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14.3 Derivations
The following table provides additional definitions for the selected result derivations. These 
include tensor to vector, tensor to scalar, and vector to scalar resolutions.

Transform Type Derivation 
Method Description

Scalar to Scalar
Vector to Vector
Tensor to Tensor

None No transformation is used if the result data type 
matches the plot tool’s data type.

Vector to Scalar Magnitude Vector magnitude.

X Component 1st vector component.

Y Component 2nd vector component.

Z Component 3rd vector component.

Tensor to Scalar XX Component XX tensor component.

YY Component YY tensor component.

ZZ Component ZZ tensor component.

XY Component XY tensor component.

YZ Component YZ tensor component.

ZX Component ZX tensor component.

Min Principal Calculated minimum principal magnitude.

Mid Principal Calculated middle principal magnitude.

Max Principal Calculated maximum principal magnitude.

1st Invariant Calculated 1st invariant

2nd Invariant Calculated 2nd invariant

3rd Invariant Calculated 3rd invariant

Hydrostatic Calculated mean of the three normal tensor 
components.

von Mises Calculated effective stress using von Mises 
criterion.

Tresca Calculated Tresca shear stress.

Max Shear Calculated maximum shear magnitude.

Octahedral Calculated Octahedral shear stress.

Tensor to Vector Min Principal Calculated minimum principal vector.

Mid Principal Calculated middle principal vector.

Max Principal Calculated maximum principal vector.
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Below are the equations and examples of the derivation methods:

von Mises Stress.  von Mises stress is calculated from the following equation:

Example: The elements shown below have the following stress contributions:

Important: These equations for calculating invariants are not recommended for complex 
results since phase is not taken into account.

Elem. ID Node ID

1 1 46.2 13.01 0.00 5.13 0.00 0.00

2 93.39 25.33 0.00 17.45 0.00 0.00

11 68.37 12.16 0.00 -19.73 0.00 0.00

10 44.32 10.40 0.00 -1.01 0.00 0.00

2 2 93.39 25.33 0.00 17.45 0.00 0.00

3 88.67 24.41 0.00 23.95 0.00 0.00

12 57.42 5.44 0.00 -34.02 0.00 0.00

11 59.37 10.16 0.00 -20.73 0.00 0.00

9 10 44.32 10.40 0.00 -1.01 0.00 0.00

11 67.37 11.16 0.00 -18.73 0.00 0.00

20 4.72 8.15 0.00 -15.28 0.00 0.00

19 17.99 7.68 0.00 -4.61 0.00 0.00
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The von Mises stress calculated at node 11 when nodal averaging is done first due to the 
contribution from each element is 78.96. When the von Mises derivation is done first and then 
averaging at the nodes takes place, the calculated von Mises stress is 79.02. Thus a difference can 
arise depending on whether the averaging is done first or the derivation. This can be true for all 
derived results.

Octahedral Shear Stress.  Octahedral shear stress is calculated from the following equation:

10 11 100.37 14.16 0.00 -30.73 0.00 0.00

12 57.42 5.44 0.00 -34.02 0.00 0.00

21 -5.63 5.72 0.00 -22.03 0.00 0.00

20 4.72 8.15 0.00 -15.28 0.00 0.00

Node 11 von Mises 
Stress

E1 68.37 12.16 0.00 -19.73 0.0 0.0 71.82

E2 59.37 10.16 0.00 -20.73 0.00 0.00 65.68

E9 67.37 11.16 0.00 -18.73 0.00 0.00 70.45

E10 100.37 14.16 0.00 -30.73 0.00 0.00 108.10

Average 73.87 11.91 0.00 -22.48 0.00 0.00 79.02

Average then Derive 78.96

Derive then Average 79.02

Important: It must be noted also that for von Mises and other derived results, the calculations 
are generally valid only for stresses. Although these operations can be performed 
for any valid tensor or vector data stored in the database, quantities such as tensor 
strains are not appropriate for von Mises calculations. To calculate a true von 
Mises strain the strain tensor must be converted to engineering strains by 
multiplying the shear components by a factor of two.

Elem. ID Node ID σx σy σz τxy τyz τzx
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From the von Mises example above the octahedral shear stress is:

Hydrostatic Stress.  Hydrostatic stress is calculated from the following equation:

From the von Mises example above the hydrostatic stress is:

Invariant Stresses.  1st, 2nd, and 3rd invariant stresses are calculated from the following 
equations:

From the von Mises example above the invariant stresses are:

Octahedral Shear Stress Node 11

Average/Derive 37.22

Derive/Average 37.25

Hydrostatic Stress Node 11

Average/Derive 28.59

Derive/Average 28.59

Invariant Stresses (Node 11) 1st Invariant 2nd Invariant 3rd Invariant

Average/Derive 85.78 374.44 0.00

Derive/Average 85.78 373.38 0.00

σ
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3----------------------------------=

σ1st σx σy σz+ +( )=

σ2nd σxσy σyσz σzσx τxy
2 τyz

2 τzx
2+ +( )–+ +=

σ3rd σx σyσz τyz
2–( ) τxy τxyσz τyzτzx–( ) τzx τxyτyz σxτzx–( )+ +=



PART 6
Results Postprocessing

Principal Stresses.  Principal stresses are calculated from either a Mohr’s circle method for 2D 
tensors  or from a 3x3 Jacobian Rotation Eigenvector extraction method 
for a 3D tensors. The User Interface allows for either a tensor-dependent derivation, or a 2D 
calculation. The tensor-dependent calculation will choose either a 2D or 3D calculation 
depending on values of each tensor encountered. A 2D calculation will be used when the ZZ, YZ 
and ZX are exactly zero (which is the case when the analysis code does not calculate these 
values), otherwise the full 3D tensor will be considered. Both the magnitudes of the principals 
and their direction cosines are calculated from these routines. 

The magnitudes of the two principal stresses from the 2D Mohr’s circle method are calculated 
according the following equations:

where:

The direction cosines for the 2D Mohr’s circle method are calculated by assembling the following 
3x3 transformation matrix:

From the von Mises example above the principal stresses are:

Also the principal stress determinant is the product of the three principals and the major, minor, 
and intermediate principal deviatoric stresses are calculated from:

Principal Stresses (Node 11) Maximum Minimum

Average/Derive 81.17 4.61

Derive/Average 81.20 4.58
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Tresca Shear Stress.  Tresca shear stress is calculated from the following equation:

where  are calculated as mentioned under Principal stress derivations above.

From the von Mises example above the Tresca shear stress is:

Maximum Shear Stress.  Maximum shear stress is calculated from the following equation

where  are calculated as mentioned under Principal stress derivations above.

From the von Mises example above the Tresca shear stress is:

Magnitude.  Magnitude (vector length) is calculated from the components with the standard 
formula:

Tresca Shear Stress Node 11

Average/Derive 76.55

Derive/Average 76.61

Tresca Shear Stress Node 11

Average/Derive 76.55

Derive/Average 76.61

τ σmajor σminor–( )=

σmajor  and σminor

τ
σmajor σminor–( )

2------------------------------------------------=

σmajor  and σminor

magnitude x2 y2 z2+ +=
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14.4 Averaging
For Fringe and other plots and reports that must display or report values at nodes from 
elemental data regardless of where the element results are computed, must be converted to 
results at element nodes. The interpolation functions are then used (e.g., by the graphics module 
for fringe plot and other operations) to compute the results at any point within the element. The 
interpolation functions may or may not be the shape functions that were used by the analysis 
program to compute the element results. 

As a rule, each element sharing a common node has its own result values. To compute results 
for continuous fringe plots, these values need to be averaged and distributed to the sharing 
elements. The options for the averaging process are described below:

No Averaging Each element retains its value at the element nodes. Or in other 
words, each element is its own averaging domain. This selection 
from the Averaging Domain pull down is called None. The fringe 
plot will have jumps (not continuous regions) at element 
boundaries.

Averaging Based on 
All Entities

All elements will contribute to the sum and will receive the 
averaged result regardless of whether only certain entities have 
been selected for the display of the fringe plot. All surrounding 
elements will contribute to the averaging process.

Averaging Based on 
Target Entities

Only the elements defined as the target entities will contribute to 
the sum and will receive the averaged result. Surrounding 
elements that are not part of the target entities will not contribute 
to the averaging process.

Averaging Based on 
Materials

Elements with the same material IDs will contribute to the sum 
and will receive the averaged result. The fringe plot will have 
jumps at material boundaries.

Averaging Based on 
Properties

Elements with the same property IDs will contribute to the sum 
and will receive the averaged result. The fringe plot will have 
jumps at property boundaries.

Averaging Based on 
Element Types

Elements of the same type will contribute to the sum and will 
receive the averaged result. The fringe plot will have jumps at 
element type boundaries.

Difference The minimum and maximum results from the elements sharing a 
common node are computed. The difference is determined as the 
delta between the maximum and minimum contributor to each 
node. The fringe plot of this max difference indicates the quality of 
the mesh and the location where this mesh needs to be refined by 
comparing its values with the actual values of the results. Nodal 
results will have zero max-difference. 

Sum The sum of all contributing nodes will be displayed. This step 
skips the averaging.
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Below are some examples of the averaging techniques. The model in Figure 14-1 is used for 
illustration purposes. It consists of 8 QUAD4 elements and 4 TRI3 elements with a total of 17 
nodes.

Figure 14-1  Square Plate Model to Illustrate Averaging Techniques.

The above model is also broken up into various material and property sets as such:

Prop1 Mat1 Elem 1:3

Prop2 Mat2 Elem 6 8:9

Prop3 Mat3 Elem 4 7

Prop4 Mat1 Elem 10:13

Target1 Elem 1:3 6 10:11

Target2 Elem 4 7:9 12:13
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Element Centroidal Results.  The first illustration is the simple case of results at element 
centroids. Table 14-1 below lists some scalar values of strain energy at each element centroid. 
The table is listed by node number with each element and corresponding strain energy value for 
all contributing elements associated with the particular nodes. The averaging domain columns 
on the right then list the averaged values for each node based on the averaging domain. Columns 
with more than one value per node indicate a boundary of the averaging domain and will 
therefore cause a plot discontinuity across boundaries. See Figure 14-2 for visual effects of 
averaging domains.

Table 14-1  Averaging at Nodes from Element Centroidal Results 

Node Element Strain 
Energy

Averaging Domain

All Property Material None Type Target

1 1 3.01 3.01 3.01 3.01 3.01 3.01 3.01

2 1 3.01 3.89 3.89 3.89 3.01 3.89 3.89

2 4.78 4.78

3 2 4.78 3.97 3.97 3.97 4.78 3.97 3.97

3 3.16 3.16

4 3 3.16 3.16 3.16 3.16 3.16 3.16 3.16

5 1 3.01 8.04 3.01 3.01 8.04 3.01

4 13.06 13.06 13.06 13.06

6 1 3.01 4.24 3.89 2.04 3.01 6.95 2.63

2 4.78 4.78

4 13.06 13.06 13.06 13.06 6.67

10 0.10 0.19 2.04 0.10 0.19 2.63

13 0.27 0.27 6.67

7 2 4.78 2.09 3.97 2.04 4.78 3.42 2.09

3 3.16 3.16

6 2.31 2.31 2.04 2.31

10 0.10 0.11 2.04 0.10 0.11

11 0.11 0.11

8 3 3.16 2.74 3.16 3.16 3.16 2.74 2.74

6 2.31 2.31 2.31 2.31

9 4 13.06 12.10 12.10 12.10 13.06 12.10 12.10

7 11.13 11.13
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10 4 13.06 5.95 12.01 12.01 13.06 9.74 5.95

7 11.13 11.13

8 5.02 5.02 5.02 5.02

12 0.27 0.27 0.27 0.27 0.27

13 0.27 0.27

11 6 2.31 2.11 3.38 3.38 2.31 3.38 1.21

8 5.02 5.02 2.70

9 2.82 2.82

11 0.11 0.19 0.19 0.11 0.19 1.21

12 0.27 0.27

12 6 2.31 2.57 2.57 2.57 2.31 2.57 2.31

9 2.82 2.82 2.82

13 7 11.13 11.13 11.13 11.13 11.13 11.13 11.13

14 7 11.13 8.08 11.13 11.13 11.13 8.08 8.08

8 5.02 5.02 5.02 5.02

15 8 5.02 3.92 3.92 3.92 5.02 3.92 3.92

9 2.82 2.82

16 9 2.82 2.82 2.82 2.82 2.82 2.82 2.82

17 10 0.10 0.19 0.19 0.19 0.10 0.19 0.10

11 0.11 0.11

12 0.27 0.27 0.27

13 0.27 0.27

Table 14-1  Averaging at Nodes from Element Centroidal Results  (continued)

Node Element Strain 
Energy

Averaging Domain

All Property Material None Type Target
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Element Nodal Results.  The second illustration is the more complex case of results at element 
nodes. Table 14-2 below is listed by element number with each node and corresponding von 
Mises stress for all nodes associated with the particular element. This case is identical to the 
element centroid case with the exception that each node can have a different value for each 
contributing element. In this example von Mises stress is derived first and then averaged. See 
Figure 14-2 for visual effects of averaging domains.

Table 14-2  Averaging at Nodes from Element Nodal Results 

Element Node von Mises 
Stress

Averaging Domain

All Property Material None Type Target

1 1 266353 266353 266353 266353 266353 266353 266353

2 205495 236621 236621 236621 205495 236621 236621

6 194627 238950 263404 240096 194627 265783 209085

5 251128 330989 251128 251128 251128 330989 251128

2 2 267747 236621 236621 236621 267747 236621 236621

3 269673 247874 247874 247874 269673 247874 247874

7 288631 213334 254218 199024 288631 259671 213334

6 287859 238950 263404 240096 287859 265783 209085

3 3 226076 247874 247874 247874 226076 247874 247874

4 223550 223550 223550 223550 223550 223550 223550

8 216967 224325 216967 216967 216967 224325 224325

7 219806 213334 254218 199024 219806 259671 213334

4 5 410849 330989 410849 410849 410849 330989 410849

6 314864 238950 314864 314864 314864 265783 283747

10 316307 310705 326528 326528 316307 350090 310705

9 409360 381243 381243 381243 409360 381243 381243

6 7 270577 213334 270577 270577 270577 259671 213334

8 231683 224325 231683 231683 231683 224325 224325

12 231124 264210 264210 264210 231124 264210 231124

11 269415 265760 311763 311763 269415 311763 206152

7 9 353127 381243 381243 381243 353127 381243 381243

10 336749 310705 326528 326528 336749 350090 310705

14 331970 361658 331970 331970 331970 361658 361658

13 351258 351258 351258 351258 351258 351258 351258
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8 10 397215 310705 397215 397215 397215 350090 310705

11 389998 265760 311763 311763 389998 311763 305499

15 384259 346068 346068 346068 384259 346068 346068

14 391346 361658 391346 391346 391346 361658 361658

9 11 275878 265760 311763 311763 275878 311763 305499

12 297297 264210 264210 264210 297297 264210 297297

16 331799 331799 331799 331799 331799 331799 331799

15 307878 346068 346068 346068 307878 307878 346068

10 6 144769 238950 198700 240096 144769 198700 209085

7 144769 213334 143829 199024 144769 143829 213334

17 144769 197728 197728 197728 144769 197728 143829

11 7 142890 213334 143829 199024 142890 143829 213334

11 142890 265760 196756 196756 142890 196756 206152

17 142890 197728 197728 197728 142890 197728 143829

12 11 250623 265760 196756 196756 250623 196756 305499

10 250623 310705 251626 251626 250623 251626 310705

17 250623 197728 197728 197728 250623 197728 251627

13 10 252631 310705 251626 251626 252631 251626 310705

6 252631 238950 198700 240096 252631 198700 283747

17 252631 197728 197728 197728 252631 197728 251627

Table 14-2  Averaging at Nodes from Element Nodal Results  (continued)

Element Node von Mises 
Stress

Averaging Domain

All Property Material None Type Target
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Figure 14-2  Differences in Plots Due to Averaging Domains - Note Discontinuities.

All Entities

By Target EntityNoneBy Element Type

By MaterialBy Property
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14.5 Extrapolation
When element results are provided to MSC.Patran at quadrature points, it is necessary to 
extrapolate the results from the quadrature points to the nodes of the element and to the element 
centroid. Similarly, when results are provided at the element nodes or the centroid, it is 
necessary to interpolate/extrapolate the results to the centroid or nodes respectively.

MSC.Patran has three basic methods to perform this interpolation/extrapolation:

• By parametric mapping method. 
• By solving a set of equations.
• By averaging.

The User Interface allows for four basic methods in which the user can control extrapolation 
methods. These are explained below and examples given.

Shape Function.  If the arrangement of node/quadrature points corresponds to an element 
type in MSC.Patran, the shape functions are known, and a parametric mapping is used. This is 
the preferred method, and is the most accurate representation. The parametric mapping method 
involves mapping the output positions to an element topology that interpolation functions of 
that topology can be used to compute results at the nodes. As an example, if there are 27 results 
output at 27 quadrature points inside a hex/20, then these 27 quadrature points can be 
considered as 27 vertices of a hex/27 element. Results at hex/20 nodes are then computed by the 
interpolation function of the hex/27, even though these nodes are located outside the element 
formed by the 27 quadrature points. Once the nodal results of the hex/27 are available, results 
at the nodes of the hex/20 can be computed by interpolation. These results will be stored in a 
20x27 matrix of coefficients. This method only works if there exists an element topology in the 
library that coincides with the output pattern after being parametrically mapped. 

If the arrangement does not correspond to a MSC.Patran element type, a system of equations is 
constructed and solved for the unknown nodal and centroidal values. The equations are set up 
such that if the interpolation functions of the element topology are used with the unknown nodal 
values, they will generate a unit value at each quadrature point. This method only works if there 
exists an element topology in the library that has the same number of nodes as the number of 
quadrature points. If Shape Function is set in the User Interface ,the shape functions or a set of 
equations will be used to extrapolate results as explained above. Only if these two methods fail 
will averaging take place.
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Average.  If both previous methods fail, results in the element are averaged and each node of 
the element will assume this averaged value. Or, alternatively, if the results are provided at 
nodes, the nodal values would be averaged and assigned to the centroid.

Averaging is also used at element boundaries. In these cases, when extrapolation from different 
elements yields different result values at the same node, the different results are averaged and 
assigned to the node.

For degenerate elements, the extrapolation is performed on the parent element topology, and the 
results at the duplicated nodes in the degenerate element are then averaged. 

The User Interface allows for a forced average extrapolation method to be used. The following 
scenarios can exist.

• Nodal values to centroid
• Gauss values to nodes
• Centroidal values to nodes

Centroid.  A forced extrapolation of the analysis results to the element's centroid can also be set 
in the User Interface which will be performed relative to where the results are initially located. 
Shown below are several different cases that can occur. Once each centroid value is established 
it is then used to render the results plot.

• Centroid values to element centroid
• Nodal values to element centroid
• Gauss values to element centroid

Min/Max.  The Min/Max method searches each element's results and finds the 
minimum/maximum value contained within the element. The element then assumes a constant 
value (including its nodes). For example if the analysis result values are know at the elements 
Gauss points the minimum/maximum value is used as a constant value across the element. This 
method has no effect for results that already exist at the element centroid or the nodes.
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Examples.  Examples are given below for each extrapolation technique using a simple 4 node 
QUAD element with four interior Gauss points. The Gauss points are located in parametric 
space at +/- 0.5773502692 (as per theory). In p/q parametric space, where the extrapolation 
occurs, would look something like Figure 14-3.

Figure 14-3  Example 4 Noded QUAD with Gauss Points.

The element will have a simple set of linear shape functions described by

Using these shape functions, the results at any point in the element would be found as

where i runs from 1 to 4 for the four Gauss or grid points. 

Note that the shape functions vary by element type and element order. The function shown in 
these examples are not necessarily the functions used in any particular element formulation; 
they are to illustrate the extrapolation methods only.

Grid 11

Grid 12

Grid 14

Grid 13

Centroid

Gauss Point 4Gauss Point 1

Gauss Point 2 Gauss Point 3

p axis

q axis
1.0

1.0

0.5774

0.5774

N1 p 1–( )– q 1+( )=

N2 p 1–( ) q 1–( )=

N3 p 1+( )– q 1–( )=

N4 p 1+( ) q 1+( )=

Result p q,( ) Ni p q,( ) Resulti×�=
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Example 1 - Parametric Mapping (Gauss points to element nodes)

Gauss point results are as follows:

The stress values at the Gauss points will be extrapolated to the grid locations. To do this, the 
Gauss points are assigned parametric locations of 1.0. The location of the grids will be at 
parametric locations of 1/0.5774 or about +/-1.7319 with respect to the Gauss points.

The stress at grid 14, located in parametric space at x/y coordinates of (1.7319, 1.7319) will be 
calculated as:

The stresses at the rest of the grids would be as follows:

Example 2 - Parametric Mapping (Gauss points to element centroid)

The stress at the Gauss points are the same as Example 1. The element centroid would be located 
in parametric space at (0,0), so interpolation to that point can be accomplished directly:

Gauss Point Stress

1 10.

2 15.

3 20.

4 15.

Grid X Location Y Location Stress

11 -1.7319 1.7319 6.340499

12 -1.7319 -1.7319 15.00

13 1.7319 -1.7319 23.65950

14 1.7319 1.7319 15.00

1
4--- 1.7319 1–( )– 1.7319 1+( ) 10× 1

4--- 1.7319 1–( ) 1.7319 1–( ) 15× 1
4--- 1.7319 1+( )– 1.7319 1–( ) 20×

1
4--- 1.7319 1+( ) 1.7319 1+( ) 15×

+ +

+ 15.00=

1
4--- 0 1–( )– 0 1+( ) 10× 1

4--- 0 1–( ) 0 1–( ) 15× 1
4--- 0 1+( )– 0 1–( ) 20× 1

4--- 0 1+( ) 0 1+( ) 15×+ + + 15.00=
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Example 3 - Parametric Mapping (Nodal results to element centroid)

In this example the results at the grid points are provided to MSC.Patran. To make an element 
fill plot, the element centroidal value must be known. The stress values at the element grid points 
are:

The value at the centroid is then calculated using the shape functions, just as in Example 2 above:

Note that this gives the same results as in the previous example.

Example 4 - Averaging (Nodal results to element centroid)

The averaging technique simply computes the mathematical average of the nodal stresses and 
reports this as the centroidal value. So, the centroidal stress would be reported as:

Example 5 - Averaging (Gauss points to element nodes)

In this case no suitable set of shape functions exists to carry out a proper interpolation. Therefore, 
the Gauss point stresses are averaged, and the average result distributed to all the grid points:

The grid point stresses would be reported as:

Gauss Point Stress

1 6.340499

2 15.00

3 23.65950

4 15.00

Grid Point Stress

11 15.00

12 15.00

13 15.00

14 15.00

1
4--- 0 1–( )– 0 1+( ) 10× 1

4--- 0 1–( ) 0 1–( ) 15× 1
4--- 0 1+( )– 0 1–( ) 20× 1

4--- 0 1+( ) 0 1+( ) 15×+ + + 15.00=

6.340499 15 23.65950 15+ + +( ) 4⁄ 15.00=

10 15 20 15+ + +( ) 4⁄ 15.00=
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Example 6 - Averaging (Centroidal values to element nodes)

In this case there is only one piece of stress data available, so no assumptions about the stress 
distribution can be made. Therefore, if the element centroid stress is reported as 15.00, the grid 
point stress will be reported as:

Example 7 - Averaging (Adjacent element contributions)

In this case the stresses in an adjacent element are included in the reporting of the grid point 
stress. If two elements have nodal stresses calculated from Gauss points by internal 
extrapolation as follows:

The nodal stresses calculated by MSC.Patran would be:

Grid Point Stress

11 15.00

12 15.00

13 15.00

14 15.00

Element 1 Element 2

Grid Point Stress Grid Point Stress

11 6.340499 13 27.50

12 15.00 14 17.50

13 23.65950 15 10.00

14 15.00 16 9.50

Grid Point Stress

11 6.340499

12 15.00

13 25.5798 = [ ( 23.65650 + 27.50 ) / 2 ]

14 16.25 = [ ( 15.00 + 17.50 ) / 2 ]

15 10.00

16 9.50


