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Consideration of damping therefore results in complex eigenvalues and normally in complex
eigenvectors. Each eigenvalue is therefore a pair of conjugate complex numbers. For
technical applications only one eigenvalue of that pair is of importance. The real part
contains information on the damping of the corresponding eigenvalue. The imaginary part
one can derive the natural frequency

Computational cost is significantly larger than for a undamped modal analysis, since
complex numbers have to be considered and the size of system matrices is double. For
typical small values of damping the eigenvalues respectively natural frequencies are nearly
independent of damping, such that damping is only seldom considered in modal analyses.

For the one degree-of freedom system on can derive the following relationship between
decay constant and damping ratio :

(5.3.17)

Thereby and are the values of the undamped system.

The natural frequency of the damped system can be derived from the undamped natural
frequency and the damping ratio

(5.3.18)

Using a so-called proportional damping (e.g.. Rayleigh-damping with and , see section
2) also for the N degree-of freedom system it holds for each natural frequency

with (5.3.19)

Based on the proceeding equations one can see, that for minor damping the influence on
natural frequencies is small and quite simple calculated with equation (5.3.19). The damped
eigenvectors are identical to the undamped eigenvectors if for the damping matrix holds:
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(5.3.20)

For =2 one can derive the well known Rayleigh damping 21 , with that a costly
modal analysis with consideration of damping is not needed.

The simple equation (5.3.18) is not longer applicable, if equation (5.3.20) is not fulfilled and
an arbitrary damping is used. This is the case if only a single discrete damper in a mass
system is used or if the damping factors are not applied to the whole stiffness matrix but
only to portions of it. In that case one can not calculate the influence of damping on natural
frequencies independently, which results in time-dependent complex eigenvectors.
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Another application of eigenvalue problems with damping is the consideration of gyro
effects in rotors. Suppose a structure is spinning around an axis . If a rotation about an axis
perpendicular to is applied to the structure, then a reaction moment appears. It is called
the gyroscopic moment. Its axis is perpendicular to both the spinning axis and the applied
rotation axis.

The gyroscopic effect is thus coupling rotational degrees of freedom which are
perpendicular to the spinning axis.

The additional gyroscopic matrix takes the same position in the differential equation as
the damping matrix and has to be treated in the same fashion.

(5.3.21)

E.g. the gyroscopic damping matrix of the ANSYS element PIPE16 looks like:

Since the gyroscopic effect is no damping in the strict sense, the real part of the eigenvalue
is zero. Nevertheless there are complex eigenvectors.
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