

 Ist dies das von Ihnen gesuchte Dokument ?
 Nein, keineswegs O
 O
 O
 O
 Ja, definitiv

 Beantwortet dieses Dokument Ihre Frage ?
 Nein, keineswegs O
 O
 O
 O
 Ja, vollständig
 Abschicken

 Bitte beurteilen Sie die Qualität dieses Dokuments.
 Schlecht O
 O
 O
 O
 O
 Ausgezeichnet

Vorgeschlagene Verfahrensweise für das Verwenden von Mechanismen bei der Top-Down-Konstruktion

Einführung

Bei der Top-Down-Konstruktion können Mechanismen verwendet werden. Dabei werden Skelette erzeugt, die das sich bewegende Teil oder die sich bewegenden Unterbaugruppen in einer Baugruppe der obersten Ebene darstellen. Mehrere Skelette werden verwendet und mit Hilfe von Verbindungselementen wie Gelenken, Nocken oder Nuten verbunden. Diese Skelette bilden die Referenz und Grundlage für die Detailkonstruktion. In den folgenden Schritten wird beschrieben, wie ein solcher Ansatz aussieht. Die Baugruppe umfaßt keine durch Unterbaugruppen definierte Untermechanismen.

Vorgehensweise

Schritt 1: Erzeugen Sie ein Basisskelett für den Mechanismus. Das Basisskelett dient vier Zwecken:

- 1. Es dient als Referenz für alle sich nicht bewegenden Teile des Motors, wie z.B. Ölwanne oder Motorblock.
- 2. Es dient als Referenz für den Zusammenbau sich bewegender Skelette mit Hilfe von Mechanismus-Verbindungen.
- 3. Es kann auch Schlüsselkonstruktionsparameter und Beziehungen enthalten. Diese Parameter können über Baugruppenbeziehungen Auswirkungen auf andere Größen oder Parameter anderer Teile haben. Es folgt eine Liste von Schlüsselparametern und Beziehungen für dieses Motor-Modell:

Parameter: L – Länge der Pleuelstange

- R Kurbellänge
- B Bohrungsdurchmesser

Beziehungen: S=2(R) - Hub

R_L=R/L - Verhältnis Pleuelstange/Kurbel

L_R=L/R – Verhältnis Kurbel/Pleuelstange

B_S=B/S - Verhältnis Bohrung/Hub

V=p (B2)(S)/4 - Volumen

4. Es stellt darüber hinaus ein 3D-Layout für Referenzgeometrie dar. Publiziergeometrie-Konstruktionselemente werden für dieses Skelett zur späteren Referenz für Detailkonstruktionsteile erzeugt. Dazu zählen Bolzenmuster und Schnittstellen. Abbildung 1 zeigt den Modellbaum für dieses Basisskelett sowie die Geometrie. Beachten Sie die Publiziergeometrie-Konstruktionselemente im Modellbaum. Dieses Skelett publiziert Geometrie für mehrere Teile der Baugruppe. Die Namen der Publiziergeometrie-Konstruktionselemente entsprechen den Namen der Detailteile. Die Abbildungen 2, 3, 4 und 5 zeigen die speziellen Konstruktionselemente, auf die in jedem Publiziergeometrie-Konstruktionselement verwiesen wird.

Abbildung 2 - Publiziergeometrie - Kopf

Schritt 2: Erzeugen Sie für jedes sich bewegende Teil in der Baugruppe ein Teil, das ein Skelett darstellt. Erzeugen Sie die Teile einzeln im Modus Teil. Diese Teile werden später als Ausgangspunkt für die Erzeugung von Skeletteilen in der Baugruppe verwendet. Der Grund dafür ist, daß Skelette nur im Modus Baugruppe während der Bearbeitung erzeugt und dann zusammengefügt werden können. Daher werden diese Teile, aus denen die sich bewegenden Skeletteile kopiert werden, nur vorübergehend benötigt.

Schritt 3: Erzeugen Sie jedes sich bewegende Skeletteil, und fügen Sie die Teile zusammen. Jedes sich bewegende Teil wird als getrenntes Skelett dargestellt. Jedes Skelett muß in der Baugruppe erzeugt werden. Die in Schritt 2 erzeugten Teile werden bei der Erzeugung der Skelette kopiert. Jedes dieser Skelette wird mit Hilfe von Mechanismus-Verbindungen zusammengefügt. Abbildung 6 zeigt, wie crank_skel und ground_skel mit Hilfe einer Stiftverbindung zusammengefügt wurden. Die Bezugsreferenzen sollten im voraus definiert werden, damit sie beim Erzeugen der Verbindung verfügbar sind. In diesem Beispiel verfügen ground_skel und the crank_skel

über eine Achse, die die Rotationsachse für die Kurbelwelle darstellt. Darüber hinaus steht eine Bezugsebene zur Verfügung, die senkrecht zu den Achsen verläuft und zur Definition der Verschiebung des Stiftpunkts verwendet wird.

Abbildung 6 - Stiftverbindung

Nocken und Nuten können nur über das Menü **Mechanismus (Mechanism)** hinzugefügt werden. Daher werden nach dem Zusammenfügen der Teile mit Hilfe von Gelenkverbindungen die Verbindungen mit Hilfe von **Mechanismus (Mechanism)** fertiggestellt. Die folgende Übersicht zeigt, wie die Teile in dieser Baugruppe von oben nach unten zusammengefügt werden:

	Basis	Kurbel	Pleuelstange	Kolben	Nockenwelle	Kolbenstange	Kipphebel	Ventil
Kurbel	Stift							
Pleuelstange		Stift						
Kolben	Zylinder		Zylinder					
Nockenwelle	Stift					Nocke		
Kolbenstange	Schieber						Nocke	
Kipphebel	Stift							Nocke
Ventil	Schieber							

Abbildung 7 - Kipphebel-Stift-Verbindung

Abbildung 8 - Kipphebel-Nocken-Verbindungen

Die Abbildungen 7 und 8 zeigen, wie ein Teil (z.B. ein Kipphebel) zunächst mit Hilfe einer Stiftverbindung auf die Baugruppe montiert wird bzw. wie Nockenverbindungen hinzugefügt werden. Beachten Sie, daß Nocken statt mit Volumengeometrie auch mit Kurven definiert werden können. Für den Skelettmechanismus können die Optionen des Menüs **Mechanismus (Mechanism)** genutzt werden. Nun kann der Mechanismus gezogen und bewegt werden.

Schritt 4: Fügen Sie Beziehungen auf Baugruppenebene für die Skelette hinzu. Die Schlüsselgrößen jedes Teils werden durch die Schlüsselparameter des Basisskeletts über Baugruppenbeziehungen gesteuert. Diese Beziehungen können nun hinzugefügt werden, da die Skelette zusammengebaut wurden. Der Parameter L im Basisskelett bezeichnet z.B. die Länge der Pleuelstange. Eine Baugruppenbeziehung steuert den Abstand zwischen zwei Stiftachsen im Pleuelstangenskelett. Dadurch ist es möglich, die Konstruktionsabsicht aus einer Quelle zu steuern. Abbildung 9 zeigt den vollständigen Skelettmechanismus mit allen Gelenkverbindungen und Nocken.

Abbildung 9 - Vollständiger Skelettmechanismus

Schritt 5: Führen Sie kinematische Untersuchungen am Skelettmechanismus durch. Zur Kurbelwelle werden Antriebe und Antriebe mit Nocken hinzugefügt, um das Antriebsverhältnis zwischen der Kurbelwelle und der Nockenwelle zu simulieren. Dieses Modell verwendet eine Bewegung, die 10 Sekunden andauert. Da es sich in diesem Beispiel um einen Viertaktmotor handelt, dreht der Kurbelwellenantrieb die Welle innerhalb eines Zeitraums von 10 Sekunden um 720°. Daher kann der Antrieb als Positionsantrieb mit einer Schleife von 720°/Sekunde definiert werden. Die Schleife für den Kurbelwellenantrieb ist 360°/Sekunde, da das Antriebsverhältnis 2/1 beträgt. Daher führen die Nocken in den 10 Sekunden eine Drehung von 360° aus. Die Abbildungen 10 und 11 zeigen diese Antriebe.

Abbildung 10 - Nockenantrieb Abbildung 11 - Kurbelwellenantrieb

Beachten Sie folgende Punkte. Erstens können kinematische Untersuchungen schnell durchgeführt werden. Die Anzeige der Ergebnisse nimmt kaum Zeit in Anspruch, da die Geometrie zu diesem Zeitpunkt einfach ist und die Grafik-Hardware nur geringfügig belastet wird. Zweitens kann der Mechanismus schnell geändert und optimiert werden. Da die Konstruktionselemente einfach sind, nimmt das Regenerieren kaum Zeit in Anspruch. Darüber hinaus treten nur selten Regenerierungsfehler auf. Dies ermöglicht Ihnen, sich auf die Konstruktion und die Optimierung des Mechanismus zu konzentrieren, bevor die Detailkonstruktion abgeschlossen ist; zudem ist Flexibilität geboten. Mit Hilfe der Modellierung auf der Grundlage dieses Verhaltens können Meßgrößen erzeugt und Empfindlichkeitsstudien sowie Optimierungsmaßnahmen durchgeführt werden.

Skelette	Detailteile
Ground_skel	Head
	Cyl_block
	Crank_case
	Crank_rod_caps
	Crank_rod_caps
	Oil_pan
	1002r
Crank_skel	Crank
Conrod_skel	Rod
Piston_skel	Piston
Cam_gear_skel	Cam_gear
Cam_gear_skel2	Cam_gear
Push_rod_skel	Push_rod
Push_rod_skel2	Push_rod
Rocker_skel	Exec_rocker
Rocker_skel2	Exec_rocker
Valve_skel	Valve

Schritt 6: Fügen Sie die Detailteile zusammen. Jedes Detailteil wird zum zugehörigen Skelettmodell hinzugefügt. Die folgende Tabelle zeigt, welches Detailteil mit welchem Skelett zusammengefügt wird. Beim Zusammenbau kann die Referenzsteuerung verwendet werden.

valve_skeiz valve

Schritt 7: Stellen Sie die Detailteile fertig. So wie das Basisskelettmodell umfaßt jedes Skelettmodell Publiziergeometrie-Konstruktionselemente. Diese Publiziergeometrie-Konstruktionselemente werden dann in das Detailmodell übertragen, wobei Kopiegeometrie-Konstruktionselemente verwendet werden. Bei der Erzeugung der restlichen Geometrie wird das Kopiegeometrie-Konstruktionselement als Referenz verwendet. Dieser Prozeß stellt sicher, daß das Teil entsprechend geändert wird, wenn Änderungen am Skelettmodell vorgenommen werden. Die Abbildungen 12 bis 14 zeigen diesen Prozeß für das Ventil. Abbildung 12 zeigt das Teil valve_skeleton mit allen Konstruktionselementen. Abbildung 13 zeigt ebenfalls das Teil valve_skeleton jedoch nur mit den Publizier-Konstruktionselementen, die mit Hilfe von Folien angezeigt werden. Abbildung 14 zeigt das fertige Detailventil mit einem gedrehten Körper, der auf das Kopiegeometrie-Konstruktionselement verweist. Beachten Sie, daß das Kopiegeometrie-Konstruktionselement auf das Publiziergeometrie-Konstruktionselement verweist.

Die Referenzsteuerung kann verwendet werden, wenn Konstruktionselemente für die Detailteile erzeugt wurden, während in der Baugruppe gearbeitet wurde.

Abbildung 12 - Ventilskelett

Model Tree	P
VALVE_SKEL.PRT	
VALVE1	

Abbildung 13 - Publiziergeometrie - Ventilskelett

Abbildung 14 - Vollständiges Detailteil eines Ventils

Dies geschieht für alle Teile, um eine vollständige Detailbaugruppe zu erzeugen. Abbildung 15 zeigt die vollständige Detailbaugruppe. Nun können die Teile beliebig aus der Baugruppe entfernt oder ersetzt werden, da die Detailteile nicht aufeinander verweisen.

Abbildung 15 - Fertiger Motor

Schritt 8: Führen Sie die Bewegungsanalyse für alle Teile durch. Wählen Sie im Menü Mechanismus (Mechanism) die Option Mechanismus (Mechanism). Die mit Hilfe der Skeletteile erzeugte Bewegungsanalyse kann durchgeführt werden, um auch die Detailteile zu bewegen. Die Detailteile können auch dynamisch verschoben werden.

An dieser Stelle soll auf die Darstellung eingegangen werden. Da das Modell so viele Skeletteile umfaßt, kann dies die Baugruppe unübersichtlich machen. Zur Optimierung der Darstellung von Mechanismusbaugruppen stehen drei Methoden zur Verfügung.

Die erste Methode besteht in der Verwendung vereinfachter Darstellungen. Eine Möglichkeit zur Erzeugung einer vereinfachten Darstellung ist **Eigenschaften > Komponententyp > Skelett (Properties > Component Type > Skeleton)**. Auf diese Weise können alle Skelettmodelle automatisch aus der vereinfachten Darstellung ausgeschlossen werden. Dies geschieht über die Option **Nach Regel (By Rule)** oder **Definitionsregeln (Definition Rules)**.

Die zweite Methode besteht in der Verwendung von Folien. Wenn dasselbe Folien-Schema für Teile, Skeletteile und Baugruppen verwendet wird, können alle Folien problemlos von der obersten Baugruppe gesteuert werden. Dazu stehen zwei Möglichkeiten zur Verfügung. Die voreingestellte Baugruppe verfügt über die Folie 07__ASM_ALL_SKELETONS. Diese Folie umfaßt automatisch die Skelettmodelle. Daher werden durch Ausblenden dieser Folie alle Skelette ausgeblendet. Die zweite Möglichkeit besteht darin, Bezugsebenen, Punkte, Achten, Kurven und Koordinatensysteme, die zu den Skelettmodellen gehören, mit Hilfe von Folien auszublenden.

Die dritte Methode besteht in der Verwendung der Komponentendarstellung. Die Option **Komponentendarstellung (Component Display)** kann zum Ausblenden aller Skelettmodelle verwendet werden. Die Bewegungsdefinition kann weiterhin durchgeführt und die Ergebnisse können mit Hilfe dieser Darstellung angezeigt werden.

Questions or Comments? Contact the Customer Service Webmaster.

company | news & events | products | partners | services & support | store site index | legal policies and guidelines