
Autodesk Inventor Tutorials

by Sean Dotson
www.sdotson.com
sean@sdotson.com

VBA Functions in Parts
Part Two

Latest Revision: 3/17/03
For R6

© 2003 Sean Dotson (sdotson.com)
Inventor is a registered trademark of Autodesk Inc.

By downloading this document you agreed to the following:

Your use of this material is for information purposes only. You agree not to distribute, publish,
transmit, modify, display or create derivative works from or exploit the contents of this document in
any way. Any other use, including the reproduction, modification, distribution, transmission,
republication, display, or performance, of the content on this site is strictly prohibited.

mailto:sean@sdotson.com
http://www.sdotson.com/

2

In the first part of this tutorial we setup a basic function to change the size of a part based
on another parameter. If you do not understand all of the concepts that were presented in
that tutorial I suggest you study it a bit longer as this one is going to be more advanced.

I also suggest you read the whole tutorial before trying to follow along as there are a few
“gotchas”…

 The data set for this tutorial can be downloaded from:
http://www.sdotson.com/tutparts/VBAFunctions2.zip

Unzip the dataset and move the AirCyl.xls Excl sheet to the root of your C:\ drive. (If
you cannot access, or do not have a C drive, place the Excel sheet in another directory
and later I will show you how to change the path to this file.)

Now open AirCyl.ipt. It will look like Figure 1.

Figure 1 - Basic Air Cylinder

Now open the Excel file AirCyl.xls (See Figure 2)

Figure 2 - Excel Sheet

In this sheet we enter the tabular data. We key off two different columns; Bore &
Stroke. We shall call these the index columns. We enter the data for the other
parameters in the columns next to the index columns. BodyDiam, NoseDiam, and
RodDiam all key off Bore while BodyLength, NoseLength, and RodDepth key off

http://www.sdotson.com/tutparts/VBAFunctions2.zip

3

Stroke. There is no relationship in the Excel sheet for these keys, just a mental
relationship we have made for use in the function.

Close the Excel sheet (it might help to print it out first to refer to as we create the
function) and return to the part. Examine the sketches and features that make up the air
cylinder. Note where the different parameters are being used to create certain features.
Also keep in mind that the Excel sheet header cells do not have to be the same name as
the parameters. We make them the same however to make it easier to keep track of the
variables.

Rather than have you type out the function, I have already created it for you. Go to
Tools>Macros>Visual Basic Editor and find the function associated with this part file.
Copy the text in the Function.txt (included in the data set) file into the Visual Basic
Editor.

The code for the functions is listed below:

Public Function ExcelLookup(arg1 As Double, arg2 As Double, arg3 As Double) As Double

 Dim sDocName As String
 Dim iRow As Long
 Dim XL As Variant
 Dim xlWS As Variant

 sDocName = "c:\AirCyl.xls"
 Set XL = GetObject(sDocName)

 If XL Is Nothing Then
 MsgBox "Failed to open '" & sDocName & "'", vbCritical
 Exit Function
 End If

 Set xlWS = XL.ActiveSheet

 Dim colXLparams As New Collection

 iRow = 2 'skip the header row
 Do While xlWS.Cells(iRow, arg1).Value <> ""

 If xlWS.Cells(iRow, arg1).Value = arg2 / 2.54 Then
 ExcelLookup = xlWS.Cells(iRow, arg3).Value
 Exit Function
 End If

 iRow = iRow + 1

 Loop

 On Error Resume Next

 'detach from XL
 Set xlWS = Nothing
 Set XL = Nothing

End Function

Let’s look at each line of code:

Public Function ExcelLookup(arg1 As Double, arg2 As Double, arg3 As Double) As Double

This line defines the name of the function and three arguments (arg1,arg2,arg3)

4

 Dim sDocName As String
 Dim iRow As Long
 Dim XL As Variant
 Dim xlWS As Variant

These lines dimension some variables we will require in our function. We define the
sDocName as a string (this will be our Excel filename), iRow as a Long (this will be the
row Number), and XL and xlWS as Variants. At this point I will not go into details about
these Variants.

 sDocName = "c:\AirCyl.xls"

This line sets the variable sDocName to the location and name of the Excel sheet. In this
case I have named the file AirCyl.xls and placed it in the root of the C drive. If you want
to change the location of this file you can do so in this line.

 Set XL = GetObject(sDocName)
 If XL Is Nothing Then
 MsgBox "Failed to open '" & sDocName & "'", vbCritical
 Exit Function
 End If

 Set xlWS = XL.ActiveSheet

 Dim colXLparams As New Collection

This section checks to make sure a valid Excel file is attached and end the function if it’s
not. Again, I am focusing on the Inventor specific part of this code. You should be able
to reuse all of this code without changing it.

 iRow = 2 'skip the header row
 Do While xlWS.Cells(iRow, arg1).Value <> ""

 If xlWS.Cells(iRow, arg1).Value = arg2 / 2.54 Then
 ExcelLookup = xlWS.Cells(iRow, arg3).Value
 Exit Function
 End If

 iRow = iRow + 1

 Loop

This is the true heart of the code. We set the first iRow to 2. This means we will ignore
the first row of the Excel sheet. We can use this space for column headers.

We then loop through the rows and look at the row and the column that is defined by
arg1.

Let’s step back for a second to discuss how this function is suppoed to work:

Arg1 is the column of the value we are keying off of. If we wanted to find values that
keyed off of the Bore we would set arg1 equal to 1 (the column that represents the values
for Body Diam). Arg2 is the value in the Arg1 column we are looking to match. Arg3
is the column from which we want to select the resulting value.

5

For example if we wanted to use this function to find the resulting NoseDiam for a Bore
of 1” the values of the arguments would be:

Arg1 = 1 (the Bore column)
Arg2 = 1” (value we want to match)
Arg3 = 5 (the NoseDiam column)

So in our function we loop through the rows until we find a value in column arg1 that
matches the value as specified by arg2 and return the value in this same row under
column arg3. It’s a bit confusing but read it a few times and it will start to make sense.

Again we divide arg2 by 2.54 to obtain the correct units of cm, Inventor’s internal units.

In our example we would return a value of 0.625” for our given arguments.

On Error Resume Next
 'detach from XL
 Set xlWS = Nothing
 Set XL = Nothing
 End Function

The rest of the code detaches Inventor from Excel, empties some variables and then ends
the function.

So now we need to create the parameter equations that will call this function. We need to
do this in a very particular manner due to the way parameters are evaluated. In Inventor
the parameter is evaluated after each keystroke. This causes Inventor to try to run the
function before you have completely typed the equations and can cause errors. For this
reason I recommend you type the equation in a text editor such as Notepad and then paste
it into the parameter equation box at one time.

Open the file Equations.txt. Copy the value of the equation for the parameters
BodyDiam and then return to Inventor. Open the parameters dialogue and paste in the
value in the equation box. (See Figure 3)

Let’s analyze what we pasted into the part file.

VBA:ExcelLookup(1.000 ul;Bore;3.000 ul) * 1 in

Arg1 is set to 1 as we are keying off the Bore. Arg2 is set to Bore (another parameter
name) so it will take the value of the User Parameter Bore and use it to find a matching
value in the Excel sheet’s Bore column. (Note the column name and parameter do not
have to be the same, it just makes it easier to keep track of the variables.) Arg3 is set
equal to 3 as we want to find the resulting BodyDiam for the Bore of 1”. Notice that
BodyDiam in the Excel sheet is indeed the third column. We multiply this by 1 in to
convert it from centimeters (the default value return by the function) into inches.

6

Continue to copy and paste the other values in the text file into the parameter dialogue.
See Figure 4.

Figure 3 - Entering Parameter Equations

Figure 4 - All Equations Entered

7

Notice that in the equation for the parameter BodyLength we set Arg1 equal to 2. This
is because we want to key off the Stroke column, not the Bore column. You could
continue this logic for any number of “key” columns.

Once all parameters have been pasted. Click Done. Notice that the update icon is
highlighted. Click on it and the model should update. It will not change as the current
values of Bore and Stroke have not been changed. Enter the parameter menu once again
and change Bore to 1” and Stroke to 5”.

Now exit and update the model. It should have changed to reflect the values as shown in
the Excel sheet.

So we now have a part that uses a lookup table to determine its values based on two user
parameters. If you enter a value that is not on the lookup chart the function will return
zero and you will get an error like the one in Figure 5.

Figure 5 - Error Message (Non-Valid Entry)

I feel this is a good way to let the user know we may have entered an incorrect value.
You could get more involved in the function and present the user with a message box
letting them know they entered an incorrect value and allow them to change it before
updating the model. The code to do this would be

 If ExcelLookup = 0 Then
 MsgBox "You have entered a value that is not in the lookup table."
 End If

 Placed between the Loop and On Error Resume Next lines. See the file
ExcelAccessPartFinal.ipt for an example of a finished part with this code.

You could then place this part on your network or in your templates folder and generate
new parts off of it while maintaining one Excel file. The Excel file can reside on the
network and you do not have to worry about changing sources for linked Excel sheets.
You do, however, have to remember to package this Excel file along with the part if you

8

are moving the part to a location where it cannot reach the Excel sheet. You will also
have to edit the macro to point it to the new location.

In the third part of this tutorial I will discuss how to use these VBA functions to make
complex motion much easier. (Of course the easiest was is to use Animator☺)

http://www.sdotson.com/animator.asp

	Autodesk Inventor Tutorials
	VBA Functions in Parts
	Part Two
	Latest Revision: 3/17/03
	For R6
	VBA:ExcelLookup(1.000 ul;Bore;3.000 ul) * 1 in

