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Chapter 1.
Standalone Deformable Modeling
Component

Component: *Deformable Surfaces

The Standalone Deformable Modeling Component (SDM), in the ds directory, provides a
common deformable modeling kernel for both the standalone version and the ACIS version
of deformable modeling.

Shape and shape features within larger shapes may be modified without changing the larger
shape beyond a local bound by using local deformations. For example, after completing the
design shape of a car door, a designer may want to insert a localized relief to make room for
a flush door handle without changing the line of the car body. The shape of the relief feature
is a local deformation to the car door.

Deformable modeling uses a simulation of an elastic curve or surface that mimics
real–world behavior to change the shape being designed. Users may make small
deformations from an existing shape or very large deformations to create an entirely new
shape. The phrase “deformable model” refers specifically to a deformable curve or surface.

Deformable modeling uses an energy–based optimization strategy which minimizes the
energy stored due to bending and stretching, so the shape that a deformable curve adopts is
the one shape out of all possible shapes that minimizes the internal energy of the curve. This
algorithm automatically produces very fair shapes similar to those seen in the billowing of a
sail or the clean line of a bending beam.

Deformable modeling is a more powerful alternative to control point manipulation and
skinning. Control point manipulation can change a shape interactively, but not while
enforcing constraints. Skinning can build surfaces that satisfy several constraints but do not
allow the shapes to be modified. With deformable modeling, users can interactively modify
shapes while simultaneously satisfying a very rich set of constraints.

The deformable modeling algorithm is an operator and not a representation. It does not
require any particular curve or surface representation. Editing for B–spline and NURB
curves and surfaces is supported.
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Deformable Modeling Overview
Topic: *Deformable Surfaces

Deformable modeling is a surfacing tool that allows you to easily modify all or part of
curves and surfaces. It is useful for feature creation, feature modification, and surface
adjustment. Since it uses a physics–based “rubber sheet” model, the modeling process is
close to real–life processes, thus easy to use. And since it does not require control point
manipulation, the computing cost is relatively low.

Feature creation allows you to make a bump, cover, or dome on a surface. For example,
applying a distributed pressure to a square patch creates a raised area on the surface (see the
Scheme extension ds:add–dist–press for details).

Feature modification includes the whole range of deformations.

Surface adjustment includes imposing continuity. For example, any deformable surface or
curve can contain any number of child patches. A child patch may attach to its parent with
either C0 (position only) or C1 (position and tangent) continuity. C0 patches allow a curve
with corners to be defined, and C1 patches make smooth composite curves.

The physics–based interface makes it easy to think of deforming a model in terms of actual
physical objects and behaviors. The material properties control how much the model resists
bending and stretching. You can use the default–shape feature to deform shapes very far
from their original shape by breaking one large deformation into a set of smaller
deformations interspersed with default shape captures. Or, you can give a model a
“preferred shape” to constrain its deformation. Constraints are used to limit and control
deformations. Loads are used to pull or push.

Deformable modeling controls many degrees of freedom (control points) with only a few
parameters, such as target locations and load gains. This greatly reduces computation time
and simplifies coding.

How to Use Deformable Modeling
Topic: *Deformable Surfaces

A sequence for a modeling session typically consists of the following steps:

1. Select a face or edge to be modified, or construct a shape model of a curve or surface.

2. Construct a deformable model for the shape model.

3. Apply modeling options to affect the deformable shape (add features, loads,
constraints, etc.), and modify the parameters of the constraints, loads, or deformation
parameters.
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4.  Call DM_solve to change the control point positions of the deformable model.

5. Render the deformable model to see the change. You can loop back to steps 3 or 4 for
interactive sculpting.

6. Repeatedly modify load and constraint parameter values, solve, and display.

7. Once a desired shape is found, commit it to the face or edge. Or, if desired, restore the
original face or edge shape.

You can further refine the modeling process by using the default shape feature, parameters,
tag objects, and parametric positions.

To enable an interactive mode, the manipulation of the load and constraint parameters are
tied to the mouse so that for each mouse move event there is a modify, compute, and render
loop. SDM has been designed to minimize the update time of a basic modify, compute, and
render loop, so it runs as an interactive animation.

Each load and constraint has a graphic icon: loads are shown in blue and constraints in red.
During the editing of a sheet surface, the user may disable the face’s boundary curve
constraints so the boundaries of the sheet may be manipulated. Disabled constraints are
shown in magenta.

SDM is designed to support two typical user scenarios for editing: the edit sheet and the edit
solid face scenarios.

In the edit sheet scenario, the user starts by selecting a sheet face or a wire edge to edit.
When a sheet face is selected, an SDM model of the sheet is made and it appears on the
screen as a normal light shaded face. Each of the boundaries of the original sheet are
automatically converted into curve constraints which are shown as red curves drawn within
the surface. The user adds and manipulates loads and additional constraints until the surface
is modified into a desired shape. The modified shape can be saved by committing it to the
geometry kernel’s model, at which time the original face’s geometric description is backed
up for roll back and then updated. Additionally, all face boundaries whose geometry have
also been edited are similarly backed up and updated.

The edit a solid face scenario differs from the edit sheet scenario in that the user begins by
selecting a face within a valid solid model. The face is automatically converted into a spline
of a high enough degree and with enough control points so it can be reasonably edited.
During the editing session, the user may not disable the boundary curve constraints.
Preserving these constraints guarantees that the shape of the face continues to fit within the
solid model after the sculpting has been completed. When the sculpted shape is committed
back to the kernel geometry model, only the geometry of the face is updated, since the
boundary curve shapes have been preserved.
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When the function DM_solve is called, it uses an optimization procedure to compute the
optimal control–point positions for a deformable model given the model’s current set of
loads, constraints, and deformation parameters. After generating a solution for the
deformable model or its deformable mesh, this function recursively generates a solve
solution for all of the model’s siblings and offspring or all of the mesh offspring. So a single
call to this function on the root of a hierarchy tree will update all of the hierarchy’s shapes.

Deformable Models
Topic: Deformable Surfaces

A deformable model (sometimes abbreviated ’dmod’ in the code) refers to the geometry to
be deformed. Deformable models can be splines, surfaces, or curves. When a solid body is
deformed, it is the surface of the solid that is operated on.

Modeling Domains
Topic: Deformable Surfaces

Domains are parametrically defined sub–regions of a deformable model. Domains can be
one or more points, curves, zones or areas, point–sets of discrete points, or links (as in a
multi–surface mesh). Behaviors act upon a domain. You can think of it as drawing a point,
curve, or area on rubber sheet, and then stretching or deforming the sheet only within those
boundaries.

A location on a curve or surface is identified by a parametric position specified by uv
coordinates (surfaces) or u coordinates (curves). All deformable model curves and surfaces
are parameterized on the unit square. That is, the parameter values always vary from 0 to 1
with the value of 0.5 being the middle. Any scaling required to map the deformable model
parameterization to that of the internal deformable model parameterization is made by the
deformable modeling package for the user.

Surfaces
Topic: Deformable Surfaces

Surfaces can be stitched together to form multi–surface meshes (no multi–curve capability
at this time). The individual surfaces within the mesh are connected to one another by link
curve loads. Within the deformable modeling mesh, each surface is equivalent to a FACE
and each link load is equivalent to an EDGE in a boundary representation model.

The figure below shows how two surfaces are combined into a single deformable modeling
mesh by the existence of a link load (shown in red). Either C1 or C0 continuity between
each surface patch can be enforced as the patches are deformed.
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Figure 1-1. A Multi–surface Deformation Mesh

The basic strategy for building a multi–surface mesh in the SDM API is to make a
deformable model for every surface in the mesh, and then to add a link constraint for every
connection within the mesh. In pseudo code this sequence looks like the following.

// for every surface in the mesh
For(ii=0;ii<surface_count;ii++)

{
// define the surface’s shape function
pfunc_array[ii] = DM_make_bspline_surface(

rtn_err, ...);

// make the surface’s deformable model
surface_dmod[ii] = DM_make_dmod_surface(

rtn_err, pfunc_array[ii], ...);
} // end iterate every surface in the mesh

// for every edge in the mesh
for(ii=0;ii<edge_count;ii++)

{
// find the faces for the edges
face1_index = USER_get_face_index_for_edge(edge[ii],1) ;
face2_index = USER_get_face_index_for_edge(edge[ii],2) ;
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// build the domain curve description
src1_C_pfunc = USER_make_pfunc_for_edge_on_face(

edge[ii],face1_index) ;
src2_C_pfunc = USER_make_pfunc_for_edge_on_face(

edge[ii],face2_index) ;

// build the link cstrn
link_tag[ii] = DM_add_link_C0_load (rtn_err, tag_shift,

surface_dmod[face1_index], surface_dmod[face2_index],
domain_flag, src1_C_pfunc, src2_C_pfunc,...) ;

} // end iterate every edge

After the multi–surface mesh is constructed, a call to DM_solve computes the deformed
shape for the entire multi–surface mesh.

Patches
Topic: Deformable Surfaces

A patch defines a local area of the surface where deformations are applied. A patch is itself
a deformable model. A child patch can be applied to any deformable curve or surface. Once
applied, the patch is also a deformable curve or surface with all associated capabilities.

Deformable model patches may be nested in a hierarchical tree in which the links in the tree
represent containment and the nodes represent individual deformable models. Children in
the tree are connected to their parents through a set of seam constraints that ensure that the
child shape can connect to the parent shape with C0, C1, or C2 (curves only) continuity. The
tree is represented in the DS_dmod structure as a set of three pointers: parent, child, and
sibling. A child patch can own a child patch (grandchild).

Any deformable surface or curve can contain any number of child patches. Each child patch
is attached to its parent through a seam, similar to a seam in sewing that joins two pieces of
fabric. A seam is one or more curves that connect together to form a simple closed loop.
The child patch connects to its parent patch along the seam with C0 (position) or C1
(position and tangent) continuity.

Deformations made to the child do not affect the shape of the parent. Deformations of the
parent change the shape of the child so that the child continues to stay attached to the parent
curve. The child’s attachment to its parent is enforced by using the point constraint
mechanism. A child patch is totally contained by its single parent, which prevents child
patches from spanning across link constraints.

The shape of each child patch on a surface is a rectangle large enough to contain its seam.
The child patch’s shape outside the seam is trimmed away, allowing the boundary of the
patch to form any shape. The final curve or surface shape is defined by the child patch for
locations within the seam boundary. For locations outside the seam, the final curve or
surface shape is defined by the parent.
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On a curve, a patch is a second curve which is attached to its parents at its end points and is
defined over a subset of the parents’ domain space. The actual curve, as seen by the user, is
really a composite curve, defined by the parent curve outside the patch region and defined
by the child patch within the patch region. A child patch may attach to its parent with either
C0 (position only) or C1 (position and tangent) continuity. C0 patches allow a curve with
corners to be defined, and C1 patches make smooth composite curves.

Curves
Topic: Deformable Surfaces

The modeler moves control point positions based on inputs such as loads, constraints, and
material properties. Figure 1-2 shows a sample curve defined by interpolating four
constraint points (shown as magenta squares). The curve is deformed by moving one of the
interior constraint points through a sequence of positions. The curve’s control points are
shown (as blue dots) for the first and last shape in the sequence. In this example, moving
one constraint point drives the deformable modeling algorithm, which moves all the control
points to continue interpolating all the constraint points and to keep the curve fair. Any
number of point constraints can be added to a curve placed at any position on the curve.

Figure 1-2. Deformable Curve



Standalone Deformable Modeling  7.0

DS_zone Objects
Topic: Deformable Surfaces

A DS_zone object partitions a deformable model’s shape into two regions, inside or outside
the zone. Because the zone’s boundaries may not align with the deformable model’s
elements boundaries, a zone partitions the elements of the affected shape to also include
those elements crossing the zone’s boundary.

To construct a DS_zone object, define the boundary shape within the domain space of the
deformable modeling shape. A rectangular DS_zone object can be constructed using
DM_build_square_zone, defining the minimum and maximum corner locations of the
rectangle.

A constructed zone can return:

� a list of all elements which are completely in the zone
� a list of all the degrees of freedom (DOFs) that affect the shape of the in–elements

� the local list of degrees of freedom that affect the shape of the in–elements only

A degrees of freedom in the local list affects the shape of the zone’s in–elements only. A
degrees of freedom in the total list may also affect the shape of elements not completely
within the zone.

Default Shape
Topic: Deformable Surfaces

The default shape is that which the modeler seeks in the absence of any constraints and
loads. There are two options for setting the default shape:

� The current shape may be captured as the default shape.
� The default shape may be set to zero.

By default, the original resting shape is for the deformable model to be flat and of zero area
(or length). A nonzero default shape is useful for designing a small, smooth deviation from
the given input shape. At any time the current shape of the deformable model can be
captured as the default shape with the function DM_set_default_shape.

A zero default shape is useful for constructing elegant surfaces stretched between curve
constraints, much like soap films stretched across coat hangers.

A deformable model will always have a default shape set immediately after start-up. If the
model is restored from attributes with a stored default shape set, then that will be used;
otherwise Set_default_shape(1) will be called automatically. The intent of this behavior is
that calling Solve_dmod immediately after reading in a model is a null operation. If this
behavior is not desired, then Set_default_shape(0) can be explicitly called to erase the
default shape.
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The default shape feature may be used to deform shapes very far from their original shape
by breaking one large deformation into a set of smaller deformations interspersed with
default shape captures. In such a situation, the deformed shape is a function of its default
shape and the current set of applied loads. Alternatively, when attempting to create a smooth
surface connecting a framework of curve constraints, the default shape can be removed or
“zeroed.” The shape of the deformed surface then becomes only a function of the curve
constraints and the current set of applied loads.

Figure 1-3 illustrates the default shape feature for deformable curves. The initial curve a is a
simple figure eight. This shape is captured as the curve’s default shape. Two end constraint
points are added to the curve. Curve shapes b and c are made by pulling the upper point
constraint towards the lower left corner. The default shape feature ensures that the curve
loops twice between the two endpoints no matter where those endpoints move in space.

The shape that a deformable curve adopts is the one shape out of all possible shapes that
minimizes the internal energy of the curve.

Figure 1-3. Default Shape



Standalone Deformable Modeling  7.0

Behaviors
Topic: Deformable Surfaces

Behaviors are things you can do to a deformable model. The three main types of behaviors
are constraints, loads, and material properties. Constraints control the exact shape of a
deformable model at locations where such control is required. Loads pull or push
deformable models approximately to a location. Material properties define a model’s
resistance to bending, stretching, and other deviations from the default shape.

A geometry spring–load is specified by position, tangent, curvature, and pressure load.

Behaviors are applied to a deformable model at specific domains, as for example applying a
point constraint to a point, a curve spring load to a section of a curve, or an area pressure to
a child patch on a surface.

Applying Behaviors to Models
Topic: Deformable Surfaces

Behaviors are associated with domains by load and constraint objects, which associate a
domain with one or more specific behaviors that can be toggled on or off.

A link spring load (load) has a parameter–curve domain, and can have position, tangent, and
curvature spring load behaviors applied.

Area pressure (load) has a rectangular area domain, and accepts pressure load behavior.

A point constraint on a surface (curves have different behaviors) has a single
parameter–point domain. An area constraint can lie inside or outside a rectangular area
domain, and accepts position geometry constraint behavior.

Geometry behaviors (spring loads and constraints) will have targets. A target is the xyz
location to which the behavior is pulling the surface. For every point in the domain, there is
a corresponding target location “point” in the target. A position spring load on a curve
domain (i.e. spring curve load with position behavior on) will have an xyz curve as target. A
tangent spring load on a curve domain (i.e. spring curve load with tangent behavior on) will
have a 1–parameter xyz vector–valued (vector output) function as target.
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Loads
Topic: *Deformable Surfaces

Loads can be applied to either a point, an area, or a curve domain. Multiple independent
pressures can be applied to a deformable model. There are four basic load types:
1) Spring

a. Curve spring
b. Point spring
c. Point spring set

2) Pressure
a. Distributed pressure
b. Point pressure

3) Attractor
a. Point attractor

4) Vector
a. Distributed vector load

Link Spring Loads
Topic: *Deformable Surfaces

A link curve load acts between (links) a parameter curve line in the surface of the target and
a three dimensional line, or between a parameter curve line in the surface of the target and
an ellipse. It is a distributed spring which connects a set of points on the deformable model
to a set of points in three dimensional space with

amplitude = gain * (distance between the two points)**2

This force acts to keep the point in the surface near its associated three dimensional space
point, which is helpful in forcing the shape of the overall surface.

Even though multiple behaviors can be associated with one curve load, it is strongly
recommended that a different curve load be added for each behavior to be controlled. Each
behavior will then have a separate tag which can be used to separately tune how closely the
curve is pulled to position, tangency, or curvature targets.

Pressure Loads
Topic: *Deformable Surfaces

A point pressure load is firmly fixed at one location of a deformable surface and applies a
force that always acts normal to the surface. The force’s gain or its location in the surface
can be altered. Surfaces tend to bend in the direction of the point pressure when the
pressure’s gain is increased. Gain values may be positive or negative. Positive gains “puff”
surface shapes, while negative gains “suck” them. Point pressures on deformable curves act
in the curve’s bi–normal direction.
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Original Result

Figure 1-4. Point Pressure Gain

An area pressure is a normal force applied to a continuous subregion of a deformable
model. Increasing the gain tends to make the surface bellow. The domain of the distributed
pressure can be limited so that it only acts on a portion of a surface.

Original Result

Figure 1-5. Area Pressure (Puff)
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Vector Loads
Topic: *Deformable Surfaces

A vector load is a constant vector force applied to the entire deformable shape. This load
can be used to simulate a gravity–like effect. A user can modify the vector load by
increasing its gain, or by changing the vector’s direction. Objects subjected to a vector load
tend to sag around their constraints.

Attractor Loads
Topic: *Deformable Surfaces

An attractor load acts like an electrical point charge, either attracting (negative gains) or
repulsing (positive gains) the deformable model shape with a 1/distance**power law. The
distance is measured from the attractor’s location to each point on the deformable model.
The rate at which the force charge decreases is controlled by a parameter called power.
Larger values of power increase the rate at which the force diminishes. Values of power
greater than 2 make the load a very local load. With an attractor, a portion of a deformable
model can be made to move away from or towards an attractor.

An attractor load can be modified by changing the power, the input position, or the gain.

Material Properties
Topic: *Deformable Surfaces

The automatic behavior of a deformable model may be altered by changing the material
properties. These variables include:

alpha The deformable model’s resistance to stretch.. . . . . . . . . . . . . . . . . . . 

beta The deformable model’s resistance to bending.. . . . . . . . . . . . . . . . . . . . 

gamma The deformable model’s resistance to the rate of change in. . . . . . . . . . . . . . . . . . 
bending.

delta The deformable model’s resistance to deviations from the. . . . . . . . . . . . . . . . . . . 
default shape.

The alpha variable directly weights the amount of energy due to stretching. In a curve, the
alpha weighted term is identical to arc length. Stretch is a local measure of the overall
length of a curve and alpha weights the resistance to it. A curve with a large alpha value is
said to be stiff. Deformable models with large alpha values act like soap bubbles seeking to
always minimize their area. This results in flatter looking surfaces that allow regions of
rapid bending.

Deformable models with large beta values act like elastic beams attempting to distribute
regions of bending over large areas and generate very fair shapes. Larger and larger
curvatures continue to increase the energy due to bending. The bending energy weighted by
beta can only be zero when the curve is flat. So, although beta does not actually weight a
curvature measure, it does act to resist curve bending.
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The gamma term is another smoothing term that works well for deformable curves.
Resisting the rate of change of bending helps to resist the rate of twist in a curve, which
helps to increase the fairness of a deformable curve. The gamma does not work well with
deformable surfaces.

Delta is the gain of a distributed spring force that connects the deformed shape to the default
shape. Deformable models with nonzero delta values resist the effects of spring loads and
point constraints. It is not necessary for enforcing the default shape behavior of the
deformable model. Even with a zero value for delta, the deformable model continues to seek
out the default shape when no loads or constraints are applied.

The actual deformable model’s behavior is a function of the ratios of these parameters. A
good starting set of surface parameters are 

alpha = 1
beta = 5
gamma = 0
delta = 0

Constraints
Topic: *Deformable Surfaces

The three types of constraints are point, curve, and link. Constraints are restrictions on shape
that a deformable model must satisfy while it is being modified. Constraints can be applied
to individual points within the surface or may be applied to curves within the surface, or
may be applied to zones within a surface. A constraint can restrict position, tangent, normal,
and curvature. See the function descriptions (add_pt_cstrn, add_link_cstrn, and
add_crv_cstrn) for details.

The following constraints are supported:

For surfaces:

Point position constraint Constrains any point on a surface to interpolate any point in. . . . 
space.

Point tangency Constrains the tangency of any point on a surface.. . . . . . . . . . . 

Point curvature Constrains the curvature of any point on a surface.. . . . . . . . . . . 

Point normal constraint Constrains the direction of the surface normal at any point on. . . . 
a surface to point in any direction.

Curve position constraint Constrains any curve within the surface to interpolate a curve. . . 
in space.
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Curve tangent constraint Constrains the surface tangent across any curve in the surface. . . . 
to point in a given direction. The curve tangent constraint is
used to connect a child patch to its parent patch with C1
continuity. A combination of the curve position and curve
tangent constraints fixes the surface normal along the length
of the curve constraint.

Curve curvature constraint Constrains the surface curvature across any curve in the. . 
surface.

For curves:

Point position constraint Constrains any point on a curve to interpolate any point in. . . . 
space.

Point tangent constraint Constrains the curve tangent direction at any point on a curve. . . . 
to point in any direction.

Point curvature constraint Constrains the curvature magnitude and curvature plane at. . . 
any point on a curve.

With deformable modeling, users can add any combination of the above constraints to a
deformable model at run time while applying any combination of loads.

Point Constraint

A point constraint can specify the geometry properties (position, tangent, normal, and
curvature) of a point on a deformable model shape. The basic pattern for using a point
constraint is:

1. Create and apply the constraint to a deformable model using DM_add_pt_cstrn.

2. Select which geometry properties are being constrained, using
DM_set_cstrn_behavior.

3. For tracking pt_cstrns, modify the geometry property values by moving the point
constraint display points with DM_set_pt_xyz.

4. Call solve to see how the constraint modifications changed the deformable model
shape, DM_solve.

Optionally, change the point constraint’s domain position and domain directions
(directions for directional derivatives on surfaces) with DM_set_pt_uv or
DM_set_cstrn_pttan_uv_dir.

Optionally, modify the constraint image_pt locations to optimize viewing and/or
interactions, with DM_set_tan_display_gain or DM_set_comb_graphics.
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Curve Constraint

A curve constraint may act to constrain any combination of the shape’s position, tangent,
and curvature along the length of the curve constraint determined by the behavior bit array
value specified in the arguments for DM_add_crv_cstrn.

Link Constraint

A link constraint connects two root siblings to make two deformable models act as one. The
constraint is described by the shapes of two curves embedded within the deformable models
that they constrain. It also specifies if their shape is to be C0, C1, C2, or discontinuous
across this link constraint.

Tags and Tag Objects
Topic: Deformable Surfaces

A tag is an ID code (an integer) for a tag object. Deformable models, constraint objects and
load objects are all tag objects. A tag object is acted on through the interface by specifying
its tag as an input argument. Behaviors within a constraint object or load object tend to be
identified by a pt_index argument in interface calls.

For example, in most of the Scheme extensions for deformable modeling, the target
argument, which specifies the deformable model, is an integer tag. The target can be
specified to be the active deformable model, the root deformable model, the active
deformable model and offspring, or the root deformable model and offspring. If none of
those are specified, the target is the deformable model whose tag identifier equals target.
The extension will return an integer tag for the load or constraint it applies.

It is the calling application’s responsibility to guarantee that assigned tag numbers are
unique throughout the entire deformable modeling hierarchy. If you always use
DM_assign_next_tag to select the tag value for each tag object entered into a deformable
model tag hierarchy, then every tag object in the hierarchy will have a unique value.

Tags maintain their unique identifier status. For example, when DM_add_link_cstrn forces
two deformable models to deform as if they were one, all of the tag identifiers in the second
model’s deformable modeling hierarchy are shifted by the output amount, tag_shift, to
guarantee their uniqueness in the combined deformable modeling hierarchy. If the two
models are already siblings, tag_shift is set to 0, and all the tag numbers are not changed.

Engineering Issues
Topic: Deformable Surfaces

To avoid problems when using deformable modeling, the developer should be aware of
these issues and address them in the early stages of development.
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Memory Management
Topic: Deformable Surfaces

When constructing DS_zone objects to use as inputs for area constraints, the returned zone
object is malloced and must be freed by the application at the appropriate time. However,
once the zone is used to make an area constraint or some other kind of tag object, the SDM
library will free this memory when asked to free the tag object.

journaling: DM_journal_off 
 DM_journal_on 
 DM_journal_play

Comparing Loads and Constraints
Topic: Deformable Surfaces

Loads have tolerances; constraints don’t.

Loads have two attributes that constraints don’t: linearity and gain.

The difference between using the DM_add_link_C0_load function and DM_add_link_cstrn
is in how the link constraint is enforced. The load function uses a spring load (which is
equivalent to a penalty method) for enforcing the constraint, while the DM_add_link_cstrn
call enforces the link constraint with lagrange variables. The difference is that the penalty
method will tend to be more tolerant, which can be an advantage if the constraint is being
enforced too stiffly to bend properly with the lagrange constraint approach.

Load Linearity and Gain
Topic: Deformable Surfaces

Loads have two attributes that constraints don’t: linearity and gain.

Loads that aren’t linear must be solved with a –1 iteration flag. Constraints are always
linear, so the –1 iteration flag isn’t needed. The nonlinearity in pressures and attractors
comes from the dependence of the force, i.e., energy equation right hand side, on the current
shape of the deformable model.

Gain measures the strength or force of the load. For some loads, changing the gain changes
both the left and right side of the energy equations, requiring a relatively expensive
refactorization. Constraints always change only the right side of the energy equations,
requiring a relatively cheap solution. The load types are tabulated below by these two
considerations.

In the limiting case of large gain, a spring behaves like a constraint. For both constraints and
loads, adding or deleting requires a relatively expensive factorization, while tracking
requires a relatively cheap solution.
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Continuity and periodicity are two “hidden” constraints. If a spline has knots with only C0
continuity, when a deformable model is created, constraints will be inserted to force C1
continuity at these knots. These can be toggled using DM_set_interior_state. If a spline is
periodic, when a deformable model is created, constraints will be inserted to force
periodicity.

Table 1-1. Load Linearity

Linear Loads Nonlinear Loads

Spring Pressure

Vector Attractor

Table 1-2. Load Gains

Gain change ––> RHS changes
(cheap)

Gain change ––> LHS changes
(expensive)

Pressure Spring

Attractor

Vector


