

HBB Engineering GmbH Salzstraße 9 D-83454 Anger

Telefon +49 (0)8656-98488-0 Telefax +49 (0)8656-98488-88 Info@HBB-Engineering.de www.HBB-Engineering.de

Die Funktion: Körper messen Ergebnisse und deren Bedeutung

Version: UNIGRAPHICS/NX 5 – 7.5

Für dieses Beispiel wurden folgende Voreinstellungen getroffen:

Festlegen der Einheit g - cm (Fläche = cm², Volumen = cm³) *Analyse > Einheiten* (*Analysis > Units*)

Voreinstellen der Dichte, sowie der Dichteeinheiten (hier: Dichte für Stahl 7.830 g / cm³)

Abstandstoleranz Winkeltoleranz Dichte Dichteeinheiten

Ersteller: Tom Schäfer

lbm · <u>i</u>n Ibm · <u>f</u>t

<u>a</u> - m m

kg - m kg - mm Benutzerdefiniert Einheitenkonvertierung. Basiseinheiten-Manager. Einheiteninformationen

> Voreinstellungen > Konstruktion Preferences > Modeling

Über *Bearbeiten > Formelement > Dichte (Edit > Feature >Solid Density)* kann die Dichte im Nachhinein verändert werden.

Dichte zuwei	sen	
Körper		^
* Objekt auswähle	en (0)	+
Dichte		^
Dichte		7.8306
Einheiten	Gramm - Zen	timeter 🔽

Eine Auskunft über die Benennung der Einheiten erhält man über Analyse > Einheiten > Einheiteninformationen (Analysis > Units > Units Information)

Messen	Benennung (Basiseinheit)	Name anzeigen	Beschreibung
Länge	Zentimeter	cm	Zentimeter
Bereich	Quadratzentimeter	cm^2	Quadratzentimeter
Volumen	Kubikzentimeter	cm^3	Kubikzentimeter
Masse	Gramm	g	Gramm
Massendichte	KilogramPerCubicMilliMeter	kg/mm^3	Kilogramm pro Kubikmillimeter
Stärkekoeffizient für Ermüdung	NewtonPerSquareMilliMeter	N/mm^2 (MPa)	Newton pro Quadratmillimeter
Zeit	Zweite	s	Sekunden
Winkel	Grad	Grad	Grad
Geschwindigkeit	MilliMeterPerSecond	mm/Sek	Millimeter pro Sekunde
Beschleunigung	MilliMeterPerSquareSecond	mm/s^2	Millimeter pro Quadratsekunde
Kraft	Newton	N	Newton
Kraft pro Einheitenlänge	NewtonsPerMilliMeter	N/mm	Newton pro Millimeter

© 1999 - 2011 HBB Engineering GmbH - All rights reserved

Erzeugen eines Quaders. Der Ursprung wurde in diesem Beispiel auf Null gesetzt, dadurch ist die Ergebnisanzeige (Körper messen) leichter nachvollziehbar.

Koordinaten	
💽 Relativ zu WCS	Absolut
хс	0.000000 mm
YC	0.000000 mm
zc	0.000000 mm

10	cm	
10	cm	
10	cm	
	10 10 10	10 cm 10 cm 10 cm

Die Maße des Quaders werden nach der Umstellung auf "g - cm" auch in Zentimeter angegeben (hier in cm: 10 x 10 x 10).

Analyse > Körper messen Analysis > Measure Bodys.

Wenn im Menü *Körper messen* der Hacken Informationsfenster anzeigen (Show Information Window) gesetzt ist, werden die Messergebnisse in einem separaten Fenster angezeigt.

Bemaßungsmasseeigenschaften							
Angezeigte Masseeigenschaftswe Volumen Bereich Masse Gewicht Trägheitsradius Schwerpunkt	rte = 1000.00000000 cm ³ 3 = 600.00000000 cm ³ 2 = 7830.643699354 g = 76.792451317 N = 5.00000000 cm = 5.000000000 cm						
Detaillierte Masseeigenschafte Analyse berechnet mit Genauigk InformEinheit g - cm	n eit von 0.99000000						
Dichte = 7.8 Volumen = 1000.0 Bereich = 600.0	30643699 0000000 00000000 00000000						

Aufgelistet werden z.B. der *Bereich (Area),* dieser gibt die Oberfläche des Quaders an (6 grüne Würfelseiten), oder der *Schwerpunkt,* der, bezogen auf das *WCS*, in der Quadermitte (X = 5 cm; Y = 5 cm; Z = 5 cm) liegt.

Tipp:

Das Aus- / Einblenden des Infofensters ist standardmäßig über F4 möglich.

Um Vergleichswerte zu erhalten, werden am Quader eine *Tasche*, sowie zwei *Bohrungen* erstellt.

Nun wird der Körper erneut gemessen.

Bemaßungsmasseeigenschaften

unersiste Nessesiseurskefteneute

Der *Bereich* hat sich aufgrund der neu hinzugekommenen Flächen (*Bohrungen*, *Tasche*) vergrößert. (*Bereich = benetzte Oberfläche*)

Volumen, Masse und *Gewicht* haben sich entsprechend verringert.

Volumen		=	893.	784187157	.cm^3			
Bereich		=	711.	096088140	cm^2			
Masse		=	6998.	905513739	g	-		
Gewicht		=	68.	635878680	Ν			
Trägheitsradius		=	5.	037648409	$^{\rm cm}$			
Schwerpunkt		=	5.	014417707	,	4.863214242,	5.347364252	cm
Detaillierte Mass Analyse berechnet InformEinheit	eeigenschafte mit Genauigke g - cm	i t	von	0.99000	0000			
Detaillierte Mass Analyse berechnet InformEinheit Dichte	eeigenschaften mit Genauigke g - cm = 7.83	1 ≌it 8064	von 43699	0.99000	0000			
Detaillierte Mass Analyse berechnet InformEinheit Dichte Volumen	eeigenschaften mit Genauigke g - cm = 7.83 = 893.75	1 ≙it }064 3418	von 43699 37157	0.99000	0000			
Detaillierte Mass Analyse berechnet InformEinheit Dichte Volumen Bereich	eeigenschafter mit Genauigke g - cm = 7.83 = 893.76 = 711.09	1 ≥it }064 3418 9608	von 43699 37157 38140	0.99000	0000			

Schwerpunkt und Trägheitsmoment:

Die Koordinaten des neuen Schwerpunktes werden im ^{Masseschwerpunkt} *Informationsfenster* aufgelistet.

Es besteht die Möglichkeit, über die Funktion Körper messen den Schwerpunkt optisch darzustellen. Dazu muss die Assoziativität aktiv, sowie die Beschriftung auf Bemaßung anzeigen (Show Dimension) geschaltet werden.

Entfernen des angehängten Textes über F5

Körper messen	1	ວ − ×
Objekte		~
* Körper auswählen	(0)	
Assoziative Messung	und Prüfung	~
Assoziativ		
Anforderung	Keine	
Ergebnisanzeige		^
Informationsfenste	r anzeigen	
Beschriftung	Bemaßung anze	eige 🔽
	Keine Bemaßung anzeig	gen
	Hauptachsen erz	eugen

Durch den Assoziativ-Schalter wird die *Körperbemaßung (Body Measurement)* im *Teile-Navigator* aufgelistet. Wird der Körper geändert, muss die *Körperbemaßung* im *Teile-Navigator* verschoben werden, um den aktuellen Schwerpunkt zu erhalten.

Teile-Navigator
Name 🔺
🕀 History Mode
🕀 🥵 Modellansichten
🗄 🎸 📬 Kameras
🖻 🚰 Bemaßungen
🗹 📩 Körperbemaßung (б)
🖻 🗁 Modellhistorie
🗹 🧊 Quader (1)
🛛 📝 🗊 Einfache Bohrung (2)
🗹 🧊 Einfache Bohrung (3)
🖌 🛃 Körperbemaßung (б)

Das **Trägheitsmoment**, auch Massenträgheitsmoment oder Inertialmoment, ist eine physikalische Größe in der klassischen Mechanik. Sie gibt den Widerstand eines starren Körpers gegenüber einer Änderung seiner Rotationsbewegung an. (Definition laut Wikipedia, http://de.wikipedia.org/wiki/Trägheitsmoment) Für die Darstellung des Trägheitsmoments ist es empfehlenswert, bei der Funktion *Körper messen* die Hauptachsen zu erzeugen (hier am Beispiel eines L-Profils).

Körper messe	n	ა – x
Objekte		•
🞸 Körper auswäh	len (1)	
Assoziative Mess	ung und Prüfung	v
Ergebnisanzeige		~
Informationsfer	ister anzeigen	
Beschriftung	Hauptachsen	erzel
	Keine	
	Bemaßung anz	eigen
	Hauptachsen e	rzeugen

Die Hauptachsen stehen stets senkrecht aufeinander und verlaufen immer durch den Schwerpunkt. Hauptachsen werden auch als Hauptrotationsachsen bezeichnet.

Masseschwerpunkt Xcbar, Ycbar, Zcbar	=	6.694859714,	16.611596694,	-31.000000000
Trägheitsmoment (WCS) Ix, Iy, Iz	=	204.541356436,	157.421694532,	73.357247090

Trägheitsmomente werden in Bezug auf das WCS bzw. den Schwerpunkt gemessen.

Zur Erinnerung: Alle Kräfte und Lasten, die in Richtung einer Hauptachse angreifen und durch den Schwerpunkt gehen, verbiegen

durch den Schwerpunkt gehen, verbiegen IIxe, Iye, Ize = 1183594 den Körper nur in Richtung des Kraftvektors. Kräfte und Lasten, die **nicht** durch den Schwerpunkt gehen und **nicht** in Richtung einer Hauptachse wirken, erzeugen ein Rotationsmoment und verdrillen den Körper zusätzlich zur Biegung.

Für die *Richtungsvektoren* der Hauptachsen ist ebenfalls eine Auflistung im *Informationsfenster* vorhanden.

Hauptachsen	(Richtun	gsvek	toren relativ zu	ι WCS)	
Xp(X), $Xp(Y)$,	, Xp(Z)	=	0.939607701,	0.342253368,	0.000000000
Yp(X), Yp(Y),	, Yp(Z)	=	-0.342253368,	0.939607701,	0.000000000
Zp(X), $Zp(Y)$,	, Zp(Z)	=	0.00000000,	-0.000000000,	1.000000000