14.18. Reduced-Order Modeling for State-Space Matrices Export

The n second order modal equations (Equation 14-118) are transformed into $\mathbf{2 n}$ first order equations, where n is input as NMODE on the SPMWRITE command, using the following coordinate transformation:

$$
\{z\}=\left\{\begin{array}{l}
y \tag{14-280}\\
\dot{y}
\end{array}\right\}
$$

The equation becomes:

$$
\begin{equation*}
\{\dot{\mathrm{z}}\}=[\mathrm{A}]\{\mathrm{z}\}+[\mathrm{B}]\{\mathrm{F}\} \tag{14-281}
\end{equation*}
$$

[A] is a (2n $\times 2 n$) state-space matrix defined by:

$$
\begin{align*}
& {[A]=\left[\begin{array}{cc}
0 & \mathrm{I} \\
\Gamma_{1} & \Gamma_{2}
\end{array}\right]} \tag{14-282}\\
& {\left[\Gamma_{1}\right]=\left[\begin{array}{ccccc}
-\omega_{1}^{2} & 0 & 0 & & \\
0 & \ldots & & & \\
0 & & -\omega_{\mathrm{j}}^{2} & & 0 \\
& & & \ldots & 0 \\
& 0 & 0 & -\omega_{\mathrm{n}}^{2}
\end{array}\right]} \\
& {\left[\Gamma_{2}\right]=\left[\begin{array}{ccccc}
-2 \zeta_{1} \omega_{1} & 0 & 0 & \\
0 & \cdots & & \\
0 & & -2 \zeta \omega_{j} & & 0 \\
& & 0 & \cdots & 0 \\
& & 0 & 0 & -2 \zeta_{n} \omega_{n}
\end{array}\right]}
\end{align*}
$$

Where ω_{j} is the frequency of mode j, $\boldsymbol{\xi}_{\mathrm{j}}$ is the effective modal damping of mode \mathbf{j} (seeModal Damping), and $\{\mathrm{F}\}$ is the vector of input forces:

$$
\{F\}=\left\{\begin{array}{c}
F_{1}(t) \tag{14-283}\\
\cdots \\
F_{\text {ninput }}(t)
\end{array}\right\}
$$

Where ninput is the number of scalar input forces derived from Inputs on theSPMWRITE command.
[B] is a ($2 \mathrm{n} \times$ ninput) state-space matrix defined by:

$$
[B]=\left[\begin{array}{c}
0 \tag{14-284}\\
\Gamma_{3}
\end{array}\right]
$$

With

$$
\begin{equation*}
\left[\Gamma_{3}\right]=[\Phi]^{\mathrm{T}}\left[F_{u}\right] \tag{14-285}
\end{equation*}
$$

Where [Φ] is the matrix of eigenvectors and [F_{u}] is a unit force matrix with size (ndof x ninput). It has 1 at the degrees of freedom where input forces are active and 0 elsewhere.

Now that the states $\{z\}$ have been expressed as a function of the input loads, the equation for the degrees of freedom observed (outputs w) is written as:

$$
\left\{\begin{array}{l}
w \tag{14-286}\\
\dot{w} \\
\dot{w}
\end{array}\right\}=[C]\{z\}+[D]\{F\}
$$

[C] is a (3*noutput $\times 2^{*} n$) state-space matrix, where noutput is derived from Outputs on the SPMWRITE command, and is defined by:

$$
[C]=\left[\begin{array}{cc}
\Gamma_{4} & 0 \tag{14-287}\\
0 & \Gamma_{4} \\
\Gamma_{4} \Gamma_{1} & \Gamma_{4} \Gamma_{2}
\end{array}\right]
$$

with

$$
\begin{equation*}
\left[\Gamma_{4}\right]=\left[U_{u}\right][\Phi] \tag{14-288}
\end{equation*}
$$

[U_{u}] is a unit displacement matrix with size (noutput x ndof). It has 1 on degrees of freedom where output is requested and 0 elsewhere.
[D] is a (3*noutput x ninput) state-space matrix defined by:

$$
[D]=\left[\begin{array}{c}
0 \tag{14-289}\\
0 \\
\Gamma_{4} \Gamma_{3}
\end{array}\right]
$$

\dot{w} and \ddot{W} are included only if VelAccKey $=$ ON on
the SPMWRITE command, otherwise the last two rows of [C] are not written and [D] is zero so it is not written.

