
Mechanism
www.elsevier.com/locate/mechmt

Mechanism and Machine Theory 41 (2006) 596–616

and
Machine Theory
On the lobe profile design in a cycloid reducer using
instant velocity center

Joong-Ho Shin, Soon-Man Kwon *

Department of Mechanical Design and Manufacturing, Changwon National University, 9 Sarim-dong,

Changwon, Kyongnam 641-773, South Korea

Received 31 January 2005; received in revised form 17 May 2005; accepted 28 July 2005
Available online 21 September 2005
Abstract

A cycloid speed reducer is one of the rotational speed regulation devices of the machinery. It has advan-
tages of the higher reduction ratio, the higher accuracy, the easier adjustment of the transmission ratio and
the smaller workspace than any other kinds of the reducer. This paper proposes a simple and exact
approach for the lobe profile design of the cycloid plate gear, which is a main part of the cycloid reducer,
by means of the principle of the instant velocity center in the general contact mechanism and the homoge-
neous coordinate transformation. It is considered the four types of the cycloid reducers in this study: the
stationary ring gear type epicycloid reducer, the rotating ring gear type epicycloid reducer, the stationary
ring gear type hypocycloid reducer and the rotating ring gear type hypocycloid reducer. Design examples
for the four types of the cycloid reducers are presented to simulate the operation and to demonstrate the
feasibility of this approach using a computer-aided program developed on C++ language.
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1. Introduction

Speed reducers are used widely in various applications for speed and torque conversion pur-
poses. Among them, a cycloid reducer has been used for decades owing to their smooth and high
performance, high reliability, long service life, compactness, exceptional overload capacity, low to
zero backlash through rolling tooth engagement in the contact mechanism, and other advantages.
Therefore it makes an attractive candidate for limited space applications today.

A cycloid plate gear, which is a main part of the cycloid reducer, meshes in all teeth or lobes at
any one time with the roller gear (or ring gear) consisted of several rollers on the circular pitch
line. Generally, it is classified into four types of the cycloid drives by the lobe profile of the cycloid
plate gear and the roller gear�s motion: the stationary ring gear type epicycloid reducer, the rotat-
ing ring gear type epicycloid reducer, the stationary ring gear type hypocycloid reducer and the
rotating ring gear type hypocycloid reducer.

For an example, the stationary ring gear type epicycloid reducer (see Fig. 1) basically has only
three major moving parts: high speed input shaft with integrally mounted eccentric cam and roller
bearing assembly corresponding to the distance of centers between roller gear and cycloidal plate
gear, cycloidal plate gear, and slow speed output shaft assembly. As the eccentric cam rotates, it
rolls the cycloid plate gears around the internal circumference of the stationary ring gear. The
resulting action is similar to that of a wheel rolling around the inside of a ring. As the wheel
(cycloidal plate) travels around the ring gear, the wheel itself turns slowly on its own axis in an
opposite direction. That is, for each complete revolution of the high speed shaft the cycloidal plate
gear turns one lobe pitch in the opposite direction. In general, there is one less cycloidal tooth
around the plate gear than there are rollers in the stationary ring gear housing, which results in
reduction ratios being numerically equal to the number of lobes on the plate gear. The reduced
rotation of the plate gears is transmitted to the slow speed output shaft, not depicted in Fig. 1,
Fig. 1. Shape of a stationary ring gear type epicycloid reducer.
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by means of drive pins and rollers which engage with holes located around the middle of each
plate gear.

To the authors� best knowledge, little published information is available on analysis and design
of the cycloid reducer. Botsiber and Kingston [1] introduced, with little analytical work, the
theory of operation of the cycloid drive mechanism. Malhotra and Parameswaran [2] studied
the effects of design parameters on forces for various elements of the cycloid speed reducer as well
as the theoretical efficiency. Blanche and Yang [3] developed an analytical model of the cycloid
drives with machining tolerances and investigated the effects of machining tolerances on backlash
and torque ripple; and they [4] also presented a computer-aided analysis procedure to verify the
performance of cycloid drives. Litvin and Feng [5] used differential geometry to generate the con-
jugate surfaces of cycloidal gearing. Recently, Yan and Lai [6] have presented a geometric design
concept of a hypocycloidal reducer using the theory of conjugate surfaces. Most recently, Li et al.
[7] have introduced a double crank ring-plate-type cycloid drive and presented its working prin-
ciples, advantages and design issues.

In this paper, we propose a new approach for the exact geometric design of the cycloidal plate
gears without interference in the cycloid drives using the principle of instant velocity center and
the homogeneous coordinate transformation technique. It is considered the four types of the
cycloid reducers in this study; the stationary ring gear type epicycloid reducer in Section 2, the
rotating ring gear type epicycloid reducer in Section 3, the stationary ring gear type hypocycloid
reducer in Section 4, and lastly in Section 5 the rotating ring gear type hypocycloid reducer. Based
upon the proposed approach, a program for shape design automation has been developed with
C++ language. Finally, design examples are presented to demonstrate the feasibility of this
approach.
2. Stationary ring gear type epicycloid reducer

According to Kennedy�s theorem [8–10], the three instant velocity centers shared by three rigid
bodies in relative motion to one another (whether or not connected) all lie on the same straight
line. Fig. 2 shows the construction necessary to find instant velocity centers. In Fig. 2 links 2
and 3 are in direct contact. All pin joints (IC12, IC13) are permanent instant centers. If the point
of contact does not lie on the line of centers IC12–IC13, these tangential components will not be
Contact Point

Common Tangent Line
Common Normal Line

IC23
IC13IC12

Link 1

Link 2
Link 3

Link 1

Fig. 2. Instant velocity centers of a contact mechanism.
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equal, and sliding exists. Hence the only relative motion which links 2 and 3 can have at their
point of contact is in the direction of the common tangent, and their center of relative rotation,
instant velocity center IC23, must then lie along the common normal. However, by Kennedy�s the-
orem instant velocity center IC23 must lie along line IC12–IC13. Hence instant velocity center IC23

lies at the point of the intersection of the common normal and the line of centers IC12–IC13.
Fig. 3 is a schematic of a stationary ring gear type epicycloid reducer. This mechanism employs

a crank ðO1OCÞ to devote the epicycloidal plate gear that orbits about the center (O1) of the input
shaft due to the eccentricity of the shaft. At the same time, the cycloidal plate gear rotates about
its own center (OC) in the opposite direction of the input shaft, due to the engagement with the
stationary ring gear. The resulting motion of the cycloidal plate gear is a compound motion.
We can consider that it consists of three links in kinematics: the frame corresponding to O1OR

(here rollers being attached to the stationary ring gear) as Link 1, the eccentric distance O1OC

as Link 2, and the cycloid plate gear as Link 3. By Kennedy�s theorem, we can easily determine
the three instant velocity centers, i.e. a point O1 as IC12, a point OC as IC23 and a point M as IC13,
respectively, as shown in Fig. 3. Here we will denote the eccentricity O1OC corresponding to the
eccentric bearing of the input shaft as E, O1M as Q which is an unknown to be determined below,
and O1OR as R, respectively (Fig. 4). The center distance (or crank length) E, the number of rollers
N, the roller radius Rr, and the radius of the roller gear R are usually assigned design parameters.
From the definition of the instant center, both links sharing the instant center will have identical
velocity at that point. In Fig. 4, the angular velocity x2 of the input shaft (Link 2) and the angular
velocity x3 of the output cycloid plate gear (Link 3) are illustrated in the same direction (coun-
terclockwise). The magnitude of the velocity ~V 23 of the point IC23 as shown in Fig. 4 can be deter-
mined by
V 23 ¼ Ex2 ¼ ðE � QÞx3. ð1Þ

It means that the actual orientation of x2 and x3 is in the opposite direction to each other.

Pollitt [11] showed how to find the point of contact between the cycloid plate gear (planetary
gear) and the cylindrical rollers which make up the teeth of the stationary ring gear (sun gear)
Link 1
(Roller Gear)

Link 3
(Cycloidal Plate Gear)

Link 2
Roller

Gear Profile

IC
IC

IC

Xf

Yf

Contact Point

O
O

OR

M

12

23

13

1

C

Fig. 3. Instant velocity centers of a stationary ring gear type epicycloid reducer.
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Fig. 4. Velocity at I23 of a stationary ring gear type epicycloid reducer.
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and concluded that the number of rollers (N) required in the sun gear is one more than the gear
ratio (known as the number of lobes, i.e. N � 1). Therefore, the angular velocity ratio mV defined
as the output angular velocity divided by the input angular velocity can be written as
mV ¼
x3

x2

¼ 1

1� N
. ð2Þ
From Eqs. (1) and (2), we can easily determine the unknown distance Q as follows
Q ¼ EN . ð3Þ

From the rule of the instant velocity center determination in general contact mechanisms, we have
already known that the common normal line segment of IC13OR passes through the common
tangent line of the contact point between the epicycloid plate gear (Link 3) and the roller gear
(Link 1). Therefore, the contact point Cf ðCf

x , Cf
y Þ in the stationary coordinate system Sf(xf, yf)

and the corresponding contact angle w can be determined from Fig. 5 as below
Cf
x ¼ R� Rr cos w; Cf

y ¼ Rr sin w; ð4Þ

w ¼ tan�1 EN sin /2

R� EN cos /2

� �
¼ tan�1 sin /2

R=ENð Þ � cos /2

� �
; ð5Þ
where Rr is the radius of the roller and /2 is the rotational input angle of Link 2.
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Fig. 5. Contact point of an epicycloidal plate gear and a roller.
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We can observe from Eq. (5) that it should be R/EN > 1 (or E < R/N), otherwise the contact
angles have discontinuous singularities at some rotation angles (see Fig. 6). Therefore we can ob-
tain the valuable information on the size of eccentric cam of the input shaft with the limitation of
E < R/N. It provides that the internal cycloidal plate gear rolls on the stationary ring gear without
interference.

Before deriving the profile equation of the epicycloidal plate gear, four coordinate systems cor-
responding to this speed reducer should be defined as shown in Fig. 7: a stationary reference sys-
tem Sf(xf,yf), and three mobile reference systems S2(x2,y2), S3(x3,y3) and S23(x23,y23). The
position and the orientation of the reference system S2 is defined by the input shaft rotation angle
/2 of Link 2, and those of the reference systems S3 and S23 are defined by the cycloidal plate rota-
tion angle /3 of Link 3.
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Fig. 6. Contact angle variation in accordance with R/EN.
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Fig. 7. Coordinate systems for a stationary ring gear type epicycloid reducer.
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Generally, the origins of coordinate systems do not coincide and the orientation of the systems
is different. In such a case the coordinate transformation may be based on the application of
homogeneous coordinates and 4 · 4 matrices that describe separately rotation about a stationary
axis and displacement of one coordinate system with respect to the other [12]. For the homoge-
neous coordinate transformation from the contact point of Cf in Sf-reference system to that of
C23 in S23-reference system with the origin of OC, the following matrix equation is defined:
C23 ¼ M23;f Cf ¼ M23;3M3;f Cf ¼ M23;3M3;2M2;f Cf ¼ M23;2M2;f Cf ; ð6Þ

where the matrix Mi,j describes transformation Sj to Si, given by
M23;2 ¼

cosð/2 � /3Þ � sinð/2 � /3Þ 0 �E cosð/2 � /3Þ
sinð/2 � /3Þ cosð/2 � /3Þ 0 �E sinð/2 � /3Þ

0 0 1 0

0 0 0 1

2
66664

3
77775; ð7Þ

M2;f ¼

cos /2 sin /2 0 0

� sin /2 cos /2 0 0

0 0 1 0

0 0 0 1

2
66664

3
77775; ð8Þ

Cf ¼ R� Rr cos w Rr sin w 0 1½ �T; ð9Þ
where superscript T means the transpose of the matrix.
The resulting expression of Eq. (6) is
C23 ¼

R cos /3 � Rr cosð/3 þ wÞ � E cosð/2 � /3Þ
�R sin /3 þ Rr sinð/3 þ wÞ � E sinð/2 � /3Þ

0

1

2
6664

3
7775. ð10Þ
Rewriting Eq. (1), we have E d/2

dt ¼ ðE � QÞ d/3

dt . Then we obtain the following relation with the aid
of Eq. (3),
d/2

d/3

¼ E � Q
E
¼ 1

mV
¼ 1� N or /2 ¼ ð1� NÞ/3. ð11Þ
If we define / = /3 by the generated parameter of output motion, we can lead to the following
lobe profile equations for this speed reducer from Eq. (10) with the relation of Eq. (11),
C23
x ¼ R cos /� Rr cosð/þ wÞ � E cosðN/Þ; ð12aÞ

C23
y ¼ �R sin /þ Rr sinð/þ wÞ þ E sinðN/Þ; ð12bÞ
where
w ¼ tan�1 sinð1� NÞ/
ðR=ENÞ � cosð1� NÞ/

� �
ð0� 6 / 6 360�Þ. ð13Þ
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3. Rotating ring gear type epicycloid reducer

The situation envisaged is the same that of Section 2 but ring gear rotating at constant speed
(Fig. 8). It is also modeled kinematically into three-link and three-joint mechanism: the frame cor-
responding to O1OC as Link 1, the roller gear attached to the rotating ring gear as Link 2, and the
epicycloid plate gear as Link 3. Three instant velocity centers are given by the point O1 as IC12, the
point OC as IC13 and the point M as IC23, respectively (Fig. 9). From Fig. 9, the speed V23 at the
point of IC23 and the angular velocity ratio mV for this epicycloid reducer are given by
V 23 ¼ Qx2 ¼ ðQ� EÞx3; ð14Þ

mV ¼
x2

x3

¼ N � 1

N
; ð15Þ
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Fig. 8. Instant velocity centers for a rotating ring gear type epicycloid reducer.
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where the angular velocity x3 is the input angular velocity of the epicycloid plate gear and x2 is
the output angular velocity of the rotating ring gear with rollers. It is noted that x2 and x3 have
the same orientation.

We can determine the unknown distance Q from Eqs. (14) and (15) as follows:
Q ¼ EN . ð16Þ

After determination of the position of IC23, the contact position C2 in S2-reference system and the
contact angle w can be obtained from Fig. 10 as follows:
C2
x ¼ R� Rr cos w; C2

y ¼ �Rr sin w; ð17Þ

w ¼ tan�1 sin /2

R=ENð Þ � cos /2

� �
ð18Þ
with the condition of E < R/N.
To obtain the lobe profile in S3-reference system (Fig. 11) of the epicycloid plate gear, it is taken

the homogeneous coordinate transformation in the form,
C3 ¼ M3;2C2 ¼ M3;f Mf ;2C2; ð19Þ

where
M3;f ¼

cos /3 sin /3 0 �E cos /3

� sin /3 cos /3 0 E sin /3

0 0 1 0

0 0 0 1

2
6664

3
7775; ð20aÞ

Mf ;2 ¼

cos /2 � sin /2 0 0

sin /2 cos /2 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; ð20bÞ
Roller
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Fig. 10. Contact point between an epicycloidal plate gear and a roller.
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C2 ¼ R� Rr cos w �Rr sin w 0 1½ �T. ð21Þ
The result of the matrix Eq. (19) is given by
C3 ¼

R cosð/3 � /2Þ � Rr cosð/3 � /2 � wÞ � E cos /3

�R sinð/3 � /2Þ þ Rr sinð/3 � /2 � wÞ þ E sin /3

0

1

2
66664

3
77775. ð22Þ
From Eqs. (14) and (16), we can obtain the following relation, given by
/2 ¼
N � 1

N
/3. ð23Þ
If we define / by the generated parameter of motion, we obtain the relation of /3 = N/, and
hence /2 = (N � 1)/. Therefore, we can rewrite Eq. (22) for the lobe profile equations of the cur-
rent epicycloid plate gear in the forms,
C3
x ¼ R cos /� Rr cosð/� wÞ � E cosðN/Þ; ð24aÞ

C3
y ¼ �R sin /þ Rr sinð/� wÞ þ E sinðN/Þ; ð24bÞ
where
w ¼ �tan�1 sinð1� NÞ/
ðR=ENÞ � cosð1� NÞ/

� �
ð0� 6 / 6 360�Þ. ð25Þ
It should be noted from Eqs. (12) and (24) that the obtained lobe profile equations of the two epi-
cycloid reducers are exactly the same forms.
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4. Stationary ring gear type hypocycloid reducer

In Fig. 12, the stationary ring gear type hypocycloid reducer is depicted schematically. We can
regard the frame corresponding to a stationary hypocycloid plate gear (ring gear) as Link 1, the
eccentric distance OCORG as Link 2, and a roller gear as Link 3, respectively. The three instant
velocity centers are given at the point OC as IC12, the point ORG as IC23, and the point M as
IC13, respectively, as shown in Fig. 13. Here we denote the distances OCORG as E, OCM as Q
and ORGOR as R, respectively. The speed V23 at IC23 can be written from Fig. 13,
V 23 ¼ Ex2 ¼ ðE � QÞx3; ð26Þ

where the angular velocities x2 and x3, the direction of which are opposite to each other, repre-
sent the input angular velocity by the input shaft and the output angular velocity of the roller
gear, respectively.
Yf

Xf
OC

ORG

M

Hypocycloid plate gear (Fixed)

Hypocycloid plate gear profile

Roller gear (Rotating)

OR

Roller

Contact Point
Center of roller gear

Link

Center of hypocycloid plate gear

Fig. 12. Instant velocity centers of a stationary ring gear type hypocycloid reducer.
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Fig. 13. Velocity at instant velocity center I23.
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In this case, the angular velocity ratio mV is given by
mV ¼
x3

x2

¼ � 1

N
. ð27Þ
So the position of Q is determined by Eqs. (26) and (27) as
Q ¼ EðN þ 1Þ. ð28Þ

To determine the contact position and contact angle, a detailed schematic is shown in Fig. 14. By
the given figure, the contact point in S23-coordinate system and the contact angle w are deter-
mined as follows
C23
x ¼ Rþ Rr cos w; C23

y ¼ �Rr sin w; ð29Þ

w ¼ tan�1 sinð/2 � /3Þ
ðR=ENÞ � cosð/2 � /3Þ

� �
ðE < R=NÞ; ð30Þ
where the angles /2 and /3 are the input rotation angle of the input shaft and the output rotation
angle of the roller gear, respectively.

In order to transform C23 to Cf (Fig. 15), we take a following matrix equation
Cf ¼ Mf ;23C23 ¼ Mf ;3M3;23C23 ¼ Mf ;2M2;3M3;23C23 ¼ Mf ;2M2;23C23; ð31Þ

where the transformation matrices Mf,2 and M2,23, and C23 matrix are given by
Mf ;2 ¼

cos /2 � sin /2 0 0

sin /2 cos /2 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; ð32Þ

M2;23 ¼

cosð/3 � /2Þ � sinð/3 � /2Þ 0 E

sinð/3 � /2Þ cosð/3 � /2Þ 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; ð33Þ
Yf

Xf

Y23

X23

12
OC(IC )

ORG(IC  )23

13
M(IC )

ψ
φ φ−2 3
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Fig. 14. Contact point of a hypocycloid plate gear and a roller.
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C23 ¼ Rþ Rr cos w �Rr sin w 0 1½ �T; ð34Þ
so it leads to
Cf ¼

R cos /3 þ Rr cosð/3 � wÞ þ E cos /2

R sin /3 þ Rr sinð/3 � wÞ þ E sin /2

0

1

2
6664

3
7775. ð35Þ
If we define / = /3 by the generated parameter of motion, we have the following relationship
from Eqs. (26)–(28),
/2 ¼ �N/. ð36Þ

Finally, we obtain the lobe profile equations for a stationary type hypocycloid plate gear in the
forms,
Cf
x ¼ R cos /þ Rr cosð/� wÞ þ E cosðN/Þ; ð37aÞ

Cf
y ¼ R sin /þ Rr sinð/� wÞ � E sinðN/Þ; ð37bÞ
where
w ¼ �tan�1 sinðN þ 1Þ/
ðR=ENÞ � cosðN þ 1Þ/

� �
ð0� 6 / 6 360�Þ. ð38Þ
5. Rotating ring gear type hypocycloid reducer

Fig. 16 shows a schematic of the rotating ring gear type hypocycloid reducer. It also consists of
three links and three joints kinematically: the frame corresponding to OCORG as Link 1, the rotat-
ing hypocycloid ring gear as Link 2, the internal roller gear as Link 3. Three instant velocity
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centers are given at a point OC as IC12, a point ORG as IC13 and a point M as IC23, respectively.
From Fig. 17, the speed V23 at IC23 and the angular velocity ratio mV for a rotating ring gear type
hypocycloid reducer can be written as
V 23 ¼ Qx2 ¼ ðQ� EÞx3; ð39Þ

mV ¼
x2

x3

¼ N
N þ 1

; ð40Þ
where x3 is the input angular velocity of the roller gear, and x2 is the output angular velocity of
the hypocycloid plate gear. It is noted that x3 and x2 have the same rotational direction.
C
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V23

Contact Point

Xf

Yf

OC(IC12) ORG(IC  )
13

M(IC )
23

OR

R
Rr

ω2 ω3

Fig. 17. Velocity at instant velocity center I23.
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We can determine the unknown distance Q of the position IC23 from Eqs. (39) and (40) as
follows
Q ¼ EðN þ 1Þ. ð41Þ

Similarly, the contact position C3 in S3-reference system and the contact angle w can be obtained
from Fig. 18 as follows
C3
x ¼ Rþ Rr cos w; C3

y ¼ Rr sin w; ð42Þ

w ¼ tan�1 sin /3

ðR=ENÞ � cos /3

� �
ð43Þ
with E < R/N.
Our next goal is to represent the contact point C3 in S2-reference system (Fig. 19). The coordi-

nate transformation S3 to S2 is based on the following matrix equation
C2 ¼ M2;f Mf ;3C3; ð44Þ

where
M2;f ¼

cos /2 sin /2 0 0

� sin /2 cos /2 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; ð45Þ

Mf ;3 ¼

cos /3 � sin /3 0 E

sin /3 cos /3 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; ð46Þ
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Fig. 18. Contact point of a rotating hypocycloid plate ring gear and a roller.
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Fig. 19. Coordinate systems of a rotating ring gear type hypocycloid reducer.
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C3 ¼ Rþ Rr cos w Rr sin w 0 1½ �T; ð47Þ
so the result of the matrix Eq. (44) can be written as
C2 ¼

ðRþ Rr cos wÞ cosð/2 � /3Þ þ Rr sin w sinð/2 � /3Þ þ E cos /2

�ðRþ Rr cos wÞ sinð/2 � /3Þ þ Rr sin w cosð/2 � /3Þ � E cos /2

0

1

2
6664

3
7775. ð48Þ
If we define / by the generated parameter of motion, we obtain the relation of /2 = N/ with the
aid of Eqs. (39)–(41), and /3 = (N + 1)/. Therefore, we can rewrite Eq. (48) for the lobe profile
equations of the rotating hypocycloid plate ring gear in the forms,
C2
x ¼ R cos /þ Rr cosð/þ wÞ þ E cosðN/Þ; ð49aÞ

C2
y ¼ R sin /þ Rr sinð/þ wÞ � E sinðN/Þ; ð49bÞ
where
w ¼ tan�1 sinðN þ 1Þ/
ðR=ENÞ � cosðN þ 1Þ/

� �
ð0� 6 / 6 360�Þ. ð50Þ
6. Design examples

A computer program based on C++ language is developed to design the cycloid reducers. This
CAD program has the characteristics of the graphic user interface and the simulation of the real
operation for the 4 types of cycloid reducers.
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Fig. 20 shows the design example of a stationary ring gear type epicycloidal reducer. The speed
ratio equals to �1/8, R = 80 mm, Rr = 10 mm, N = 9, and eccentricity E = 5 mm which is to be
determined under the condition of E < R/N. It shows that the epicycloidal plate gear rolls on all
rollers without interference. In Fig. 21, a design example of a rotating ring gear type epicycloidal
reducer is demonstrated. In the case, the speed ratio equals to 14/15, R = 120 mm, Rr = 9 mm,
Fig. 20. Design example for a stationary ring gear type epicycloid reducer: (a) lobe profile, (b) a simulation screen.



Fig. 21. Design example for a rotating ring gear type epicycloid reducer: (a) lobe profile, (b) a simulation screen.
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N = 15, and E = 4 mm. It also shows that the epicycloidal plate gear rolls on all rollers without
interference.

Fig. 22 corresponds to the design example of a stationary ring gear type hypocycloidal reducer.
The speed ratio equals to �1/15, R = 120 mm, Rr = 10 mm, N = 15, and E = 5 mm. From the
figure, we can observe that all roller gears roll on the hypocycloidal plate ring gear without



Fig. 22. Design example for a stationary ring gear type hypocycloid reducer: (a) lobe profile, (b) a simulation screen.
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interference. Finally, a design example of a rotating ring gear type hypocycloidal reducer is dem-
onstrated in Fig. 23. The speed ratio equals to 24/25, R = 150 mm, Rr = 9 mm, N = 24, and
E = 3 mm. It also shows that the roller gear rolls on the hypocycloidal ring gear smoothly. There-
fore, we can confirm via the above examples that the presented design approach for cycloid reduc-
ers is exact and easy to understand.



Fig. 23. Design example for a rotating ring gear type hypocycloid reducer: (a) lobe profile, (b) a simulation screen.
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7. Conclusions

Because of meshing with the rollers in all lobes at any one time, the cycloid reducer has the pe-
culiar lobe profile. In this study, the lobe profiles for the cycloid reducers have been analyzed by
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the principle of the instant velocity center and the homogeneous coordinate transformation tech-
nique. The following conclusions can be drawn:

1. The lobe profiles for the four types of the cycloid reducers are considered and analyzed. The
present results are easy to understand and exact.

2. The center distance E should be less than R/N in all cases, which provides the condition of no
interference.

3. The obtained lobe profile equation is exactly the same form irrespective of whether the ring
gear rotates or not.

4. The developed design methodology has been successfully applied to cycloid speed reducers
using a computer-aided program, and some examples have been presented to verify the validity
of the developed methodology.
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