

 Autodesk Inventor® Programming
Fundamentals with iProperties
Brian Ekins – Autodesk, Inc.

 This paper provides an introduction to Inventor's VBA programming environment and the basic concepts you need to
understand when programming Inventor. These concepts are put into practice as we look in detail at the iProperties
portion of the programming interface and develop some practical examples.

Key Topics:

 The basics of Visual Basic for Applications (VBA)

 Understand how Inventor provides a programming interface

 Object-oriented programming

 Inventor's object model

 The iProperties portion of the object model

 iProperty program examples

 Target Audience:

Autodesk Inventor users who want to increase their productivity with Inventor by writing programs

 Autodesk Inventor® Programming Fundamentals with iProperties

 2

Introduction

The goal of this paper is to provide enough information that anyone will be able to write a program to automate
working with Inventor‟s iProperties. This paper is not intended to be a comprehensive coverage of VBA
programming or even iProperties, but focuses on the features that are most commonly used. We‟ll begin by
looking briefly at VBA and the steps required to begin writing a program. Then we‟ll discuss the concepts
around Inventor‟s programming interface. Next we‟ll look at the interface for programming iProperties. Finally,
we‟ll look at several examples that demonstrate all of these concepts.

VBA Basics

Visual Basic for Applications (VBA) is a programming environment developed by Microsoft and licensed by other
companies to integrate into their applications. Autodesk licenses VBA and includes it in AutoCAD and Inventor..
This provides all customers of Inventor with a free development environment. Below are the minimal steps to
begin using VBA and writing a simple macro.

You access VBA through Inventor using the Macro | Visual Basic Editor command in the Tools menu, or by
pressing Alt-F11. Once the VBA environment is open, the first thing I recommend you do is change some of
the VBA settings. In the VBA environment run the Options command from the Tools menu. Change the
Auto Syntax Check and Require Variable Declaration settings to those shown below.

The VBA programs you write can be saved in Inventor documents or in external files. For 99% of the cases,
saving it in an external file is best, so that‟s what we‟ll cover here. This external file is referred to as a VBA
project and Inventor saves it as an .ivb file. A single project can contain any number of macros (programs).
There is a default VBA project that Inventor loads at startup. The default VBA project is defined in the File tab
of the Inventor application options, as shown below. This is where your programs will be saved.

 Autodesk Inventor® Programming Fundamentals with iProperties

 3

A project can consist of many different types of modules. Macros are written in a code module within the VBA
project. There is a code module automatically created for any new VBA project named “Module1”. To add
code to this module you can double-click on the module in the Project Explorer window, as shown below. This
will cause the code window for that module to be displayed.

There are several ways to run a VBA macro. From the VBA editor you can position the cursor in the code

window within the macro you want to run and execute the Run Macro command on the main toolbar.
From within Inventor you can run the Macro | Macros… command from the Tools menu (or Alt+F8) which
brings up a dialog where you can choose a macro and run it. Finally, you can use the Inventor Customize
command to create a button that will run a macro. For frequently used macros this provides the most
convenient interface for the end-user. This is done using the Commands tab of the Customize dialog, as
shown below. Select “Macros” as the category. The available macros are listed on the right-hand side of the
dialog. To create a button to execute the macro, just drag and drop the desired macro onto any existing
toolbar.

 Autodesk Inventor® Programming Fundamentals with iProperties

 4

The Basics of Inventor’s Programming Interface

Inventor supports the ability for you to automate tasks by writing programs. Inventor does this using some
Microsoft technology called COM Automation. This is the same technology used when you write macros for
Word or Excel. The technology itself isn‟t important, but what is important is what it allows you to do.

COM Automation allows applications, like Inventor, to provide a programming interface in a fairly standard
structure that can be used by most of the popular programming languages available today. This provides two
benefits to you. First, if you‟ve programmed other applications that use COM Automation (Word, Excel,
AutoCAD) Inventor will have a lot of similarities. Second, it‟s very flexible in how you access the programming
interface so you can choose your favorite programming language and integrate with other applications.

The topics below discuss the basic concepts you‟ll need to understand when working with Inventor (or any
COM Automation programming interface).

Objects
A COM Automation interface exposes it functions through a set of objects. A programming object has many
similarities to real-world objects. Let‟s look at a simple example to understand how object oriented
programming terminology can be used to describe a physical object.

A company that sells chairs might allow a customer to design their
own chair by filling out an order form, like the one shown to the
right. The options on the order form define the various properties of
the desired chair. By setting the properties to the desired values the
customer is able to describe the specific chair they want.

In addition to properties, objects also support methods. Methods
are basically instructions that the object understands. In the real
world, these are actions you would perform with the chair. For
example, you could move the chair, cause it to fold up, or throw it in
the trash. In the programming world the objects are smart and
instead of you performing the action you tell the object to perform
the action itself; move, fold, and delete.

In Inventor, some examples of objects are extrude features, work
planes, constraints, windows, and iProperties. Inventor‟s
programming interface defines the set of available objects and their
associated methods and properties. By obtaining the object you‟re interested in you can find out
information about it by looking at the values of its properties and edit the object by changing these values or
by calling the objects methods. The first step in manipulating any object is getting access to the object you
want. This is explained in the next section.

The Object Model
As discussed above, Inventor‟s API is exposed as a set of objects. By gaining access to these objects
through the API you can use their various methods and properties to create, query, and modify them. Let‟s
look at how the object model allows you to access these objects. Understanding the concept of the object
model is a critical concept to using Inventor programming interface.

 Autodesk Inventor® Programming Fundamentals with iProperties

 5

The object model is a hierarchical diagram that illustrates the relationships
between objects. A small portion of Inventor‟s object model is shown in the
figure to the right. Only the objects relating to iProperties are shown. In
most cases you can view these as parent-child relationships. For example,
the Application is the parent of everything. The Document object is a parent
for the various property related objects. To obtain a specific object within
the object model you typically start at the top and then go down child-by-
child to the object you want. For example, you would start with the
Application object and from it get the Document that contains the iProperty
you‟re interested in. From the Document you then get the PropertySet that
is the parent of the iProperty and finally you get the desired Property object.

The Application Object
One of the most important objects in the object model is the Application object. This object represents
the Inventor application and is the top-most object in the hierarchy. The Application object supports
methods and properties that affect all of Inventor but its most important trait is that through it you can
access any other Inventor object. You just need to know how to traverse the object model to get to the
specific object you want. We‟ll look at how to write a program to do this and some shortcuts you can
take to make it a little bit easier.

In order to use the Application object you first need to get it. How you get it depends on what
programming language you‟re using. The code below illustrates three of the most common techniques.

Inventor VBA
When using Inventor‟s VBA there is the global variable called ThisApplication that always contains the
Application object. So with Inventor‟s VBA you don‟t need to do anything but use this variable.

Visual Basic 6 or another VBA (i.e. Excel’s VBA)
When accessing Inventor‟s API from Visual Basic 6 or VBA within another application there are a couple
of steps you need to perform. The first is to make VB/VBA aware of Inventor‟s objects. You do this by
referencing Inventor‟s type library. To reference a type library you use the References command. In
VB the References command is found under the Project menu. In VBA it is found under the Tools
menu. In both cases the References dialog, as shown below, is displayed. Find the entry “Autodesk
Inventor Object Library”, check the box next to it and click the “OK” button.

PartDocument

Application

Documents

Property

PropertySets

PropertySet

Document

Property

PropertySets

PropertySet

 Autodesk Inventor® Programming Fundamentals with iProperties

 6

The next step is to connect to Inventor and get a reference to the Application object. The sample code
below demonstrates this.

Public Sub InventorConnectSample()

 ' Declare a variable as Inventor's Application object type.

 Dim invApp As Inventor.Application

 ' Turn on error handling.

 On Error Resume Next

 ' Try to connect to a running instance of Inventor.

 Set invApp = GetObject(, "Inventor.Application")

 If Err.Number <> 0 Then

 ' Was unable to connect to a running Inventor. Clear the error.

 Err.Clear

 ' Try starting Inventor.

 Set invApp = CreateObject("Inventor.Application")

 If Err.Number <> 0 Then

 ' Unable to start Inventor. Display a message and exit out.

 MsgBox "Unable to connect to or start Inventor."

 Exit Sub

 End If

 ' When Inventor is started using CreateObject it is started

 ' invisibly. This will make it visible.

 invApp.Visible = True

 End If

 ' Turn off error handling.

 On Error GoTo 0

End Sub

VB.Net (Visual Basic 2005 Express Edition)
The process of connecting to Inventor and getting the application object using VB.Net is similar to VB 6
and VBA. The differences are how you create the reference to the Inventor library and the style of error
handling. (Although the On Error style of error handling is also supported so the previous code will also
work in VB.Net.)

With VB.Net you can use the Inventor Primary
Interop Assembly to gain access to all of the
Inventor defined objects. To add a reference to
this assembly use the Add Reference
command found under the Project menu. In the
dialog, shown to the right, “Autodesk Inventor
Interop” item and click the “OK” button, as
shown to the right.

The VB.Net code is shown below. It‟s identical to
the VBA/VB code above except it uses a different
style of error handling that only VB.Net supports.

 Autodesk Inventor® Programming Fundamentals with iProperties

 7

Public Sub InventorConnectSample()

 ' Declare a variable as Inventor's Application type.

 Dim invApp As Inventor.Application

 ' Enable error handling.

 Try

 ' Try to connect to a running instance of Inventor.

 invApp = GetObject(, "Inventor.Application")

 Catch ex As Exception

 ' Connecting to a running instance failed so try to start Inventor.

 Try

 ' Try starting Inventor.

 invApp = CreateObject("Inventor.Application")

 ' When Inventor is started using CreateObject it is started

 ' invisibly. This will make it visible.

 invApp.Visible = True

 Catch ex2 As Exception

 ' Unable to start Inventor.

 MsgBox("Unable to connect to or start Inventor.")

 Exit Sub

 End Try

 End Try

End Sub

Apprentice
There‟s one other technique of accessing some of Inventor‟s functionality. There‟s a utility component
referred to as Apprentice that provides a programming interface to a small portion of the information in
an Inventor document. Apprentice doesn‟t have a user-interface and is exclusively a programming
component. Design Assistant and Inventor View are both programs that use Apprentice to access
document information. iProperties are one of the things that you have access to through Apprentice.

There are a couple of reasons to use Apprentice when possible. First, programs using Apprentice will run
much faster than the equivalent program in Inventor. This is because Apprentice doesn‟t have a user-
interface and it only provides partial access to information in the document so it doesn‟t need to load as
much of the document as Inventor does. Second, Apprentice is freely available by installing Inventor
View, (which includes Apprentice), from autodesk.com.

We‟ll see some examples of the use of apprentice in some of the samples.

 Collection Objects
Another concept that„s important to understand when working with Inventor‟s programming interface is
collection objects. Collection objects are represented in the object model diagram by boxes with rounded
corners. In the object model picture to the right the Documents, PropertySets, and PropertySet objects
are collection objects.

The primary job of a collection object is to provide access to a group of
related objects (the set of children for that parent). For example, the
Documents object provides access to all of the documents that are currently
open in Inventor. A collection provides access to its contents through two
properties; Count and Item. The Count property tells you how many items
are in the collection and the Item property returns a specific item. All
collections support these two properties.

Application

Documents

Document

Property

PropertySets

PropertySet

 Autodesk Inventor® Programming Fundamentals with iProperties

 8

Typically, when using the Item property you specify the index of the item you want from the collection
(i.e. Item 1, 2, 3 …). For example, the code below prints out the filenames of all of the documents
currently open by using the Count and Item properties of the Documents collection object. (This and
most of the following samples use Inventor‟s VBA and take advantage of the ThisApplication global
variable.)

Public Sub ShowDocuments()

 ' Get the Documents collection object.

 Dim invDocs As Documents

 Set invDocs = ThisApplication.Documents

 ' Iterate through the contents of the Documents collection.

 Dim i As Integer

 For i = 1 To invDocs.Count

 ' Get a specific item from the Documents collection.

 Dim invDocument As Document

 Set invDocument = invDocs.Item(i)

 ' Display the full filename of the document in the Immediate window.

 Debug.Print invDocument.FullFileName

 Next

End Sub

Another technique of going through the contents of a collection is to use the For Each statement. This
can also be more efficient and results in a faster program in many cases. The macro below
accomplishes exactly the same task as the previous macro but uses the For Each statement.

Public Sub ShowDocuments2()

 ' Get the Documents collection object.

 Dim invDocs As Documents

 Set invDocs = ThisApplication.Documents

 ' Iterate through the contents of the Documents collection.

 Dim invDocument As Document

 For Each invDocument In invDocs

 ' Display the full filename of the document in the Immediate window.

 Debug.Print invDocument.FullFileName

 Next

End Sub

When the Item property is used with a value indicating the index of the item, the first item in the
collection is 1 and the last item is the value returned by the collection‟s Count property. For some
collections the Item property also supports specifying the name of the item you want. Instead of
specifying the index of the item you can supply a String that specifies the name of the object. We‟ll see
this later when working with iProperties.

Another important feature of many collections is the ability to create new objects. For example the
Documents collection supports the Add method which is used to create new documents. It also supports
the Open method which is used to open existing documents from the disk. These will be used in some
of the samples that follow.

 Autodesk Inventor® Programming Fundamentals with iProperties

 9

Derived Objects
The idea of derived and base class objects is usually a new concept for most end-users wanting to use
Inventor‟s API. It‟s not a critical idea to understand but is a useful concept that we‟ll take advantage of
when writing many of the following samples. To help describe this concept let‟s look at a close parallel;
animal taxonomy or classification. For example, within the Animal kingdom you have insects, birds,
mammals, etc. Within the mammal classification there are many different species but all of them share
the same characteristics of a mammal; have hair, produce milk, etc. Even though an elephant and a
dolphin are distinctly different they can both still be called mammals and share those same traits. This
same idea can be used to understand the concept of derived and base class objects.

Let‟s look at how this concept applies to Inventor. Inventor has base class objects and derived objects.
An example is the Document, PartDocument, AssemblyDocument, and DrawingDocument objects. The
base class object is the Document object. The Document object supports all of the common traits that
all documents share. The PartDocument, AssemblyDocument, and DrawingDocument objects are
derived from the Document object and inherit these traits. They support everything the Document
object supports plus they have additional methods and properties that are specific to that particular
document type. For example, from the Document object you can get the filename, referenced
documents, and iProperty information. From a PartDocument object you can get all of that, plus you can
get sketches, features, and parameters.

The usefulness of having derived objects is demonstrated in the previous sample code. Notice that the
variable invDocument is declared to be type Document. The program iterates through the contents of
the Documents collection and assigns each item to this variable. It doesn‟t matter if the document is a
part, drawing, or an assembly since they are all derived from the Document object.

Programming Inventor’s iProperties

iProperties in the User-Interface
Before looking at the programming interface for iProperties let‟s do a quick review of iProperties from an
end-user perspective. iProperties are accessed through the iProperties dialog. There are several tabs at the
top that organize the available properties. There are also some tabs on this dialog that are not actually
iProperties. For example, the General tab provides access to information about the document, the Save tab
provides access to options that control how the thumbnail image is captured, and the Physical tab provides
access to the various physical properties of the part or assembly document. If you need access to this
information it is available through programming objects other than properties.

The picture below on the left illustrates a typical tab of the iProperties dialog where you have access to a
specific set of iProperties. Through the dialog, you can view and edit the values of iProperties. The set of
iProperties shown on each tab are predetermined by Inventor and cannot be changed. However, using the
Custom tab (shown in the picture below on the right) you can add additional iProperties to the document.
This allows you to associate any information you want with the document.

 Autodesk Inventor® Programming Fundamentals with iProperties

 10

Application

Documents

Document

Property

PropertySets

PropertySet

iProperties in Inventor’s Programming Interface
The object model for iProperties is shown to the right. The diagram starts with the
Application object and goes through the Documents collection to get the
Document object. Remember that the Document object is the base class for all
document types so it can represent any type of Inventor document. From the
Document object we then access the PropertySets object which is the top-level
property related object and provides access to the various iProperties associated
with that particular document. Before we look at accessing the iProperties lets look
at some different ways of accessing documents using the programming interface.

Accessing Documents
There are a few different ways you might want to access a document:

 Accessing through the Documents collection (which we‟ve already seen in the previous samples).
 Access the document the end-user is currently working on in Inventor.
 Open a specific document that‟s been saved on disk.
 Create a new document
 Through a reference from another document.
 Open a document in Apprentice.

These are demonstrated in the code samples below. All of these samples, except for the Apprentice
sample are shown using Inventor‟s VBA, and take advantage of the ThisApplication global variable it
provides.

Accessing the Active Document
This sample gets the document currently being edited by the end-user. It uses the ActiveDocument
property of the Application object.

Public Sub ActiveDocumentSample()

 ' Declare a variable to handle a reference to a document.

 Dim invDoc As Document

 ' Set a reference to the active document.

 Set invDoc = ThisApplication.ActiveDocument

 MsgBox "Got document: " & invDoc.DisplayName

End Sub

Opening a Document from Disk
This sample opens a document on disk and returns a reference to the open document. It uses the Open
method of the Documents collection object.

Public Sub OpenDocumentSample()

 ' Declare a variable to handle a reference to a document.

 Dim invDoc As Document

 ' Open a document.

 Set invDoc = ThisApplication.Documents.Open("C:\Temp\Part1.ipt")

 MsgBox "Got document: " & invDoc.DisplayName

End Sub

 Autodesk Inventor® Programming Fundamentals with iProperties

 11

Creating a New Document
This sample creates a new part document. It uses the Add method of the Documents collection and
uses the FindTemplateFile method to get the filename of the standard part template.

Public Sub CreateDocumentSample()

 ' Declare a variable to handle a reference to a document.

 Dim invDoc As Document

 ' Create a new part document using the standard part template.

 Set invDoc = ThisApplication.Documents.Add(kPartDocumentObject, _

 ThisApplication.FileManager.GetTemplateFile(kPartDocumentObject))

 MsgBox "Created: " & invDoc.DisplayName

End Sub

Through a Reference From Another Document
This is really beyond the scope of this paper but is presented here to demonstrate that it is possible to
access documents that are referenced from another document. The example below gets the document
associated with a part in the assembly named “Bracket:1”.

Public Sub ReferencedDocumentSample()

 ' Declare a variable to handle a reference to a document.

 Dim invDoc As Document

 ' Get the currently active document which is assumed to be an assembly.

 Dim invAssemblyDoc As AssemblyDocument

 Set invAssemblyDoc = ThisApplication.ActiveDocument

 ' Get the occurrence named "Bracket:1" from the assembly. If a part

 ' of this name doesn't exist then an error will occur. To simplify

 ' this sample, no error handling is done.

 Dim invOccurrence As ComponentOccurrence

 Set invOccurrence = _

 invAssemblyDoc.ComponentDefinition.Occurrences.ItemByName("Bracket:1")

 ' Get the document referenced by the occurrence.

 Set invDoc = invOccurrence.Definition.Document

 MsgBox "Got " & invDoc.DisplayName

End Sub

Opening a Document using Apprentice
This example illustrates opening a document using Apprentice. Apprentice cannot be used within
Inventor‟s VBA, so this sample must be run from either Visual Basic or VBA within another product, i.e.
Excel. Within Apprentice, documents are represented by the ApprenticeServerDocument object. It is
slightly different than the Document object but serves the same purpose and provides access to the
iProperties of the document.

Public Sub ApprenticeOpen()

 ' Declare a variable for Apprentice. Notice that this uses the "New"

 ' keyword which will cause a new instance of Apprentice to be created.

 Dim invApprentice As New ApprenticeServerComponent

 ' Open a document using Apprentice.

 Dim invDoc As ApprenticeServerDocument

 Set invDoc = invApprentice.Open("C:\Temp\Part1.ipt")

 MsgBox "Opened: " & invDoc.DisplayName

 Autodesk Inventor® Programming Fundamentals with iProperties

 12

 ' Close the document and release all references.

 Set invDoc = Nothing

 invApprentice.Close

 Set invApprentice = Nothing

End Sub

Accessing iProperites
Accessing iProperties through Inventor‟s programming interface is reasonably
simple. The object model for iProperties is shown to the right. The first thing
to notice is that they‟re accessed through the Document object. Properties
are owned by documents and to get access to properties you need to go
through the document that owns them.

 Even though the programming interface for iProperties is simple, people still tend to struggle with it. I
believe this is primarily because of not understanding how to access a specific property. Before
discussing iProperties in detail, a brief discussion of naming is appropriate to help describe the concepts
Inventor uses. The picture below shows a person and three different ways to identify this person. His
full legal name is a good way to identify him, although a bit formal. His social security number is good,
but not very user friendly. His nickname, although commonly used, can have problems since it‟s not as
likely to be unique Bill could decide tomorrow he would rather be called Billy or Will. The point is that
there are three ways to identify this person, each one with its own pros and cons.

Legal Name: William Harry Potter

Nickname: Bill

SSN: 365-58-9401

When working with iProperties you‟ll also need to specify specific objects. Like Bill, iProperties also have
several names. Understanding this single concept should help you overcome most of the problems other
people have had when working with iProperties. The various iProperty objects, their names and best use
suggestions are described below.

PropertySets Objects
The PropertySets object serves as the access point to iProperties. The PropertySets object itself doesn‟t
have a name but is simply a utility collection object that provides access to the various PropertySet
objects. Using the Item method of the PropertySets object you‟ll specify which PropertySet object you
want. The Item method accepts an Integer value indicating the index of the PropertySet object you
want, but more important, it also accepts the name of the PropertySet object you want. The next
section discusses PropertySet objects and their various names.

PropertySet Objects
The PropertySet object is a collection object and provides access to a set of iProperties. The PropertySet
object is roughly equivalent to a tab on the iProperties dialog. The Summary, Project, Status, and
Custom tabs of the dialog contain the iProperties that are exposed through the programming interface.
There are four PropertySet objects in an Inventor document; Summary Information, Document
Summary Information, Design Tracking Properties, and User Defined Properties.

Document

Property

PropertySets

PropertySet

 Autodesk Inventor® Programming Fundamentals with iProperties

 13

PropertySet objects are named so that you can find a particular PropertySet object. A PropertySet object
has three names; Name, Internal Name, and Display Name. Using the analogy of Bill above, the Name
is equivalent to his legal name, the Internal Name is equivalent to his social security number, and the
Display Name is equivalent to his nickname. Let‟s look at a specific example to illustrate this. There is a
PropertySet object that has the following names:

Name: Inventor Summary Information
Internal Name: {F29F85E0-4FF9-1068-AB91-08002B27B3D9}
DisplayName: Summary Information

Any one of these can be used as input to the Item method in order to get this particular PropertySet
object. I would suggest always using the Name for the following reasons. The Name cannot be
changed, is guaranteed to be consistent over time, and is an English human readable string. The
Internal Name cannot be changed and will remain consistent but it is not very user-friendly and makes
your source code more difficult to read and maintain. The Display Name is not guaranteed to remain
constant. The Display Name is the localized version of the name and will change for each language. A
chart showing the names of the four standard PropertySet objects is at the end of this paper.

Below is an example of obtaining one of the PropertySet objects. In this case the summary information
set of iProperties.

Public Sub GetPropertySetSample()

 ' Get the active document.

 Dim invDoc As Document

 Set invDoc = ThisApplication.ActiveDocument

 ' Get the summary information property set.

 Dim invSummaryInfo As PropertySet

 Set invSummaryInfo = invDoc.PropertySets.Item("Inventor Summary Information")

End Sub

Property Objects
A Property object represents an individual property. Each Property object also has three names; Name,
Display Name, and ID. Many of the same principles discussed for PropertySet objects applies here. The
Name is an English string that is guaranteed to remain constant. The Display Name is the localized
version of the Name and can change, so it‟s not a reliable method of accessing a particular property.
The ID is a number and is similar to the Internal Name of the PropertySet object, but is a simple Integer
number instead of a GUID. For consistency I would recommend using the name of the property when
you need to access a specific one. Below is an example of the three identifiers for a particular property.

Name: Part Number
DisplayName: Part Number
ID: 5 or kPartNumberDesignTrackingProperties

The following code gets the iProperty that represents the part number.

Public Sub GetPropertySample()

 ' Get the active document.

 Dim invDoc As Document

 Set invDoc = ThisApplication.ActiveDocument

 ' Get the design tracking property set.

 Dim invDesignInfo As PropertySet

 Set invDesignInfo = invDoc.PropertySets.Item("Design Tracking Properties")

 ' Get the part number property.

 Autodesk Inventor® Programming Fundamentals with iProperties

 14

 Dim invPartNumberProperty As Property

 Set invPartNumberProperty = invDesignInfo.Item("Part Number")

End Sub

You may see program samples that use identifiers like kPartNumberDesignTrackingProperties to specify
a specific property. These identifiers are defined in the Inventor type library and provide a convenient
way of specifying the ID of a property. For the part number, instead of specifying the ID as 5 you can
use kPartNumberDesignTrackingProperties. This makes your code more readable. If you want to use
the ID instead of the Name you need to use the ItemByPropId property instead of the standard Item
property of the PropertySets object. As stated before, for consistency I would recommend using the
Name in both cases.

Something else you‟ll see in a lot of sample code is where several property calls are combined into a
single line. The code below does the same thing as the previous sample but it‟s getting the PropertySet
object returned by the PropertySets Item property and immediately calling the Item property on it to get
the desired property.

Public Sub GetPropertySample()

 ' Get the active document.

 Dim invDoc As Document

 Set invDoc = ThisApplication.ActiveDocument

 ' Get the part number property.

 Dim invPartNumberProperty As Property

 Set invPartNumberProperty = invDoc. _

 PropertySets.Item("Design Tracking Properties").Item("Part Number")

End Sub

Now that we have a reference to a specific property we can use its programming properties to get and
set the value. The Property object supports a property called Value that provides this capability. For
example, the line below can be added to the previous sample to display the current part number.

MsgBox "The part number is: " & invPartNumberProperty.Value

This next line sets the value of the part number iProperty.

invPartNumberProperty.Value = "Part-001"

The Value property uses an interesting programming feature that is useful to understand when working
with iProperties. The Value property is of type Variant. A Variant is a special type that can represent
almost any other type. For example, a Variant can hold a String, Double, Date, or most any other type.
iProperties take advantage of this since they allow the value to be one of many different types. You see
this when working with custom (user defined) properties, as shown in the picture below. When creating
or modifying a custom iProperty you define the type; Text, Date, Number, or Yes or No. This results in
an iProperty being created where the value contains a String, Date, Double, or Boolean value.

 Autodesk Inventor® Programming Fundamentals with iProperties

 15

When setting the value of any of Inventor‟s predefined iProperties, Inventor forces them to be the
correct type and will convert them automatically, when possible. If you supply a value that can‟t be
converted to the expected type, it will fail. In the table at the end of this paper the type of each property
is listed. Most of the standard iProperties are Strings, with a few Date, Currency, Boolean, and Long
values. There is also one other slightly unusual type called IPictureDisp. This type is used for the
thumbnail picture associated with a document. Using this you can extract the thumbnail picture from a
document.

Creating Properties
The primary reason to be aware of the Variant type is when you create your own custom iProperties.
Interactively, as shown in the previous picture, you specify the type of property you‟re going to create;
Text, Date, Number, or Yes or No. When you create them using Inventor‟s programming interface you
don‟t explicitly specify the type but it is implicitly determined based on the type of variable you input.

New iPropertiies can only be created within the Custom (user defined) set of properties. New iProperties
are created using the Add method of the PropertySet object. The sample below illustrates creating four
new iProperties, one of each type.

Public Sub CreateCustomProperties()

 ' Get the active document.

 Dim invDoc As Document

 Set invDoc = ThisApplication.ActiveDocument

 ' Get the user defined (custom) property set.

 Dim invCustomPropertySet As PropertySet

 Set invCustomPropertySet = invDoc.PropertySets.Item(_

 "Inventor User Defined Properties")

 ' Declare some variables that will contain the various values.

 Dim strText As String

 Dim dblValue As Double

 Dim dtDate As Date

 Dim blYesOrNo As Boolean

 ' Set values for the variables.

 strText = "Some sample text."

 dblValue = 3.14159

 dtDate = Now

 blYesOrNo = True

 ' Create the properties.

 Dim invProperty As Property

 Set invProperty = invCustomPropertySet.Add(strText, "Test Test")

 Set invProperty = invCustomPropertySet.Add(dblValue, "Test Value")

 Set invProperty = invCustomPropertySet.Add(dtDate, "Test Date")

 Set invProperty = invCustomPropertySet.Add(blYesOrNo, "Test Yes or No")

End Sub

 Autodesk Inventor® Programming Fundamentals with iProperties

 16

A common task is when you have a value you want to save as a custom property within a document. If
the property already exists you just want to update the value. If the property doesn‟t exist then you
need to create it with the correct value. The code below demonstrates getting the volume of a part and
writing it to a custom property named “Volume”. With the volume as an iProperty it can be used as
input for text on a drawing. The portion of this macro that gets the volume and formats the result is
outside the scope of this paper but helps to demonstrate a practical use of creating and setting the value
of an iProperty.

Public Sub UpdateVolume()

 ' Get the active part document.

 Dim invPartDoc As PartDocument

 Set invPartDoc = ThisApplication.ActiveDocument

 ' Get the volume of the part. This will be returned in

 ' cubic centimeters.

 Dim dVolume As Double

 dVolume = invPartDoc.ComponentDefinition.MassProperties.Volume

 ' Get the UnitsOfMeasure object which is used to do unit conversions.

 Dim oUOM As UnitsOfMeasure

 Set oUOM = invPartDoc.UnitsOfMeasure

 ' Convert the volume to the current document units.

 Dim strVolume As String

 strVolume = oUOM.GetStringFromValue(dVolume, _

 oUOM.GetStringFromType(oUOM.LengthUnits) & "^3")

 ' Get the custom property set.

 Dim invCustomPropertySet As PropertySet

 Set invCustomPropertySet = _

 invPartDoc.PropertySets.Item("Inventor User Defined Properties")

 ' Attempt to get an existing custom property named "Volume".

 On Error Resume Next

 Dim invVolumeProperty As Property

 Set invVolumeProperty = invCustomPropertySet.Item("Volume")

 If Err.Number <> 0 Then

 ' Failed to get the property, which means it doesn't exist

 ' so we'll create it.

 Call invCustomPropertySet.Add(strVolume, "Volume")

 Else

 ' We got the property so update the value.

 invVolumeProperty.Value = strVolume

 End If

End Sub

 Autodesk Inventor® Programming Fundamentals with iProperties

 17

Saving Properties

To save any changes you make to properties you need to save the document. The Save method of the
Document object does this. However, when working with Apprentice it‟s possible to only save the
iProperty changes to the document, which is much faster than saving the entire document. The
FlushToFile method of the PropertySets object saves any iProperty changes. The sample below
demonstrates this by opening a document using Apprentice, changing a property value, saving the
change, and closing everything. Remember that Apprentice cannot be used from within Inventor‟s VBA.
It must be from another application‟s VBA or from Visual Basic.

Public Sub ApprenticeUpdate()

 ' Declare a variable for Apprentice.

 Dim invApprentice As New ApprenticeServerComponent

 ' Open a document using Apprentice.

 Dim invDoc As ApprenticeServerDocument

 Set invDoc = invApprentice.Open("C:\Temp\Part1.ipt")

 ' Get the design tracking property set.

 Dim invDTProperties As PropertySet

 Set invDTProperties = invDoc.PropertySets.Item("Design Tracking Properties")

 ' Edit the values of a couple of properties.

 invDTProperties.Item("Checked By").Value = "Bob"

 invDTProperties.Item("Date Checked").Value = Now

 ' Save the changes.

 invDoc.PropertySets.FlushToFile

 ' Close the document and release all references.

 Set invDoc = Nothing

 invApprentice.Close

 Set invApprentice = Nothing

End Sub

Example Programs

There are some associated sample programs that provide more complete examples of the various topics
covered in this paper and provide practical examples in various programming languages of how to use
Inventor‟s programming interface.

PropertySamples.ivb
CopyProperties – Copies a set of properties from a selected document into the active document.

DumpPropertyInfo – Displays information about all of the property sets and their properties.

Properties.xls
An Excel file where each sheet contains a list of properties and values. There are two Excel macros that are
executed using the buttons on the first sheet.

Set Properties of Active Document – Copies the properties of the selected Excel sheet into the active
document.

Set Properties of Documents – Copies the properties of the selected Excel sheet into all of the Inventor
documents in the selected directory. This sample uses Apprentice.

 Autodesk Inventor® Programming Fundamentals with iProperties

 18

Inventor User Defined Properties, {D5CDD505-2E9C-101B-9397-08002B2CF9AE}

Inventor Summary Information, {F29F85E0-4FF9-1068-AB91-08002B27B3D9}

Property Name Id Id Enum Type

Title 2 kTitleSummaryInformation String

Subject 3 kSubjectSummaryInformation String

Author 4 kAuthorSummaryInformation String

Keywords 5 kKeywordsSummaryInformation String

Comments 6 kCommentsSummaryInformation String

Last Saved By 8 kLastSavedBySummaryInformation String

Revision Number 9 kRevisionSummaryInformation String

Thumbnail 17 kThumbnailSummaryInformation IPictureDisp

Inventor Document Summary Information, {D5CDD502-2E9C-101B-9397-08002B2CF9AE}

Property Name Id Id Enum Type

Category 2 kCategoryDocSummaryInformation String

Manager 14 kManagerDocSummaryInformation String

Company 15 kCompanyDocSummaryInformation String

Design Tracking Properties, {32853F0F-3444-11D1-9E93-0060B03C1CA6}

Property Name Id Id Enum Type

Creation Time 4 kCreationDateDesignTrackingProperties Date

Part Number 5 kPartNumberDesignTrackingProperties String

Project 7 kProjectDesignTrackingProperties String

Cost Center 9 kCostCenterDesignTrackingProperties String

Checked By 10 kCheckedByDesignTrackingProperties String

Date Checked 11 kDateCheckedDesignTrackingProperties Date

Engr Approved By 12 kEngrApprovedByDesignTrackingProperties String

Engr Date Approved 13 kDateEngrApprovedDesignTrackingProperties Date

User Status 17 kUserStatusDesignTrackingProperties String

Material 20 kMaterialDesignTrackingProperties String

Part Property Revision Id 21 kPartPropRevIdDesignTrackingProperties String

Catalog Web Link 23 kCatalogWebLinkDesignTrackingProperties String

Part Icon 28 kPartIconDesignTrackingProperties IPictureDisp

Description 29 kDescriptionDesignTrackingProperties String

Vendor 30 kVendorDesignTrackingProperties String

Document SubType 31 kDocSubTypeDesignTrackingProperties String

Document SubType Name 32 kDocSubTypeNameDesignTrackingProperties String

Proxy Refresh Date 33 kProxyRefreshDateDesignTrackingProperties Date

Mfg Approved By 34 kMfgApprovedByDesignTrackingProperties String

Mfg Date Approved 35 kDateMfgApprovedDesignTrackingProperties Date

Cost 36 kCostDesignTrackingProperties Currency

Standard 37 kStandardDesignTrackingProperties String

Design Status 40 kDesignStatusDesignTrackingProperties Long

Designer 41 kDesignerDesignTrackingProperties String

Engineer 42 kEngineerDesignTrackingProperties String

Authority 43 kAuthorityDesignTrackingProperties String

Parameterized Template 44 kParameterizedTemplateDesignTrackingProperties Boolean

Template Row 45 kTemplateRowDesignTrackingProperties String

External Property Revision Id 46 kExternalPropRevIdDesignTrackingProperties String

Standard Revision 47 kStandardRevisionDesignTrackingProperties String

Manufacturer 48 kManufacturerDesignTrackingProperties String

Standards Organization 49 kStandardsOrganizationDesignTrackingProperties String

Language 50 kLanguageDesignTrackingProperties String

Defer Updates 51 kDrawingDeferUpdateDesignTrackingProperties Boolean

Size Designation 52 String

Categories 56 kCategoriesDesignTrackingProperties String

Stock Number 55 kStockNumberDesignTrackingProperties String

Weld Material 57 kWeldMaterialDesignTrackingProperties String

