
Import und Export
Aufbereitung von CAD-Daten
Bayreuth, 25. Oktober

Dipl.-Ing. Alexander Troll

Unterstützte Datenformate

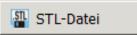
CD

Übersicht über die Import-/Exportfunktionen für FE

	Z88V13	DXF	ABAQUS	ANSYS	COSMOS	NASTRAN
FE-Struktur	✓	✓	✓	✓	✓	✓
FE-Superstruktur	✓	✓	×	×	×	×
Materialgesetze	✓	✓	(1 Material)	√	✓	✓
Einzellasten	✓	✓	✓	✓	✓	✓
Festhaltungen	✓	✓	✓	✓	✓	✓
Flächenlasten	✓	✓	nur Import	✓	✓	✓
Solveroptionen	✓	×	×	×	×	×

Geometrieschnittstellen in Z88Aurora: STEP

- ISO 10303er Reihe f
 ür Produktmodelldaten
- 2D- und 3D-Daten, Volumen, Schalen, Flächen
- Unterstützt Splines und analytische Kurven
- PDM- und PLM-Daten
- Basiert auf Anwendungsprotokollen (AP)



- STEP AP 203 (3D) und AP 214 (3D)
- 1 Volumen, keine Schalen oder Flächen
- Keine zusätzlichen Daten
- Umwandlung zu STL durch Z88GeoKon

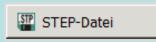
Geometrieschnittstellen in Z88Aurora: STL

- Standardformat f
 ür Rapid Prototyping
- 3D-Daten, Volumen
- Oberfläche in Form von Dreiecken diskretisiert
- Normalenvektor nach Außen zeigend

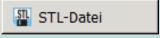
Direktes Einlesen in Z88 Aurora

Geometrieschnittstellen in Z88Aurora: DXF

- AutoCAD Standardformat
- 2D-, 2½D- und 3D-Daten
- Aufbau in Layern

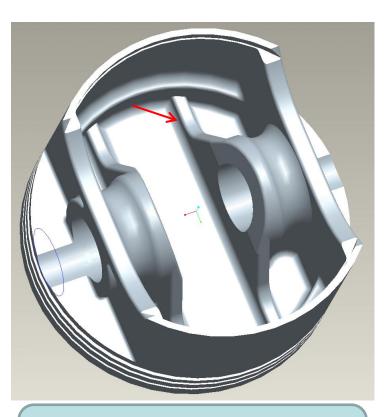


- 2D- und 2½D-Daten
- Besonders f
 ür 2D-Strukturen mit Superelementen
- Keine 3D-Daten
- Umwandlung zu Z88-Eingabedateien durch Z88x

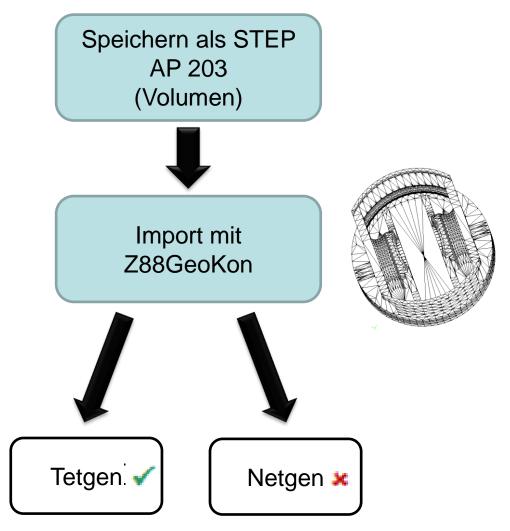


Typische Probleme beim Import von Daten

- Fehler und Lücken in der Geometrie
- Zu kleine Kanten und Flächen
- Kein Volumen, sondern Schalen oder Flächen
- Nicht verarbeitbare Zusatzinformation

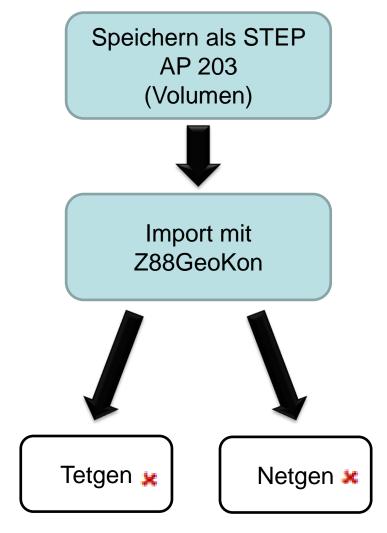


- Falsche Reihenfolge der Punkte im Dreieck
- Normalenvektor zeigt nach innen
- Fehler und Lücken in der Geometrie
- Überlappende Dreiecke
- Nicht konforme Netze



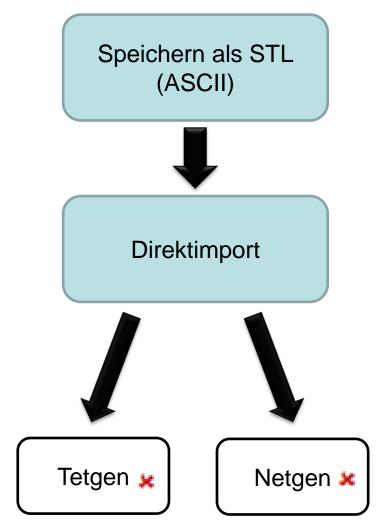
Beispiel: BMW-Kolben als STEP-Datei I

Sehr detailreiche Geometrie (Rundungen und Fasen)

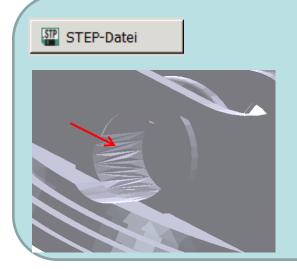


Beispiel: BMW-Kolben als STEP-Datei II

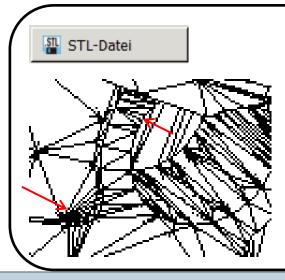
Alle Rundungen unterdrückt



Beispiel: BMW-Kolben als STL-Datei (hochaufgelöst)

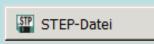


Alle Rundungen unterdrückt



Gründe für die Probleme beim Import

- Ungenaue Geometrie in der STEP-Datei führt zu falscher Abbildung durch Z88GeoKon
- Tetgen bildet Geometrie falsch ab
- Netgen erkennt den Fehler



- STL-Konverter des CAD-Systems dreht f\u00e4lschlicherweise die Normalen einzelner Dreiecke um
- Tetgen erkennt den Fehler
- Netgen erkennt den Fehler

Lösungsansatz: Richtige Wahl der Einstellungen

- STEP AP 203 oder AP 214
- Möglichst Toleranz < 0.01
- Nur Volumen
- Keine Zusatzinformationen

- ASCII-Format
- Kantenlängenverhältnis möglichst 1
- Max. Sehnenhöhe (eigentlich für Kreise) an kleinster gerader Kante orientieren
- Winkel von minimal 30° (Pro\E: >= 0.33)
- Einstellungen beeinflussen sich gegenseitig!

Lösungsansatz: Modellierungsstrategien

Bauen Sie Ihr Modell analog zur DIN 4003 auf:

- Geringe absolute Konstruktionstoleranz wählen (<= 0.01)
- Alle Bezüge an den Beginn des Modellbaums
- Alle Grundkörper und Grobgeometrie auf diese Bezüge referenzenzieren
- Alle Details (Fasen, Rundungen, etc.) an den Schluss des Modellbaums
 - Unterdrücken Sie nicht für die FE-Berechnung notwendige Details vor dem Export
 - Nutzen Sie integrierte Prüfprogramme der CAD-Software um kleine Kanten oder Flächen zu finden

So genau wie nötig, so abstrahiert wie möglich!

CD

Weitere Informationen zum Thema Datenaustausch

- VDA 4950 und VDA 4955: Prüfkriterien, Datenqualität
- ProSTEP iViP e.V. Homepage: Best Practices für STEP
- CAx-IF Homepage: Prüfwerkzeuge für STEP

