
© UGS Corp. 2007. All rights reserved.

Customizing Check-Mate – Where Do I Start?

Taylor Anderson
NX Product Manager



© UGS Corp. 2007. All rights reserved.

Agenda

Quick Background:

Checks and Profiles

The Configuration Continuum

Case Studies and Examples:

ICE Checker Templates
The all-important do_check: attribute

How to Approach Coding a Check From Scratch

The Thought Process

Examples and Questions



© UGS Corp. 2007. All rights reserved.

In Check-Mate, what is a Check?

A “check” (aka checker) is a small piece of logic that 
looks for a particular condition within a model.

Individual check(er)s may validate anything from 
layering conventions to drafting standards to various 
modeling best practices or even techniques for 
organizing and working with assemblies. 



© UGS Corp. 2007. All rights reserved.

What is a Check-Mate Profile?

A Check-Mate “profile” is a collection of checks that 
will be executed together at the same time.  Checks 
contained in a profile can be pre-configured with any 
default values or needed input parameters.  

A profile is a great tool for ensuring that a complete 
set of checks is performed using a desired set of 
quality criteria.  It is also a great tool for streamlining 
the user experience, as it removes the requirement 
for users to manually collect, configure, and run 
individual checks.



© UGS Corp. 2007. All rights reserved.

The Configuration Continuum

OOTB check “as-is”:
OOTB template check:
Modified OOTB check: 

Heavily modified check:
New check from KF Functions:
New check from NX/Open API:

Check done outside NX entirely:

Type of Checker Needed Relative Frequency of Use



© UGS Corp. 2007. All rights reserved.

The Configuration Continuum

OOTB check “as-is”:
OOTB template check:
Modified OOTB check: 

Heavily modified check:
New check from KF Functions:
New check from NX/Open API:

Check done outside NX entirely:

Type of Checker Needed Relative Frequency of Use

Focus for 
This Session



© UGS Corp. 2007. All rights reserved.

ICE for Check-Mate

Capability in NX 5Capability in NX 5
Interactive Class Editor for 
KF Authoring (new in NX 5)

ICE has preset “MQC” modes 
and code templates to simplify 
the authoring of checks and 
profiles.



© UGS Corp. 2007. All rights reserved.

How to tackle one like this…

Desired Check Required Failure Condition Reports

Check for layers with entities but 
without any categories.

Fails when layers have entities 
but no category.

The layer numbers that have 
entities but no category.



© UGS Corp. 2007. All rights reserved.

How to tackle one like this…

What do I want to report?

Desired Check Required Failure Condition Reports

Check for layers with entities but 
without any categories.

Fails when layers have entities 
but no category.

The layer numbers that have 
entities but no category.

A list of layer numbers mqc_collect_entity_layers();

What subset of layer numbers do I want?
Layers WITH entities on them AND mqc_ask_layer_entities();

Layers WITHOUT a category assigned mqc_askOrphanLayers();

Where should I start looking for this?
1. Existing Checkers in the Run Tests UI
2. ICE Search (Classes and Functions)
3. Quick Reference (HTML) in Author Dialog



© UGS Corp. 2007. All rights reserved.

(Any Uncached)   do_check:
@{

$orphan_layers << mqc_askOrphanLayers();

$entities_in_orphan_layer_list << mqc_ask_layer_entities( $orphan_layers, ALL, False, "lib", 
"libufmqc", "Name", 
"mqc_ufkf_ask_layer_entities" );

Focus in on desired results…

(List of layers w/o categories)



© UGS Corp. 2007. All rights reserved.

(Any Uncached)   do_check:
@{

$orphan_layers << mqc_askOrphanLayers();

$entities_in_orphan_layer_list << mqc_ask_layer_entities( $orphan_layers, ALL, False, "lib", 
"libufmqc", "Name", 
"mqc_ufkf_ask_layer_entities" );

$layers_of_orphaned_entities << mqc_collect_entity_layers($entities_in_orphan_layer_list);

Focus in on desired results…

(List of object tags)

(List of layers w/o categories)



© UGS Corp. 2007. All rights reserved.

(Any Uncached)   do_check:
@{

$orphan_layers << mqc_askOrphanLayers();

$entities_in_orphan_layer_list << mqc_ask_layer_entities( $orphan_layers, ALL, False, "lib", 
"libufmqc", "Name", 
"mqc_ufkf_ask_layer_entities" );

$layers_of_orphaned_entities << mqc_collect_entity_layers($entities_in_orphan_layer_list);

$write_log << Loop
{

For $layer_num In  $layers_of_orphaned_entities;
For $detail_msg Is  "Layer " 

+ Stringvalue( $layer_num ) 
+ " is not empty and not in a category.";

Do ug_mqc_log( LOG_ERROR, {}, $usr_msg + $detail_msg );
};

};

Focus in on desired results…

(Final list of layers)

NOTE: Calling ug_mqc_log multiple times in one checker is 
just fine.  (Useful for more descriptive messages.)

(List of layers w/o categories)

(List of object tags)



© UGS Corp. 2007. All rights reserved.

…or, search more and get lucky.  ☺

ug_mqc_askLayerWithoutCategory
Synopsis
Defun: ug_mqc_askLayerWithoutCategory( )

@{CFunc("KF_mqc_ask_layer_without_category","kfmqc");} list

Detail:
---------------------------------------------------------------------------------

ug_mqc_askLayerWithoutCategory

Description:

Reports non-empty layers that are not assigned with category

Input:

None

Return:

(list)    - A list of non-empty layers number that are 

not assigned with category

Format:

{(integer)without_category_layer1,(integer)without_category_layer2,

...,(integer)without_category_layern }

For example:

{ 5,12,15,28,254 }

---------------------------------------------------------------------------------



© UGS Corp. 2007. All rights reserved.

(Any Uncached)   do_check:
@{

$orphan_layers << mqc_ask_orphan_layers();

$entities_in_orphan_layer_list << mqc_ask_layer_entities( $orphan_layers, ALL, False, "lib", 
"libufmqc", "Name", 
"mqc_ufkf_ask_layer_entities" );

$layers_of_orphaned_entities << mqc_collect_entity_layers($entities_in_orphan_layer_list);

$write_log << Loop
{

For $layer_num In  $layers_of_orphaned_entities;
For $detail_msg Is  "Layer " 

+ Stringvalue( $layer_num ) 
+ " is not empty and not in a category.";

Do ug_mqc_log( LOG_ERROR, {}, $usr_msg + $detail_msg );
};

};

The right function is simpler…



© UGS Corp. 2007. All rights reserved.

(Any Uncached)   do_check:
@{

$layers_of_orphaned_entities << ug_mqc_askLayerWithoutCategory( );

$write_log << Loop
{

For $layer_num In  $layers_of_orphaned_entities;
For $detail_msg Is  "Layer " 

+ Stringvalue( $layer_num ) 
+ " is not empty and not in a category.";

Do ug_mqc_log( LOG_ERROR, {}, $usr_msg + $detail_msg );
};

};

The right function is simpler…



© UGS Corp. 2007. All rights reserved.

How about these?

Desired Check Required Failure Condition Reports

Check for required entities 
on specified layers.

Fails when the required entities are 
missing from the specified layers.

The layer numbers and the missing 
required entities.

Check for required entities in 
specified categories.   

Fails when the required entities are 
missing from the specified categories. 

The category with layer numbers and 
the missing required entities.

What do I want to report?
A list of (categories and) layers (and entity descriptions)

What subset of layer numbers do I want?
Layers in the category?

What entities do I want to look for?
Required ones on the right layers

mqc_ask_layers_of_category();

mqc_collectEntitiesWithFilterOptions();
mqc_selectEntitiesWithFilters();

ug_mqc_checkLayerEntityType();

Ask by Type or Type AND Name?

See also…

(UF Types and Subtypes defined in ..\UGCHECKMATE\dfa\mixins\ug_object_types.dfa)

mqc_ask_entity_of_category();

mqc_ask_entities_by_type_name();



© UGS Corp. 2007. All rights reserved.

How about these?

Desired Check Required Failure Condition Reports

Check for required attribute 
names.

Fails when any required attribute 
names are missing The missing attributes names.

Are each of the required ones in the part?
For each in the required list, is it in the part?

What attributes are currently in this part?
A list of names (of attributes) mqc_ask_part_attributes();

Loop {

For $a In required_names:;

If ( !member( $a, first(current_names:) ) ) Collect $a;

};

What do I want to collect?
The MISSING names.

if the required name is not in this part…



© UGS Corp. 2007. All rights reserved.

How about these?

Desired Check Required Failure Condition Reports

Check for approved 
categories

Fails when any unapproved 
categories are present

The unapproved categories and their 
corresponding layer numbers.

Check for approved 
reference sets.

Fails when any unapproved reference 
sets are present The unapproved reference sets.

Check for approved attribute 
names.

Fails when any unapproved attribute 
names are present. The unapproved attribute names.

What do I want to report?
The EXTRA names in the list.  (Reverse of the last one.)

Are there any extras in the part?
For each in the part, is it in the approved list?

Loop {

For $a In first(current_names:);

If ( !member( $a, approved_names: ) ) Collect $a;

};

if this name is not a member of the approved list…

mqc_ask_part_attributes();
mqc_ask_all_referencesets();

mqc_ask_category();



© UGS Corp. 2007. All rights reserved.

How about these?

Desired Check Required Failure Condition Reports

Check for required 
categories with specified 
entities.

Fails when the required category is 
missing from any layer with the 
specified entity.  

The entity and the layer number along 
with the missing required category.

Check for required 
secondary categories on 
layers with a specified 
primary category.

Fails when the required secondary 
categories are missing from any layer 
with the specified primary category.

The primary category and the missing 
secondary categories with the layer 
numbers.

What do I want to report?
A list of entities (and some info about them.)

How would we get there?
Start with the specified entities

Ask their layers

See if the layer is in the required category

(See if the layer is ALSO in the required secondary category)

mqc_askEntities();

mqc_collect_entity_layers();

mqc_askCategoryOfLayer();

“”



© UGS Corp. 2007. All rights reserved.

How about this one?

Desired Check Required Failure Condition Reports

"Check Drafting Preferences" 
Read the company specific 
default settings and check if 
any of the settings in the NX 
file have been changed from 
the default. 

Fail if any Drafting entity settings is 
not the same as specified in the 
customer default file.

The Drafting Entities that have been 
changed from the default.

What do I want to report?
A list of entities (and some info about them.)

What settings do I want to check?
Wow… A long list.  Maybe UGS can help with this one?  ☺

Checker: %mqc_check_preferences (in mqc_check_preferences.dfa)

Description:

Verifies that the customer defaults are set properly according 
to the defaults specified in the user-defined XML files.



© UGS Corp. 2007. All rights reserved.

Additional Questions:

Q2: I need to check the work layer setting.  I found the 
function "ug_AskWorkLayer" in the KF module but 
can't find it anywhere in the Check-Mate function 
list. Does it exist or not?  Can we use it? Where is 
the documentation on it?

A2: Check-Mate is fundamentally based on KF, and so 
any of the normal KF functions are fair game for use 
when writing checkers.  

Does it exist or not?  Yes.
Can we use it? Yes.
Where is the documentation on it? Normal KF docs.

(docs discussion)



© UGS Corp. 2007. All rights reserved.

Additional Questions:

Q3: I need to check for view dependent entities.  My 
understanding is the function 
"mqc_isViewDepEntity" checks individual entities.  
Is there a function that checks the entire model and 
returns a list of view dependent entitites?

A3: There’s a checker in the Drafting category called 
Check View Dependent Geometry that will give you 
back all of the views containing view dependent 
geometry.



© UGS Corp. 2007. All rights reserved.

Additional Questions:

Q4: I need to run the "Examine Geometry - Combo" 
checker on just one solid body, not everything in the 
entire part file.  But I don't want to have to select the 
solid body interactively but instead specify its entity 
name, type and layer.  Is there an easy way to use 
the selection capability built into the checker to do 
this?  Or would it be best to integrate the function 
"mqc_selectEntitiesWithFilters" to get the entity 
first?

A4: mqc_selectEntitiesWithFilters is the way to go 
for this one.  Feed your filtered body to the 
selection: attribute, and you should be off and 
running.  Remember that Check-Mate does not 
store any persistent classes in the part file – there is 
nowhere to store a selection, for example.  Your 
checker needs to stand alone, and not require any 
user interaction.



© UGS Corp. 2007. All rights reserved.

Additional Questions:

Q5: I need to determine which layer a particular entity is 
on.  If I have a list of entity tags that have been 
obtained through another operation and I want a 
corresponding list of layers, is the function 
"mqc_collect_entity_layers" the best one to use?

A5: Yep.  That one works great with either a long list or 
a very short one.



© UGS Corp. 2007. All rights reserved.

The Configuration Continuum

OOTB check “as-is”:
OOTB template check:
Modified OOTB check: 

Heavily modified check:
New check from KF Functions:
New check from NX/Open API:

Check done outside NX entirely:

Type of Checker Needed Relative Frequency of Use



© UGS Corp. 2007. All rights reserved.

Additional Training Material

PLM World 2006 Training Class:

“Configuring and Customizing 
Check-Mate”

The new “Check-Mate for Dummies” Book
NOTE: Electronic copies are not 
available due to copyright restrictions.

Ask your Sales Rep for a free copy!



© UGS Corp. 2007. All rights reserved.

Thank You!

taylor.anderson@ugs.com


	Customizing Check-Mate – Where Do I Start?
	Agenda
	In Check-Mate, what is a Check?
	What is a Check-Mate Profile?
	The Configuration Continuum
	The Configuration Continuum
	ICE for Check-Mate
	How to tackle one like this…
	How to tackle one like this…
	…or, search more and get lucky.  
	How about these?
	How about these?
	How about these?
	How about these?
	How about this one?
	Additional Questions:
	Additional Questions:
	Additional Questions:
	Additional Questions:
	The Configuration Continuum
	Additional Training Material
	Thank You!

