_s   *next; // $p 

struct TRANSFORM_s    *previous; // $p 

double   rotation_matrix[3][3]; // $f[9] 
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vector   translation_vector; // $v 

double   scale; // $f 

unsigned   flag; // $d 

vector   perspective_vector; // $v 

};   

typedef struct TRANSFORM_s *TRANSFORM; 

Curve and Surface Senses 

The „natural‟ tangent to a curve is that in the increasing parameter direction, and the „natural‟ normal to a surface 

is in the direction of the cross-product of  dP/du and dP/dv. For some purposes these are modified by the curve 

and surfaces senses, respectively – for example in the definition of blend surfaces, offset surfaces and intersection 

curves. 

At the PK interface, the edge/curve and face/surface sense orientations are regarded as properties of the 

topology/geometry combination. In the XT format, this orientation information resides in the curves, surfaces and 

faces as follows: 

The edge/curve orientation is stored in the curve->sense field. The face/surface orientation is a combination of 

sense flags stored in the face->sense and surface->sense fields, so the face/surface orientation is true (i.e. the face 

normal is parallel to the natural surface normal) if neither, or both, of the face and surface senses are positive. 

Geometric_owner 

Where geometry has dependants, the dependants point back to the referencing geometry by means of Geometric 

Owner nodes. Each geometric node points to a doubly-linked ring of Geometric Owner nodes which identify its 

referencing geometry. Referenced geometry is as follows: 

 

Intersection:       2 surfaces 

SP-curve:           Surface 

Trimmed curve:  basis curve 

Blended edge:  2 supporting surfaces, 2 blend_bound surfaces, 1 spine curve 

Blend bound:   blend surface 

Offset surface: underlying surface 

Swept surface:   section curve 

Spun surface:  profile curve 

 

Note that the 2D B-curve referenced by an SP-curve is not a dependent in this sense, and does not need a 

geometric owner node. 

  
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 Field name  Dat

a type 

 Description 

 owner  poin

ter 

 referencing geometry 

 next  poin

ter 

 next in ring of geometric owners referring to the 

same geometry 

 previous  poin

ter 

 previous in above ring 

 shared_geome

try 

 poin

ter 

 referenced (dependent) geometry 

  

struct GEOMETRIC_OWNER_s          //  geometric owner of geometry 

{   

union  GEOMETRY_u        owner;            //  $p 

struct GEOMETRIC_OWNER_s   *next;           //  $p 

struct GEOMETRIC_OWNER_s   *previous; // $p 

union  GEOMETRY_u            shared_geometry; //  $p 

};   

typedef struct GEOMETRIC_OWNER_s *GEOMETRIC_OWNER; 
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Topology  
 

In the following tables, „ignore‟ means this may be set to null (zero) if an XT file is created outside Parasolid. For 

an XT file created by Parasolid, this may take any value, but should be ignored. 

Unless otherwise stated, all chains of nodes are doubly-linked and null-terminated. 

 WORLD 

 

 Field name  Type  Description 

 assembly  pointer0  Head of chain of assemblies 

 attribute  pointer0  Ignore 

 body  pointer0  Head of chain of bodies 

 transform  pointer0  Head of chain of transforms 

 surface  pointer0  Head of chain of surfaces 

 curve  pointer0  Head of chain of curves 

 point  pointer0  Head of chain of points 

 alive  logical  True unless partition is at initial pmark 

 attrib_def  pointer0  Head of chain of attribute definitions 

 highest_id  int  Highest pmark id in partition 

 current_id  int  Id of current pmark 

 index_map_offset  int  Must be set to 0 

 index_map  pointer0  Must be set to null 

 schema_embedding_m

ap 

 pointer0  Must be set to null 

  

The World node is only used when a partition is transmitted. Because some of the attribute definitions may be 

referenced by nodes which have been deleted, but which may reappear on rollback, the attribute definitions are 

chained off the World node rather than simply being referenced by attributes. 

The fields index_map_offset, index_map, and schema_embedding_map are used for Indexed Transmit; 

applications writing XT data must set them to 0 and null. 

  

struct WORLD_s                               // World 

{   

struct ASSEMBLY_s               *assembly;              // $p 

struct ATTRIBUTE_s              *attribute;             // $p 
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struct BODY_s                   *body;                  // $p 

struct TRANSFORM_s              *transform;             // $p 

union  SURFACE_u                   surface;               // $p 

union  CURVE_u                     curve;                 // $p 

struct POINT_s                  *point;                 // $p 

logical                            alive;                  // $l 

struct ATTRIB_DEF_s             *attrib_def;            // $p 

int                                highest_id;           // $d 

int                                current_id;            // $d 

};   

typedef struct WORLD_s  *WORLD; 

ASSEMBLY 

 

highest_node_id int Highest node-id in assembly 

attributes_groups pointer0 Head of chain of attributes of, and groups in, assembly 

attribute_chains pointer0 List of attributes, one for each attribute definition used in 

the assembly 

list pointer0 Null 

surface pointer0 Head of construction surface chain 

curve pointer0 Head of construction curve chain 

point pointer0 Head of construction point chain 

key pointer0 Ignore 

res_size double Value of „size box‟ when transmitted (normally 1000) 

res_linear double Value of modeller linear precision when transmitted 

(normally 1.0e-8). 

ref_instance pointer0 Head of chain of instances referencing this assembly 

next pointer0 Ignore 

previous pointer0 Ignore 

state byte Set to 1. 

owner pointer0 Ignore 

type byte Always 1. 

sub_instance pointer0 Head of chain of instances in assembly 

 

The value of the „state‟ field should be ignored, as should any nodes of type „KEY‟ referenced by the assembly. If 

an XT file is constructed outside Parasolid, the state field should be set to 1, and the key to null. 
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The highest_node_id gives the highest node-id of any node in the assembly. Certain nodes within the assembly 

(namely instances, transforms, geometry, attributes and groups) have unique node-ids which are non-zero 

integers. 

 

typedef enum 

{ 

SCH_collective_assembly  = 1, 

SCH_conjunctive_assembly = 2, 

SCH_disjunctive_assembly = 3 

} 

SCH_assembly_type; 

 

typedef enum  

{ 

SCH_new_part       = 1, 

SCH_stored_part    = 2, 

SCH_modified_part  = 3, 

SCH_anonymous_part = 4, 

SCH_unloaded_part  = 5 

} 

SCH_part_state; 

 

struct ASSEMBLY_s                             //  Assembly 

{   

int   highest_node_id; //  $d 

union ATTRIB_GROUP_u   attributes_groups; //  $p 

struct LIST_s  *attribute_chains; //  $p 

struct LIST_s  *list; //  $p 

union SURFACE_u   surface; //  $p 

union CURVE_u   curve; //  $p 

struct POINT_s  *point; //  $p 

struct KEY_s  *key; //  $p 

double   res_size; //  $f 

double   res_linear; //  $f 

struct INSTANCE_s  *ref_instance; //  $p 
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struct ASSEMBLY_s  *next; //  $p 

struct ASSEMBLY_s  *previous; //  $p 

SCH_part_state  state; //  $u 

struct WORLD_s  *owner; //  $p 

SCH_assembly_type   type; //  $u 

struct INSTANCE_s  *sub_instance; //  $p 

};   

typedef struct ASSEMBLY_s *ASSEMBLY; 

struct KEY_s                    // Key 

{   

string[1]; char  // $c[] 

};   

typedef struct KEY_s *KEY; 

INSTANCE 

 

Field name Type Description 

node_id int Node-id  

attributes_groups pointer0 Head of chain of attributes of instance and 

member_of_groups of instance 

type byte Always 1 

part pointer Part referenced by instance 

transform pointer0 Transform of instance 

assembly pointer Assembly in which instance lies 

next_in_part pointer0 Next instance in assembly 

prev_in_part pointer0 Previous instance in assembly 

next_of_part pointer0 Next instance of instance->part 

prev_of_part pointer0 Previous instance of  instance->part 

 

typedef enum 

{ 

SCH_positive_instance = 1, 

SCH_negative_instance = 2 

} 

SCH_instance_type; 
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union  PART_u 

{  

struct BODY_s          *body; 

struct ASSEMBLY_s      *assembly; 

};  

typedef union PART_u       PART; 

 

struct INSTANCE_s                                  //  Instance 

{   

int   node_id; //  $d 

union  ATTRIB_GROUP_u   attributes_groups; //  $p 

SCH_instance_type   type; //  $u 

union  PART_u   part; //  $p 

struct TRANSFORM_s     *transform; //  $p 

struct ASSEMBLY_s      *assembly; //  $p 

struct INSTANCE_s      *next_in_part; //  $p 

struct INSTANCE_s      *prev_in_part; //  $p 

struct INSTANCE_s      *next_of_part; //  $p 

struct INSTANCE_s      *prev_of_part; //  $p 

};   

typedef struct INSTANCE_s *INSTANCE; 

BODY 

 

Field name Type Description 

highest_node_id int Highest node-id in body 

attributes_groups pointer0 Head of chain of attributes of, and groups in, 

body 

attribute_chains pointer0 List of attributes, one for each attribute definition 

used in the body 

surface pointer0 Head of construction surface chain 

curve pointer0 Head of construction curve chain 

point pointer0 Head of construction point chain 

key pointer0 Ignore 
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res_size double Value of „size box‟ when transmitted (normally 

1000) 

res_linear double Value of modeller linear precision when 

transmitted (normally 1.0e-8) 

ref_instance pointer0 Head of chain of instances referencing this part 

next pointer0 Ignore 

previous pointer0 Ignore 

state byte Set to 1 (see below) 

owner pointer0 Ignore 

body_type byte Body type 

nom_geom_state byte Set to 1 (for future use) 

shell pointer0 For general bodies: null  

For solid bodies: the first shell in one of the solid 

regions 

For other bodies: the first shell in one of the 

regions 

 

This field is obsolete, and should be ignored by 

applications reading XT files. When writing XT 

files, it must be set as above. 

boundary_surface pointer0 Head of chain of surfaces attached directly or 

indirectly to faces or edges or fins 

boundary_curve pointer0 Head of chain of curves attached directly or 

indirectly to edges or faces or fins 

boundary_point pointer0 Head of chain of points attached to vertices 

region pointer Head of chain of regions in body; this is the 

infinite region 

edge pointer0 Head of chain of all non-wireframe edges in body 

vertex pointer0 Head of chain of all vertices in body 

index_map_offset int Must be set to 0 

index_map pointer0 Must be set to null 

node_id_index_map pointer0 Must be set to null 

schema_embedding_map pointer0 Must be set to null 

 

The value of the „state‟ field should be ignored, as should any nodes of type „KEY‟ referenced by the body. If an 

XT file is constructed outside Parasolid, the state field should be set to 1, and the key to null. 
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The highest_node_id gives the highest node of any node in this body. Most nodes in a body which are visible at 

the  PK interface have node-ids, which are non-zero integers unique to that node within the body. Applications 

writing XT files must ensure that node-ids are present and distinct. The details of which nodes have node ids are 

given in an appendix. 

The fields index_map_offset, index_map, node_id_index_map, and schema_embedding_map are used for 

Indexed Transmit; applications writing XT files must ensure that these fields are set to 0 and null. 

 

typedef enum 

{ 

SCH_solid_body      = 1, 

SCH_wire_body       = 2, 

SCH_sheet_body      = 3, 

SCH_general_body    = 6 

} 

SCH_body_type; 

 

typedef short short enum 

    { 

    SCH_nom_geom_off = 1,              --- Entirely off 

    SCH_nom_geom_on  = 2               --- Entirely on 

    } 

    SCH_nom_geom_state_t; 

 

struct BODY_s                                      //  Body 

{   

int   highest_node_id; //  $d 

union ATTRIB_GROUP_u   attributes_groups; //  $p 

struct LIST_s          *attribute_chains; //  $p 

union SURFACE_u   surface; //  $p 

union CURVE_u   curve; //  $p 

struct POINT_s         *point; //  $p 

struct KEY_s           *key; //  $p 

double   res_size; //  $f 

double   res_linear; //  $f 

struct INSTANCE_s      *ref_instance; //  $p 

struct BODY_s          *next; //  $p 

struct BODY_s          *previous; //  $p 
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SCH_part_state   state; //  $u 

struct WORLD_s         *owner; //  $p 

SCH_body_type   body_type; //  $u 

SCH_nom_geom_state_t nom_geom_state;  //  $u 

struct SHELL_s         *shell; //  $p 

union SURFACE_u   boundary_surface; //  $p 

union CURVE_u   boundary_curve; //  $p 

struct POINT_s         *boundary_point; //  $p 

struct REGION_s  *region; //  $p 

struct EDGE_s          *edge; //  $p 

struct VERTEX_s        *vertex; //  $p 

int index_map_offset; //  $d 

struct INT_VALUES_s *index_map; //  $p 

struct INT_VALUES_s *node_id_index_map; //  $p 

struct INT_VALUES_s *schema_embedding_map; //  $p 

};   

typedef struct BODY_s     *BODY; 
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Attaching Geometry to Topology 

 

The faces which reference a surface are chained together, surface->owner is the head of this chain. Similarly the 

edges which reference the same curve are chained together. Fins do not share curves.  

Geometry in parts may be chained into one of the three boundary geometry chains, or one of the three 

construction geometry chains. A geometric node will fall into one of the following cases: 

 

Geometry Owner Whether chained 

Attached to face face In boundary_surface chain 

Attached to edge or fin edge or fin In boundary_curve chain 

Attached to vertex vertex In boundary_point chain 

Indirectly attached to 

face or edge or fin 

body In boundary_surface chain or 

boundary_curve chain 

Construction geometry body or 

assembly 

In surface, curve or point chain 

2D B-curve in SP-curve null Not chained 

 

Here „indirectly attached‟ means geometry which is a dependent of a dependent of (... etc) of geometry attached to 

an edge, face or fin. 

Geometry in a construction chain may reference geometry in a boundary chain, but not vice-versa. 

REGION 

 

Field name Type Description 

node_id int Node-id  

attributes_groups pointer0 Head of chain of attributes of region and 

member_of_groups of region 

body pointer Body of region 

next pointer0 Next region in body 

prev pointer0 Previous region in body 

shell pointer0 Head of singly-linked chain of shells in region 

type char Region type – solid („S‟) or void („V‟) 

 

struct REGION_s                                    //  Region 

{   

int   node_id; //  $d 
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union  ATTRIB_GROUP_u   attributes_groups; //  $p 

struct BODY_s          *body; //  $p 

struct REGION_s        *next; //  $p 

struct REGION_s        *previous; //  $p 

struct SHELL_s         *shell; //  $p 

char   type; //  $c 

};   

typedef struct REGION_s   *REGION; 

SHELL 

 

Field name Type Description 

node_id int Node-id  

attributes_groups pointer0 Head of chain of attributes of shell 

body pointer0 For shells in wire and sheet bodies, and for shells 

bounding a solid region of a solid body, this is set to 

the body of the shell. For shells in general bodies, or 

void shells in solid bodies, it is null. 

 

This field is obsolete, and should be ignored by 

applications reading XT files. When writing XT files, it 

must be set as above. 

next pointer0 Next shell in region 

face pointer0 Head of chain of back-faces of shell (i.e. faces with 

face normal pointing out of region of shell). 

edge pointer0 Head of chain of wire-frame edges of shell 

vertex pointer0 If shell consists of a single vertex, this is it; else null 

region pointer Region of shell 

front_face pointer0 Head of chain of front-faces of shell (i.e. faces with 

face normal pointing into region of shell) 

 

struct SHELL_s                                     //  Shell 

{   

int   node_id; //  $d 

union  ATTRIB_GROUP_u   attributes_groups; //  $p 

struct BODY_s          *body; //  $p 

struct SHELL_s         *next; //  $p 
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struct FACE_s          *face; //  $p 

struct EDGE_s          *edge; //  $p 

struct VERTEX_s        *vertex; //  $p 

struct REGION_s        *region; //  $p 

struct FACE_s          *front_face; //  $p 

};   

typedef struct SHELL_s    *SHELL; 

FACE 

 

Field name Type Description 

node_id int Node-id  

attributes_groups pointer0 Head of chain of attributes of face and 

member_of_groups of face 

tolerance double Not used (null double) 

next pointer0 Next back-face in shell 

previous pointer0 Previous back-face in shell 

loop pointer0 Head of singly-linked chain of loops 

shell pointer Shell of which this is a back-face 

surface pointer0 Surface of face 

sense char Face sense – positive („+‟) or negative („-‟) 

next_on_surface pointer0 Next in chain of faces sharing the surface of this face 

previous_on_surface pointer0 Previous in chain of faces sharing the surface of this 

face 

next_front pointer0 Next front-face in shell 

previous_front pointer0 Previous front-face in shell 

front_shell pointer Shell of which this is a front-face 

 

struct FACE_s                                       //  Face 

{   

int   node_id; //  $d 

union  ATTRIB_GROUP_u   attributes_groups; //  $p 

double   tolerance; //  $f 

struct FACE_s           *next; //  $p 

struct FACE_s           *previous; //  $p 
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struct LOOP_s           *loop; //  $p 

struct SHELL_s   *shell; //  $p 

union  SURFACE_u   surface; //  $p 

char   sense; //  $c 

struct FACE_s           *next_on_surface; //  $p 

struct FACE_s           *previous_on_surface; //  $p 

struct FACE_s           *next_front; //  $p 

struct FACE_s           *previous_front; //  $p 

struct SHELL_s          *front_shell; //  $p 

};   

typedef struct FACE_s     *FACE; 

LOOP 

 

Field name Type Description 

node_id int Node-id  

attributes_groups pointer0 Head of chain of attributes of loop 

fin pointer One of ring of fins of loop 

face pointer Face of loop 

next pointer0 Next loop in face 

 Isolated Loops 

An isolated loop (one consisting of a single vertex) does not refer directly to a vertex, but points to a fin which 

refers to that vertex. This isolated fin has fin->forward = fin->backward = fin, and fin->other = fin->curve = fin-

>edge = null. Its sense is not significant. The fin is chained into the chain of fins referencing the isolated vertex. 

 

struct LOOP_s                                      //  Loop 

{   

int   node_id; //  $d 

union  ATTRIB_GROUP_u   attributes_groups; //  $p 

struct FIN_s  *fin; //  $p 

struct FACE_s         *face; //  $p 

struct LOOP_s          *next; //  $p 

};   

typedef struct LOOP_s     *LOOP; 



 JT v9.5 Format Reference  

 

 - 424 - 

FIN 

 

Field name Type Description 

attributes_groups pointer0 Head of chain of attributes of fin 

loop pointer0 Loop of fin 

forward pointer0 Next fin around loop 

backward pointer0 Previous fin around loop 

vertex pointer0 Forward vertex of fin 

other pointer0 Next fin around edge, clockwise looking along edge 

edge pointer0 Edge of fin 

curve pointer0 For a non-dummy fin of a tolerant edge, this will be a 

trimmed SP-curve, otherwise null. 

next_at_vx pointer0 Next fin referencing the vertex of this fin 

sense char Positive („+‟) if the fin direction is parallel to that of its 

edge, else negative („-‟) 

 

Dummy Fins 

An application will see edges as having any number of fins, including zero. However internally, they have at least 

two. This is so that the forward and backward vertices of an edge can always be found as edge->fin->vertex and 

edge->fin->other->vertex respectively - the first one being a positive fin, the second a negative fin. If an edge 

does not have both a positive and a negative externally-visible fin, dummy fins will exist for this purpose. 

Dummy fins have fin->loop = fin->forward = fin->backward = fin->curve = fin->next_at_vx = null. For example 

the boundaries of a sheet always have one dummy fin. 

 

struct FIN_s                                        //  Fin 

{   

union  ATTRIB_GROUP_u   attributes_groups; //  $p 

struct LOOP_s         *loop; //  $p 

struct FIN_s      *forward; //  $p 

struct FIN_s        *backward; //  $p 

struct VERTEX_s     *vertex; //  $p 

struct FIN_s         *other; //  $p 

struct EDGE_s        *edge; //  $p 

union  CURVE_u   curve; //  $p 

struct FIN_s          *next_at_vx; //  $p 

char   sense; //  $c 
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};   

typedef struct FIN_s *FIN; 

VERTEX 

 

Field name Type Description 

node_id int Node-id  

attributes_groups pointer0 Head of chain of attributes of vertex and 

member_of_groups of vertex 

fin pointer0 Head of singly-linked chain of fins referencing this 

vertex 

previous pointer0 Previous vertex in body 

next pointer0 Next vertex in body 

point pointer Point of vertex 

tolerance double Tolerance of vertex (null-double for accurate vertex) 

owner pointer Owning body (for non-acorn vertices) or shell (for 

acorn vertices) 

 

union SHELL_OR_BODY_u 

(  

struct BODY_s          *body; 

struct SHELL_s         *shell; 

};    

typedef union SHELL_OR_BODY_u SHELL_OR_BODY; 

 

struct VERTEX_s                                    //  Vertex 

{   

int   node_id; //  $d 

union  ATTRIB_GROUP_u   attributes_groups; //  $p 

struct FIN_s           *fin; //  $p 

struct VERTEX_s        *previous; //  $p 

struct VERTEX_s       *next; //  $p 

struct POINT_s         *point; //  $p 

double   tolerance; //  $f 

union  SHELL_OR_BODY_u   owner;                  //  $p 

};   
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typedef struct VERTEX_s   *VERTEX; 

EDGE 

 

Field name Type Description 

node_id int Node-id  

attributes_groups pointer0 Head of chain of attributes of edge and 

member_of_groups of edge 

tolerance double Tolerance of edge (null-double for accurate edges) 

fin pointer One of singly-linked ring of fins around edge 

previous pointer0 Previous edge in body or shell 

next pointer0 Next edge in body or shell 

curve pointer0 Curve of edge, zero for tolerant edge. If edge is 

accurate, but any of its vertices are tolerant, this will be 

a trimmed curve 

next_on_curve pointer0 Next in chain of edges sharing the curve of this edge 

previous_on_cur

ve 

pointer0 Previous in chain of edges sharing the curve of this edge 

owner pointer Owning body (for non-wireframe edges) or shell (for 

wireframe edges) 

 

struct EDGE_s                                      //  Edge 

{   

int   node_id; //  $d 

union  ATTRIB_GROUP_u   attributes_groups; //  $p 

double   tolerance; //  $f 

struct FIN_s           *fin; //  $p 

struct EDGE_s  *previous; //  $p 

struct EDGE_s  *next; //  $p 

union  CURVE_u   curve; //  $p 

struct EDGE_s;           *next_on_curve //  $p 

struct EDGE_s  *previous_on_curve; //  $p 

union  

SHELL_OR_BODY_u  

 owner; //  $p 

};   

typedef struct EDGE_s     *EDGE; 
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Associated Data 

LIST 

 

Field name Type Description 

node_id int Zero 

list_type byte Always 4 

notransmit logical Ignore 

owner pointer Owning part 

next pointer0 Ignore 

previous pointer0 Ignore 

list_length int Length of list ( >= 0) 

block_length int Length of each block of list. Always 20 

size_of_entry int Ignore 

finger_index int Any integer between 1 and list->list_length (set to 1 if length 

is zero). Ignore 

finger_block pointer Any block e.g. the first one. Ignore 

list_block pointer Head of singly-linked chain of pointer list blocks 

 

Lists only occur in part files as the list of attributes referenced by a part. 

typedef enum 

{ 

LIS_pointer    = 4 

} 

LIS_type_t; 

 

union LIS_BLOCK_u 

{  

struct POINTER_LIS_BLOCK_s  *pointer_block; 

};  

typedef union LIS_BLOCK_u       LIS_BLOCK; 

 

union LIST_OWNER_u 

{  

struct BODY_s            *body; 
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struct ASSEMBLY_s        *assembly; 

struct WORLD_s           *world; 

};  

typedef union LIST_OWNER_u LIST_OWNER; 

 

struct LIST_s                            //  List Header 

{   

int                        node_id;               //  $d 

LIS_type_t                 list_type;             //  $u 

logical                    notransmit;            //  $l 

union LIST_OWNER_u         owner;                 //  $p 

struct LIST_s            *next;                  //  $p 

struct LIST_s            *previous;              //  $p 

int                        list_length;           //  $d 

int                        block_length;          //  $d 

int                        size_of_entry;         //  $d 

int                  finger_index; //  $d  

union LIS_BLOCK_u    finger_block; //  $p 

union LIS_BLOCK_u          list_block;            //  $p 

};   

typedef struct LIST_s *LIST; 

POINTER_LIS_BLOCK: 

 

Field name Type Description 

n_entries int Number of entries in this block (0 <= n_entries <= 

20). Only the first block may have n_entries = 0. 

index_map_offset int Must be set to 0 

next_block pointer0 Next pointer list block in chain 

Entries[20] pointer0 Pointers in block, those beyond n_entries must be zero 

 

 

When the pointer_lis_block is used as the root node in a transmit file containing more than one part, the 

restriction n_entries <= 20 does not apply. 

The index_map_offset field is used for Indexed Transmit; applications writing XT files must ensure this field is 

set to 0. 
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struct POINTER_LIS_BLOCK_s                      //  Pointer List 

{   

int                           n_entries;           //  $d 

int index_map_offset // $d 

struct POINTER_LIS_BLOCK_s  *next_block;          //  $p 

void                        *entries[ 1 ];      //  $p[] 

};   

typedef struct POINTER_LIS_BLOCK_s *POINTER_LIS_BLOCK; 

ATT_DEF_ID 

 

Field 

name 

Type Description 

string[] char String name e.g. "SDL/TYSA_COLOUR" 

 

struct ATT_DEF_ID_s            //  name field type for attrib def. 

{   

char  String[1]; //  $c[] 

};   

typedef struct ATT_DEF_ID_s *ATT_DEF_ID; 

FIELD_NAMES 

 

Field 

name 

Type Description 

names[] pointer Array of field names – unicode or char 

 

typedef union FIELD_NAME_u 

{  

struct CHAR_VALUES_s              *name 

struct UNICODE_VALUES_s  *uname 

};  

      FIELD_NAME_t; 

 

struct FIELD_NAME_s            //  attribute field name 
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{   

union FIELD_NAME_u names[1]; //  $p[] 

};   

typedef struct FIELD_NAME_s *FIELD_NAME; 

 

ATTRIB_DEF 

 

Field name Type Description 

next pointer0 Next attribute definition. This can be ignored, except in 

a partition transmit file. 

identifier pointer Pointer to string name 

type_id int Numeric id, e.g. 8001 for color. 9000 for user-defined 

attribute definitions 

actions[8] byte Required actions on various events  

field_names pointer0 Names of fields (unicode or char) 

legal_owners[14] logical Allowed owner types 

fields[] byte Array of field types. Note that the number of fields is 

given by the length of the variable length part of this 

node, i.e. the integer following the node type in the 

transmit file. 

 

 

The legal_owners array is an array of logicals determining which node types may own this type of attribute.  

e.g. if faces are allowed attrib_def -> legal_owners [SCH_fa_owner] = true. 

Note that if the file contains user fields, the „fields‟ field of an attribute definition may contain extra values, set to 

zero. These are to be ignored. 

The „actions‟ field in an attribute definition defines the behaviour of the attribute when an event (rotate, scale, 

translate, reflect, split, merge, transfer, change) occurs. The actions are:  
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do_nothing  Leave attribute as it is 

delete  Delete the attribute 

transform  Transform the transformable fields (point, vector, direction, axis) 

by appropriate part of transformation 

propagate  Copy attribute onto split-off node 

keep_sub_dominant Move attribute(s) from deleted node onto surviving node in a 

merge, but any such attributes already on the surviving node are 

deleted. 

keep_if_equal Keep attribute if present on both nodes being merged, with the 

same field values. 

combine  Move attribute(s) from deleted node onto surviving node, in a 

merge 

 

The PK attribute classes 1-7 correspond as follows: 

 split merge transfer change Rotate scale translate reflect 

class 1 propagate keep_equal do_nothing do_nothing do_nothing do_nothing do_nothing do_nothing 

class 2 delete delete delete delete do_nothing delete do_nothing do_nothing 

class 3 delete delete delete delete Delete delete delete delete 

class 4 propagate keep_equal do_nothing do_nothing Transform transform transform transform 

class 5 delete delete delete delete Transform transform transform transform 

class 6 propagate combine do_nothing do_nothing do_nothing do_nothing do_nothing do_nothing 

class 7 propagate combine do_nothing do_nothing Transform transform transform transform 

 

Certain attribute definitions are created by Parasolid on startup, these are documented in an appendix. 

typedef enum 

{  

SCH_rotate      = 0,  

SCH_scale       = 1,  

SCH_translate   = 2,  

SCH_reflect     = 3,  

SCH_split       = 4,  

SCH_merge       = 5,  

SCH_transfer    = 6,  

SCH_change      = 7,  

SCH_max_logged_event     //  last entry; value in $d[] code for  

actions 
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}  

SCH_logged_event_t;  

 

typedef enum 

{ 

SCH_do_nothing   = 0, 

SCH_delete    = 1, 

SCH_transform    = 2, 

SCH_propagate              = 3, 

SCH_keep_sub_dominant = 4, 

SCH_keep_if_equal  = 5, 

SCH_combine    = 6 

} 

SCH_action_on_fields_t; 

 

typedef enum 

{  

SCH_as_owner  = 0,  

SCH_in_owner  = 1,  

SCH_by_owner  = 2,  

SCH_sh_owner  = 3,  

SCH_fa_owner  = 4,  

SCH_lo_owner  = 5,  

SCH_ed_owner  = 6,  

SCH_vx_owner  = 7,  

SCH_fe_owner  = 8,  

SCH_sf_owner  = 9,  

SCH_cu_owner  = 10,  

SCH_pt_owner  = 11,  

SCH_rg_owner  = 12,  

SCH_fn_owner  = 13,  

SCH_max_owner        //  last entry; value in $l[] for  

.legal_owners 

} SCH_attrib_owners_t;  
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typedef enum 

{ 

SCH_int_field            = 1, 

SCH_real_field          = 2, 

SCH_char_field         = 3, 

SCH_point_field        = 4, 

SCH_vector_field      = 5, 

SCH_direction_field  = 6, 

SCH_axis_field         = 7, 

SCH_tag_field          = 8, 

SCH_pointer_field    = 9, 

SCH_unicode_field   = 10 

} SCH_field_type_t; 

 

struct ATTRIB_DEF_s           //  attribute definition 

{   

struct ATTRIB_DEF_s         *next; //  $p 

struct ATT_DEF_ID_s         *identifier; //  $p 

int   type_id; //  $d 

SCH_action_on_fields_t   actions 

[(int)SCH_max_logged_event]; 

//  $u[8] 

struct FIELD_NAMES_s *field_names //  $p 

logical   legal_owners 

 [(int)SCH_max_owner]; 

//  $l[14] 

SCH_field_type_t   fields[1]; //  $u[] 

};   

typedef struct ATTRIB_DEF_s    *ATTRIB_DEF; 

ATTRIBUTE 

 

Field name Type Description 

node_id int Node-id 

definition pointer Attribute definition 

owner pointer Attribute owner 

next pointer0 Next attribute, group, or member_of_group 

previous pointer0 Previous ditto 
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next_of_type pointer0 Next attribute of this type in this part 

previous_of_type pointer0 Previous attribute of this type in this part 

fields[] pointer Fields, of type int_values etc. The number of fields is 

given by the length of the variable part of the node. There 

may be no fields. 

 

 

The attributes of a node are chained using the next and previous pointers in the attribute. The attribute_groups 

pointer in the node points to the head of this chain. This chain also contains the member_of_groups of the node. 

Attributes within the same part, with the same attribute definition, are chained together by the next_of_type and 

previous_of_type pointers. The part points to the head of this chain as follows. The attribute_chains pointer in the 

part points to a list which contains the heads of these attribute chains, one for each attribute definition which has 

attributes in the part. The list may be null. 

Note that the attributes_groups chains in parts, groups and nodes contain the following types of node: 

    Part:      attributes and groups 

    Group:     attributes 

    Node:    attributes and member_of_groups 

Fields of type „pointer‟ can be used in Parasolid V12.0, but they are always transmitted as empty. 

 

union ATTRIBUTE_OWNER_u 

  {  

struct ASSEMBLY_s             *assembly; 

struct INSTANCE_s             *instance; 

struct BODY_s                 *body; 

struct SHELL_s             *shell; 

struct REGION_s               *region; 

struct FACE_s                 *face; 

struct LOOP_s                 *loop; 

struct EDGE_s                 *edge; 

struct FIN_s                 *fin; 

struct VERTEX_s               *vertex; 

union  SURFACE_u                Surface; 

union  CURVE_u                  Curve; 

struct POINT_s                *point; 

struct GROUP_s                *group; 

};  
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typedef union ATTRIBUTE_OWNER_u ATTRIBUTE_OWNER; 

 

union FIELD_VALUES_u 

{  

struct INT_VALUES_s         *int_values; 

struct REAL_VALUES_s        *real_values; 

struct CHAR_VALUES_s        *char_values; 

struct POINT_VALUES_s       *point_values; 

struct VECTOR_VALUES_s      *vector_values; 

struct DIRECTION_VALUES_s   *direction_values; 

struct AXIS_VALUES_s        *axis_values; 

struct TAG_VALUES_s         *tag_values; 

struct UNICODE_VALUES_s *unicode_values; 

};  

typedef union FIELD_VALUES_u FIELD_VALUES; 

 

struct ATTRIBUTE_s                           //  Attribute 

{   

int   node_id; //  $d 

struct ATTRIB_DEF_s           *definition; //  $p 

union  ATTRIBUTE_OWNER_u   owner; //  $p 

union  ATTRIB_GROUP_u   next; //  $p 

union  ATTRIB_GROUP_u   previous; //  $p 

struct ATTRIBUTE_s            *next_of_type; //  $p 

struct ATTRIBUTE_s            *previous_of_type; //  $p 

union  FIELD_VALUES_u   fields[1]; //  $p[] 

};   

typedef struct ATTRIBUTE_s *ATTRIBUTE; 

INT_VALUES 

 

values[] int Integer values 

 

struct INT_VALUES_s                      //  Int values 

{   
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int  values[1]; //  $d[] 

};   

typedef struct INT_VALUES_s *INT_VALUES; 

REAL_VALUES 

 

values[] double Real values 

 

 

struct REAL_VALUES_s                     //  Real values 

{   

double  values[1]; //  $f[] 

};   

typedef struct REAL_VALUES_s *REAL_VALUES; 

CHAR_VALUES 

 

values[] char Character values 

 

struct CHAR_VALUES_s                     //  Character values 

{   

char  values[1]; //  $c[] 

};   

typedef struct CHAR_VALUES_s *CHAR_VALUES; 

UNICODE_VALUES 

 

values[] short Unicode character values 

 

struct UNICODE_VALUES_s                     //  Unicode character values 

{   

short values[1]; //  $w[] 

};   

typedef struct UNICODE_VALUES_s *UNICODE_VALUES; 

POINT_VALUES 
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values[] vector Point values 

 

struct POINT_VALUES_s                    //  Point values 

 {   

vector  values[1]; // $v[] 

};   

typedef struct POINT_VALUES_s *POINT_VALUES; 

VECTOR_VALUES 

 

values[] vector Vector values 

 

struct VECTOR_VALUES_s                   //  Vector values 

{   

vector  values[1]; //  $v[] 

};   

typedef struct VECTOR_VALUES_s *VECTOR_VALUES; 

DIRECTION_VALUES 

 

values[] vector Direction values 

 

struct DIRECTION_VALUES_s                //  Direction values 

{   

vector  values[1]; //  $v[] 

};   

typedef struct DIRECTION_VALUES_s *DIRECTION_VALUES; 

AXIS_VALUES 

 

values[] vector Axis values 

 

Note that an axis takes up two vectors. 

struct AXIS_VALUES_s                     //  Axis values 

{   

vector  values[1]; //  $v[] 
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};   

typedef struct AXIS_VALUES_s *AXIS_VALUES; 

TAG_VALUES 

 

values[] int Integer tag values 

 

The tag field type and the tag_values node are not available for use in user-defined attributes, they occur only in 

certain system attributes. 

 

struct TAG_VALUES_s                      //  Tag values 

{   

int  values[1]; //  $t[] 

};   

typedef struct TAG_VALUES_s *TAG_VALUES; 

GROUP 

 

Field name Type Description 

node_id int Node-id 

attributes_groups pointer0 Head of chain of attributes of this group 

owner pointer Owning part 

next pointer0 Next group or attribute 

previous pointer0 Previous group or attribute 

type byte Type of node allowed in group 

first_member pointer0 Head of chain of member_of_group nodes in group 

 

The groups in a part are chained by the next and previous pointers in a group. The attributes_groups pointer in the 

part points to the head of the chain. This chain also contains the attributes attached directly to the part - groups 

and attributes are intermingled in this chain, the order is not significant. 

Each group has a chain of member_of_groups. These are chained together using the next_member and 

previous_member pointers. The first_member pointer in the group points to the head of the chain. Each 

member_of_group has an owning_group pointer which points back to the group. 

Each member_of_group has an owner pointer which points to a node. Thus the group references its member 

nodes via the member_of_groups. 

The member_of_groups which refer to a particular node are chained using the next and previous pointers in the 

member_of_group. The attributes_groups pointer in the node points to the head of this chain. This chain also 

contains the attributes attached to the node. 
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typedef enum 

{ 

SCH_instance_fe   = 1, 

SCH_face_fe       = 2, 

SCH_loop_fe       = 3, 

SCH_edge_fe       = 4, 

SCH_vertex_fe     = 5, 

SCH_surface_fe    = 6, 

SCH_curve_fe      = 7, 

SCH_point_fe      = 8, 

SCH_mixed_fe      = 9, 

SCH_region_fe     = 10 

}  SCH_group_type_t; 

 

struct GROUP_s                        //  Group 

{   

int   node_id; //  $d 

union   ATTRIB_GROUP_u   attributes_groups; //  $p 

union   PART_u   owner; //  $p 

union   ATTRIB_GROUP_u   next; //  $p 

union   ATTRIB_GROUP_u   previous; //  $p 

SCH_group_type_t   type; //  $u 

struct  MEMBER_OF_GROUP_s   *first_member; //  $p 

};   

typedef struct GROUP_s *GROUP; 

MEMBER_OF_GROUP 

 

Field name Type Description 

dummy_node_id int Entity label 

owning_group pointer Owning group 

owner pointer Referenced member of group 

next pointer0 Next attribute, group or member_of_group 

previous pointer0 Previous ditto 
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next_member pointer0 Next member_of_group in this group 

previous_member pointer0 Previous ditto 

 

union GROUP_MEMBER_u 

 {  

struct INSTANCE_s         *instance; 

struct FACE_s             *face; 

struct REGION_s           *region; 

struct LOOP_s             *loop; 

struct EDGE_s             *edge; 

struct VERTEX_s           *vertex; 

union  SURFACE_u            surface; 

union  CURVE_u              curve; 

struct POINT_s            *point; 

};  

typedef union GROUP_MEMBER_u GROUP_MEMBER; 

 

struct MEMBER_OF_GROUP_s             //  Member of group 

{   

int   dummy_node_id; //  $d 

struct GROUP_s               *owning_group; //  $p 

union  GROUP_MEMBER_u  owner; //  $p 

union  ATTRIB_GROUP_u   next; //  $p 

union  ATTRIB_GROUP_u   previous; //  $p 

struct MEMBER_OF_GROUP_s    *next_member; //  $p 

struct MEMBER_OF_GROUP_s     *previous_member; //  $p 

};   

typedef struct MEMBER_OF_GROUP_s *MEMBER_OF_GROUP; 
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Node Types 

Node name Node 

type 

Visible at PK Has node-id 

    

ASSEMBLY              10 Yes No 

INSTANCE              11 Yes Yes 

BODY                  12 Yes No 

SHELL                 13 Yes Yes 

FACE                  14 Yes Yes 

LOOP                  15 Yes Yes 

EDGE                  16 Yes Yes 

FIN              17    Yes No 

VERTEX                18 Yes Yes 

REGION                19 Yes Yes 

    

POINT                 29 Yes Yes 

    

LINE                  30 Yes Yes 

CIRCLE                31 Yes Yes 

ELLIPSE               32 Yes Yes 

INTERSECTION          38 Yes Yes 

CHART                 40 No  

LIMIT                 41 No  

BSPLINE_VERTICES      45 No  

    

PLANE                 50 Yes Yes 

CYLINDER              51 Yes Yes 

CONE                  52 Yes Yes 

SPHERE                53 Yes Yes 

TORUS                 54 Yes Yes 

BLENDED_EDGE          56 Yes Yes 

BLEND_BOUND           59 No  

OFFSET_SURF           60 Yes Yes 
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SWEPT_SURF            67 Yes Yes 

SPUN_SURF             68 Yes Yes 

    

LIST                  70 Yes Yes 

POINTER_LIS_BLOCK   74 No  

    

ATT_DEF_ID            79 No  

ATTRIB_DEF            80 Yes No 

ATTRIBUTE             81 Yes Yes 

INT_VALUES            82 No  

REAL_VALUES           83 No  

CHAR_VALUES           84 No  

POINT_VALUES          85 No  

VECTOR_VALUES         86 No  

AXIS_VALUES           87 No  

TAG_VALUES            88 No  

DIRECTION_VALUES    89 No  

    

GROUP               90 Yes Yes 

MEMBER_OF_GROUP  91 No  

       

UNICODE_VALUES 98 No  

FIELD_NAMES 99 No  

TRANSFORM             100 Yes Yes 

WORLD                 101 No  

KEY                   102 No  

    

PE_SURF               120 Yes Yes 

INT_PE_DATA           121 No  

EXT_PE_DATA           122 No  

B_SURFACE             124 Yes Yes 

SURFACE_DATA          125 No  

NURBS_SURF            126 No    
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KNOT_MULT             127 No  

KNOT_SET              128 No  

    

PE_CURVE              130 Yes Yes 

TRIMMED_CURVE         133 Yes Yes 

B_CURVE               134 Yes Yes 

CURVE_DATA            135 No  

NURBS_CURVE           136 No  

SP_CURVE              137 Yes Yes 

      

GEOMETRIC_OWNER        141 No  

HELIX_CU_FORM 163 No  

HELIX_SU_FORM 184 No  
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Node Classes 

  

Node class name Node 

class 

  

GEOMETRY              1003 

PART                  1005 

SURFACE               1006 

SURFACE_OWNER         1007 

CURVE                 1008 

CURVE_OWNER           1010 

POINT_OWNER           1011 

LIS_BLOCK             1012 

LIST_OWNER            1013 

ATTRIBUTE_OWNER       1015 

GROUP_OWNER            1016 

GROUP_MEMBER        1017 

FIELD_VALUES          1018 

ATTRIB_GROUP           1019 

TRANSFORM_OWNER       1023 

PE_DATA               1027 

PE_INT_GEOM           1028 

SHELL_OR_BODY         1029 

FIELD_NAME 1037 
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System Attribute Definitions 

All system attribute definitions are of class 1. 

Hatching 

 

Identifier  SDL/TYSA_HATCHING 

Type_id  8003 

Entity types  face 

Fields  real  real 1 

    real 2 

   real 3 

   real 4 

  integer  Hatching type 

Set by  Application 

Used by  Parasolid hidden line and wireframe images 

 

For planar hatching - the four real values define the hatch orientation as a vector and a spacing between 

consecutive planes. 

For radial hatching - the first three real values define the spacing of the hatch lines. The fourth value is not used. 

For parametric hatching - the first two real values define the spacing in u and v respectively. The last two values 

are not used. 
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Planar Hatch 

 

Identifier  SDL/TYSA_PLANAR_HATCH 

Type_id  8021 

Entity types  face 

Fields  real  x component  „direction‟ or plane normal 

   y component  

    z component  

   „pitch‟ or separation 

   x component  position vector 

   y component  

    z component  

Set by  Application 

Used by  Parasolid hidden line and wireframe images 

 

For planar hatching, an attribute with this definition takes precedence over an attribute with the 

SDL/TYSA_HATCHING definition, if a face has both types of attribute attached. 

Radial Hatch 

 

Identifier  SDL/TYSA_RADIAL_HATCH 

Type_id  8027 

Entity types  face 

Fields  real  radial around 

   radial along 

    radial about 

   radial around start 

   radial along start 

    radial about start 

Set by  Application 

Used by  Parasolid hidden line and wireframe images 

 

For radial hatching, an attribute with this definition takes precedence over an attribute with the 

SDL/TYSA_HATCHING definition, if a face has both types of attribute attached. 
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Parametric Hatch 

 

Identifier  SDL/TYSA_PARAM_HATCH 

Type_id  8028 

Entity types  face 

Fields  real  u spacing 

   v spacing 

    u start 

    v start 

Set by  Application 

Used by  Parasolid hidden line and wireframe images 

 

For parametric hatching, an attribute with this definition takes precedence over an attribute with the 

SDL/TYSA_HATCHING definition, if a face has both types of attribute attached. 

Density Attributes 
There are density attributes for each of regions, faces, edges and vertices in addition to the system attribute for 

density of a body. 

The region/face/edge/vertex attributes will be taken into account when finding the mass, centre of gravity and 

moment of inertia of a body or of the entity to which the attribute is attached: 

 The mass of a region will not include that of any of its faces or edges, and the same applies to faces and edges 

and their boundaries. 

 A void region will always have zero mass whatever its density and a solid region will inherit its density from 

the body if it does not have a density of its own. 

 The default density for faces, edges and vertices is always zero. 

Density (of a body) 

 

Identifier  SDL/TYSA_DENSITY 

Type_id  8004 

Entity types  body 

Fields  real  Density 

  string  Units 

Set by  Application 

Used by  Parasolid Mass Properties - calculation of mass 

 

A body without a density attribute is taken to have, by default, a density of 1.0. 

The character field units is not used by Parasolid but it can be set and read by the application. 

 Region Density 

 

Identifier  SDL/TYSA_REGION_DENSITY 
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Type_id  8023 

Entity types  region 

Fields  real  Density of region 

  string  Units 

Set by  Application 

Used by  Parasolid Mass Properties - calculation of mass 

 

This attribute only makes sense for solid regions; void regions always have a mass of zero. 

A solid region without a density attribute is taken to have, by default, the same density as its owning body. 

The character field units is not used by Parasolid but it can be set and read by the user. 

Face Density 

 

Identifier  SDL/TYSA_FACE_DENSITY 

Type_id  8024 

Entity types  face 

Fields  real  Density of face 

  string  Units 

Set by  Application 

Used by  Parasolid Mass Properties - calculation of mass 

 

The value of this attribute is treated as a mass per unit area. 

A mass will be calculated for a face only when a face possesses this attribute. In all other cases the mass of a face 

is not defined. 

The character field units is not used by Parasolid but it can be set and read by the user. 

 Edge Density 

 

Identifier  SDL/TYSA_EDGE_DENSITY 

Type_id  8025 

Entity types  edge 

Fields  real  Density of edge 

  string  Units 

Set by  Application 

Used by  Parasolid Mass Properties - calculation of mass 

 

The value of this attribute is treated as a mass per unit length. 

A mass will be calculated for an edge only when an edge possesses this attribute. In all other cases the mass of an 

edge is not defined. 

The character field units is not used by Parasolid but it can be set and read by the user. 

Vertex Density 

 

Identifier  SDL/TYSA_VERTEX_DENSITY 
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Type_id  8026 

Entity types  vertex 

Fields  real  Mass of vertex 

  string  Units 

Set by  Application 

Used by  Parasolid Mass Properties - calculation of mass 

 

The value of this attribute is treated as a point mass. 

A mass will be calculated for a vertex only when a vertex possesses this attribute. In all other cases the mass of a 

vertex is not defined. 

The character field units is not used by Parasolid but it can be set and read by the user. 

Region 

 

Identifier  SDL/TYSA_REGION 

Type_id  8013 

Entity types  face 

Fields  string  Unused 

Set by  Application 

Used by  Parasolid hidden line images 

Regional data will allow the application to analyze a hidden-line picture for distinct regions in the 2D view. 
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Colour 
 

Identifier  SDL/TYSA_COLOUR 

Token  8001 

Entity types  face 

 edge 

Fields  real  Red value  These three values should be 

in the range 0.0 to 1.0 

   Green value  

   Blue value  

Set by  Application 

Used by  Application 

 

Reflectivity 
 

Identifier  SDL/TYSA_REFLECTIVITY 

Token  8014 

Entity types  face 

Fields  real  Coefficient of specular reflection 

   Proportion of colored light in highlights 

   Coefficient of diffuse reflection 

   Coefficient of ambient reflection 

  integer  Reflection power 

Set by  Application 

Used by  Application  

 

The attribute types for Reflectivity and Translucency are also used by the Parasolid routine RRPIXL, but the use 

of this routine is not recommended. 

 Translucency 

 

Identifier  SDL/TYSA_TRANSLUCENCY 

Token  8015 

Entity types  face 

Fields  real  Transparency  

coefficient 

 range 0.0 to 1.0, where 0 is 

opaque and 1 is transparent 

Set by  Application 

Used by  Application 
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Name 
 

Identifier  SDL/TYSA_NAME 

Token  8017 

Entity types  assembly, body, instance, shell, face, loop, edge,                               

vertex, group, surface, curve, point 

 

Fields  string  Name of entity 

Set by  Application 

Used by  Application 

 

Entities read into Parasolid from a Romulus 6.0 transmit file have their names held in name attributes. Only 

entities to which the user has given names will be treated in this way. 

Incremental faceting 
 

Identifier  SDL/TYSA_INCREMENTAL_FACETTING 

Token  TYSAIF 

Entity types face 

 

Fields  string Unused 

Set by  Parasolid incremental faceting/Application 

Used by  Parasolid incremental faceting/Application 

 

Transparency 
 

Identifier  SDL/TYSA_TRANSPARENCY 

Token  TYSATY 

Entity types Body, face 

 

Fields  integer Non-zero transparency coefficient 

value is transparent 

Set by Application 

Used by Parasolid hidden-line drawings 

 

A body may be rendered transparent if it has an attached transparency attribute with a non-zero transparency 

coefficient 

Non-mergeable edges 
 

Identifier  SDL/TYSA_NO_MERGE 

Token  TYSAEN 

Entity types edge 
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Fields  string Unused 

Set by  Application 

Used by Parasolid modeling operations 

 

If an edge has an attribute of this definition attached, it indicates that the edge should not be merged in any 

modelling operations. 

Group merge behavior 
 

Identifier  SDL/TYSA_GROUP_MERGE 

Token  TYSAGM 

Entity types group 

 

Fields  string Unused 

Set by  Application 

Used by Parasolid modeling operations 

 

If a group has an attribute of this definition attached, it indicates that alternative behavior should be used if an 

entity in the group is merged with an entity not in that group. 
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