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Abstract

We attempt to analyze the tensions in a strand of elastic material
strung horizontally between two anchors, with a load applied some-
where in the middle. First we analyze the tensions caused by a non-
moving load, which can be derived purely from the geometry of the
system. Next, we derive a system of ordinary differential equations
to describe the motion in the line when a load is applied to it with a
specified initial position and velocity. Initially, our equations make no
assumptions about the linearity of the elastic material. Under a lin-
earity assumption, however, the differential equations can be solved
explicitly, and several significant quantities can be calculated using
only the geometry of the system. In the last sections, we analyze
some data gathered from these calculations.

1 Introduction

1.1 Motivation

In a typical slackline set-up, a length of tubular nylon webbing (an elastic
material) is strung horizontally between two anchors, which we will assume
are at the same height relative to gravity. The line is stretched to a certain
initial tension (which is more or less impossible to calculate without taking
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Figure 1: Diagram of a slackline set-up

direct measurements), after which people attempt to stand, walk, jump, and
do various feats of acrobatics on the line. In the first section of this article,
we will treat a person standing on the line as a static load, and calculate the
tension in the line based solely on the person’s weight and the geometry of
the system.

When slacklining is done high above the ground, the person usually wears a
safety leash, which runs from a harness around their waist to a small metal
ring (often a climbing carabiner) around the slackline itself. As they walk,
the ring around the line is dragged along behind them, and if they fall off the
line, this safety leash will catch them. This means that the person’s weight
will be applied to the line dynamically, as they will fall a short distance before
the safety leash comes tight on the line. It is widely believed that applying
this sort of dynamic load to the line will generate significantly higher tensions
in the line, and thus in particular will place significantly higher forces on the
anchors at each end of the line. In order to understand how much force these
anchors must be able to support, it is important to know the magnitude
of the tensions that can be generated in a slackline in various situations,
including dynamic ones.

Note that in the case of a fall as described above, it is extremely important
that the slackline is elastic, so that it can stretch to absorb the impact of the
fall. If the line had very low elasticity (e.g. if steel cable were used instead
of nylon webbing), then even if some slack were left in the line, then unless
the safety leash itself could stretch significantly to absorb the impact, the fall
would be arrested by a very sudden jolting stop. This could cause serious
bodily harm to the person who fell, and could also put tremendous forces on
the anchors.
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DISCLAIMER: Slacklining anywhere other than at ground level is
inherently dangerous and may result in severe injury or death. Do
not attempt this before seeking proper instruction from a quali-
fied professional. Furthermore, while the author of this document
can be reasonably certain of the correctness of the mathematics
contained herein, he makes no claims whatsoever as to the rele-
vance of his conclusions to anything in the real world. Do not use
the information presented here to conclude that a certain slackline
set-up is safe.

1.2 Notation

mg

T1 T2

x

y

(0,0)

0x

D

(D,0)

Figure 2: Force Diagram

Variables:

t = time
(x(t), y(t)) = position of load relative to the left anchor (origin)

3



Constants:

L = original unstretched length of webbing
D = horizontal distance between anchors
m = mass of the load
g = gravitational acceleration
∆ = how far down the load pulls the line when not moving

(i.e. the depression of the line under a static load)
x0 = initial horizontal position (in dynamic case)
y0 = initial vertical position (in dynamic case)
v0 = initial speed (in dynamic case)

The last two items will vary from one scenario to another, but will be constant
throughout any given scenario.

Unknown:

F (λ) = tension in the line when it has stretched by a factor of λ

We will assume that the webbing stretches in a uniform (i.e. linear) way
along its entire length. (This has nothing to do with the tension F (λ) being
linear as a function of λ, and should be a perfectly reasonable assumption.)
We will also assume that the load is initially applied at (x0, 0) when the
line is straight and horizontal, and that it never slides left or right along the
webbing as the webbing moves. (That point on the webbing may still move
left or right as it moves up and down, but we are assuming the load is fixed
to that point and does not slide.) In other words, it is as if the webbing were
cut at the point where the load is applied, and both of the now separate
segments to the left and to the right were affixed to the load. To simplify
the terminology, we will call the webbing to the left of the load the “left
segment” and the webbing to the right of the load the “right segment”. This
implies the following:

Unstretched length of left segment: x0

D
L

Unstretched length of right segment: (1 − x0

D
)L
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Stretched length of left segment:
√

x2 + y2

Stretched length of right segment:
√

(D − x)2 + y2

Tension in left segment: T1 = F

(√
x2+y2

x0
D

L

)

Tension in right segment: T2 = F

(√
(D−x)2+y2

(1−x0
D

)L

)

Direction vector for T1:

(
−x√
x2+y2

, −y√
x2+y2

)

Direction vector for T2:

(
D−x√

(D−x)2+y2
, −y√

(D−x)2+y2

)

Note that the above expressions for the tensions T1 and T2 obey a certain
symmetry: replacing x0 with D − x0 in the expression for T1 will give the
expression for T2, and vice versa. This is due to the symmetry in the geometry
of the system: the tension in the left segment when the load is x0 meters
from the left anchor should be exactly the same as the tension in the right
segment when the load is x0 meters from the right anchor, i.e. D−x0 meters
from the left anchor. This same symmetry will hold in all of the expressions
that we will derive for T1 and T2, so in what follows, we will show fewer
details about the expressions for T2.

2 Preliminary Analysis

2.1 Static Load Analysis

If the load is not moving, then the sum of the three force vectors on the load
(tensions T1 and T2, and gravity) is zero. This gives us the following two
equations: 

T1 · −x√
x2+y2

+ T2 · D−x√
(D−x)2+y2

= 0

T1 · −y√
x2+y2

+ T2 · −y√
(D−x)2+y2

− mg = 0
(1)
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Solving these simultaneously gives

T1 = mg
(
1 − x

D

)√(x

y

)2

+ 1

T2 = mg
( x

D

)√(D − x

y

)2

+ 1

These solutions have no predictive value at all, because without knowing
more about F (λ) for our material, we can’t possibly predict the tensions in
the line. In particular, for given values of D and x and the load mg, we
have cannot predict what y will be. However, these solutions do allow us
to calculate the tensions in a real world system in which we can measure y
along with D, x and mg. To rephrase that, we can calculate the tensions in
the line using nothing more than the geometry of the system and the weight
of the load. (This may seem counterintuitive at first, because it seems at
first glance that the tension should depend on how tight the line is pulled.
It does, but indirectly, in the sense that the tighter the line is pulled, the
smaller y will be, and hence the greater the values of the expressions above
will be.) Note that, by the notation introduced in section 1.2 and Figure 2,
this value of y is −∆. Also, note that when the load is in the middle of the
line, i.e. when x = D

2
, the tensions will be equal, and the expressions above

simplify to

T1 = T2 =
1

4
mg

√(
D

y

)2

+ 4

2.2 Differential Equations

If we allow for a moving load, then by Newton’s second law, equation (1)
becomes the following system of differential equations:

F

(√
x2+y2

x0
D

L

)
−x√
x2+y2

+ F

(√
(D−x)2+y2

(1−x0
D )L

)
D−x√

(D−x)2+y2
= mx′′

F

(√
x2+y2

x0
D

L

)
−y√
x2+y2

+ F

(√
(D−x)2+y2

(1−x0
D )L

)
−y√

(D−x)2+y2
− mg = my′′

(2)
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Here we have replaced T1 and T2 by the expressions derived earlier for them
in terms of the function F (λ). Note that in this form, the equations are
a coupled system of second order ordinary differential equations, with the
single independent variable t. If, at some point, enough data on the behavior
of the function F becomes known, then it would be an easy matter to nu-
merically solve this system of equations for various values of the parameters
and appropriate initial conditions. This could potentially yield much more
accurate predictions than the results presented here.

However, at this point we must make a lovely observation. If we assume
that F is a linear function, that is that F (λ) = Kλ for some constant K
(measured in units of force), then (2) simplifies to

−KD
Lx0

x + KD
L(D−x0)

(D − x) = mx′′

−KD
Lx0

y − KD
L(D−x0)

y − mg = my′′
(3)

In this form, the equations have magically uncoupled, and each of the now
separate differential equations is linear (nonhomogeneous) with constant co-
efficients! Furthermore, in all the cases we will consider, the initial conditions
for x will be x(0) = x0, x′(0) = 0, and it is immediately clear that these con-
ditions yield the constant solution x(t) = x0 for the first equation.

Therefore, in all that follows, we will concern ourselves solely with the second
of these differential equations, which we write in standard form as

y′′ +
K

Lmx0

D

(
1 − x0

D

)y = −g (4)

This is the equation of a simple undamped harmonic oscillator. As is stan-
dard practice with such an equation, we now define

ω =

√
K

Lmx0

D

(
1 − x0

D

)
Then (4) becomes

y′′ + ω2y = −g

and its general solution is

y = C1 cos(ωt) + C2 sin(ωt) − g

ω2
(5)
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Note that the constant solution of this (when C1 and C2 are both 0) is
y = − g

ω2 . That is, this is the value of y when there is no movement in the
line at all. We have previously called this value −∆. So we now have

∆ =
g

ω2
= L · mg

K
· x0

D

(
1 − x0

D

)
(6)

Recall that the conclusion of Section 2.1 was that although we could not
predict this value, it is extremely useful, for the case of a static load in a real
world setting, to measure this value. It will turn out that, even though we
are now dealing with a dynamic load rather than a static one, this quantity
will play an extremely important role. In fact, in all the results that follow,
every quantity that matters to us can be expressed in terms of ∆, other
parameters related to the geometry of the system, and the weight of the load
(mg), thus eliminating any need to know K or L, which are more difficult to
measure. As an example of this, we can now rewrite the expressions for T1

and T2 derived in section 1.2:

T1 = F

(√
x2 + y2

x0

D
L

)

= K ·
√

x2 + y2

x0

D
L

= mg
(
1 − x0

D

) √
x2 + y2

L · mg
K

· x0

D

(
1 − x0

D

)
= mg

(
1 − x0

D

) √x2 + y2

∆
(7)

T2 = mg
x0

D

√
x2 + y2

∆
(8)

Finally, note in (5) that y(0) = C1−∆ and y′(0) = C2ω. If we use the initial
conditions y(0) = y0, y′(0) = −v0, and solve for the constants C1 and C2,
then our general solution takes the form

y = (y0 + ∆) cos(ωt) − v0

ω
sin(ωt) − ∆ (9)
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We will be interested in two quantities related to this solution: the maximum
tensions in the line, and the maximum force that acts on the load (or more
specifically, the maximum “g force”, i.e. acceleration, felt by the load). For
the first, note that the tensions in the line increase with y2, so to find the
maximum tension, we will want to find the maximum value of y2, which
will occur when y is at its absolute minimum. Since the amplitude of the

oscillator is
√

(y0 + ∆)2 +
(

v0

ω

)2
, this minimum value of y will be

ymin = −
√

(y0 + ∆)2 +
(v0

ω

)2

− ∆.

The maximum force on the load will occur when the upward acceleration of
the load is the greatest (which also happens to be when y is at its absolute
minimum.) Since the acceleration of the load is

y′′ = −(y0 + ∆)ω2 cos(ωt) + v0ω sin(ωt)

and the amplitude of this oscillator is ω2

√
(y0 + ∆)2 +

(
v0

ω

)2
(which simplifies

to ω2(|ymin| −∆)), it follows that the maximum acceleration felt by the load
is simply this amplitude plus g:

amax = ω2(|ymin| − ∆) + g =

(
ω2

g
(|ymin| − ∆) + 1

)
g =

|ymin|
∆

g

3 Modeling a Leash Fall

It is simple to verify that if a body, acted on by constant gravitational accel-
eration g, is released from rest and falls a distance h, then its final speed will
be

√
2gh. Hence if a load is dropped this distance onto our tensioned line,

the speed at which it is moving when it hits the line, i.e. its initial speed
v0 in the context of section 2.2, will be

√
2gh. We will consider two possible

cases of this.
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3.1 First Model

One way to model a leash fall on a slackline is as follows. Initially, a person
is standing on the line and is not moving. At this moment we have y = −∆.
The person then falls off the line, and free-falls until their safety leash is fully
extended and begins to pull on the line, thus applying the person’s weight to
the line at an initial speed equal to the speed at which the person is falling.
But, as anyone who has fallen off a slackline will tell you, as soon as you fall
off, the line snaps back up very quickly. Thus it may not be unrealistic to
assume that by the time the person’s safety leash comes tight on the line,
the line itself has returned to horizontal.

This means that the distance of the free-fall was only l − ∆ (where l is the
length of the leash plus the length of the person’s legs), and that the vertical
position of the line when the load is applied is y = 0. Hence our initial
conditions (section 2.2) should be y0 = 0, v0 =

√
2g(l − ∆). This gives us

ymin = −
√

∆2 +
2g(l − ∆)

ω2
− ∆ = −

√
2l∆ − ∆2 − ∆

(using the fact that ∆ = g
ω2 (6)). Finally, using (7) and (8), the maximum

tensions in the line are as follows:

T1 = mg
(
1 − x0

D

) √x2
0 + y2

min

∆

= mg
(
1 − x0

D

) √x2
0 + 2l∆ + 2∆

√
2l∆ − ∆2

∆

= mg
(
1 − x0

D

)√(x0

∆

)2

+ 2
l

∆
+ 2

√
2

l

∆
− 1

T2 = mg · x0

D

√(
D − x0

∆

)2

+ 2
l

∆
+ 2

√
2

l

∆
− 1

The maximum acceleration that the person falling will feel is

amax =
|ymin|

∆
g =

(√
2

l

∆
− 1 + 1

)
g
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3.2 Second Model

The major assumption in our first model is that the line returns all the way
to horizontal before the safety leash begins to pull it back down. This makes
the model a sort of “best case” scenario, because the distance of the free-
fall is shortened, and the line begins absorbing the energy of the fall from
a higher point. Thus the expressions derived in the previous section should
be considered a lower bound for the tensions involved. To obtain an upper
bound, we will consider an unrealistic, but clearly worst-case, scenario. We
will assume in this model that when the person falls from the slackline, the
line does not snap back up at all, but rather stays in place as if held there
by some unseen force.

Thus the distance of the free-fall will be exactly l, the length of the leash plus
the length of the person’s legs, and the vertical position of the line when the
load is applied will be the same as before the person falls, namely y = −∆.
Hence our initial conditions should be y0 = −∆, v0 =

√
2gl. This gives us

ymin = −
√

2gl

ω2
− ∆ = −

√
2l∆ − ∆

Thus the maximum tensions in the line in this model are as follows:

T1 = mg
(
1 − x0

D

) √x2
0 + y2

min

∆

= mg
(
1 − x0

D

) √x2
0 + 2l∆ + 2∆

√
2l∆ + ∆2

∆

= mg
(
1 − x0

D

)√(x0

∆

)2

+ 2
l

∆
+ 2

√
2

l

∆
+ 1

T2 = mg · x0

D

√(
D − x0

∆

)2

+ 2
l

∆
+ 2

√
2

l

∆
+ 1

The maximum acceleration that the person falling will feel is

amax =
|ymin|

∆
g =

(√
2

l

∆
+ 1

)
g
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3.3 Discussion

The final form of all the expressions derived in this section have involved only
the weight mg of the load (person on the slackline), a few geometric mea-
surements (D, x0, and l), and our magical quantity ∆, the distance that the
line sags with a non-moving load (at horizontal position x0). Unfortunately,
right now, it is more or less impossible to predict the value of ∆ for any
given slackline set-up or any position x0 on the line. However, since we can
measure ∆ directly, these calculations still may have tremendous practical
significance. For example, if I am walking on a slackline that spans 55 feet,
and it sags 5 feet in the middle under my weight, then I can compute that
the tension in either side of the line is roughly 2.8 times my body weight
(section 2.1). Recall that this result is based purely on geometry and simple
physics, and is more or less irrefutable.

Now, suppose this slackline is high above the ground (perhaps at the rim of
Yosemite Valley), and I fall off and am caught by a leash that is 5 feet long.
Since I am about 6 feet tall, my waist was roughly 3 feet above the line before
the fall, and is now 5 feet below it, so l = 8 in this scenario. The results
of this section imply that the maximum tension in the line during the fall is
between 3.01 and 3.08 times my body weight, that the maximum distance
below the anchors that my feet will reach is somewhere between 20.4 and
21.9 feet, and that I feel between 2.5 and 2.8 g’s at the most. Unfortunately,
all of these results are based on a major assumption: that the tension in the
slackline is a linear function of the factor by which it has stretched. (This
was the assumption that F (λ) = Kλ for some K in section 2.2. It more or
less says that the webbing obeys Hooke’s Law, or that its Young’s modulus is
constant.) But, as anyone who has experience setting up slacklines probably
knows, this assumption is false for tubular nylon webbing. For one thing,
the elastic properties of webbing are known to change as it ages, or when it
gets wet, or when it is exposed to ultraviolet light for long periods of time.
But even disregarding these factors, it is common to set up a slackline and
find that it sags a certain distance at first, and then a few minutes later find
that it sags more under the same load and needs to be pulled tighter. This
implies that its Young’s modulus decreases when it is kept under fairly high
tension.

However, before we throw away most of the results of this paper, consider this.
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All of the situations just mentioned involve the Young’s modulus changing
over a period of minutes or months or years. But as the example above
demonstrates, the results gathered here are intended to be used by roughly
measuring the amount that the line sags (∆) when a person is just standing
on it, and using this value to calculate the various other quantities that
would arise if that person took a leash fall at that instant. It may not
be too unrealistic to assume that, during the split second in which a fall
occurs, the Young’s modulus does remain more or less constant, and thus
that the models developed here are valid. On the other hand, this may be
completely untrue, because it is generally believed that a leash fall generates
substantially higher tensions in a slackline than a static load generates, and
it may be that this sort of sudden increase in tension makes the nonlinearity
apparent in the webbing. We saw in the example above (and we will see
more in the graphs in the next section) that if the models developed here are
valid, then the tensions generated during a leash fall are not actually so high
(except perhaps when they occur very close to one end of the line), so that
argument may not hold. Admittedly, this is a bit of circular reasoning, but
it does seem to provide some evidence that this model may be valid, at least
for falls that occur in the middle of the line (where we know that the tensions
on each side of the line are equal). Furthermore, it is worth mentioning that
what we have done here is one version of a standard trick in the analysis of
nonlinear dynamical systems. We have found an equilibrium (the position of
the line when not moving) and we have linearized our differential equations
about that equilibrium.

4 Results

Since all of our expressions for the two tensions T1 and T2 obey the symmetry
described in section 1.2, we need only present data for one of these tensions.
We have chosen to include only T1 in this summary and the graphs below.
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4.1 Summary of Formulas

Notation:

D = Horiz. dist. b/w anchors

x0 = Horiz. dist. of person from anchor

l = Length of leash + length of legs

∆ = Depression in line when person is not moving

This first formula makes no assumption about the webbing.

Tension when not moving: mg
(
1 − x0

D

)√(x0

∆

)2

+ 1

The rest of these assume the webbing is linearly elastic.

Max. tension caused by a leash fall:

Lower bound: mg
(
1 − x0

D

)√(x0

∆

)2

+ 2
l

∆
+ 2

√
2

l

∆
− 1

Upper bound: mg
(
1 − x0

D

)√(x0

∆

)2

+ 2
l

∆
+ 2

√
2

l

∆
+ 1

g force felt by person during a leash fall:

Lower bound:

√
2

l

∆
− 1 + 1

Upper bound:

√
2

l

∆
+ 1

Total drop of a leash fall:

Lower bound:
√

2l∆ − ∆2 + ∆ + l

Upper bound:
√

2l∆ + ∆ + l
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4.2 Observations

All of the expressions for tensions listed above are directly proportional to
mg, the weight of the load. Hence, in the graphs below, we have chosen
to present these tensions as simple numbers, which must be multiplied by a
person’s weight in order to find the actual tension that person would put on
a slackline in that scenario. Similarly, the two expressions for the maximum
acceleration are completely independent of the mass of the load, and are
proportional to g. For this reason, in the list of formulas above and the
graphs below, we have chosen to divide these expressions by g. This literally
gives the g force that the person will feel during a leash fall.

In all of these expressions, all of the length measurements are relative. (Note
that in the final form of each expression, every variable representing a length
or distance appears in a fraction with another such unit.) This implies that
we can consider all lengths to be measured relative to one particular length,
say D, the distance between the two anchors. For example, if a person is
standing 3 meters out on a slackline with a 10-meter span and the line sags
0.5 meters, then the tensions in the line would be exactly the same as if that
person were standing 6 meters out on a 20-meter line and the line sagged 1
meter.

A pleasant side efect of this is that the units used to measure lengths do not
matter at all, provided that the same units are used for all lengths. If you
prefer to measure all your lengths in meters, but your weight in pounds, the
formulas presented here will work for you with no modifications, and will
return tensions measured in pounds. If you are a climber and prefer to think
of forces in kN, but you think in feet rather than meters, you can convert
your weight to kN, and leave all the length measurements in feet, and all the
tensions will come out in kN.

4.3 Graphs

Figure 3 gives the tension in a slackline when a person is just standing on
it. The different curves correspond to various values of x0, the horizontal
distance of the person from the anchor. These are all measured relative to
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Figure 3: Tension in a slackline under a static load

D, as are the values of ∆ along the horizontal axis. The graph makes it
appear that the tension is highest when the person is in the middle of the
line, and is much lower near the anchors, but this is misleading; keep in mind
that ∆ will be much higher in the middle of the line, and will be very small
near the anchors. The graph does point out one interesting thing: the fact
that the curves for D

4
and 3

4
D are almost identical implies that when the

person is standing 1
4

of the way out from one anchor, the tensions on either
side of the line are nearly the same (because ∆ will certainly be the same at
x0 = D

4
and x0 = 3

4
D).

Figure 4 shows that in a leash fall with l = 8 ft, g forces above 4g are unlikely
unless ∆ is less than 1 foot. For long slacklines, this usually only occurs near
the anchors, but for short, tight highlines, it means that leash fals are going
to hurt! It also shows that, unless the line sags a lot under body weight, a
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Figure 4: Max g force and drop distance (below anchors) during a leash fall
with l = 8

leash fall shouldn’t drop a person more than 25 feet. Recall that these two
quantities depend only on l and ∆, so Figure 4 applies to a line of any length.

Figure 5 may be the most interesting (and perhaps shocking) in this section.
It shows the maximum tension in one side of a 50-foot slackline (i.e. the
maximum load put on one of the anchors) in the event of a leash fall, com-
pared to the tension in the line right before the fall when the person was just
standing. When the fall occurs in the middle of the line, the difference be-
tween the static load and the maximum tension is only about 0.5 times body
weight, and when the fall occurs 10 feet from the anchor, it’s only about 1
times body weight. Only when the leash fall occurs very close to the anchor
is the tension significantly higher, and even then it’s “only” a difference of 3
to 4 times body weight (2 to 3 kN for an average-sized person).
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Figure 5: Tensions in a 50-foot slackline during a leash fall with l = 8

These graphs also show that the lower and upper bounds that we established
earlier are quite close together, which is good.

18



5 Further Analysis

5.1 Linearity Revisited

The graphs presented in the previous section point out a significant weakness
of the results presented thus far. With the linearity assumption made in
section 2.2, we can do all of these calculations using a value of ∆ measured
at a particular point on a particular line. But ∆ varies significantly from
one point on a slackline to another (e.g. the line sags a lot more in the
middle than near the anchors), and we still have no way to calculate this ∆
at various points on the line.

Fortunately, it is possible to partially remedy this, using our linearity as-
sumption once again. Suppose that we can measure ∆ in the middle of the
line. Then if the webbing obeys the linearity assumption of section 2.2, we
can use this value to compute ∆ at any other point on the line, and hence
to compute all the other quantities derived above. From (6) in section 2.2,
it is clear that in the middle of the line (when x0 = 1

2
D) this value of ∆ is

∆m =
1

4
L · mg

K
.

(The m subscript here is for “middle”, or for “maximum”, since ∆ is always
greatest in the middle of the line.) Thus L · mg

K
= 4∆m, so using (6) again,

we see that at any other point on the line

∆ = 4∆m · x0

D

(
1 − x0

D

)
. (10)

In section 3.3, we discussed why the linearity assumption of section 2.2 might
be valid for our purposes, since many known nonlinearities of nylon webbing
seem to occur over a long period of time (minutes at least) whereas a leash
fall occurs in a split second. But now suppose we have set up a slackline,
stretched it to the desired tightness, walked on it a few times and re-tightened
as necessary, until it seems that, at least for the time being, the line sags
the same amount in the middle each time it is weighted by the same load.
(Experienced slackliners will agree that this is generally the way it goes.)
This would seem to imply that, for the time being, the Young’s modulus of
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the webbing is not changing, and thus that our linearity assumption might
be valid.

To summarize, if we accept the linearity assumption, this gives us a new
practical approach to calculating the tensions in a slackline and the other
quantities discussed earlier. A person stands in the middle of the slackline
and measures ∆m (how much the line sags). This can then be used in equa-
tion (10) to predict what ∆ should be for that person at any other point on
the line, and this information can then be used with the equations in sec-
tion 4.1 to calculate everything else. Furthermore, note that ∆m is directly
proportional to mg, so if this quantity is measured for one person, it can be
calculated for any other person using their weight.

We will not bother to write down expressions for any of the quantities in
section 3 in terms of ∆m, because they are not too pretty. However, knowing
the tension in the line under a static load is useful, and its expression is not
that ugly. Plugging (10) into the results of section 2.1 gives

T1 = mg

√(
D

4∆m

)2

+
(
1 − x0

D

)2

.

Note that this implies that the force on an anchor increases as the person
moves closer to the anchor. Fortunately, since it should be true on any real-
world slackline that D

4∆m
> 2, the force is not tremendously higher; in fact,

it varies by less than 12% over the length of the line.

5.2 More Graphs

Figure 6 shows ∆ as a function of x0 for various values of ∆m. Note that
the vertical axis is reversed, so in effect, this shows the exact curve that a
person’s feet should follow as they walk across a slackline. This graph is
based on a 50-foot slackline, but all the lengths are relative as usual, so the
numbers portrayed in the graph could be adapted to a line of any length.

Figure 7 shows two things: that the tension in the line is almost constant
regardless of where the person is standing on the line (as explained in the
previous section), and that the tensions seen during a fall (and hence the
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Figure 7: Tensions in a slackline before and during a leash fall

forces put on the anchors during a fall) are not much greater, except when
the fall occurs very close to the anchor. This figure once again uses the values
D = 50 and l = 8 (i.e. a 50-foot slackline and, perhaps, a 6-foot tall person
using a 5-foot leash.)
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6 Conclusions

We have found that by assuming that a slackline, once it has been set up and
stretched appropriately, is linearly elastic, it is possible to calculate several
important quantities based only on easily observable geometric parameters
of the system. These calculations imply, among other things, that the load
put on an anchor during a leash fall is not much higher than the load placed
on the anchor by simply walking on the line, except when the fall occurs very
close to the anchor (within a few feet).

The important unknown at this point is to what extent the assumption of
linearity is valid. The results provided here should allow one to test this
assumption in various ways. In particular, equation (10) gives us a very easy
way to test this assumption experimentally. We can set up a slackline, and
measure the value of ∆ as we walk across it. If the values are fairly close to
what equation (10) would predict, then we can conclude that, at least in the
absence of drastic or sudden changes in the strain of the line, the assumption
is more or less valid. The author intends to perform this experiment at some
point in the future and report his findings, and he invites others to do the
same.

The results of the leash fall models could be tested directly as well, using a
load cell and the right testing apparatus. Regardless of the validity of the
results presented here, it would be a Very Good Thing for the slacklining
community to know the results of this sort of testing, so that we would know
the kind of forces our anchors need to withstand, particularly in highlining
scenarios.

One final point is that the calculations for leash falls done here were based
on a completely static leash. In the real world, the leashes used in highlining
are somewhat dynamic, and when a fall occurs very close to an anchor, this
should reduce the load placed on that anchor. It is possible that, if the leash
is dynamic enough, this may reduce the load significantly, but that would be
the subject of another study.

22


