EXIT THE ANSYS POST1 DATABASE PROCESSOR ***** ROUTINE COMPLETED ***** CP = 253.658 *** NOTE *** CP = 253.658 TIME= 13:35:55 A total of 5 warnings and errors written to L:\Parameterstudie\V2.err. CLEAR DATABASE AND RERUN START.ANS RUN SETUP PROCEDURE FROM FILE= C:\Program Files\ANSYS Inc\v160\ANSYS\apdl\start160.ans PRODUCE NODAL PLOT IN DSYS= 0 ANSYS Academic Research TITLE= Dehnungsberechnung mit Vorspannung + thermische Last PARAMETER A = 985.0000000 PARAMETER B = 70.00000000 PARAMETER D = 0.2500000000 PARAMETER E1 = 1354.800000 PARAMETER E2 = 1071.800000 PARAMETER E3 = 940.6600000 PARAMETER E4 = 775.5400000 PARAMETER E5 = 329.2400000 PARAMETER V = 0.4700000000 PARAMETER Q = 0.1750000000E-02 PARAMETER I1 = 0.9879700000E-04 PARAMETER I2 = 0.1157200000E-03 PARAMETER I3 = 0.1326400000E-03 PARAMETER I4 = 0.1495600000E-03 PARAMETER I5 = 0.2097700000E-03 PARAMETER T1 = 233.1500000 PARAMETER T2 = 263.1500000 PARAMETER T3 = 293.1500000 PARAMETER T4 = 323.1500000 PARAMETER T5 = 353.1500000 PARAMETER TREFF = 283.6500000 PARAMETER FS = 6.000000000 PARAMETER TW = 298.0000000 15.00000000 PARAMETER TK = 271.0000000 65.00000000 PARAMETER NA = 20.00000000 ***** ANSYS ANALYSIS DEFINITION (PREP7) ***** ENTER /SHOW,DEVICE-NAME TO ENABLE GRAPHIC DISPLAY ENTER FINISH TO LEAVE PREP7 PRINTOUT KEY SET TO /GOPR (USE /NOPR TO SUPPRESS) ELEMENT TYPE 1 IS SHELL281 8-NODE SHELL KEYOPT( 1- 6)= 0 0 0 0 0 0 KEYOPT( 7-12)= 0 0 0 0 0 0 KEYOPT(13-18)= 0 0 0 0 0 0 CURRENT NODAL DOF SET IS UX UY UZ ROTX ROTY ROTZ THREE-DIMENSIONAL MODEL INPUT SECTION ID NUMBER 1 INPUT SECTION TYPE SHELL INPUT SHELL SECTION NAME Membran Shell Section ID= 1 Number of layers= 1 Total Thickness= 0.250000 *** PROPERTY TEMPERATURE TABLE NUM. TEMPS= 5 *** SLOC= 1 233.1500 263.1500 293.1500 323.1500 353.1500 MATERIAL 1 REFT = 283.6500 PROPERTY TABLE EX MAT= 1 NUM. POINTS= 5 SLOC= 1 1354.800 1071.800 940.6600 775.5400 329.2400 PROPERTY TABLE NUXY MAT= 1 NUM. POINTS= 5 SLOC= 1 0.4700000 0.4700000 0.4700000 0.4700000 0.4700000 PROPERTY TABLE ALPX MAT= 1 NUM. POINTS= 5 SLOC= 1 0.9879700E-04 0.1157200E-03 0.1326400E-03 0.1495600E-03 0.2097700E-03 MATERIAL 1 DENS = 0.1750000E-02 CREATE A PLANAR RECTANGULAR AREA WITH X-DISTANCES FROM 0.000000000 TO 1125.000000 Y-DISTANCES FROM 0.000000000 TO 1125.000000 OUTPUT AREA = 1 PLOT AREAS FROM 1 TO 1 BY 1 CREATE A PLANAR RECTANGULAR AREA WITH X-DISTANCES FROM 0.000000000 TO 70.00000000 Y-DISTANCES FROM 0.000000000 TO 70.00000000 OUTPUT AREA = 2 CREATE A PLANAR RECTANGULAR AREA WITH X-DISTANCES FROM 1055.000000 TO 1125.000000 Y-DISTANCES FROM 0.000000000 TO 70.00000000 OUTPUT AREA = 3 CREATE A PLANAR RECTANGULAR AREA WITH X-DISTANCES FROM 0.000000000 TO 70.00000000 Y-DISTANCES FROM 1055.000000 TO 1125.000000 OUTPUT AREA = 4 CREATE A PLANAR RECTANGULAR AREA WITH X-DISTANCES FROM 1055.000000 TO 1125.000000 Y-DISTANCES FROM 1055.000000 TO 1125.000000 OUTPUT AREA = 5 SUBTRACT AREAS AREA NUMBERS TO BE OPERATED ON = 1 AREAS OPERATED ON WILL BE DELETED IF POSSIBLE AREA NUMBERS TO BE SUBTRACTED = 2 AREAS SUBTRACTED WILL BE DELETED IF POSSIBLE OUTPUT AREAS = 6 PLOT AREAS FROM 1 TO 6 BY 1 SUBTRACT AREAS AREA NUMBERS TO BE OPERATED ON = 6 AREAS OPERATED ON WILL BE DELETED IF POSSIBLE AREA NUMBERS TO BE SUBTRACTED = 3 AREAS SUBTRACTED WILL BE DELETED IF POSSIBLE OUTPUT AREAS = 1 PLOT AREAS FROM 1 TO 6 BY 1 SUBTRACT AREAS AREA NUMBERS TO BE OPERATED ON = 1 AREAS OPERATED ON WILL BE DELETED IF POSSIBLE AREA NUMBERS TO BE SUBTRACTED = 4 AREAS SUBTRACTED WILL BE DELETED IF POSSIBLE OUTPUT AREAS = 2 PLOT AREAS FROM 1 TO 6 BY 1 SUBTRACT AREAS AREA NUMBERS TO BE OPERATED ON = 2 AREAS OPERATED ON WILL BE DELETED IF POSSIBLE AREA NUMBERS TO BE SUBTRACTED = 5 AREAS SUBTRACTED WILL BE DELETED IF POSSIBLE OUTPUT AREAS = 1 PLOT AREAS FROM 1 TO 6 BY 1 DELETE ALL SELECTED AREAS. DELETED 1 AREAS LINE CONNECTS KEYPOINTS 7 14 LINE NO.= 1 KP1= 7 TAN1= 0.0000 -1.0000 0.0000 KP2= 14 TAN2= 0.0000 1.0000 0.0000 LINE CONNECTS KEYPOINTS 14 17 LINE NO.= 2 KP1= 14 TAN1= -1.0000 0.0000 0.0000 KP2= 17 TAN2= 1.0000 0.0000 0.0000 LINE CONNECTS KEYPOINTS 17 12 LINE NO.= 9 KP1= 17 TAN1= 0.0000 1.0000 0.0000 KP2= 12 TAN2= 0.0000 -1.0000 0.0000 LINE CONNECTS KEYPOINTS 12 7 LINE NO.= 10 KP1= 12 TAN1= 1.0000 0.0000 0.0000 KP2= 7 TAN2= -1.0000 0.0000 0.0000 COMPRESS LINE NUMBERS MAXIMUM LINE NUMBER COMPRESSED FROM 22 TO 16 DEFINE AREA BY LIST OF LINES LINE LIST = 1 7 5 13 (TRAVERSED IN SAME DIRECTION AS LINE 1) AREA NUMBER = 1 DEFINE AREA BY LIST OF LINES LINE LIST = 2 14 8 16 (TRAVERSED IN SAME DIRECTION AS LINE 2) AREA NUMBER = 2 DEFINE AREA BY LIST OF LINES LINE LIST = 9 15 3 11 (TRAVERSED IN SAME DIRECTION AS LINE 9) AREA NUMBER = 3 DEFINE AREA BY LIST OF LINES LINE LIST = 4 6 10 12 (TRAVERSED IN SAME DIRECTION AS LINE 4) AREA NUMBER = 4 DEFINE AREA BY LIST OF LINES LINE LIST = 1 2 9 10 (TRAVERSED IN SAME DIRECTION AS LINE 1) AREA NUMBER = 5 SET DIVISIONS ON ALL SELECTED LINES FOR ELEMENT SIZE = 20.000 SPACING RATIO = 1.0000 (KFORCE = 0 PREVIOUS NONZERO VALUES WILL NOT BE ALTERED) ELEMENT TYPE SET TO 1 MATERIAL NUMBER SET TO 1 USE THE MAPPED MESHER IF THE ENTITY CAN BE MAP MESHED OTHERWISE USE THE FREE MESHER. GENERATE NODES AND ELEMENTS IN ALL SELECTED AREAS ** Meshing of area 1 in progress ** ** AREA 1 MESHED WITH 200 QUADRILATERALS, 0 TRIANGLES ** ** Meshing of area 1 completed ** 200 elements. ** Meshing of area 2 in progress ** ** AREA 2 MESHED WITH 200 QUADRILATERALS, 0 TRIANGLES ** ** Meshing of area 2 completed ** 200 elements. ** Meshing of area 3 in progress ** ** AREA 3 MESHED WITH 200 QUADRILATERALS, 0 TRIANGLES ** ** Meshing of area 3 completed ** 200 elements. ** Meshing of area 4 in progress ** ** AREA 4 MESHED WITH 200 QUADRILATERALS, 0 TRIANGLES ** ** Meshing of area 4 completed ** 200 elements. ** Meshing of area 5 in progress ** ** AREA 5 MESHED WITH 2500 QUADRILATERALS, 0 TRIANGLES ** ** Meshing of area 5 completed ** 2500 elements. NUMBER OF AREAS MESHED = 5 MAXIMUM NODE NUMBER = 10133 MAXIMUM ELEMENT NUMBER = 3300 PRODUCE ELEMENT PLOT IN DSYS = 0 ***** ROUTINE COMPLETED ***** CP = 258.962 *** NOTE *** CP = 258.962 TIME= 13:36:01 A total of 5 warnings and errors written to L:\Parameterstudie\V2.err. ***** ANSYS SOLUTION ROUTINE ***** REFERENCE TEMPERATURE= 283.650 (TUNIF= 283.650) SELECT FOR ITEM=LOC COMPONENT=Y BETWEEN 0.0000 AND 0.0000 KABS= 0. TOLERANCE= 0.100000E-05 101 NODES (OF 10133 DEFINED) SELECTED BY NSEL COMMAND. SPECIFIED CONSTRAINT UY FOR SELECTED NODES 1 TO 10133 BY 1 REAL= 0.00000000 IMAG= 0.00000000 ALL BOUNDARY CONDITION DISPLAY KEYS SET TO 1 SPECIFIED CONSTRAINT UZ FOR SELECTED NODES 1 TO 10133 BY 1 REAL= 0.00000000 IMAG= 0.00000000 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 0.0000 AND 0.0000 KABS= 0. TOLERANCE= 0.100000E-05 101 NODES (OF 10133 DEFINED) SELECTED BY NSEL COMMAND. SPECIFIED CONSTRAINT UX FOR SELECTED NODES 1 TO 10133 BY 1 REAL= 0.00000000 IMAG= 0.00000000 SPECIFIED CONSTRAINT UZ FOR SELECTED NODES 1 TO 10133 BY 1 REAL= 0.00000000 IMAG= 0.00000000 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 1125.0 AND 1125.0 KABS= 0. TOLERANCE= 5.62500 101 NODES (OF 10133 DEFINED) SELECTED BY NSEL COMMAND. SPECIFIED CONSTRAINT UZ FOR SELECTED NODES 1 TO 10133 BY 1 REAL= 0.00000000 IMAG= 0.00000000 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW SELECT FOR ITEM=LOC COMPONENT=Y BETWEEN 1125.0 AND 1125.0 KABS= 0. TOLERANCE= 5.62500 101 NODES (OF 10133 DEFINED) SELECTED BY NSEL COMMAND. SPECIFIED CONSTRAINT UZ FOR SELECTED NODES 1 TO 10133 BY 1 REAL= 0.00000000 IMAG= 0.00000000 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT FOR ITEM=LOC COMPONENT=Y BETWEEN 1125.0 AND 1125.0 KABS= 0. TOLERANCE= 5.62500 101 NODES (OF 10133 DEFINED) SELECTED BY NSEL COMMAND. GENERATE SURFACE LOAD PRES ON SURFACE DEFINED BY ALL SELECTED NODES VALUES= -6.00000000 0.00000000 NUMBER OF PRES ELEMENT FACE LOADS STORED = 50 PRES LOAD SURFACE DISPLAY KEY = 1 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 1125.0 AND 1125.0 KABS= 0. TOLERANCE= 5.62500 101 NODES (OF 10133 DEFINED) SELECTED BY NSEL COMMAND. GENERATE SURFACE LOAD PRES ON SURFACE DEFINED BY ALL SELECTED NODES VALUES= -6.00000000 0.00000000 NUMBER OF PRES ELEMENT FACE LOADS STORED = 50 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW PRES LOAD SURFACE DISPLAY KEY = 2 SHELL ELEMENT SURFACE LOAD SYMBOLS WILL BE DISPLAYED ON ALL LOAD FACES. PRODUCE ELEMENT PLOT IN DSYS = 0 TIME= 1.0000 LARGE DEFORMATION ANALYSIS ***** ANSYS SOLVE COMMAND ***** *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS *** ---GIVE SUGGESTIONS ONLY--- ELEMENT TYPE 1 IS SHELL281. IT IS ASSOCIATED WITH ELASTOPLASTIC MATERIALS ONLY. KEYOPT(8)=2 IS SUGGESTED. S O L U T I O N O P T I O N S PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D DEGREES OF FREEDOM. . . . . . UX UY UZ ROTX ROTY ROTZ ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE) NONLINEAR GEOMETRIC EFFECTS . . . . . . . . . .ON NEWTON-RAPHSON OPTION . . . . . . . . . . . . .PROGRAM CHOSEN GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC *** NOTE *** CP = 262.097 TIME= 13:36:05 This nonlinear analysis defaults to using the full Newton-Raphson solution procedure. This can be modified using the NROPT command. SOLCONTROL,ON uses sparse matrix direct solver *** NOTE *** CP = 262.097 TIME= 13:36:05 The conditions for direct assembly have been met. No .emat or .erot files will be produced. *** WARNING *** CP = 262.097 TIME= 13:36:05 The program chosen initial timestep/load-factor is arbitrary. It is necessary for the user to supply a suitable initial timestep/load-factor through the NSUB or DELTIM command for convergence and overall efficiency. L O A D S T E P O P T I O N S LOAD STEP NUMBER. . . . . . . . . . . . . . . . 1 TIME AT END OF THE LOAD STEP. . . . . . . . . . 1.0000 AUTOMATIC TIME STEPPING . . . . . . . . . . . . ON INITIAL NUMBER OF SUBSTEPS . . . . . . . . . 1 MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . . 1000 MINIMUM NUMBER OF SUBSTEPS . . . . . . . . . 1 START WITH TIME STEP FROM PREVIOUS SUBSTEP . YES MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . . 15 STEP CHANGE BOUNDARY CONDITIONS . . . . . . . . NO STRESS-STIFFENING . . . . . . . . . . . . . . . ON TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (EXIT) CONVERGENCE CONTROLS. . . . . . . . . . . . . .USE DEFAULTS PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT DATABASE OUTPUT CONTROLS. . . . . . . . . . . .ALL DATA WRITTEN FOR THE LAST SUBSTEP SOLUTION MONITORING INFO IS WRITTEN TO FILE= V2.mntr *** NOTE *** CP = 263.361 TIME= 13:36:19 Predictor is ON by default for structural elements with rotational degrees of freedom. Use the PRED,OFF command to turn the predictor OFF if it adversely affects the convergence. Element Formation Element= 1000 Cum. Iter.= 1 CP= 265.592 Time= 1.0000 Load Step= 1 Substep= 1 Equilibrium Iteration= 1. *********** PRECISE MASS SUMMARY *********** TOTAL RIGID BODY MASS MATRIX ABOUT ORIGIN Translational mass | Coupled translational/rotational mass 545.14 0.0000 0.0000 | 0.0000 0.0000 -0.30664E+06 0.0000 545.14 0.0000 | 0.0000 0.0000 0.30664E+06 0.0000 0.0000 545.14 | 0.30664E+06 -0.30664E+06 0.0000 ------------------------------------------ | ------------------------------------------ | Rotational mass (inertia) | 0.22849E+09 -0.17248E+09 0.0000 | -0.17248E+09 0.22849E+09 0.0000 | 0.0000 0.0000 0.45699E+09 TOTAL MASS = 545.14 The mass principal axes coincide with the global Cartesian axes CENTER OF MASS (X,Y,Z)= 562.50 562.50 0.0000 TOTAL INERTIA ABOUT CENTER OF MASS 0.56010E+08 0.92089E-05 0.0000 0.92089E-05 0.56010E+08 0.0000 0.0000 0.0000 0.11202E+09 The inertia principal axes coincide with the global Cartesian axes *** MASS SUMMARY BY ELEMENT TYPE *** TYPE MASS 1 545.136 Range of element maximum matrix coefficients in global coordinates Maximum = 3855.22336 at element 1850. Minimum = 3439.71994 at element 500. *** ELEMENT MATRIX FORMULATION TIMES TYPE NUMBER ENAME TOTAL CP AVE CP 1 3300 SHELL281 15.350 0.004652 Time at end of element matrix formulation CP = 271.410522. ALL CURRENT ANSYS DATA WRITTEN TO FILE NAME= V2.rdb FOR POSSIBLE RESUME FROM THIS POINT FORCE CONVERGENCE VALUE = 880.1 CRITERION= 4.490 MOMENT CONVERGENCE VALUE = 0.000 CRITERION= 0.5102E-04 SPARSE MATRIX DIRECT SOLVER. Number of equations = 60192, Maximum wavefront = 120 Memory allocated for solver = 217.306 MB Memory required for in-core = 203.144 MB Memory required for out-of-core = 35.453 MB *** NOTE *** CP = 272.549 TIME= 13:36:42 The Sparse Matrix solver is currently running in the in-core memory mode. This memory mode uses the most amount of memory in order to avoid using the hard drive as much as possible, which most often results in the fastest solution time. This mode is recommended if enough physical memory is present to accommodate all of the solver data. curEqn= 29798 totEqn= 60192 Job CP sec= 3468.491 Factor Done= 50% Factor Wall sec= 1.714 rate= 1999.2 Mflops curEqn= 60192 totEqn= 60192 Job CP sec= 3479.504 Factor Done= 100% Factor Wall sec= 12.726 rate= 535.8 Mflops Sparse solver maximum pivot= 7710.44673 at node 5989 ROTX. Sparse solver minimum pivot= 2.320366459E-03 at node 1418 UZ. Sparse solver minimum pivot in absolute value= 2.320366459E-03 at node 1418 UZ. DISP CONVERGENCE VALUE = 14.45 CRITERION= 0.7370 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 14.45 Element Formation Element= 1000 Cum. Iter.= 2 CP= 287.510 Time= 1.0000 Load Step= 1 Substep= 1 Equilibrium Iteration= 2. F Convergence Norm= 880.13 Previous Norm= 880.13 U Convergence Norm= 14.445 Previous Norm= 0.0000 FORCE CONVERGENCE VALUE = 129.5 CRITERION= 6.463 MOMENT CONVERGENCE VALUE = 0.3278 CRITERION= 15.42 <<< CONVERGED curEqn= 29798 totEqn= 60192 Job CP sec= 3492.929 Factor Done= 50% Factor Wall sec= 1.746 rate= 1963.0 Mflops curEqn= 60192 totEqn= 60192 Job CP sec= 3494.829 Factor Done= 100% Factor Wall sec= 3.646 rate= 1870.4 Mflops DISP CONVERGENCE VALUE = 2.422 CRITERION= 0.7638 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 2.422 Element Formation Element= 1000 Cum. Iter.= 3 CP= 303.999 Time= 1.0000 Load Step= 1 Substep= 1 Equilibrium Iteration= 3. F Convergence Norm= 129.51 Previous Norm= 880.13 U Convergence Norm= 2.4222 Previous Norm= 14.445 M Convergence Norm= 0.32782 Previous Norm= 0.0000 FORCE CONVERGENCE VALUE = 80.99 CRITERION= 6.668 MOMENT CONVERGENCE VALUE = 0.9201E-01 CRITERION= 15.91 <<< CONVERGED curEqn= 29798 totEqn= 60192 Job CP sec= 3536.392 Factor Done= 50% Factor Wall sec= 17.357 rate= 197.4 Mflops curEqn= 60192 totEqn= 60192 Job CP sec= 3553.368 Factor Done= 100% Factor Wall sec= 34.332 rate= 198.6 Mflops DISP CONVERGENCE VALUE = 0.3673 CRITERION= 0.7794 <<< CONVERGED EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.3673 Element Formation Element= 1000 Cum. Iter.= 4 CP= 349.536 Time= 1.0000 Load Step= 1 Substep= 1 Equilibrium Iteration= 4. F Convergence Norm= 80.991 Previous Norm= 129.51 U Convergence Norm= 0.36731 Previous Norm= 2.4222 M Convergence Norm= 0.92009E-01 Previous Norm= 0.32782 FORCE CONVERGENCE VALUE = 1.572 CRITERION= 6.794 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.6489E-02 CRITERION= 16.21 <<< CONVERGED >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 3 Element Output Element= 3000 Cum. Iter.= 3 CP= 372.936 Time= 1.0000 Load Step= 1 Substep= 1 Equilibrium Iteration= 3. F Convergence Norm= 1.5716 Previous Norm= 80.991 U Convergence Norm= 0.36731 Previous Norm= 2.4222 M Convergence Norm= 0.64890E-02 Previous Norm= 0.92009E-01 *** ELEMENT RESULT CALCULATION TIMES TYPE NUMBER ENAME TOTAL CP AVE CP 1 3300 SHELL281 29.047 0.008802 *** NODAL LOAD CALCULATION TIMES TYPE NUMBER ENAME TOTAL CP AVE CP 1 3300 SHELL281 2.761 0.000837 *** LOAD STEP 1 SUBSTEP 1 COMPLETED. CUM ITER = 3 *** TIME = 1.00000 TIME INC = 1.00000 *** NOTE *** CP = 374.059 TIME= 13:38:50 Solution is done! *** ANSYS BINARY FILE STATISTICS BUFFER SIZE USED= 16384 27.062 MB WRITTEN ON ELEMENT SAVED DATA FILE: V2.esav 18.938 MB WRITTEN ON ASSEMBLED MATRIX FILE: V2.full 8.312 MB WRITTEN ON RESULTS FILE: V2.rst TIME= 1.0000 SPECIFIED BODY FORCE TEMP FOR ALL SELECTED NODES SET TO 7.888609052E-31 ***** ANSYS SOLVE COMMAND ***** *** NOTE *** CP = 374.449 TIME= 13:38:52 Present time 1 is less than or equal to the previous time. Time will default to 2. *** NOTE *** CP = 374.449 TIME= 13:38:52 This nonlinear analysis defaults to using the full Newton-Raphson solution procedure. This can be modified using the NROPT command. SOLCONTROL,ON uses sparse matrix direct solver L O A D S T E P O P T I O N S LOAD STEP NUMBER. . . . . . . . . . . . . . . . 2 TIME AT END OF THE LOAD STEP. . . . . . . . . . 2.0000 AUTOMATIC TIME STEPPING . . . . . . . . . . . . ON INITIAL NUMBER OF SUBSTEPS . . . . . . . . . 1 MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . . 100 MINIMUM NUMBER OF SUBSTEPS . . . . . . . . . 1 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . . 15 STEP CHANGE BOUNDARY CONDITIONS . . . . . . . . NO STRESS-STIFFENING . . . . . . . . . . . . . . . ON TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (EXIT) CONVERGENCE CONTROLS. . . . . . . . . . . . . .USE DEFAULTS PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT DATABASE OUTPUT CONTROLS. . . . . . . . . . . .ALL DATA WRITTEN FOR THE LAST SUBSTEP SOLUTION MONITORING INFO IS WRITTEN TO FILE= V2.mntr *** NOTE *** CP = 374.902 TIME= 13:39:00 Predictor is ON by default for structural elements with rotational degrees of freedom. Use the PRED,OFF command to turn the predictor OFF if it adversely affects the convergence. Element Formation Element= 1000 Cum. Iter.= 4 CP= 378.006 Time= 2.0000 Load Step= 2 Substep= 1 Equilibrium Iteration= 1. F Convergence Norm= 1.5716 Previous Norm= 80.991 U Convergence Norm= 0.36731 Previous Norm= 2.4222 M Convergence Norm= 0.64890E-02 Previous Norm= 0.92009E-01 FORCE CONVERGENCE VALUE = 1.572 CRITERION= 6.394 MOMENT CONVERGENCE VALUE = 0.6489E-02 CRITERION= 0.5102E-04 curEqn= 29798 totEqn= 60192 Job CP sec= 3631.575 Factor Done= 50% Factor Wall sec= 12.021 rate= 285.0 Mflops curEqn= 60192 totEqn= 60192 Job CP sec= 3638.381 Factor Done= 100% Factor Wall sec= 18.827 rate= 362.2 Mflops DISP CONVERGENCE VALUE = 0.3898E-01 CRITERION= 0.7485 <<< CONVERGED EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.3898E-01 Element Formation Element= 1000 Cum. Iter.= 5 CP= 404.635 Time= 2.0000 Load Step= 2 Substep= 1 Equilibrium Iteration= 2. F Convergence Norm= 1.5716 Previous Norm= 1.5716 U Convergence Norm= 0.38980E-01 Previous Norm= 0.36731 M Convergence Norm= 0.64890E-02 Previous Norm= 0.64890E-02 FORCE CONVERGENCE VALUE = 0.2065 CRITERION= 6.524 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.2242E-04 CRITERION= 15.57 <<< CONVERGED >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 1 Element Output Element= 1000 Cum. Iter.= 4 CP= 425.181 Time= 2.0000 Load Step= 2 Substep= 1 Equilibrium Iteration= 1. F Convergence Norm= 0.20646 Previous Norm= 1.5716 U Convergence Norm= 0.38980E-01 Previous Norm= 0.36731 M Convergence Norm= 0.22415E-04 Previous Norm= 0.64890E-02 Element Output Element= 3000 Cum. Iter.= 4 CP= 436.179 Time= 2.0000 Load Step= 2 Substep= 1 Equilibrium Iteration= 1. F Convergence Norm= 0.20646 Previous Norm= 1.5716 U Convergence Norm= 0.38980E-01 Previous Norm= 0.36731 M Convergence Norm= 0.22415E-04 Previous Norm= 0.64890E-02 *** LOAD STEP 2 SUBSTEP 1 COMPLETED. CUM ITER = 4 *** TIME = 2.00000 TIME INC = 1.00000 *** NOTE *** CP = 436.990 TIME= 13:40:26 Solution is done! /OUTPUT FILE= test.text