
Public Class frmPartInsertAssmSave

 Private hook As IAutomationHook ' Holds Alibre Automation hook object

 Private rootObj As IADRoot ' Holds Alibre Root object

 Private objADOccurrence As IADOccurrence ' Holds Occurrence object

 Private DesignSession As IADDesignSession ' Holds Alibre Design Session object

 Private objPartSession As IADPartSession ' Holds Alibre Part Session object

 Private objSession As IADSession ' Holds Alibre Session Object

 Private Sub btnInsert_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnInsert.Click

 On Error GoTo Error_Trap

 Dim objAssmSession As IADAssemblySession ' Holds Alibre Assembly Session Object

 Dim objADRootOccurrence As IADOccurrence ' Holds Root Occurrence of the Assembly

 Dim objADOccurrences As IADOccurrences ' Holds all Occurrences of the Assembly

 Dim destinationString As String ' Holds the location where the File gets Saved

 Dim flag As Boolean

 flag = True

 If (rootObj Is Nothing) Then 'Exit if for some reason an instance of Alibre Design could not be found

 Exit Sub

 End If

 If (rootObj.Sessions Is Nothing) Then 'Exit if for some reason an Alibre Session Object could not be found

 Exit Sub

 End If

 If (rootObj.Sessions.Count > 0) Then ' If there is atleast one workspace open

 For Each objSession In rootObj.Sessions

 If ((objSession.SessionType = ADObjectSubType.AD_ASSEMBLY) And (flag = True)) Then ' If there is atleast one Assembly open

 objAssmSession = objSession ' part is inserted into that assembly

 flag = False

 lblStatus.Text = "Inserting Part into the Assembly..."

 ' Set the Object Session to be the Assembly's session

 objSession = objAssmSession

 ' Get Root Occurrence from Assembly Session

 objADRootOccurrence = objAssmSession.RootOccurrence()

 ' Get Occurrences collection from Root Occurance

 objADOccurrences = objADRootOccurrence.Occurrences()

 ' Holds Geometry Factory

 Dim objADGeometryFactory As IADGeometryFactory

 ' Get Geometry Factory from Session object

 objADGeometryFactory = objSession.GeometryFactory

 ' Holds Transformation Array Data

 Dim adblTransformationArrayData(15) As Double

 ' Populate the Transformation Array with the following Data for Back View

 ' 1 0 0 0

 ' 0 1 0 0

 ' 0 0 1 0

 ' 0 0 0 1

 adblTransformationArrayData(0) = 1

 adblTransformationArrayData(1) = 0

 adblTransformationArrayData(2) = 0

 adblTransformationArrayData(3) = 0

 adblTransformationArrayData(4) = 0

 adblTransformationArrayData(5) = 1

 adblTransformationArrayData(6) = 0

 adblTransformationArrayData(7) = 0

 adblTransformationArrayData(8) = 0

 adblTransformationArrayData(9) = 0

 adblTransformationArrayData(10) = 1

 adblTransformationArrayData(11) = 0

 adblTransformationArrayData(12) = 0

 adblTransformationArrayData(13) = 0

 adblTransformationArrayData(14) = 0

 adblTransformationArrayData(15) = 1

 ' Holds Transformation

 Dim objADTransformation As IADTransformation

 ' Create Transformation

 objADTransformation = objADGeometryFactory.CreateTransform(adblTransformationArrayData)

 ' Add an Empty Part as Occurrence

 objADOccurrence = objADOccurrences.AddEmptyPart("BlockWithHole", False, objADTransformation)

 ' Set Design Session to be the empty Part's Design Session that was just added to the assembly

 DesignSession = objADOccurrence.DesignSession

 ' Set Part Session to be the empty Part's Design Session that was just added to the assembly

 objPartSession = DesignSession

 ' Call to CreateFeatures method to add features to the empty part inserted into the assembly

 CreateFeatures()

 Dim allPlanes As IADDesignPlanes ' Holds Design Planes

 Dim refPlane As IADDesignPlane ' Holds Design Plane

 Dim objPlaneSketch As IADSketch ' Holds the Reference Sketch

 Dim objADSketchFigures As IADSketchFigures ' Holds all Sketch Figures

 Dim objFeatures As IADPartFeatures ' Holds all Part Features

 Dim objExtrudeBossFeature As IADPartFeature ' Holds the Extrusion Feature

 allPlanes = DesignSession.DesignPlanes ' Get all Planes in the Part

 refPlane = allPlanes.Item("XY-Plane") ' Get XY Plane

 -- objPlaneSketch = objPartSession.Sketches.AddSketch(Nothing, refPlane, "Sketch1") 'Add Sketch to XY Plane

 .. Ab hier läuft gar nicht’s..

 objADSketchFigures = objPlaneSketch.Figures 'Get the Sketch added to XY Plane

 'The following calls sketch a Rectangle and a Circle in the XY Plane

 Call objPlaneSketch.BeginChange()

 Call objPlaneSketch.Figures.AddRectangle(-10, -10, 10, 10)

 Call objPlaneSketch.Figures.AddCircle(0, 0, 5)

 Call objPlaneSketch.EndChange()

 objPlaneSketch = objPartSession.Sketches.Item("Sketch1") ' Name the Sketch as Sketch1

 objFeatures = objPartSession.Features

 'Adds the Extrusion feature using the Sketch created above

 objExtrudeBossFeature = objFeatures.AddExtrudedBoss(objPlaneSketch, 5.0#, _

 ADPartFeatureEndCondition.AD_MID_PLANE, Nothing, Nothing, _

 0, ADDirectionType.AD_ALONG_NORMAL, Nothing, _

 Nothing, False, 0.0#, False, "BlockWithHoleFeature")

 '

 '

 lblStatus.Text = "Part inserted successfully into " & objSession.Name

 'Saves the Assembly with the Part to the location specified

 lblStatus.Text = "Saving assembly on C:\ Drive..."

 destinationString = "C://"

 Call objSession.SaveAs(destinationString, objSession.Name)

 lblStatus.Text = "Assembly is saved successfully on C:\"

 btnInsert.Enabled = False

 GoTo Error_Trap

 Else

 lblStatus.Text = "Please open any Assembly"

 End If

 Next

 Else 'If there is no assembly open

 lblStatus.Text = "Please open any Assembly"

 End If

Error_Trap:

 'Handle Errors here

 Exit Sub

 End Sub

 'This Function creates a Block with a Hole in the empty part that is added to the main Assembly

 Private Sub CreateFeatures()

 Dim allPlanes As IADDesignPlanes ' Holds Design Planes

 Dim refPlane As IADDesignPlane ' Holds Design Plane

 Dim objPlaneSketch As IADSketch ' Holds the Reference Sketch

 Dim objADSketchFigures As IADSketchFigures ' Holds all Sketch Figures

 Dim objFeatures As IADPartFeatures ' Holds all Part Features

 Dim objExtrudeBossFeature As IADPartFeature ' Holds the Extrusion Feature

 allPlanes = DesignSession.DesignPlanes ' Get all Planes in the Part

 refPlane = allPlanes.Item("XY-Plane") ' Get XY Plane

 objPlaneSketch = objPartSession.Sketches.AddSketch(Nothing, refPlane, "Sketch1") 'Add Sketch to XY Plane

 objADSketchFigures = objPlaneSketch.Figures 'Get the Sketch added to XY Plane

 'The following calls sketch a Rectangle and a Circle in the XY Plane

 Call objPlaneSketch.BeginChange()

 Call objPlaneSketch.Figures.AddRectangle(-10, -10, 10, 10)

 Call objPlaneSketch.Figures.AddCircle(0, 0, 5)

 Call objPlaneSketch.EndChange()

 objPlaneSketch = objPartSession.Sketches.Item("Sketch1") ' Name the Sketch as Sketch1

 objFeatures = objPartSession.Features

 'Adds the Extrusion feature using the Sketch created above

 objExtrudeBossFeature = objFeatures.AddExtrudedBoss(objPlaneSketch, 5.0#, _

 ADPartFeatureEndCondition.AD_MID_PLANE, Nothing, Nothing, _

 0, ADDirectionType.AD_ALONG_NORMAL, Nothing, _

 Nothing, False, 0.0#, False, "BlockWithHoleFeature")

 End Sub

 Private Sub btnClose_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnClose.Click

 If rootObj Is Nothing Then

 Me.Close()

 Exit Sub

 Else

 rootObj = Nothing

 Me.Close()

 End If

 End Sub

Private Sub frmPartInsertAssmSave_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 On Error Resume Next

 'Gets the automation hook for the running instance of Alibre

 hook = GetObject(, "AlibreX.AutomationHook")

 If (hook Is Nothing) Then 'If Alibre Design is not initialized

 btnInsert.Enabled = False

 lblStatus.Text = "Open any Assembly in Alibre and restart this application"

 Else 'If Alibre Design is initialized

 rootObj = hook.Root

 btnInsert.Enabled = True

 End If

 End Sub

End Class

