
Autodesk Inventor Tutorials

by Sean Dotson
www.sdotson.com
sean@sdotson.com

VBA Functions in Parts
Part One

Latest Revision: 3/17/03
For R6

© 2003 Sean Dotson (sdotson.com)
Inventor is a registered trademark of Autodesk Inc.

By downloading this document you agreed to the following:

Your use of this material is for information purposes only. You agree not to distribute, publish,
transmit, modify, display or create derivative works from or exploit the contents of this document in
any way. Any other use, including the reproduction, modification, distribution, transmission,
republication, display, or performance, of the content on this site is strictly prohibited.

mailto:sean@sdotson.com
http://www.sdotson.com/

This tutorial will deal with a subject that may send some of you running for the hills. It
involves using VBA functions in parts and assemblies. But don’t pack it in yet. It
doesn’t take a Visual Basic guru to use these simple functions.

The advantage of using VBA functions in your parts and assemblies is the ability to use
VB conditional functions to change parameters. In the parameter dialogue you can use
min, min, ceiling, floor and many other functions but you do not have access to
If…Then..ElseIf.. or Select Case functions. These functions greatly simply the equations
that are needed in the parameters dialogue.

 The data set for this tutorial can be downloaded from:
http://www.sdotson.com/tutparts/VBAFunctions.zip

Unzip the dataset and open Flange.ipt. This is a simple flange that we will use to
illustrate the concept of If…Then functions.

Figure 1 - Basic Flange

Take a moment to look at the sketches that make up the OD, ID and bolt circle of the
flange. Note that the ID is defined as the OD/2. Also note that the bolt circle (BC)
diameters is defined as the average of the OD and ID (OD+ID)/2. See figure 2.

http://www.sdotson.com/tutparts/VBAFunctions.zip

Figure 2 - Sketch Relationships

So we have a flange whose OD, ID and BC are all defined by the OD. By changing the
OD in the sketch or via the parameters menu the ID and BC change in hand.

Now it’s time to jump into the programming. On the main menu choose
Tools>Macros>Visual Basic Editor. You will be presented with the VBA
programming environment. (See Figure 3)

In the upper left you will see a list of the open projects and open documents. If you have
multiple documents open you will need to determine which one is the flange.ipt
document. The filename is listed beside each document project name. Find the
document project for the current file flange.ipt and expand the browser so that the
functions tab is visible. Click on the functions tab. The right hand side of the screen is
where you type your code. At this point I will not going to go into great detail about the
VB Editing environment (there are other great tutorials for this subject).

Click in the right hand pane and type the following:

Figure 3 - VBA Editor Interface

Public Function NumHoles(OutsideDiam As Double) As Double

 If OutsideDiam <= (6 * 2.54) Then
 NumHoles = 6
 ElseIf OutsideDiam > (6 * 2.54) And OutsideDiam <= (9 * 2.54) Then
 NumHoles = 8
 ElseIf OutsideDiam > (9 * 2.54) And OutsideDiam <= (14 * 2.54) Then
 NumHoles = 10
 ElseIf OutsideDiam > (14 * 2.54) Then
 NumHoles = 12
 End If

End Function

Let’s take a look at what this code means:

We first declare the function and give it a name (NumHoles). We then define the
arguments of the function (OutsideDiam). The arguments are the information we are
using to make our decision in the function. We define OutsideDiam as a double
precision variable. We define the output of the function NumHoles as a double precision
variable as well. Due to the way these functions work define all variables as double
precision variables even if the variable is an integer. If you do not do so the function will
not execute properly.

In the next step of the code we begin our first If statement. Since OutsideDiam is our
only argument we want to check to see what the value of the variable is. In the line:

 If OutsideDiam <= (6 * 2.54) Then

we check to see if OutsideDiam is less than or equal to 6”. Now you will notice that we
check this value against (6*2.54). This is due to the fact that Inventor uses internal
units of centimeters and radians. Anytime you pass a value to an Inventor VBA
function it translates the model units into centimeters. So when we want to check if the
value is less than or equal to 6” we need to check to see if it’s less than or equal to 6*2.54
= 15.24 cm. This is probably the most difficult part of the process. If your model units
are in units other than inches you will need to use the appropriate conversion factor to
translate them into centimeters.

You also need to keep this in mind when getting values out of the function. A function
that returns a value of 5 is really retuning 5cm. In your parameters dialogue you will
need to convert this into the appropriate units.

So if the argument OutsideDiam is less than or equal to 6” we specify the function
NumHoles to return a value of 6.

The next line is an ElseIf statement. This means if the first If statement was not true then
check this statement. In this first ElseIf we check to see if OutsideDiam is greater than 6
or less than or equal to 9. Notice we did not use greater than or equal to. If you did then

both the first and second IF statements would be true if OutsideDiam was = 6. You must
be careful in this regard.

If this statement is true we return 8 as the value of the function. We continue this logic
for two more iterations, each time returning a different value for NumHoles.

We then end the If statement with an EndIf and then end the function.

Save the document project (which also saves the part file) and close the VB editor. We
now need to set up the link to this function in the parameters dialogue.

Open the parameters dialogue and scroll down to parameter d28. This is the parameter
that controls the number of occurrences in the circular pattern. In the equation cell for
the parameter type:

VBA:NumHoles(d16) * 1.000 ul

Figure 4 - Parameter Dialogue

The VBA: portion tells Inventor this is a function. NumHoles is the name of the
function. d16 is the parameter we are passing to the function to be used as the argument
OutsideDiam. We multiply this by 1ul to turn the value unitless.

If we were passing more than one argument we would separate them with a semicolon
such as:

VBA:NumHoles(d16;d20) * 1.000 ul

Keep in mind that your function would also need to have two arguments.

Exit the parameters dialogue and update the model. We should still only have 6 holes.
Now change the OD of the plate to 9.5” then update the model. The number of holes
should have changed to 10. You can continue to vary the OD to explore all the possible
combinations.

Figure 5 - Various Flange Permutations

The VBA function is contained within the document so this part can be used in a number
of different projects without having to worry about linked spreadsheets.

You can have multiple functions in a part document to change different aspects of the
part. For example instead of computing it in the parameters menu, we could have
computed the value of the BC based on the OD and ID by a function like the following:

Public Function BCDiam(OD As Double, ID As Double) As Double

 BCDiam = ((OD + ID) / 2) / 2.54

End Function

and in the parameter’s dialogue we would define d20 as

VBA:BCDiam(d16;d17) * 1.000 in

One of the only drawbacks of this method is that you cannot access any other Inventor
API calls in your function. That is to say you cannot alter the visibility or color of parts,
alter other parameters, suppress or compute features etc.

You can however access external applications such as Excel and Access. This would
allow you to have a very lengthy lookup table and select values for your model from this
table based on user input.

If there is enough interest in this tutorial, I will expand this method and explain how it
can be used in assemblies for motion simulation.

(See, now programming wasn’t that bad was it?) ☺

	Autodesk Inventor Tutorials
	VBA Functions in Parts Part One
	Latest Revision: 3/17/03
	For R6
	 NumHoles = 10
	 ElseIf OutsideDiam > (14 * 2.54) Then
	 If OutsideDiam <= (6 * 2.54) Then
	VBA:NumHoles(d16) * 1.000 ul
	VBA:NumHoles(d16;d20) * 1.000 ul
	Public Function BCDiam(OD As Double, ID As Double) As Double
	 BCDiam = ((OD + ID) / 2) / 2.54
	End Function

	VBA:BCDiam(d16;d17) * 1.000 in

